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We explore the phase structure induced by closed string tachyon condensation of toric nonsupersym-
metric conifold-like singularities described by an integral charge matrix Q � �n1n2 � n3 � n4�, ni > 0,P
iQi � 0, initiated by Narayan [J. High Energy Phys. 03 (2006) 036]. Using gauged linear sigma model

renormalization group flows and toric geometry techniques, we see a cascadelike phase structure
containing decays to lower order conifold-like singularities, including, in particular, the supersymmetric
conifold and the Ypq spaces. This structure is consistent with the Type II GSO projection obtained
previously for these singularities. Transitions between the various phases of these geometries include flips
and flops.
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I. INTRODUCTION AND SUMMARY

Understanding the stringy dynamics of nontrivial space-
time geometries is an interesting question, especially in the
absence of spacetime supersymmetry. In this case, there
typically are geometric instabilities in the system, often
stemming from closed string tachyons in the theory (see
e.g. [1,2] for reviews), whose time dynamics is hard to
unravel in detail. However, understanding the detailed
phase structure of these geometries is often tractable based
on analyses of renormalization group flows in appropriate
2-dimensional gauged linear sigma models (GLSMs) [3]
describing the system with unbroken (2, 2) world sheet
supersymmetry. In this case, such an analysis closely dove-
tails with the resolution of possible localized singularities
present in the space.

A simple and prototypical example of such a renormal-
ization group flow description of spacetime dynamics is the
shrinking of a 2-sphere (P1) given by j�1j

2 � j�2j
2 �

r==U�1�. The complex coordinates �i have the U�1� iden-
tifications ��1; �2� ! �ei��1; ei��2�, which we quotient
by, to obtain a 2-sphere (this symplectic quotient construc-
tion will be elaborated on abundantly later). The parameter
r � R2 is the size of the sphere. The GLSM description of
this system shows a 1-loop renormalization of the parame-
ter r:

 r � r0 � 2 log
�
�

� R2 � R2
0 � t: (1)

In the equation on the right, we have recast the
renormalization-group (RG) flow equation1 as an equation

for the time evolution2 of the radius by identifying the RG
scale 2 log�� � �t (� decreases along the RG flow) and r0

with the initial size R2
0. Early time (t� 0 here) corresponds

to ��� which in this case is r� r0 � 0, i.e. large R�
R0: more generally the sign of the coefficient of the loga-
rithm dictates the direction of evolution of the geometry.
The RG flow shows that the sphere has an instability to
shrink, with the shrinking being slow initially since, for
large R0, we have R� R0 �

t
2R0
� 	 	 	 .

This kind of behavior also arises in the context of
singular spaces in 3 complex dimensions where much
more complicated and interesting phenomena happen.
Two types of 3-dimensional nonsupersymmetric unstable
singularities, particularly rich both in physical content and
mathematical structure, are conifolds [6] and orbifolds
[7,8] (see also [9]), thought of as local singularities in
some compact space, the full spacetime then being of the
form R3;1 
M. The conifold-like singularities [6] (re-
viewed in Sec. II) are toric (as are orbifolds), labeled by
a charge matrix

 Q � � n1 n2 �n3 �n4 �;
X
Qi � 0; (2)

for integers ni > 0, which characterizes their toric data
(Q � � 1 1 �1 �1 � corresponding to the supersym-
metric conifold). The condition

P
iQi � 0 implements

*Electronic address: narayan@theory.tifr.res.in
1This can also be obtained from studying world sheet RG flow

(or Ricci flow) of the 2-sphere d
dt g�� ��R��, giving d

dt �R
2� �

�1.

2Time in this paper means RG time. Although time evolution
in spacetime is not in general the same as world sheet RG flow, it
is consistent for the time evolution trajectories to be qualitatively
similar to the RG flow trajectories and in many known examples,
the end points from both approaches are identical. See e.g. [4,5]
for recent related discussions: in particular, the world sheet beta-
function equations show that there is no obstruction to either RG
flow (from c-theorems) or time evolution (since the dilaton can
be turned off) for noncompact singularities such as those con-
sidered here. Furthermore, for the special kinds of complex
spaces we deal with here, the world sheet theory has unbroken
world sheet supersymmetry.
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spacetime supersymmetry breaking. It is possible to show
that these are nonsupersymmetric orbifolds of the latter,
and thus can be locally described by a hypersurface equa-
tion z1z4 � z2z3 � 0, with the zi having discrete identifi-
cations from the quotienting. Generically these spaces are
not complete intersections of hypersurfaces. They can be
described as

 X
i

Qij�ij
2 � n1j�1j

2 � n2j�2j
2 � n3j�3j

2 � n4j�4j
2

� r==U�1�; (3)

where the U�1� gauge group acts as �i ! eiQi��i on the
GLSM fields �i, as will be described in detail later. The
variations of the Fayet-Iliopoulos (FI) parameter r describe
the distinct phases of the geometry, with the r� 0 and
r� 0 resolved phases giving fibrations over two topologi-
cally distinct 2-cycles. These small resolutions—Kähler
blowups of the singularity (at r � 0) by 2-cycles—have an
asymmetry stemming from

P
Qi � 0. Indeed the 1-loop

renormalization r � �
P
iQi� log�� shows that one of these

2-spheres P1
� is unstable to shrinking and the other, more

stable, P1
� grows. This spontaneous blowdown of a 2-cycle

accompanied by the spontaneous blowup of a topologically
distinct 2-cycle is a flip transition. Say at early times we set
up the system in the unstable, approximately classical,
(ultraviolet) phase where the shrinking 2-sphere P1

� is
large: then the geometry will dynamically evolve3 towards
the more stable P1

�, with an inherent directionality in time,
the singular region near r � 0 where quantum (world sheet
instanton) corrections in the GLSM are large being a
transient intermediate state.4

An obvious question that arises on this analysis of [6] on
the small resolutions is: are there RG evolution trajectories
of a given unstable conifold-like singularity where the end
points include the supersymmetric conifold, and more gen-
eral lower order conifold-like singularities? In this paper,

we answer this question in the affirmative. Unlike the
simple P1 example described in (1), there typically are
orbifold singularities present on the P1

� loci (as described
in [6]), which are themselves unstable to resolving them-
selves, typically by blowups of 4-cycles (divisors) which
can be interpreted as twisted sector tachyon states in the
corresponding orbifold conformal field theories. For a
large 2-sphere P1

�, the localized orbifold singularities on
its locus are widely separated spatially. As this P1

� shrinks,
these pieces of spacetime potentially containing residual
singularities come together, interact and recombine giving
new spaces of distinct topology. The existence of both 2-
cycle and various 4-cycle blowup modes of the conifold
singularity besides those leading to the small resolutions
makes the full phase structure given by the GLSM quite
rich. This GLSM [also admitting �2; 2� world sheet super-
symmetry] with a U�1�n�1 gauge group, for say n addi-
tional 4-cycle blowup modes, is described by an enlarged
charge matrix Qa

i ; a � 1; . . . ; n� 1, with n� 1 Fayet-
Iliopoulos parameters ra controlling the vacuum structure,
their RG flows describing the various phase transitions
occurring in these geometries (a heuristic picture of the
phase structure of a 2-parameter system is shown in Fig. 1).
The geometry of the typical GLSM phase consists of
combinations of 2-cycles and 4-cycles expanding/contract-
ing in time, separating pieces of spacetime described by
appropriate collections of coordinate charts glued together
on their overlaps in accordance with the corresponding
toric resolution (see Figs. 3 and 4). Besides flips and blow-
ups of residual orbifold twisted sector tachyons, generic
transitions between the various distinct phases include
flops (marginal blowdowns/blowups of 2-cycles)—these
arise along infrared moduli spaces. In such a case, the
geometry can end up anywhere on this moduli space,
including occasionally at (real) codimension-2 singular-
ities on it: these correspond to lower order supersymmetric
conifold-like spaces, e.g. the Ypq and La;b;c spaces (see
Sec. III).

As discussed in [6], the GLSM RG flow for a flip
transition in fact always drives it in the direction of the
(partial) resolution leading to a less singular residual ge-
ometry, i.e. a more stable end point. This enables a classi-
fication of the phases of the enlarged GLSMs discussed
here corresponding to these unstable singularities into
‘‘stable’’ and ‘‘unstable’’ basins of attraction, noting the
directionality of the RG trajectories involving potential
flips, which always flow towards the more stable phases.
The eventual stable phases typically consist of the stable 2-
sphere P1

� expanding in time, along with the various other
expanding 4-cycles corresponding to the condensation of
possible tachyons localized on the orbifold singularities on
its locus: these phases include the various small resolutions
of possible lower order conifold-like singularities. Since
the GLSM with (2, 2) world sheet supersymmetry has a
smooth RG flow, the various phase transitions occurring in
the evolution of the geometry are smooth.

3Letting q � �
P
iQi > 0, R2

0 � log�0

� (�0 � �), we recast

r � q log�� to obtain R� � q1=2
��������������
R2

0 � t
q

� R0 �
t
R0

, R� �
q1=2 ������������

t� t0
p

�
��
t
p
� t0��

t
p for early (t� 0) and late (t� R2

0) times,
t0 � R2

0 being when R � 0: i.e. the shrinking of P1
� and growing

of P1
� are slow for large P1s. The shrinking of P1

� accelerates
towards the singular region, while P1

� first rapidly grows, then
decelerates (within this 1-loop RG flow).

4Although one cannot make reliable statements within this
approximation about the singular region, arising as it does in the
‘‘middle’’ of the RG flow, it is worth making a comment about
the geometry of this region. It was shown in [6] (see also Sec. II)
that the structure of these spaces as quotients of the supersym-
metric conifold obstructs the only 3-cycle (complex structure)
deformation of the latter (although there can exist new abstract
deformations that have no interpretation ‘‘upstairs’’). This sug-
gests that there are no analogs of ‘‘strong’’ topology change and
conifold transitions with nonperturbative light wrapped brane
states here (see also the discussion on the GLSM before
Sec. III A).
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A nontrivial GSO projection

 

X
i

Qi � even (4)

was obtained in [6] for the R3;1 
 C�flip� spacetime back-
ground to admit a Type II string description with no bulk
tachyons and admitting spacetime fermions. Here we show
that the enlarged Qa

i charge matrix can be truncated ap-
propriately so as to obtain a phase structure consistent with
this Type II GSO projection. The final decay end points in
Type II string theories are supersymmetric.

It is worth comparing these geometries to other simpler
ones, e.g. C3=ZN orbifold singularities [7,8]. In the latter,
the unstable blowup modes can be mapped explicitly to
localized closed string tachyon states arising in the twisted
sectors of the conformal field theories describing these
orbifolds. A flip transition arises when a more dominant
tachyon (more negative spacetime mass) condenses during
the condensation of some tachyon, thus corresponding to a
more relevant operator in the GLSM turning on during the
RG flow induced by some relevant operator. Therefore a
careful analysis of the closed string spectrum of the orbi-
fold conformal field theory is in principle sufficient to
understand the decay structure of the singularity.
Generically, such unstable orbifolds decay in a cascadelike
fashion to lower order orbifold singularities which might
themselves be unstable, and so on. In the present context of
the conifold-like spaces, such a conformal field theory
description is not easy to obtain in the vicinity of the
singular region (which arises in the middle of the RG flows,
unlike the orbifold cases). However, since the conifold
transition itself appears to be obstructed [6] (see foot-
note 4), it would seem that one could in principle use world
sheet techniques in the early time semiclassical regions to

predict the full evolution structure. In this regard, the
geometry/GLSM methods used here, aided by the structure
of the residual orbifold singularities5 that arise in the small
resolutions, are especially powerful in obtaining an explicit
analysis. The GLSM description, dovetailing beautifully
with the toric geometry description, gives detailed insights
into the phase structure of these singularities (see Sec. III).
We analyze in detail some examples of singularities and
exhibit a cascadelike phase structure containing lower
order conifold-like singularities, including, in particular,
the supersymmetric conifold and the Ypq spaces.

II. SOME PRELIMINARIES ON TACHYONS, FLIPS,
AND CONIFOLDS

In this section, we present some generalities on the
nonsupersymmetric conifold-like singularities in question,
largely reviewing results presented earlier in [6]. Consider
a charge matrix

 Q � � n1 n2 �n3 �n4 � (5)

and a C action on the complex coordinates �i � a, b, c,
d, with this charge matrix as �i ! �Qi�i, � 2 C. Using
the redefined coordinates a1=n1 , b1=n2 , c1=n3 , d1=n4 , we find
the invariant monomials

 z1 � a1=n1c1=n3 ; z2 � a1=n1d1=n4 ;

z3 � b1=n2c1=n3 ; z4 � b1=n2d1=n4 ;
(6)

satisfying locally

 z1z4 � z2z3 � 0; (7)

 

Flow−ray

flip

orbifold tachyon
  condensation

flip

  condensation
orbifold tachyon

flop

FIG. 1 (color online). A heuristic picture of the phases of a 2-parameter system. The blue (larger) and green (smaller) circles are P1s
and weighted P2s, respectively. The (red) triangles are residual orbifold singularities on their loci.

5The structure of nonsupersymmetric 3-dimensional orbifold
singularities [7,8] is reviewed in Appendix A.
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showing that the space is locally the supersymmetric coni-
fold. Globally however, the phases e2�i=nk induced on the zi
by the independent rotations on the underlying variables a,
b, c, d, induce a quotient structure on the singularity with a
discrete group �, the coordinates zi having the identifica-
tions
 

� z1 z2 z3 z4 �!
a
� e2�i=n1z1 e2�i=n1z2 z3 z4 �;

!
b
� z1 z2 e2�i=n2z3 e2�i=n2z4 �;

!
c
� e2�i=n3z1 z2 e2�i=n3z3 z4 �;

!
d
� z1 e2�i=n4z2 z3 e2�i=n4z4�:

(8)

Thus, in general, the flip conifold C�flip� described by Q �
�n1 n2 � n3 � n4� is the quotient

 C �flip� �
CQ

i
Zni

(9)

of the supersymmetric conifold C with the action given by
(8). As a toric variety described by this holomorphic quo-
tient construction, this space can be described by relations
between monomials of the variables a, b, c, d, invariant
under the C action. In general, such spaces are not com-
plete intersections of hypersurfaces, i.e. the number of
variables minus the number of equations is not equal to
the dimension of the space. The quotient structure above
can be shown to obstruct the only complex structure de-
formation (locally given as z1z4 � z2z3 � �) of the super-
symmetric conifold:6 there can of course be new abstract
(nontoric) deformations which may not allow any inter-
pretation in terms of the upstairs (quotient) structure.

A toric singularity corresponding to a charge matrix Q
can be described, as in Fig. 2, by a strongly convex rational
polyhedral cone7 defined by four lattice vectors ei satisfy-
ing the relation

 

X
Qiei � n1e1 � n2e2 � n3e3 � n4e4 � 0 (10)

in a 3-dimensional N lattice. Assuming any three, say e1,
e2, e3, of the four vectors ei define a nondegenerate vol-
ume, we see using elementary 3-dimensional vector analy-
sis that

 �e3 � e1� 	 �e2 � e1� 
 �e4 � e1� �

�
P
i
Qi�

n4
e1 	 e2 
 e3;

(11)

so that the four lattice points ei are coplanar iff
P
iQi � 0.

In this case these singularities are described as Calabi-Yau
cones, corresponding to the Yp;q and La;b;c spaces [12,13].

By SL�3;Z� transformations on the lattice, one can
freely choose two of the ei, and then find the other two
consistent with the relation (10). Thus fixing, say, e3, e4,
we find

 e1 � ��n2; n3k; n4k�; e2 � �n1; n3l; n4l�;

e3 � �0; 1; 0�; e4 � �0; 0; 1�;
(12)

where k, l are two integers satisfying n1k� n2l � 1 (as-
suming n1, n2 are coprime, k, l always exist by the
Euclidean algorithm).

For simplicity, we will restrict attention to the case n1 �
1, which is sufficient for the physics we want to describe. In
this case, we choose k � 1; l � 0, so that

 e1 � ��n2; n3; n4�; e2 � �1; 0; 0�;

e3 � �0; 1; 0�; e4 � �0; 0; 1�:
(13)

These singularities are isolated (pointlike) if there are no
lattice points on the ‘‘walls’’ of the toric cone.8 This is true
if n2 is coprime with both of n3, n4, which can be seen as
follows. If say n2, n3 had common factors, i.e. say n2 �
m1m2, n3 � m1m3 for some factors mi, then one can
construct integral lattice points re1 � se4, 0< r, s < 1,
on the fe1e4g wall: for example,9 taking r � 1

m1
and

s � 1� fn4

m1
g, we have re1 � se4 � ��m2; m3;

n4

m1
� s� �

��m2; m3; �
n4

m1
� � 1� 2 N, lying on the fe1e4g wall.

Furthermore, since we can always write n4 � m4m1 � �
for some m4 and � � 0; 1; . . . ; m1 � 1, we have r� s �

 

e

0

e
e

e1

2

4

e3

e5

e

e

e e

1

32

4
5

FIG. 2. The toric fan for a nonsupersymmetric conifold-like
singularity along with the two small resolutions fe1e2g; fe3e4g,
and an interior lattice point e5.

6For example, under the symmetry d! e2�id of the under-
lying geometry, the zi coordinates transform as in (8), giving a
nontrivial phase e2�i=n4 to z1z4 � z2z3 which is inconsistent with
a nonzero real � parameter.

7A review of toric varieties and their GLSM descriptions
appears e.g. in [10] (see also [11]).

8This criterion is a generalization of similar conditions for
orbifolds [7], reviewed in Appendix A, and for supersymmetric
Yp;q, La;b;c spaces [12,13].

9We mention that fxg � x� �x� denotes the fractional part of
x, while �x� is the integer part of x (the greatest integer � x). By
definition, 0 � fxg< 1. Then for m; n > 0, we have ��mn � �
��mn� � 1 and therefore f�mn g � �

m
n � �

�m
n � � 1� fmng.
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1
m1
� 1� fn4

m1
g< 1 if n4 � m4m1 (� � 0), i.e. the point

re1 � se4 lies strictly in the interior of the fe1e4g wall [if
n4 � m4m1, the interior point ��m2; m3; m4� �

1
m1
e1 ex-

ists]. Similarly, if n2, n4 have common factors, then there
are lattice points in the interior of the fe1e3gwall. Note that
if n3, n4 have common factors, there potentially are lattice
points on the internal fe1; e2g wall.

There is a nice description of the physics of such a
geometry as the Higgs branch of the moduli space of a
U�1� gauged linear sigma model admitting (2, 2) world
sheet supersymmetry with four scalar superfields � � �1,
�2, �3, �4, and a Fayet-Iliopoulos (real) parameter r. The
fields � transform under U�1� gauge transformations with
the charge matrix Qi as

 �i ! eiQi��i; Qi � �n1; n2;�n3;�n4�; (14)

� being the gauge parameter. The action for the GLSM is
(using conventions of [3,10])

 S �
Z
d2z

�
d4�

�
��ie

2QiV�i �
1

4e2
���

�

� Re
�
it
Z
d2 ~��

��
; (15)

where t � ir� �
2� , � being the �-angle in 1�

1-dimensions, and e being the gauge coupling. The twisted
chiral superfields �a (whose bosonic components include
complex scalars 	a) represent field strengths for the gauge
fields. The classical vacuum structure can be found from
the bosonic potential

 U �
X
a

�D�2

2e2 � 2 �		
X
i

QiQij�ij
2: (16)

Then U � 0 requires D � 0: solving this for r � 0 gives
expectation values for the �i, which Higgs the gauge group
down to some discrete subgroup and lead to mass terms for
the 	whose expectation value thus vanishes. The classical
vacuum structure is then described by the D-term equation

 �
D

e2 �
X
i

Qij�ij
2

� n1j�1j
2 � n2j�2j

2 � n3j�3j
2 � n4j�4j

2

� r==U�1�; (17)

from which one can realize the two small resolutions
(Kähler blowups by 2-cycles) as rank-2 bundles over P1

�,
as manifested by the GLSM moduli space for the single FI
parameter ranges r� 0 and r� 0. These small resolu-
tions are described in the toric fan by the fe1; e2g and
fe3; e4g subdivisions: e.g. the fe3; e4g subdivision giving
residual subcones C�0; e2; e3; e4�, C�0; e1; e3; e4�, is de-
scribed by the coordinate charts f��2; �3; �4�;
��1; �3; �4�g. The FI parameter r has a 1-loop renormal-

ization given by

 r �
�P
i
Qi

2�

�
log
�
�
�

�
�V
2�

�
log
�
�
; (18)

showing that for
P
iQi � 0, the GLSM RG flow drives the

system away from the shrinking 2-sphere P1
�, towards the

phase corresponding to the growing 2-sphere P1
�.10 This

dynamical evolution process executing a flip transition
mediates mild dynamical topology change since the
blown-down 2-cycle P1

� and blown-up 2-cycle P1
� have

distinct intersection numbers with various cycles in the
geometry. The geometric structure of the residual coordi-
nate charts can be gleaned from the toric fan. From the
Smith normal form algorithm of [7] (or otherwise), we can
see that the various residual subcones correspond to the
orbifolds C�0;e1;e2;e3��Zn4

�1;n2;�n3�, C�0;e1;e2;e4��

Zn3
�1;n2;�n4�, and C�0; e1; e3; e4� � Zn2

�1;�n3;�n4�,
up to shifts of the orbifold weights by the respective
orbifold orders, since these cannot be determined unam-
biguously by the Smith algorithm. Using this, one can see
that a consistent Type II GSO projection

 �n �
X
Qi � n1 � n2 � n3 � n4 � even (19)

can be assigned to the conifold-like singularity in question,
from the known Type II GSO projection

P
ki � even [7]

on the C3=ZM�k1; k2; k3� residual orbifolds, if we make the
reasonable assumption that a GSO projection defined for
the geometry is not broken along the RG flows describing
the decay channels.

In what follows, we will examine the phase structure of
these singularities in greater detail using their description
in terms of toric geometry and GLSMs. In particular, we
exhibit a cascadelike phase structure for a singularity with
given charge matrixQ, containing lower order singularities
Q0 with smaller

P
iQ
0
i, consistent with the above GSO

projection.

III. THE PHASES OF UNSTABLE CONIFOLDS

In this section, we will study the full phase structure of
the unstable conifold-like singularities in question using
GLSMs and toric geometry techniques. The prime physical
observation is that the intermediate end point geometries
arising in the small resolution decay channels above can
contain additional blowup modes (interpreted as twisted
sector tachyons if these are residual orbifold singularities),
which further continue the evolution of the full geometry.

10This has smaller N lattice volume: the residual subcone
volumes for the two small resolutions are P1

�: V� �
V�0; e2; e3; e4� � V�0; e1; e3; e4� � n1 � n2, P1

�: V� �
V�0; e1; e2; e3� � V�0; e1; e2; e4� � n4 � n3, giving the differ-
ence �V � V� � V� �

P
iQi.
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Since these additional blowup modes are present in the
original conifold-like singularity, there can in principle
exist new decay channels corresponding to first blowing
up these modes. Technically this is because the toric fan for
such a singularity potentially contains in its interior one or
more lattice points, since the residual subcones are poten-
tially singular if their N lattice volumes are greater than
unity.11 Thus, in addition to the small resolution subdivi-
sions [6] reviewed above, the cone C�0; e1; e2; e3; e4� de-
fining the conifold-like singularity can also be subdivided
using these interior lattice points. In the case of orbifold
singularities, the spacetime masses of tachyons, corre-
sponding to world sheet R-charges of the appropriate
twisted sector operators in the orbifold conformal field
theory, effectively grade the decay channels. Since there
is no such tractable conformal field theory description for
the conifold-like geometries themselves (in the vicinity of
the singularity), it is difficult to a priori identify their most
dominant evolution channels. However, one can efficiently
resort to GLSM renormalization group techniques (devel-
oped for unstable 3-dimensional orbifolds in [8]) which
essentially describe the full phase structure of these ge-
ometries and the possible evolution patterns to the final
stable end points. We will first discuss the toric geometry
description and then describe some generalities of the
corresponding GLSM.

Consider a singularity with charge matrix Q described
by the cone defined by the ei; i � 1; . . . ; 4, with one rela-
tion

P
iQiei � 0 in the 3-dimensional N lattice. For sim-

plicity, we restrict attention to singularities with n1 � 1,
i.e. of the form Q � � n1 n2 �n3 �n4 �, with the ei
given by (13). Then, as described in the previous section,
there always exist two topologically distinct (asymmetric)
small resolutions corresponding to the subdivisions fe1e2g
and fe3e4g: the subdivision fe3e4g gives a less singular
residual geometry (smaller N lattice subcone volumes) if
n1 � n2 < n3 � n4. We can obtain detailed insight into the
structure of the fan by taking recourse to the structure of
the C3=ZN orbifold singularities arising in these small
resolution subdivisions using the techniques and results
of [7], reviewed in Appendix A. The basic point is that
there exists a precise correspondence between operators in
the orbifold conformal field theory and N lattice points in
the interior of (i.e. on or below the affine hyperplane �,
described in Appendix A; see Fig. 5) the toric cone repre-
senting the orbifold. Thus N lattice points in a given
subcone of the toric cone, corresponding to specific blowup
modes of the singularity, precisely map to tachyons or
moduli arising in twisted sectors of the orbifold conformal
field theory corresponding to the subcone.

Now by an interior lattice point of the conifold-like cone
C�0; e1; e2; e3; e4� (see Fig. 2), we mean lattice points in the

interior of the subcone C�0; e1; e3; e4� arising in the stable
small resolution (for n1 � n2 < n3 � n4). Any other point
in the interior of say subcones C�0; e1; e2; e3� or
C�0; e1; e2; e4� but not C�0; e1; e3; e4� is effectively equiva-
lent to an irrelevant operator from the GLSM point of view.
Now if there exists a lattice point e5 in the interior of the
cone C�0; e1; e2; e3; e4�, then there are two independent
relations between these five vectors ei; i � 1; . . . ; 5 in the
3-dimensional lattice N: these can be chosen as a basis for
all possible relations between these vectors. These rela-
tions

 

X
i

Qa
i ei � 0 (20)

define a charge matrix Qa
i : changing the basis of relations

amounts to changing a row of Qa
i to a rational linear

combination of the two rows also having integral charges.
Similarly, n extra lattice points in the interior of the cone
give n� 1 relations between the ei; i � 1; . . . ; 4� n, thus
defining a �n� 1� 
 �4� n� charge matrix Qa

i . Specifying
the structure of this Qa

i is equivalent to giving all the
information contained in the toric fan of the singularity.
For example, if there exists a single extra lattice point e5 in
the interior of the subcone C�0; e1; e3; e4� � Zn2

, then
there is a relation of the form e5 �

1
n2
�m1e1 �m3e3 �

m4e4�, mi > 0, defining a row Q2
i �

�m1 0 m3 m4 �n2 �. This point corresponds to a
tachyon if

P
imi < n2. Thus, the combinatorics of Qa

i
determines the geometry of the toric fan, e.g. whether e5

is contained in the intersection of subcones, say
C�0; e1; e3; e4� and C�0; e1; e2; e3�, and so on.

Furthermore in Type II theories, there is a nontrivial
GSO projection that acts nontrivially on these lattice
points, preserving only some of them physically: this
may be thought of as arising from the GSO projections in
the orbifold theories corresponding to the subcones arising
under the small resolutions. Thus, an interior lattice point
may not in fact correspond to any blowup mode that
actually exists in the physical theory. A simple way to
encode the consequences of this GSO projection is to
ensure that each row of the charge matrix Qa

i in the
GLSM for the physical Type II theory sums to an even
integer

 

X
i

Qa
i � even; a � 1; . . . ; n� 1: (21)

It is easy to see that this Type II truncation of Qa
i retaining

only rows with even sum is consistent (and we will elabo-
rately describe this in examples later): e.g. in the example
above, the point e5 2 C�0; e1; e3; e4� given by e5 �

1
n2



�m1e1 �m3e3 �m4e4� defines a new conifold-like sub-
cone C�0; e5; e2; e3; e4�, corresponding to a charge matrix
Q0, which admits a Type II GSO projection iff

P
iQ
0
i �

even. This constraint effectively arises from the GSO
projection on the point e5 thought of as a twisted sector

11We recall that the N lattice volume of an orbifoldlike cone
gives the order of the orbifold singularity.
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state in the orbifold corresponding to the subcone
C�0; e1; e3; e4�.

The full phase structure of such a geometry is obtained
by studying an enlarged GLSM with gauge group U�1�n�1

with 4� n superfields �i and n� 1 Fayet-Iliopoulos pa-
rameters ra. Much of the remainder of this section is a
direct generalization of the techniques described in [8] to
the conifold-like singularities in question here: we present
a detailed discussion primarily for completeness. The ac-
tion of such a GLSM (in conventions of [3,10]) is

 S �
Z
d2z

�
d4�

�
��ie2Qa

i Va�i �
1

4e2
a

��a�a

�

� Re
�
ita

Z
d2 ~��a

��
; (22)

where summation on the index a � 1; . . . ; n� 1 is im-
plied. The ta � ira �

�a
2� are Fayet-Iliopoulos parameters

and �-angles for each of the n� 1 gauge fields (ea being
the gauge couplings). The twisted chiral superfields �a
(whose bosonic components are complex scalars 	a) rep-
resent field strengths for the gauge fields. The action of the
U�1�n�1 gauge group on the �i is given in terms of the
�n� 1� 
 �4� n� charge matrix Qa

i above as

 

�i ! eiQ
a
i ��i;

Qa
i �

n1 n2 �n3 �n4 0 . . .

0 q2
2 �q2

3 �q2
4 q2

5 . . .

	 . . .

	 . . .

0
BBBBB@

1
CCCCCA;

a � 1; . . . ; n� 1:

(23)

Such a charge matrix only specifies the U�1�n�1 action up
to a finite group, due to the possibility of a Q-linear
combination of the rows of the matrix also having integral
charges. The specific form of Qa

i is chosen to conveniently
illustrate specific geometric substructures: for example, the
second row above, with q2

1 � 0, describes the conifold-like
subcone C�0; e2; e3; e4; e5�. The variations of the n� 1
independent FI parameters control the vacuum structure
of the theory. The space of classical ground states of this
theory can be found from the bosonic potential

 U �
X
a

�Da�
2

2e2
a
� 2

X
a;b

�	a	b
X
i

Qa
i Q

b
i j�ij

2: (24)

Then U � 0 requires Da � 0: solving these for ra � 0
gives expectation values for the �i, which Higgs the gauge
group down to some discrete subgroup and lead to mass
terms for the 	a whose expectation values thus vanish. The
classical vacua of the theory are then given in terms of
solutions to the D-term equations

 

�Da

e2
�
X
i

Qa
i j�ij

2 � ra � 0; a � 1; . . . ; n� 1:

(25)

At the generic point in r-space, the U�1�n�1 gauge group is
completely Higgsed, giving collections of coordinate
charts that characterize in general distinct toric varieties.
In other words, this �n� 1�-parameter system admits sev-
eral ‘‘phases’’ (convex hulls in r-space, defining the sec-
ondary fan) depending on the values of the ra. At
boundaries between these phases where some (but not
all) of the ra vanish, some of the U�1�s survive giving
rise to singularities classically. Each phase is an end point
since, if left unperturbed, the geometry can remain in the
corresponding resolution indefinitely (within this noncom-
pact approximation): in this sense, each phase is a fixed
point of the GLSM RG flow. However, some of these
phases are unstable while others are stable, in the sense
that fluctuations (e.g. blowups/flips of cycles stemming
from instabilities) will cause the system to run away
from the unstable phases towards the stable ones. This
can be gleaned from the 1-loop renormalization of the FI
parameters

 ra �
�P
i
Qa
i

2�

�
log
�
�
; (26)

where � is the RG scale and � is a cutoff scale where the
ra are defined to vanish. A generic linear combination of
the gauge fields coupling to a linear combination

P
a
ara

of the FI parameters, the 
a being arbitrary real numbers,
has a 1-loop running whose coefficient vanishes if

 

Xn�1


�1

Xn�4

i�1


aQa
i � 0; (27)

in which case the linear combination is marginal. This
equation defines a codimension-one hyperplane perpen-
dicular to a ray, called the Flow-ray, emanating from the
origin and passing through the point
��
P
iQ

1
i ;�

P
iQ

2
i ; . . . ;�

P
iQ

n�1
i � in r-space which has

real dimension n� 1. Using the redefinition Qa0
i �

�
P
iQ

1
i �Q

a
i � �

P
iQ

a
i �Q

1
i ; a � 1, we see that

P
iQ

a0
i �

�
P
iQ

1
i ��
P
iQ

a
i � � �

P
iQ

a
i ��
P
iQ

1
i � � 0, for a � 1, so that

the FI parameters coupling to these redefined n gauge
fields have vanishing 1-loop running. Thus, there is a single
relevant direction (along the flow-ray) and an
n-dimensional hyperplane of the n marginal directions in
r-space. By studying various linear combinations

P
a
ara,

we see that the 1-loop RG flows drive the system along the
single relevant direction to the phases in the large r regions
of r-space, i.e., ra � 0 (if none of the ra is marginal), that
are adjacent to the Flow-ray F � ��

P
iQ

1
i ;�

P
iQ

2
i ; . . . ;

�
P
iQ

n�1
i �, or contain it in their interior: these are the

stable phases.
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Reversing this logic, we see that the direction precisely
opposite to the Flow-ray, i.e. �F � �

P
iQ

1
i ;
P
iQ

2
i ; . . . ;P

iQ
n�1
i �, defines the ultraviolet of the theory. This ray

will again lie either in the interior of some one convex
hull or adjoin multiple convex hulls. This ray �F corre-
sponds to the maximally unstable direction which is ge-
nerically the unstable small resolution P1

�, defining the
ultraviolet of the theory (see the examples that follow).
This is because any of the residual localized orbifold
singularities on this P1

� locus can be further resolved (if
unstable) by turning on the corresponding FI parameter,
which process is along the Flow-ray direction.

We restrict attention to the large ra regions, thus ignor-
ing world sheet instanton corrections: this is sufficient for
understanding the phase structure, and consistent for initial
values of ra whose components in the marginal directions
lie far from the center of the marginal n-plane.

The 1-loop renormalization of the FI parameters can be
expressed [3,10,14] in terms of a perturbatively quantum-
corrected twisted chiral superpotential for the �a for a
general n� 1-parameter system, obtained by considering
the large-	 region in field space and integrating out those
scalars �i that are massive here (and their expectation
values vanish energetically). This leads to the modified
potential
 

U�	� �
e2

2

Xn�1

a�1

��������i�̂a
�

P4�n
i�1 Q

a
i

2�

�
log

� ���
2
p Xn�1

b�1

Qb
i 	b=�

�
� 1

���������
2
: (28)

The singularities predicted classically at the locations of
the phase boundaries arise from the existence of low-
energy states at large 	. The physics for the nonsupersym-
metric cases here is somewhat different from the cases
where

P
iQ

a
i � 0 for all a, as discussed in general in

[3,10,14] (and for orbifold flips in [8]). Consider the vi-
cinity of such a singularity at a phase boundary but far from
the (fully) singular region where all ra are zero, and focus
on the single U�1� (with say charges Q1

i ) that is unbroken
there (i.e. we integrate out the other 	a; a � 1, by setting
them to zero). Now if

P
iQ

1
i � 0 (i.e. unbroken spacetime

supersymmetry), then there is a genuine singularity when
U�	� � e2

2 ji�̂a �
1

2�

P
iQ

1
i logjQ1

i jj
2 � 0, and if

P
iQ

a
i � 0

for all a, this argument can be applied to all of the U�1�s.
However, for the nonsupersymmetric cases here, we haveP
iQ

a
i � 0: so if say

P
iQ

1
i � 0 (with the other Qa

i rede-
fined to Qa0

i with
P
iQ

a0
i � 0), then along the single rele-

vant direction where
P
iQ

1
i � 0, the potential energy has a

j log	1j
2 growth. Thus, the field space accessible to very

low-lying states is effectively compact (for finite world
sheet volume) and there is no singularity for any ra, �a,
along the RG flow: in other words, the RG flow is smooth
along the relevant direction for all values of �1, and the
phase boundaries do not indicate singularities.

Thus, the overall physical picture is the following: the
generic system in question begins life at early times in
the ultraviolet phase, typically the unstable 2-sphere P1

�

which has a tendency to shrink. If this 2-sphere size is
large, then this is an approximately classical phase of the
theory, with the shrinking being very slow initially. This
P1
� typically has residual localized orbifold singularities

which are widely separated for a large P1
�. As the 2-sphere

shrinks, tachyons localized at these orbifolds might con-
dense resolving the latter by 4-cycle blowup modes. As the
system evolves, these various cycles interact and recom-
bine potentially via several topology-changing flip transi-
tions until the geometry ultimately settles down into any of
the stable phases (which typically have distinct topology).
A stable phase typically consists of the stable 2-sphere P1

�

growing in time, with the various possible orbifold singu-
larities on its locus resolving themselves by tachyon con-
densation.12 The transitions occurring in the course of this
evolution between various phases are smooth as discussed
above.

In what follows, we describe two 2-parameter examples
in some detail illustrating the above generalities: one cor-
responds to a singularity that has a unique late-time end
point (within this 2-parameter approximation), while the
other includes the supersymmetric conifold in its final end
points, thus exhibiting infrared moduli representing the
flop between the two topologically distinct small resolu-
tions of the latter. Before doing so, we mention a simple
example of a singularity which has no interior lattice point
(as defined earlier), and evolves to its stable small resolu-
tion. The singularity Q � � 1 1 �1 �3� is the sim-
plest unstable Type II conifold-like singularity. The stable
small resolution given by the subdivision fe3e4g com-
pletely resolves the singularity, since the subcone
C�0; e1; e3; e4�, potentially an orbifold singularity, is in
fact smooth. The other small resolution gives rise to the
orbifold subcone C�0; e1; e2; e3� � Z3�1; 1; 2� which is ef-
fectively supersymmetric since its only GSO-preserved
blowup mode is a marginal twisted sector state arising in
one of the antichiral rings [the subcone C�0; e1; e2; e4� is
smooth].

12Note that these conifold-like singularities always contain the
small resolutions which are Kähler blowup modes. However,
since the Type II GSO projection only preserves some of the
Kähler blowup modes in the geometry, some of the residual end
point orbifold singularities arising under the small resolutions
could be ‘‘string-terminal’’ (as described in [7]). In other words,
these residual orbifolds cannot be completely resolved solely by
Kähler blowup modes (corresponding to GSO-preserved twisted
sector tachyons/moduli in the chiral ring). Indeed since these
residual orbifolds can now be described by conformal field
theory, we see the existence of non-Kähler blowup modes
corresponding to twisted sector tachyons arising in any of the
various (anti)chiral rings. Thus, since in the Type II theory there
is no (all-ring) terminal C3=ZN orbifold singularity [7], the final
decay end points of the conifold-like singularity are smooth.
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A. Decays to a single stable phase

Consider the singularity Q � � 1 7 �5 �19� (see
Fig. 3). The subcones can be identified as the following
Type II orbifolds:

 C�0; e1; e2; e3� � Z19�1; 7; 14�;

C�0; e1; e2; e4� � Z5�1; 2; 1�;

C�0; e1; e3; e4� � Z7�1; 2;�5�;

(29)

while C�0; e2; e3; e4� is of course smooth. It is straightfor-
ward to see that

 e5 � ��1; 1; 3� � 1
7�e1 � 2e3 � 2e4� 2 C�0; e1; e3; e4�

(30)

corresponds to the tachyon in the twisted sector j � 1,
having R-charge Rj � �

1
7 ;

2
7 ;

2
7� (GSO-preserved since Ej �

�1 using (A2)). Including this lattice point gives the
charge matrix

 Qa
i �

1 7 �5 �19 0
0 1 �1 �3 1

� �
; (31)

where we have used the conifold-like relation e2 � e5 �
e3 � 3e4 � 0 to define the second row. Note

P
iQ

a
i �

even, a � 1, 2, incorporating the GSO projection. One
could equally well have defined the second row in Qa

i as
� 1 0 2 2 �7 � noticing as above that e5 2
C�0; e1; e3; e4�: this does not change the physics.

To understand the phase structure of this theory, let us
analyze the D-term equations (suppressing the gauge cou-
plings)

 

�D1 � j�1j
2 � 7j�2j

2 � 5j�3j
2 � 19j�4j

2 � r1 � 0;

�D2 � j�2j
2 � j�5j

2 � j�3j
2 � 3j�4j

2 � r2 � 0: (32)

There are three other auxiliary D-terms too:
 

�D02 � �D1 � 7D2 � j�1j
2 � 2j�3j

2 � 2j�4j
2

� 7j�5j
2 � �r1 � 7r2� � 0;

�D03 � �D1 � 5D2 � j�1j
2 � 2j�2j

2 � 4j�4j
2

� 5j�5j
2 � �r1 � 5r2� � 0;

�D04 � �3D1 � 19D2 � 3j�1j
2 � 2j�2j

2 � 4j�3j
2

� 19j�5j
2 � �3r1 � 19r2� � 0:

(33)

These are obtained by looking at different linear combina-
tions of the two U�1�s that do not couple to some subset of
the chiral superfields: e.g. the U�1�s giving D02 and D03 do
not couple to�2 and�3, respectively. TheseD-terms show
that the five rays drawn from the origin �0; 0� out through
the points, �1 � �1; 0�, �2 � �7; 1�, �3 � ��5;�1�,
�4 � ��19;�3�, �5 � �0; 1�, are phase boundaries: e.g.
at the boundary (7, 1), the U�1� coupling to r1 � 7r2 is
unHiggsed, signalling a classical singularity due to the
existence of a new 	-field direction.

Before analyzing the phase structure, let us gain some
insight into the geometry of this singularity. In the holo-
morphic quotient construction, introduce coordinates
xi; i � 1; . . . ; 5, corresponding to the lattice points ei sub-
ject to the quotient action xi ! �Q

a
i xi with Qa

i given in
(31). Then the divisors xi � 0, i � 1, 2, 3, 4 are non-

 

orbifold tachyon

r

r

1

2

e4=(0,0,1)

e2=(1,0,0)

e1=(−7,5,19)

e3=(0,1,0)

e5=(−1,1,3)

(φ1,φ3,φ4)

(φ2,φ3,φ4)

(φ1,φ3,φ5)
(φ1,φ4,φ5)
(φ3,φ4,φ5)
(φ2,φ3,φ4)

(φ1,φ3,φ5)

(φ1,φ4,φ5)

(φ2,φ3,φ5)

(φ2,φ4,φ5)

(φ1,φ2,φ3)

(φ1,φ2,φ4)

flip

φ1=(1,0)

φ5=(0,1)

φ4=(−19,−3)

φ3=(−5,−1)

(φ2,φ3,φ5)
(φ1,φ2,φ5)
(φ1,φ3,φ5)

(φ1,φ2,φ4)

  condensation
orbifold tachyon

flip

flip

Flow−ray
(8,1)

φ2=(7,1)  condensation

FIG. 3 (color online). Phases of Q � � 1 7 �5 �19 �, with the toric subdivisions and corresponding coordinate charts in each
phase, as well as the RG flow directions and the physics of each phase boundary.
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compact divisors, while the divisor x5 � 0 is a compact
one, whose structure can be gleaned as follows: the �C�2

action is

 g1: �x1; x2; x3; x4; x5� � ��x1; �7x2; ��5x3; ��19x4; x5�;

g2: �x1; x2; x3; x4; x5� � �x1; �x2; �
�1x3; �

�3x4; �x5�;

(34)

so that on x5 � 0, the group element g1g
�7
2 ��� has action

 �x1; x2; x3; x4; 0� � ��x1; x2; �2x3; �2x4; 0�: (35)

When the divisor is of finite size, we expect a smooth
nondegenerate description of the 3-dimensional space, to
obtain which we must exclude the set
�x1; x3; x4� � �0; 0; 0�.

13 This then yields a weighted pro-
jective space CP2

1;2;2 described by the coordinate chart
�x1; x3; x4�, with x2 being a third coordinate. From the
symplectic quotient point of view, we see from the
D-term D02 that the divisor x5 � 0, obtained by setting
�5 � 0, is

 fj�1j
2 � 2j�3j

2 � 2j�4j
2 � r1 � 7r2g==U�1�; (36)

which is CP2
1;2;2, with ��1; �3; �4� � �0; 0; 0� being an

excluded set for the nonzero Kähler class, i.e. r1 � 7r2 >
0.

Now we will illustrate how the classical moduli space of
the GLSM obtained from these D-term equations reprodu-
ces the phase diagram for this theory, shown in Fig. 3. In
the convex hull f�1�2g, i.e. 0< r2 <

1
7 r1, D2, D02 imply

that at least one element of each set �2, �5, and �1, �3,
�4, must acquire nonzero vacuum expectation values: the
D-term equations do not have solutions for all of these
simultaneously zero, which is the excluded set in this
phase. Now in the region of moduli space where �2; �1

acquire vevs, the light fields at low energies are�3,�4,�5,
which yield a description of the coordinate chart
��3; �4; �5�. If �2; �3 acquire vevs, the light fields de-
scribe the chart ��1; �4; �5�. Similarly we obtain the
coordinate charts ��1; �3; �5� and ��2; �3; �4� if �2, �4

and �1, �5 acquire vevs, respectively. Note that each of
these collections of nonzero vevs are also consistent with
the other D-terms D1, D03, D04. Now although one might
imagine a coordinate chart ��1; �2; �4� from�5,�3 alone
acquiring nonzero vevs, it is easy to see that this is not
possible: for if true, D2, D02 imply j�5j

2 > j�3j
2 and

j�3j
2 > 7

2 j�5j
2, which is a contradiction. Similarly one

sees that the possible chart ��1; �2; �3� from �5,�4 alone
acquiring vevs is disallowed in this phase. Thus, we obtain
the coordinate charts ��3; �4; �5�, ��1; �4; �5�,
��1; �3; �5� and ��2; �3; �4� in this phase of the GLSM.

A similar analysis of the moduli space of the GLSM can
be carried out in each of the other four phases to obtain all
the possible coordinate charts characterizing the geometry
of the toric variety in that phase.

There is a simple operational method [8] to realize the
results of the above analysis of the D-terms for the phase
boundaries and the phases of the GLSM is the following:
read off each column inQa

i given in (31) as a ray drawn out
from the origin (0, 0) in �r1; r2�-space, representing a phase
boundary. Then the various phases are given by the convex
hulls14 bounded by any two of the five phase boundaries
represented by the rays �1 � �1; 0�, �2 � �7; 1�, �3 �
��5;�1�, �4 � ��19;�3�, �5 � �0; 1�. These phase
boundaries divide r-space into five phase regions, each
described as a convex hull of two phase boundaries by
several possible overlapping coordinate charts obtained by
noting all the possible convex hulls that contain it.

The coordinate chart describing a particular convex hull,
say f�1; �2g, is read off as the complementary set
f�3; �4; �5g. Then for instance, this convex hull is con-
tained in the convex hulls f�1; �5g, f�2; �3g and f�2; �4g,
so that the full set of coordinate charts characterizing the
toric variety in the phase given by this convex hull f�1; �2g
is f��3; �4; �5�; ��2; �3; �4�; ��1; �4; �5�; ��1; �3; �5�g.
From Fig. 3, we see that this phase is the complete reso-
lution corresponding to the subdivision of the toric cone by
the small resolution fe3; e4g, followed by the lattice point
e5. Physically, the geometry of this space corresponds to
the 2-cycle fe3; e4g and a 4-cycle e5 blowing up simulta-
neously and expanding in time, separating the spaces de-
scribed by the above coordinate patches (which are
potentially residual orbifold singularities). The way these
pieces of spacetime are glued together on the overlaps of
their corresponding coordinate patches is what the corre-
sponding toric subdivision in Fig. 3 shows. Using the toric
fan, we can glean the structure of the residual geometry: we
see thatC�0; e2; e3; e4� andC�0; e3; e4; e5� are both smooth,
being subcones ofN lattice volume unity. Also we see that
C�0; e1; e5; e3� � Z2��1; 5; 4� � Z2�1; 1; 0�,
C�0; e1; e5; e4� � Z2��3; 19;�4� � Z2�1; 1; 0�, using the
relations e1 � 5e5 � 2e2 � 4e4 � 0 and 3e1 � 19e5 �
2e2 � 4e3 � 0. Both of these orbifolds are effectively
supersymmetric Z2�1;�1� end points since their antichiral
rings contain blowup moduli. Note also that the interior
lattice point ��4; 3; 11� � e1�e5

2 is not GSO-preserved, and
thus absent in the physical Type II theory [we see that
adding this lattice point would add a new row q0i �
� 1 4 �3 �11 � to the charge matrix, disallowed sinceP
iq
0
i � odd]. This is also consistent with the fact that this

point, ��4; 3; 11� � 1
7 �4e1 � e3 � e4�, can be interpreted

as a j � 4 twisted sector tachyon of R-charge �47 ;
1
7 ;

1
7� in the

13More formally, in the fan ffe1; e5; e3g; fe1; e5; e4g; fe3; e4; e5gg,
corresponding to the complete subdivision by e5, we exclude the
intersection of coordinate hyperplanes x1 � x3 � x4 � 0 since
e1, e3, e4 are not contained in any cone of the fan.

14A 2-dimensional convex hull is the interior of a region
bounded by two rays emanating out from the origin such that
the angle subtended by them is less than �.
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orbifold subcone C�0; e1; e3; e4� � Z7�1; 2;�5�, and is
GSO-projected out [Ej � 2 using (A2)].

Similarly, using Fig. 3, we recognize the other phases as
follows. The convex hull f�2; �5g, contained in the convex
hull f�1; �5g, yields a description of the toric variety in this
phase in terms of the coordinate charts
f��1; �3; �4�; ��2; �3; �4�g, which is the subdivision of
the cone by the small resolution fe3; e4g. As we have
seen, C�0; e1; e3; e4� � Z7�1; 2;�5�, with the interior lat-
tice point e5 mapping to the GSO-preserved j � 1 twisted
sector tachyon of R-charge 5

7 . The convex hull f�4; �5g,
contained in the convex hull f�3; �5g, gives a description
of the toric variety in this phase in terms of the charts
f��1; �2; �3�; ��1; �2; �4�g, which is the subdivision of
the cone by the small resolution fe1; e2g. This is related
by a flip to the phase f�2; �5g. We see that
C�0; e1; e2; e4� � Z5�1; 2; 1�, while the subcone
C�0; e1; e2; e3� � Z19�1; 7; 14� contains e5 �

1
19 


�3e1 � 2e2 � 4e3�, corresponding to the GSO-preserved
j � 3 tachyon with R-charge � 3

19 ;
2
19 ;

4
19�. The convex hull

f�3; �4g, contained in the convex hulls f�3; �5g; f�1; �4g;
f�2; �4g, yields a description of the toric variety in this
phase in terms of the charts f��1; �3; �5�; ��1; �2; �5�;
��2; �3; �5�; ��1; �2; �4�g. This is the subdivision of the
cone by the small resolution fe1; e2g, followed by the lattice
point e5 which corresponds to condensation of the orbifold
tachyon mentioned above. Finally the convex hull
f�1; �3g, contained in the convex hulls f�1; �4g; f�2; �3g;
f�2; �4g, yields a description of the toric variety in this
phase in terms of the charts f��1; �3; �5�; ��1; �4; �5�;
��2; �3; �5�; ��2; �4; �5�g, which is a subdivision by the
lattice point e5 related by a flip to the subdivisions corre-
sponding to either of phases f�3; �4g; f�1; �2g. The sub-
cone C�0; e2; e5; e4� is smooth, while C�0; e2; e5; e3� �
Z3�1; 1;�1�.

The quantum dynamics of these phases is dictated by the
renormalization group flows in the GLSM. We remind the
reader that the analysis here is valid only for large r1, r2

(ignoring world sheet instanton corrections). The two FI
parameters ra have 1-loop running given by

 r1��� � �
16

2�
	 log

�
�
; r2��� � �

2

2�
	 log

�
�
; (37)

so that a generic linear combination has the running

 
1r1 � 
2r2 � �
2�8
1 � 
2�

2�
	 log

�
�
: (38)

The coefficient shows that this parameter is marginal if
8
1 � 
2 � 0: this describes a line perpendicular to the
ray (8, 1) in r-space, which is the Flow-ray. Since the Flow-
ray lies in the interior of the convex hull f�1; �2g, this is
the unique stable phase, and therefore the unique final end
point geometry in this theory (within this 2-parameter
system): all flow lines must eventually end in this phase
after crossing one or more of the phase boundaries. The

phase f�4; �5g, containing �F � ��8;�1�, is the ultra-
violet of the theory, i.e. the early time phase (correspond-
ing to the unstable small resolution P1

� with residual
orbifold singularities) where all flow lines begin. It is
straightforward to see what crossing each of the phase
boundaries corresponds to physically: e.g. crossing any
of �1, �3 or �5 corresponds to topology change via a
flip, while a localized orbifold tachyon condenses in the
process of crossing either of �2, �4. This shows how the
RG flow in the GLSM gives rise to the phase structure of
the conifold-like singularity Q � � 1 7 �5 �19 �.
Note that the final stable phase is less singular than all
other phases.15

It is interesting to note that some of the partial decays of
this singularity exhibit two lower order conifold-like sin-
gularities, i.e. C�0; e2; e5; e3; e4� � Q0 �
� 1 1 �1 �3 � and C�0; e1; e2; e4; e5� � Q00 �
� 1 2 �4 �5 �. These are both Type II singularities
having

P
iQi � even, showing that the decay structure is

consistent with the GSO projection for these singularities.
In other words, the evolution of the geometry as described
by the GLSM RG flow does not break the GSO projection.
Since both singularities are themselves unstable, the stable
phase of the full theory also includes their stable resolu-
tions. More generally the various different phases in fact
include distinct sets of small resolutions of these
singularities.

B. Decays to the supersymmetric conifold

Consider the singularity Q � � 1 7 �4 �6� (see
Fig. 4). The various subcones arising in this fan can be
identified as the following Type II orbifolds:

 C�0; e1; e2; e3� � Z6�1; 1;�4�;

C�0; e1; e2; e4� � Z4�1;�1; 2�;

C�0; e1; e3; e4� � Z7�1;�4; 1�;

C�0; e1; e5; e4� � Z3�1; 2; 1�;

(39)

while C�0; e2; e3; e4�, C�0; e1; e5; e3� are smooth. We can
see that the lattice point

 

e5 � ��1;1;1� � 1
7�e1� 3e3� e4� 2 C�0;e1; e3; e4�

� 1
6�e1� e2� 2e3� 2 C�0;e1; e2; e3�; (40)

corresponds to the j � 1 twisted sector tachyon in either
orbifold, with R-charge Rj � �

1
7 ;

3
7 ;

1
7� in Z7�1;�4; 1� and

Rj � �
1
6 ;

1
6 ;

1
3� in Z6�1; 1;�4� [GSO-preserved since Ej �

�1 using (A2)]. Including this lattice point gives the
charge matrix

15Its total N lattice subcone volume V�0;e1;e5;e3��
V�0;e1;e5;e4��V�0;e3;e4;e5��V�0;e2;e3;e4�� 2�2�1�1
is less than that for all other subdivisions, as well as V� � 1� 7.
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 Qa
i �

1 7 �4 �6 0
0 1 �1 �1 1

� �
; (41)

where we have used the relation e2 � e5 � e3 � e4 � 0 to
define the second row. Note

P
iQ

a
i � even for each row,

consistent with the GSO projection. Using other relations
to define Qa

i gives equivalent physics.
TheD-term equations (suppressing the gauge couplings)

in this theory are
 

�D1 � j�1j
2 � 7j�2j

2 � 4j�3j
2 � 6j�4j

2 � r1 � 0;

�D2 � j�2j
2 � j�5j

2 � j�3j
2 � j�4j

2 � r2 � 0: (42)

The three other D-terms obtained from different linear
combinations of the two U�1�s are
 

�D02 � �D1 � 7D2 � j�1j
2 � 3j�3j

2 � j�4j
2

� 7j�5j
2 � �r1 � 7r2� � 0;

�D03 � �D1 � 4D2 � j�1j
2 � 3j�2j

2 � 2j�4j
2

� 4j�5j
2 � �r1 � 4r2� � 0;

�D04 � �D1 � 6D2 � j�1j
2 � j�2j

2 � 2j�3j
2

� 6j�5j
2 � �r1 � 6r2� � 0: (43)

These D-terms give five phase boundaries in terms of rays
drawn from the origin (0, 0) out through the points �1 �
�1; 0�,�2 � �7; 1�,�3 � ��4;�1�,�4 � ��6;�1�,�5 �
�0; 1�.

The phase structure of this theory, encapsulated in Fig. 4,
can be analyzed in the same way as in the previous case, so
we will be brief here. The renormalization group flows in

the GLSM are given by the 1-loop runnings of the two FI
parameters ra

 r1��� � �
2

2�
	 log

�
�
; r2��� � �0� 	 log

�
�
� r�0�2 :

(44)
Thus, the parameter r2 represents a marginal direction, and
we have explicitly shown the value r�0�2 of the modulus. The
RG flow of r1 however forces r1 ! 1 in the infrared.
Thus, the Flow-ray is the ray �1; 0� � �1 in r-space (per-
pendicular to the r2 direction). There are two convex hulls
f�1; �2g, f�1; �3g, adjoining the Flow-ray, so that there are
two stable phases in this case, the ra satisfying 0< r2 <
1
7 r1 and 1

4 r1 < r2 < 0, respectively. The ultraviolet of the
theory, containing the ray �F � ��1; 0�, is the phase
f�4; �5g corresponding to the shrinking 2-sphere P1

�

with residual orbifold singularities. We can see that the
nontrivial RG flows of the parameters r1 � 7r2 and r1 �
4r2 force all flow lines to cross these phase boundaries,
thereby passing into the phases f�1; �2g and f�1; �3g,
respectively.

Physically, the geometry of, say, phase f�1; �2g corre-
sponds to the 2-cycle fe3; e4g and the 4-cycle e5 blowing up
simultaneously and expanding in time, separating the
spaces described by the coordinate patches
f��3; �4; �5�; ��2; �3; �4�; ��1; �4; �5�; ��1; �3; �5�g,
with the corresponding toric subdivision in Fig. 4 showing
the way these pieces of spacetime are glued together on the
overlaps of their corresponding coordinate patches.
Similarly, we can describe the geometry of the topologi-
cally distinct phase f�1; �3g. The blowup mode corre-

 

Flow−ray

r2

e4=(0,0,1)

e2=(1,0,0) e3=(0,1,0)

(φ1,φ3,φ4)

(φ2,φ3,φ4)

(φ1,φ3,φ5)

(φ1,φ4,φ5)

(φ2,φ3,φ5)

(φ2,φ4,φ5)

(φ1,φ2,φ3)

(φ1,φ2,φ4)

flip

e1=(−7,4,6)

e5=(−1,1,1)

φ5=(0,1)

φ4=(−6,−1)

orbifold tachyon
  condensation

flip

(φ2,φ3,φ5)

(φ1,φ2,φ4)

(φ1,φ2,φ5)

(φ1,φ3,φ5)
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(φ3,φ4,φ5)
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(φ1,φ4,φ5)
(φ1,φ3,φ5)φ1=(1,0)

FIG. 4 (color online). Phases of Q � � 1 7 �4 �6� , with the toric subdivisions and corresponding coordinate charts in each
phase, as well as the RG flow directions and the physics of each phase boundary.
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sponding to the 2-cycle has size given by Kähler class r2

which has no renormalization. This marginality of r2

physically means that in the course of the decay, the
geometry can end up anywhere on this 1-parameter moduli
space. In fact, the modulus r2 corresponds to a topology-
changing flop transition interpolating between the two
resolutions represented by these phases, as can be seen
from the corresponding subdivisions in Fig. 4. Thus, we
expect that the geometry will sometimes evolve precisely
along the ray r�0�2 � rc2; r1 ! 1, resulting16 in the super-
symmetric conifold as a decay product. Indeed the vevs
resulting from the nonzero value of r1 Higgs the U�1�2

down to U�1�, thus resulting in the singularity (using D2)

 fj�2j
2 � j�5j

2 � j�3j
2 � j�4j

2 � 0g==U�1�; (45)

which is of course the supersymmetric conifold Q �
� 1 1 �1 �1� . Since this is a real codimension-2
singularity in this infrared moduli space, we expect that
this is an occasional decay product. Generically the ge-
ometry will end up in either of the two stable phases
f�1; �2g, f�1; �3g, corresponding to the small resolutions
(related by a flop) of this residual singularity, obtained
when r2 > 0 and r2 < 0 respectively, as can be seen from
the collection of coordinate charts describing the two
phases. Here also, the two stable phases are less singular
than any of the other phases.

Note that the conifold-like singularity
C�0; e1; e2; e4; e5� � Q0 � � 1 3 �2 �4 � also arises
among the phases of this theory: this is of course an
unstable singularity and the flip leading to its more stable
resolution connects the phases f�3; �4g and f�1; �3g. This
is also a Type II singularity, consistent with the GSO
projection.

C. Decays to Ypq spaces

Higher order unstable singularities include, besides the
supersymmetric conifold, the supersymmetric Ypq spaces
defined by Q � �p� q p� q �p �p �; q < p,
(p; q coprime), and La;b;c spaces with
� a b �c ��a� b� c� �, c < a� b, amidst the
phases arising in their evolution (see Appendix B for a
brief description of the phase structure of the Ypqs).

A simple subfamily of the Ypqs is defined by Q �
� 1 2p� 1 �p �p �. This has the toric cone defined
by e5 � ���2p� 1�; p; p�, e2 � �1; 0; 0�, e3 � �0; 1; 0�,
e4 � �0; 0; 1�. For such a singularity to arise as a decay
product in the phases of some higher order unstable singu-
larity, its cone must exist as a subcone in the cone of the

latter. If we restrict attention to singularities of the form
Q � � 1 n2 �n3 �n4 �, then the point e5 must be an
interior point of the cone defined by e1 � ��n2; n3; n4� and
e2, e3, e4, in particular, lying in the interior of the orbifold
subcone C�0; e1; e3; e4�. In other words, we have
 

e5 � ���2p� 1�; p; p�

� a��n2; n3; n4� � b�0; 1; 0� � c�0; 0; 1�;

0< a; b; c < 1; a� b� c < 1;

(46)

the last condition expressing e5 to be a tachyon of the
orbifold subcone C�0; e1; e3; e4�. This then gives condi-
tions on the ni

 �p� 1�n2 < �2p� 1�n3 <pn2;

�p� 1�n2 < �2p� 1�n4 < pn2;

1� n2 < n3 � n4:

(47)

Roughly speaking, this means that the affine hyperplane of
the subcone C�0; e1; e3; e4� must be appropriately tilted so
as to encompass the lattice point e5. This gives lower
bound restrictions on the embedding unstable singularity,
the order of the embedding singularity rapidly rising with p
due to these restrictions.

For example, consider the simplest such singularity
Y21 � � 1 3 �2 �2� . Then the above conditions give

 

n2

3
< n3; n4 <

2n2

3
; 1� n2 < n3 � n4: (48)

The first of these conditions automatically implies that the
point e6 � ��1; 1; 1� is also an interior point as can be
checked by a simple calculation. This corresponds to the
fact that one of the blowup modes of the Ypq singularities is
the supersymmetric conifold (see Appendix B). One of the
simplest unstable Type II singularities satisfying these
conditions is Q � � 1 17 �9 �11� . Then we have
C�0; e1; e3; e4� � Z17�1; 8;�11�, and

 e5 � ��3; 2; 2� �
1

17
�3e1 � 7e3 � e4�;

e6 � ��1; 1; 1� �
1

17
�e1 � 8e3 � 6e4�

(49)

corresponding to its GSO-preserved j � 3 and j � 1
twisted sector tachyons of R-charge � 3

17 ;
7
17 ;

1
17� and

� 1
17 ;

8
17 ;

6
17�, respectively.

Including say e5 alone gives a 2-parameter system de-
fined by

 Qa
i �

1 17 �9 �11 0
0 3 �2 �2 1

� �
; (50)

which can be analyzed along the same lines as before,
resulting in the Y21 space as an occasional decay product.
Including both e5 and e6 gives a 3-parameter system with
charge matrix

 Qa
i �

1 17 �9 �11 0 0
0 3 �2 �2 1 0
0 1 �1 �1 0 1

0
@

1
A: (51)

16The classical singularity is at r�0�2 � 0. The constant shift
�eff

2 � ��0�2 �
i

2�

P
iQ

2
i logjQ2

i j defining the singular point r�0�2 �

rc2, given by �eff
2 � 0, arises from the bosonic potential (28),

since when r1 is large, 	1 is massive and can be integrated out
(by setting 	1 � 0) in (28). This gives a real codimension-2
singularity after including the effects of the �-angle.
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The Flow-ray for this system is �1; 0; 0� � �1. By analyz-
ing the secondary fan using the general techniques outlined
earlier (and described for a 3-tachyon system in unstable
orbifolds in [8]), it can be seen that there are four phases
adjoining the Flow-ray, which are the stable phases of this
theory corresponding to the various resolutions involving
Y21 and the supersymmetric conifold contained as an in-
terior blowup mode. It is straightforward to work out the
details.

More generally, these techniques show that higher order
unstable conifold singularities contain blowup modes giv-
ing rise to La;b;c spaces amidst their stable phases.

IV. DISCUSSION

We have explored the phase structure of the nonsuper-
symmetric conifold-like singularities discussed initially in
[6], exhibiting a cascadelike structure containing lower
order conifold-like singularities including supersymmetric
ones: this supplements the small resolutions studied in [6].
The structure is consistent with the Type II GSO projection
obtained previously.

The GLSMs used here, as for unstable orbifolds, all have
(2, 2) world sheet supersymmetry, and have close connec-
tions with their topologically twisted versions, i.e. the
corresponding A-models, so that various physical observ-
ables (in particular those preserving world sheet supersym-
metry) are protected along the RG flows here. However, we
note that the details of the RG evolution (and therefore also
of time evolution) of the nonlinear sigma models (NLSMs)
corresponding to these conifold-like geometries can be
slightly different from the phase structure obtained here
in the GLSM. For instance, while twisted sector tachyons
(and their corresponding blowup modes) localized at the
residual orbifold singularities on the 2-cycle loci have only
logarithmic flows in the GLSM, on the same footing as the
2-cycle modes, they are relevant operators in the NLSMs
with nontrivial anomalous dimensions. Thus in the NLSM
(and in spacetime), the rate of evolution of a localized
tachyon mode is expected to be higher than that of a 2-
cycle mode, at least in the large volume limit where the 2-
cycle evolution is slow. However, although these details
could be different, it seems reasonable, given world sheet
supersymmetry, to conjecture that the GLSM faithfully
captures the phase structure and the evolution end points.
A related issue is that the marginal directions orthogonal to
the flow-ray preserved along the entire GLSM RG flow are
only expected to coincide with corresponding flat direc-
tions arising at the final IR end points in spacetime, which
are supersymmetric as for orbifolds [7]. However, in space-
time (with broken supersymmetry), it is not clear if there
would be any corresponding exactly massless scalar fields
during the course of time evolution. Presumably this is
reconciled by taking into account the radiation effects
present in spacetime but invisible in these (dissipative)
RG analyses, which may also be related to string loop

corrections (since the dilaton might be expected to turn
on).

It is worth mentioning that the classical geometry analy-
sis in [6] on obstructions to the 3-cycle (complex structure)
deformation of these singularities due to their structure as
quotients of the supersymmetric conifold suggests that
there are no analogs of strong topology change and coni-
fold transitions with nonperturbative light wrapped brane
states here. From the GLSM point of view, the singular
region where all ra vanish arises in the middle of the RG
flow and is a transient intermediate state where the approx-
imations in this paper are not reliable. It might be interest-
ing to understand the structure of instanton corrections
with a view to obtaining a deeper understanding of the
physics of the singular region encoding the flip.

On a somewhat broader note, it might be interesting to
understand and develop interconnections between renor-
malization group flows in generalizations of the GLSMs
considered here (and the ‘‘space of physical theories’’ they
describe) and Ricci flows in corresponding geometric sys-
tems. The fact that the GLSM RG trajectories in the
conifold-like geometries here as well as those in [8] flow
towards less singular geometries (smaller N lattice vol-
umes) suggests that there is a monotonically decreasing c-
function-like geometric quantity here. Physically this
seems analogous to the tachyon potential, or a height
function on the ‘‘space of geometries.’’

It would be interesting to understand D-brane dynamics
in the context of such singularities. We expect that the
quivers for these D-brane theories will be at least as rich
as those for the La;b;c spaces described in [13], and perhaps
the knowledge of the phase structure of these theories
developed here will be helpful in this regard. It is interest-
ing to ask what these D-brane quivers (or possible duals)
see as the manifestation of these instabilities.

Finally, we make a few comments on compactifications
of these (noncompact) conifold-like singularities. We ex-
pect that such a nonsupersymmetric conifold singularity
can be embedded (classically) in an appropriate nonsuper-
symmetric orbifold of a Calabi-Yau that develops a local-
ized supersymmetric conifold singularity, such that the
quotienting action on the latter results in the nonsupersym-
metric one. For quotient actions that are isolated, the
Calabi-Yau only acquires discrete identifications so that
the resulting quotient space ‘‘downstairs’’ is locally
Calabi-Yau. While we expect that the low-lying singular-
ities, i.e. small ni, admit such locally supersymmetric
compactifications, we note that the higher order ones
may not. In fact there may be nontrivial constraints on
the ni for the existence of such compactifications. In the
noncompact case, we note that the early time semiclassical
phase is a small resolution P1

� of topology distinct from
that of the late-time small resolution P1

� phase. We expect
that both these phases, being semiclassical, admit descrip-
tions as topologically distinct small resolutions in compact
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embeddings comprising orbifolds of appropriate Calabi-
Yaus as described above. Thus one might think that the
(intermediate) flip visible explicitly in the GLSM here
persists in the compact context as well, where it would
mediate mild time-dependent topology change of the am-
bient compact space, with changes in the intersection
numbers of the various cycles of the geometry. However,
since in the compact context world sheet RG techniques
are subject to the strong constraints imposed by the c-
theorem, it is not clear if our GLSM analysis here is
reliable in gaining insight into the dynamics of compact
versions of the flip transitions here (see e.g. [15] for related
discussions in the context of string compactifications on
Riemann surfaces). It would be desirable to obtain a deeper
understanding of these compactifications [16] and their
dynamics, perhaps implementing the quotient action on
the Calabi-Yau directly in a spacetime description. From
the latter perspective, the time dependence of the compact
internal space would imply interesting time-dependent
effects in the remaining 4-dimensional part of spacetime:
for instance, in a simple FRW-cosmology-like setup, the
4D scale factor will evolve in accordance with the time
dynamics of the internal space. It would be interesting to
explore this here perhaps along the lines of [17].
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APPENDIX A: A REVIEW OF C3=ZN ORBIFOLDS:
GEOMETRY AND CONFORMAL FIELD THEORY

In this section, we review some of the features [7] of the
conformal field theory of C3=ZN orbifold singularities, and
the way they dovetail with the toric geometry description
of these singularities. In particular, we will also review the
correspondence between operators in the orbifold confor-
mal field theory and subspaces in the N lattice.

The spectrum of twisted sector string excitations in a
C3=ZN�k1; k2; k3� orbifold conformal field theory, classi-
fied using the representations of the N � 2 superconfor-
mal algebra, has a productlike structure (one for each of the
three complex planes) giving eight chiral and antichiral
rings in four conjugate pairs. A chiral ring twist field
operator has the form Xj �

Q3
i�1 X

i
fjki=Ng

�Q3
i�1 	fjki=Nge

ifjki=Ng�Hi� �Hi�, where 	a is the bosonic
twist-a field operator, while theHi are bosonized fermions.
These correspond to relevant, marginal, and irrelevant
operators with world sheet R-charges Rj �
�fjk1

N g; f
jk2

N g; f
jk3

N g� �
P
if
jki
N g and masses in spacetime given

by m2
j �

2

0 �Rj � 1�.

The geometry of such an orbifold can be recovered
efficiently using its toric data. Let the toric cone of this
orbifold be defined by the origin and lattice points 
1, 
2,


3 (see Fig. 5): the points 
i define an affine hyperplane �
passing through them. The volume of this cone
V�0;
1; 
2; 
3� � j det�
1; 
2; 
3�j � j
1 	 
2 
 
3j
gives the order N of the orbifold singularity.17 The specific
structure of the orbifold represented by a toric cone
C�0;
1; 
2; 
3� can be gleaned either using the Smith
normal form algorithm [7], or equivalently by realizing
relations between the lattice vectors 
i and any vector that
is also itself contained in the N lattice: e.g. we see that the
cone defined by 
1 � �N;�p;�q�; 
2 � �0; 1; 0�; 
3 �
�0; 0; 1�, corresponds to C3=ZN�1; p; q� using the relation
�1; 0; 0� � 1

N �
1 � p
2 � q
3� with the lattice point (1, 0,
0). Note that in general this only fixes the orbifold weights
up to shifts by the order N.

There is a 1–1 correspondence between the chiral ring
operators and points in the N lattice toric cone of the
orbifold. A given lattice point Pj � �xj; yj; zj� can be
mapped to a twisted sector chiral ring operator in the
orbifold conformal field theory by realizing that this vector
can expressed in the f
1; 
2; 
3g basis as

 �xj; yj; zj� � r1
1 � r2
2 � r3
3: (A1)

If ri > 0, then Pj is in the interior of the cone. This then
corresponds to an operator Oj with R-charge Rj �
�r1; r2; r3�. Conversely, it is possible to map an operator
Oj of given R-charge to a lattice point Pj. There are always
lattice points lying ‘‘above’’ the affine hyperplane �, cor-
responding to irrelevant operators: these have Rj �

P
iri >

1. Interior points lying on � have Rj � 1 and are marginal
operators, while those ‘‘below’’ the hyperplane � have
Rj < 1 and correspond to tachyons.18 The toric cone of
this orbifold can thus be subdivided by any of the tachyonic
or marginal blowup modes (the irrelevant ones are unim-
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FIG. 5. The C3=ZN�1; p; q� orbifold toric fan, and tachyonic
lattice points with their subdivisions.

17We have normalized the cone volume without any additional
numerical factors.

18Note that for the C3=ZN�1; p; q� orbifold (Fig. 5), we have the
relation

 

xj�1� p� q�

N
� yj � zj � r1 � r2 � r3 � Rj;

so that for a supersymmetric orbifold 1� p� q � 0�mod 2N�,
we have all Rj integral since xj, yj, zj 2 Z, i.e. there are no
tachyonic lattice points.
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portant from the physics point of view), giving rise to three
residual subcones: these are potentially orbifold singular-
ities again, unstable to tachyon condensation. For example,
condensation of the tachyon T � �1N ;

p
N ;

q
N� in the

C3=ZN�1; p; q� orbifold corresponds to the subdivision of
the cone C�0;
1; 
2; 
3� by the interior lattice point T �
�1; 0; 0�. From the GLSM point of view, this corresponds to
RG flow of the single Fayet-Iliopoulos parameter in a
GLSM with a U�1� gauge group and charge matrix Q �
� 1 p q �N� : this gives the resolved phase as the
stable phase. Systems of multiple tachyons in orbifolds
can be analyzed by appropriate generalizations of this
GLSM [8], and generically exhibit flips amidst their
phases.

A C3=ZN�1; p; q� orbifold (Fig. 5) is isolated if p, q are
coprime with respect to N: this is equivalent to the condi-
tion that there are no lattice points on the walls of the
defining toric cone. For example, if q; N have a common
factor nwith q � m1n,N � m0n, then the fe1; e2gwall has
the integral lattice point 1

n �N;�p;�q� � f
p
ng


�0; 1; 0� � �m0;��
p
n�;�m1�. Similarly the fe1; e3g wall

has integral lattice points if p, N have common factors.
There is one further important issue raised by the GSO

projection for these residual orbifold subcones and the
lattice points in their interior. From the results of [7], we
have that an orbifold C3=ZN�k1; k2; k3� admits a Type II
GSO projection if

P
iki � even. In addition, this GSO

projection acts nontrivially on the twisted sector operators,
preserving only some states in each of the four independent
chiral or antichiral rings of the orbifold conformal field
theory. For example, the jth twisted sector chiral ring
operator Xj with R-charge Rj � �f

jk1

N g; f
jk2

N g; f
jk3

N g� is GSO-
preserved iff

 Ej �
X
i

�
jki
N

�
� odd: (A2)

It can be shown that, under condensation of a GSO-
preserved tachyon Tj, the GSO projection for the residual
orbifolds and residual tachyons is consistent with this
description. In other words, each of the three residual
orbifolds admits a Type II GSO projection, and originally
GSO-preserved residual tachyons continue to be GSO-
preserved after condensation of a GSO-preserved tachyon
for each of the three residual singularities.

Geometric terminal singularities arise if there is no
Kähler blowup mode: i.e. there is no relevant or marginal
chiral ring operator and no lattice point in the interior of the
toric cone. However, a physical analysis of the system must
include all possible tachyons in all rings, i.e. both Kähler
and non-Kähler blowup modes. Then it turns out that there

are no all-ring terminal singularities in Type II theories,
while C3=Z2�1; 1; 1� is the only terminal singularity (in
Type 0 theories). Thus the end point of tachyon condensa-
tion in Type II theories is smooth.

APPENDIX B: PHASE STRUCTURE OF Ypq

SINGULARITIES

The Ypq singularities are defined by Q �
�p� q p� q �p �p �, with q < p and p, q co-
prime. More general noncompact Calabi-Yau spaces in-
clude the La;b;cs which are defined by
Q � � a b �c �d� , with

P
iQi � 0. Since

P
iQi �

0 for all these, the ei defining the cone are coplanar, and the
singularities admit a Type II GSO projection as expected.
There is no RG flow for Fayet-Iliopoulos parameters in the
corresponding GLSM and all phases are on equal footing,
defining distinct resolutions of the singularity.

For example, the singularity Y32, defined by the charge
matrix Q � � 1 5 �3 �3� , can be represented by the
toric cone with e1 � ��5; 3; 3�, e2 � �1; 0; 0�, e3 �
�0; 1; 0�, e4 � �0; 0; 1�. There are two interior lattice points,
e5 � ��1; 1; 1� � e1�2e2

3 and e6 � ��3; 2; 2� � 2e1�e2

3 , ly-
ing on the fe1; e2g plane. The subcones C�0; e5; e2; e3; e4�
and C�0; e6; e2; e3; e4� define the lower order singularities
corresponding to the supersymmetric conifold Q �
� 1 1 �1 �1 � and Y21 � Q � � 1 3 �2 �2 �.

Considering GLSMs that incorporate these interior lat-
tice points gives the full phase structure of these spaces.
For instance, including say the lattice point e5 alone gives a
2-parameter GLSM with charge matrix

 Qa
i �

1 5 �3 �3 0
0 1 �1 �1 1

� �
; (B1)

with two FI parameters that do not run. Since two phase
boundaries �3 � �4 � ��3;�1� coincide, we obtain four
phases here instead of five as in the examples in Sec. III.
We could also use the relation e5 �

1
5 �e1 � 2e3 � 2e4�

stemming from e5 2 C�0; e1; e3; e4� to define Qa
i , obtain-

ing equivalent phases. Including both e5 and e6 gives a 3-
parameter GLSM describing the complete resolution of the
singularity.

The higher order Ypqs contain multiple interior points
corresponding to some or all of the lower order Ypqs.
Analyzing their phase structure using a multiple parameter
GLSM exhibits phases corresponding to various partial/
complete resolutions involving lower order Ypq spaces.

Similarly we can see that the higher order La;b;c spaces
typically contain blowup modes giving lower order La;b;cs
in their partial resolutions.
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