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We explicitly calculate the induced gravity theory at the boundary of an asymptotically anti–de Sitter
five dimensional Einstein gravity. We also display the action that encodes the dynamics of radial
diffeomorphisms. It is found that the induced theory is a four dimensional conformal gravity plus a
scalar field. This calculation confirms some previous results found by a different approach.
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I. INTRODUCTION

A connection between string theory on AdS5 � S
5 and

super Yang-Mills theory in four dimensions was proposed
by J. Maldacena some years ago [1]. More recently, this
result gave rise to what is currently called the AdS/CFT
conjecture. Since then, many others results have been
reached by using this conjecture. The AdS/CFT conjecture
relates the renormalized gravity action induced in the
boundary with the expectation value of the stress tensor
of the dual CFT as
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where �ij is the metric induced on the boundary.
As stated today, the AdS/CFT conjecture actually rep-

resents a realization of holography as proposed 10 years
ago by Susskind and ’t Hooft [2,3]. This conjecture has
been extensively checked in part because the conformal
symmetry is strong enough to determine many generic
results in a CFT without knowing the details of the par-
ticular theory. For instance, one can demonstrate that the
thermodynamics of a black hole in an asymptotically (lo-
cally) AdS space reproduces the thermodynamics of a
CFT. To our knowledge this is true for all the theories of
gravity with a single negative cosmological constant (see,
for instance, [4]). The main reason is that the thermody-
namics of any CFT is almost completely determined by the
conformal symmetry.

Furthermore, one can prove that, under certain particular
conditions, a gravitational theory can be induced in a lower
dimensional surface at the bulk. The brane-worlds pro-
posed in [5] are a realization of these ideas. In [6], using
the same underlying idea, it is shown that the Liouville
theory arises as the effective theory at the AdS asymptotic
boundary in 2� 1 AdS gravity. If the AdS/CFT conjecture
is to be understood as a duality relation, then a classical
solution in the bulk should rise to a quantum corrected
solution at the boundary. This actually was confirmed
between 3� 1=2� 1 dimensions in [7].

An asymptotically (locally) AdS space needs to be
treated carefully; otherwise, one is usually led to a diver-
gent behavior in the Lagrangian, the conserved charges
and/or the variations of the Lagrangian. Therefore, to con-
firm many of the results of the AdS/CFT conjecture, it is
necessary to use some (classical) regularization processes
together with a proper set of boundary conditions. The
regularization of the conserved charges has been an inter-
esting field by itself where many relevant results have been
found (see, for instance, [8–10]). A generic method to deal
with the divergent behaviors of the actions appears in [11],
where the conjecture is used to build a method to compute
anomalies of CFT’s. In this work part of these results will
be used. In particular, in five dimensions a finite version of
the Einstein-Hilbert action [12] reads
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We would like to underline that, although in this action
each term diverges, the addition of all of them turns out to
be finite and well behaved. A generalization for this action
can be found in Ref. [13].

In this work we prove that an effective conformal gravity
theory arises at the boundary when the action displayed in
Eq. (2) is used as the bulk’s theory. We have extended to
five dimensions the work previously done by Carlip [6] in
three dimensions.

The theory obtained coincides with the bosonic part
from the super conformal gravity that appears in the
work of Balasubramanian et al. [14] and that of Liu et al.
[15]; however, the method employed to reach this result is
different. There is another approach, independent of the
two already mentioned, that reaches the same result [16].
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II. THE FOUR DIMENSIONAL CONFORMAL
ACTION AND THE ANOMALY

The purpose of this work is to rewrite the action that
appears in Eq. (2) and to show that it can be understood as a
four dimensional theory under diffeomorphisms that pre-
serve the asymptotically AdS scaling of the metric. To
fulfill this program, we begin with a general five dimen-
sional asymptotic AdS metric with a Fefferman-Graham–
type expansion near infinity. This yields the following line
element:

 ds2 � l2d�2 � gij�x; ��dx
idxj; (3)

where the limit �! 1 defines the asymptotically (locally)
AdS region. The metric gij�x; �� admits the expansion

 gij�x; �� � e2�g�0�ij �x� � g
�2�
ij �x� � e

�2�g�4�ij �x�

� 2e�2��hij�x� � . . . :

Next, we set l � 1, and thus � � �6. With this expan-
sion the Einstein equations can be solved iteratively. This
yields (see Ref. [11])
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where traces are obtained using the metric g�0�ij .
The following steps consider a coordinate transforma-

tion that must leave invariant the asymptotic form of the
metric (3). Using the prescription described in [6], the
transformation reads

 �! �� 1
2’�x� � e

�2�f�2��x� � . . . ;

xi ! xi � e�2�h�2�i�x� � . . . :
(5)

Note that in the new coordinate system � and the variable
xi are factorized.

The boundary � ��! 1� is defined as

 � � ��� 1
2’�x� �O�e

�n ��� � F�x�: (6)

Therefore the induced metric at the boundary and the unit
normal, respectively, read

 �ij � gij � @iF@jF; (7)
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In this new system of coordinates (5) one can obtain an
expansion in powers of � for the determinant

����
�
p

, the
extrinsic curvature, and the Ricci scalar near the boundary.
The expansions for each one of these geometrical objects
are
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The Ricci scalar is defined up to total derivatives of the
order of O�e�4��. All indices are raised and lowered with
respect to g�0�ij .

Here we have defined

 Tr ��Lngk� � �ij@ix�@jx��Lng���; (12)

with � � 0 . . . 4 and x4 � �. The derivatives of the coor-
dinates x� are given by

 @ix
� � ��i � @iF�

�
4 : (13)

We want to use the expansions just described to extract
the finite part of the action (2). First we integrate � in the
five dimensional action (2):
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The term proportional to F has a divergent term that must
be eliminated by adding a counterterm. This regularization
procedure was first introduced by Skenderis [11].

Finally, evaluating the action on shell we get
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This expression can be recognized as the action for a
four dimensional conformal gravity plus an anomalous
part.

It is worth mentioning that this result has been obtained
before by at least two different approaches. For instance,
looking for an action that takes care of the anomalous term,
in [17] Riegert arrived at the same expression. Different
approaches converging toward the same result give a solid
confidence to the different methods used.

III. CONCLUSIONS

In this work we have proven that a four dimensional
conformal gravity can be obtained through the AdS/CFT
mechanism from five dimensional Einstein gravity. We
have demonstrated this explicitly using the Fefferman-
Graham expansion and regularizing the action. As ex-
pected the radial diffeomorphisms induce a Weyl trans-
formation on the boundary metric which in turn produces
the anomalous part as demonstrated by Manvelyan et al.
[18]. The degrees of freedom associated with radial diffeo-
morphisms are encoded in the dynamics of the scalar field

’. This action was obtained by Riegert [17] as the local
form of the action which gives a trace anomaly propor-
tional to R�0�ijR�0�ij �

1
3R
�0�2 and corresponds to the local

form of the anomalous part of the effective action associ-
ated with the super Yang-Mills theory in d � 4; see
Refs. [14,15]. Also, from [19] we know that this field
encodes part of the degrees of freedom contained in the
traceless part of g�4� which, along with g�0�, contains all the
degrees of freedom of the solutions for pure gravity in five
dimensions. This calculation confirms the previous result
obtained for the pure gravitational sector by
Balasubramanian et al. [14] and by Liu et al. [15] employ-
ing different methods. Our strategy appears to be more
direct than used in the two works just mentioned; however,
the algebra involved is more complex.

The induced four dimensional action we have found here
can be considered as a quantum correction for the Einstein-
Hilbert action in d � 4. Mottola and Vaulin [20] have
considered a similar idea. They considered these terms as
deviations from the classical stress tensor coming from
quantum corrections. We plan to address this problem in
a future work. In a different context, our result may be used
as an ansatz for the action proposed in [21] to test Kaluza-
Klein corrections in the Randall-Sundrum two-brane
system.
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