
General study of ground states in gauged N � 2 supergravity theories
with symmetric scalar manifolds in 5 dimensions
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After reviewing the existing results we give an extensive analysis of the critical points of the potentials
of the gauged N � 2 Yang-Mills/Einstein supergravity theories coupled to tensor multiplets and
hypermultiplets. Our analysis includes all the possible gaugings of all N � 2 Maxwell-Einstein
supergravity theories whose scalar manifolds are symmetric spaces. In general, the scalar potential gets
contributions from R-symmetry gauging, tensor couplings, and hypercouplings. We show that the
coupling of a hypermultiplet into a theory whose potential has a nonzero value at its critical point, and
gauging a compact subgroup of the hyperscalar isometry group will only rescale the value of the potential
at the critical point by a positive factor, and therefore will not change the nature of an existing critical
point. However this is not the case for noncompact SO�1; 1� gaugings. An SO�1; 1� gauging of the
hyperisometry will generally lead to de Sitter vacua, which is analogous to the ground states found by
simultaneously gauging SO�1; 1� symmetry of the real scalar manifold with U�1�R in earlier literature.
SO�m; 1� gaugings with m> 1, which give contributions to the scalar potential only in the magical Jordan
family theories, on the other hand, do not lead to de Sitter vacua. Anti-de Sitter vacua are generically
obtained when the U�1�R symmetry is gauged. We also show that it is possible to embed certain generic
Jordan family theories into the magical Jordan family preserving the nature of the ground states. However
the magical Jordan family theories have additional ground states which are not found in the generic Jordan
family theories.
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I. INTRODUCTION

Higher dimensional gauged supergravity theories have
been studied extensively in the eighties [1]. These include
the five-dimensional (5D) gauged supergravity theories
[2,3] that received renewed attention more recently due
to their role within the anti-de Sitter/conformal field theory
(AdS/CFT) correspondences in string theory [4], Randall-
Sundrum (RS) braneworld scenario [5], and M theory
compactifications on Calabi-Yau threefolds with fluxes
[6]. It is believed that the 5D, N � 8 gauged supergravity
[3] is a consistent nonlinear truncation of the lowest lying
Kaluza-Klein modes of type IIB supergravity on AdS5 �
S5 [7]. Moreover, certain braneworld scenarios based on
M theory compactifications have 5D, N � 2 gauged su-
pergravity as their effective field theories [8].

Meanwhile, the evidence of a small positive cosmologi-
cal constant from recent cosmological observations [9]
attracted interest in finding stable de Sitter ground state
solutions in string theory [10] and supergravity theories
[11,12]. In the context of supersymmetric theories, anti-de
Sitter ground states emerge naturally in contrast to de Sitter
ground states. This is due to the fact that the de Sitter
superalgebras usually have noncompact R-symmetry sub-
algebras, which lead to existence of ghosts if the super-
symmetry is to be fully preserved. Nevertheless exact
supersymmetry is not observed in nature and supersymme-
try arises as a broken symmetry.

In this paper, we shall focus on 5D, N � 2 gauged
supergravity theories coupled to vector, tensor, and hyper-
multiplets by gauging various symmetries. The analysis is
somewhat easier than in 4D, mainly because in 4D, the
U-duality is an on-shell symmetry, whereas in 5D, it is a
symmetry of the Lagrangian. Moreover 5D theories have
real geometry while the geometry in 4D is complex. This
limits the possible gaugings and helps us in doing an
almost complete analysis of critical points in five
dimensions.

Pure 5D, N � 2 supergravity was constructed in [13],
coupling to vector multiplets was done in [2,14], and tensor
fields were added to the theory in [15]. Coupling of hypers
to these theories was done in [16]. Vacua of U�1�R gauged
5D, N � 2 Maxwell-Einstein supergravity theories
(MESGT’s) and Yang-Mills/Einstein supergravity theories
(YMESGT’s) without hypers and tensors were studied in
[2]. Vacua of the generic Jordan family models, which will
be defined below, with Abelian gaugings and tensors have
been investigated in [17], the full R-symmetry group gaug-
ing was done in [18], and some other possible gaugings
have been carried out in [19]. We will study the vacua of
these theories that have and have not been covered in the
literature so far, generalize the previous results obtained for
a fixed number ~n of vector multiplets to arbitrary ~n, and
investigate the ground states when a universal hypermul-
tiplet is coupled to these theories.

We adopt the convention introduced in [15] to classify
the gaugings of supergravity theories. The ungauged 5D,
N � 2 supergravity coupled to vector multiplets and/or*Electronic address: oogetbil@phys.psu.edu

PHYSICAL REVIEW D 75, 065033 (2007)

1550-7998=2007=75(6)=065033(29) 065033-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.065033


hypermultiplets is referred to as (ungauged) MESGT.
Theories obtained by gauging a U�1�R subgroup of
SU�2�R by coupling a linear combination of vector fields
to the fermions [2], which are the only fields that transform
nontrivially under SU�2�R, are called gauged Maxwell-
Einstein supergravity theories (gauged MESGT). On the
other hand, if only a subgroup K of the symmetry group of
the action is being gauged, the theory is referred to as a
YMESGT. Note that the theories which include tensor
fields fall into this category. A theory with a gauge group
K �U�1�R is called gauged Yang-Mills/Einstein super-
gravity theory (gauged YMESGT).

The organization of this paper is as follows. In Sec. II,
we review the field content of the 5D, N � 2 supergrav-
ity, its possible gaugings, and the potential terms arising
from these gaugings. Sections III, IV, and V deal with the
ground states of the generic Jordan family, magical Jordan
family, and generic non-Jordan family theories, respec-
tively, that are subject to such gaugings that give nontrivial
potential terms. The critical points, if they exist, of these
theories are given and their stability is discussed. The
addition of hypers in the theory generally makes the equa-
tions for the stability calculations very complicated.
Hence, in certain cases we will just give particular numeri-
cal examples that show that it is possible to obtain stable
vacua when hypers are coupled to the theory. Section VI
collects the summary of all the novel ground states found in
this paper, as well as the previously known results. In the
first appendix, one can find the bosonic part of the
Lagrangian, the elements of the very special geometry,
and the derivation of the potential terms from more funda-
mental quantities. Appendix B lists the Killing vectors and
their corresponding prepotentials of the hyperscalar mani-
fold isometries that will be used to carry out the hyper-
gaugings throughout the paper.

II. THE BASICS

In this section an outline of the theory to start with and
our conventions will be given. The potentials of N � 2
supergravity theories coupled to tensor multiplets and/or
hypermultiplets will be reviewed.

The field content of the ungauged (before tensor multi-
plet or hypermultiplet coupling) N � 2 MESGT is

 fem�;�
i
�; A

I
�; �

i~a; ’~xg; (2.1)

where

 

i � 1; 2; I � 0; 1; . . . ; ~n;

~a � 1; 2; . . . ; ~n; ~x � 1; 2; . . . ; ~n:

The ‘‘graviphoton’’ is combined with the ~n vector fields of
the ~n vector multiplets into a single (~n� 1)-plet of vector
fields AI� labeled by the index I. The indices ~a; ~b; . . . and

~x; ~y; . . . are the flat and the curved indices, respectively, of
the ~n-dimensional target manifold MVS of the real scalar
fields, which we will define below.

The bosonic part of the Lagrangian is given in
Appendix B. The global symmetries of these theories are
of the form SU�2�R �G, where SU�2�R is the R-symmetry
group of the N � 2 Poincaré superalgebra and G is the
subgroup of the group of isometries of the scalar manifold
that extends to the symmetries of the full action. Gauging a
subgroupK ofG requires dualization of some of the vector
fields to self-dual tensor fields if they are transforming in a
nontrivial representation of K. More formally, the field
content, when m of the vector fields are dualized to tensor
fields, becomes

 fem�;�
i
�; A

I
�; B

M
��; �

i~a; ’~xg; (2.2)

where now

 

i � 1; 2; I � 0; 1; . . . ; n;

M � 1; 2; . . . ; 2m; ~I � 0; 1; . . . ; ~n;

~a � 1; 2; . . . ; ~n; ~x � 1; 2; . . . ; ~n

with ~n � n� 2m. Tensor multiplets come in pairs with
four spin-1=2 fermions (i.e. two SU�2�R doublets) and two
scalars. Tensor coupling generally introduces a scalar po-
tential of the form [15]:

 P�T� �
3
���
6
p

16
hI�MN

I hMhN: (2.3)

Here �MN
I are the transformation matrices of the tensor

fields and h~I, h
~I are elements of the ‘‘very special’’ ge-

ometry of the scalar manifold MVS that has the metric a
o

~I ~J
which is used to raise and lower the indices ~I; ~J . . . .

When the full R-symmetry group SU�2�R is being
gauged the potential gets the contribution

 P�R� � �4CAB ~K�ABh ~K; (2.4)

where A, B are adjoint indices of SU�2�. If instead, the
U�1�R subgroup is being gauged, the contribution to the
potential becomes

 P�R� � �4CIJ ~KVIVJh ~K: (2.5)

The expressions that lead to the derivation of the above
potential terms can be found in Appendix A.

We will look at the cases, where the scalar manifold
MVS is a symmetric space. Such spaces are further divided
in two categories, depending whether they are associated
with a Jordan algebra or not. The spaces that are associated
with Jordan algebras are of the form MVS �

Str0�J�
Aut�J� , where

Str0�J� and Aut�J� are the reduced structure group and the
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automorphism group, respectively, of a real, unital Jordan
algebra J, of degree three [14,20]. More specifically,

(i) Generic Jordan family:
 

J � R ��~n: MVS �
SO�~n� 1; 1� � SO�1; 1�

SO�~n� 1�
;

~n � 1:

(ii) Magical Jordan family:
 

JR3 : MVS �
SL�3;R�
SO�3�

; ~n � 5;

JC3 : MVS �
SL�3;C�
SU�3�

; ~n � 8;

JH3 : MVS �
SU	�6�
Usp�6�

; ~n � 14;

JO3 : MVS �
E6��26�

F4
; ~n � 26:

(iii) Generic non-Jordan family:

 M VS �
SO�1; ~n�
SO�~n�

; ~n � 1:

In addition to the supergravity multiplet, n vector mul-
tiplets, and m tensor multiplets one can couple hypermul-
tiplets into the theory. A universal hypermultiplet

 f�a; qXg (2.6)

contains a spin-1=2 fermion doublet A � 1, 2 and four real
scalars X � 1; . . . ; 4. The total manifold of the scalars� �
�’; q� then becomes

 M scalar �MVS 
MQ

with dimRMVS � n�m and dimQMQ � 1. The quater-
nionic hyperscalar manifold MQ of the scalars of a single
hypermultiplet has the isometry group SU�2; 1�. Gauging a
subgroup of this group introduces an extra term in the
scalar potential [16]

 P�H� � 2N iAN
iA; (2.7)

where N iA �
��
6
p

4 h
IKX

I f
iA
X with fiAX being the quaternionic

vielbeins, fiAX fYiA � gXY , and gXY is the metric of the
quaternionic-Kahler hypermultiplet scalar manifold [21]

 

ds2 �
dV2

2V2 �
1

2V2 �d�� 2�d	� 2	d��2

�
2

V
�d	2 � d�2�; (2.8)

and KX
I being the Killing vectors given in Appendix B

together with their corresponding prepotentials. The deter-
minant of the metric is 1=V6 and it is positive definite and
well behaved everywhere except V � 0. But since in the
Calabi-Yau derivation V corresponds to the volume of the
Calabi-Yau manifold [22], we restrict ourselves to the
positive branch V > 0.

When the R-symmetry is gauged in a theory that con-
tains hypers, the potential P�R� gets some modification due
to the fact that the fermions in the hypermultiplet are
doublets under the R-symmetry group SU�2�R. It becomes

 P�R� � �4CIJ ~K ~PI � ~PJh ~K; (2.9)

where ~PI are the prepotentials corresponding to the Killing
vectors KX

I .
The total scalar potential, which includes terms from

tensor coupling, R-symmetry gauging, and hypercoupling,
is given by

 

e�1Lpot � �g2P�T� � g2
RP
�R� � g2

HP
�H� � �g2P�5�TOT

� �g2�P�T� � �P�R� � 
P�H��; (2.10)

where � � g2
R=g

2, 
 � g2
H=g

2; gR, gH, and g are coupling
constants, which need not be all independent.

Supersymmetry of the solutions: Demanding supersym-
metric variations of the fermions vanish at the critical
points of the theory, the conditions that need to be satisfied
are found as [17,21]

 hW ~ai � hP~ai � hN iAi � 0; (2.11)

where W ~a and P~a are defined in (A4). Any ground state
that does not satisfy all of these conditions are not super-
symmetric. One can see that any supersymmetric solution
must be of the form

 P�5�TOTj�C � �4� ~P � ~P��C� (2.12)

which is negative semidefinite. Hence we know from the
beginning that any de Sitter type ground state of the
theories we will consider will have broken supersymmetry.
The parametrization of the Killing vectors of the hyper-
scalar manifold, which is outlined in Appendix B, yields
KX
I jqC � 0, for noncompact generators. Here, the point

qC � fV � 1; � � � � 	 � 0g is the base point of the
hyperscalar manifold, i.e. the compact Killing vectors of
the hyperisometry generate the isotropy group of this point.
This point will be used as the hypercoordinate candidate of
the critical points. As a consequence hN iAi � 0; and
hence theories including noncompact hypergauging will
not have supersymmetric critical points either.
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III. GENERIC JORDAN FAMILY

The theory being considered is N � 2 supergravity
coupled to ~n Abelian vector multiplets and with real scalar
manifold MVS � SO�~n� 1; 1� � SO�1; 1�=SO�~n� 1�,
~n � 1. The cubic polynomial can be written in the form
[17]

 N�h� � 3
��
3
p

2 h
0
�h1�2 � �h2�2 � . . .� �h~n�2�: (3.1)

The nonzero C~I ~J ~K’s are

 C011 �
��
3
p

2 ; C022 � C033 � . . . � C0~n ~n � �
��
3
p

2 ;

and their permutations. The constraint N � 1 can be
solved by

 h0 �
1���

3
p
jj’jj2

; ha �

���
2

3

s
’a

with a; b � 1; 2; . . . ; ~n and jj’jj2 � ’a�ab’b, where
�xy � ���� . . .��. The scalar field metric g~x ~y and vec-

tor field metric a
o

~I ~J that appear in the kinetic terms in the
Lagrangian are positive definite in the region jj’jj2 > 0. In
order to have theories that have a physical meaning, our
investigation is restricted to this region. As a consequence
one must have ’1 � 0.

The isometry group of the real scalar manifold MVS is
G � SO�~n� 1; 1� � SO�1; 1�. This is the symmetry group
of the full action modulo the isometry group of the hyper-
scalar manifold. The gauging of an SO�1; 1� or an SO�2�
subgroup of SO�~n� 1; 1� will lead to dualization of vec-
tors to tensor fields and this gives a scalar potential term. In
the generic Jordan family there are no vector fields that are
nontrivially charged when the gauge group is non-Abelian,
and hence gauging a non-Abelian subgroup of G will not
give a scalar potential term. It is also possible to gauge the
R-symmetry group SU�2�R or its subgroup U�1�R; or one

can introduce a hypermultiplet in the theory and gauge its
symmetries to get additional scalar terms in the potential.
We will look at each case in turn.

A. Maxwell-Einstein supergravity

1. No R-symmetry gauging

Without hypermultiplets: There is no scalar potential and
the vacuum is Minkowskian.

With a universal hypermultiplet: One can gauge U�1� �
SU�2� �U�1� or a noncompact subgroup SO�1; 1�. To
gauge theU�1� symmetry one has to take the Killing vector
~K as a linear combination of ~T1, ~T2, ~T3, and ~T8 of (B3)

whereas one has to take a linear combination of ~T4, ~T5, ~T6,
and ~T7 if he is to gauge the SO�1; 1�. We take a linear
combination of the vector fields (VIAI�) from the vector
multiplet as our gauge field. For U�1� gauging, the corre-
sponding Killing vector and hence the term P�H� �
2N iAN

iA vanishes at its critical point �V � 1; � � � �
	 � 0�. An important consequence of this is, for the ge-
neric family, U�1� gauging of the hyperisometry will not
change the sign of the critical points of the theory.
Simultaneous gauging of U�1� � SU�2� with U�1�R will
only rescale PR by a positive factor. Such a scaling can be
absorbed by redefining VI’s. But the stability of the vacuum
will still need to be checked. We will see an example to this
in Sec. III C 3.

The situation is slightly different when a noncompact
gauging of hyperisometry is done. A linear combination of
all vector fields at hand (A�
SO�1; 1�� � VIAI�) is taken as
the gauge field. More precisely,

 

N iA �
��
6
p

4 �VIh
I��WkTXk �f

iA
X ;

k � 4; . . . ; 7; I � 0; . . . ; ~n:
(3.2)

At the base point qC � fV � 1; � � � � 	 � 0g of hyper-
scalar manifold, one finds

 

@’1P�5�TOTjqC �
1

4

�2�W4�2 � 2�W5�2 � �W6�2 � �W7�2�

� ���
2
p
V1 �

2V0’1

jj’jj4

�� ���
2
p
�V1’

1 � . . .� V~n’
~n� �

V0

jj’jj2

�
;

@’aP
�5�
TOTjqC �

1

4

�2�W4�2 � 2�W5�2 � �W6�2 � �W7�2�

� ���
2
p
Va �

2V0’
a

jj’jj4

�� ���
2
p
�V1’1 � . . .� V~n’

~n� �
V0

jj’jj2

�
;

�a � 2; . . . ; ~n�;

@VP
�5�
TOTjqC � @�P

�5�
TOTj’C � 0;

@�P
�5�
TOTjqC �

1

4

W4W6

� ���
2
p
�V1’1 � . . .� V~n’

~n� �
V0

jj’jj2

�
2
;

@	P
�5�
TOTjqC �

1

4

W4W7

� ���
2
p
�V1’1 � . . .� V~n’

~n� �
V0

jj’jj2

�
2
:
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These expressions simultaneously vanish by letting

 

V1

’1 � �
V2

’2 � . . . � �
V~n

’~n �

���
2
p
V0

jj’jj4
(3.3)

and by setting either W6 � W7 � 0 or W4 � 0. In the
former case, the potential at the critical point becomes

 P�5�TOTj�C �
6
��W4�2 � �W5�2��V0�

2

4jj’jj4
(3.4)

which is positive definite if not all W4, W5, V0 are zero.
The condition jj’jj2 > 0 together with Eq. (3.3) determine
the constraint on VI’s as

 �V1�
2 � �V2�

2 � . . .� �V~n�
2 > 0: (3.5)

Stability of this critical point is checked by calculating the
Hessian of the potential at the critical point. Using the
SO�~n� 1; 1� symmetry one can rotate the fields such that
’2 � . . . � ’~n � 0. In particular for ~n � 3, the eigenval-
ues of the Hessian are found to be

 

�
0; ~A; ~A; 3 ~A; ~A ~B; ~A ~B;

3 ~A

2�’1�2

�
; (3.6)

where
 

~A �
27
2�V0�

4��W4�2 � �W5�2�2

4�’1�10 ;

~B �
3

4
�’1�2��W4�2 � �3W5�2�2:

(3.7)

These eigenvalues are all non-negative, hence the criti-
cal point of the potential corresponds to a stable de Sitter
vacuum.

The same result can be obtained by letting W4 � 0
instead of W6 � W7 � 0.

2. SU�2�R symmetry gauging

In order to have SU�2� � SO�3� be a subgroup of the
isometry SO�~n� 1; 1� � SO�1; 1�, one obviously needs
~n � 4.

Without hypermultiplets: The calculation has been done
in [18] with A2

�, A3
�, A4

� taken as gauge fields and the
potential was found to be

 P�5�TOT � �P�R� � 6�jj’jj2: (3.8)

This potential does not have any critical points1 in the
physically relevant region jj’jj2 > 0.

With a universal hypermultiplet: The gauging of SU�2�R
must be done simultaneously with the gauging of SU�2� �
SU�2; 1� of the hyperscalar manifold. Hence one has � �

 in this case. Without loss of generality, one can choose
A2
�, A3

�, and A4
� as our gauge fields and identify the Killing

vectors as

 KX
2 � TX1 ; KX

3 � TX2 ; KX
4 � TX3 ; (3.9)

and the prepotentials are taken accordingly. The scalar
potential is now

 P�5�TOT � ��P�R� � P�H�� (3.10)

with P�R� defined as in (2.9). The derivative of the total
potential with respect to ’1 is given by

 

@P�5�TOT

@’1 � �f�V4� 4��2� 	2� 11�V3� 2�3�4� �6	2� 46��2� 3	4��2� 46	2� 51�V2

� 4��2� 	2� 11���4 � 2�	2� 1��2��2� �	2� 1�2�V � ��4 � 2�	2� 1��2��2� �	2� 1�2�2�’1g=�32V2�

���!qC 6�’1

and it cannot be brought to zero in the physically relevant
region, unless if � � 0, but that turns off the potential and
leads to Minkowski vacuum, hence the potential has no
critical points for this case. However one can gauge an
additional U�1� and/or SO�1; 1� symmetry of the hyper-
scalar manifold to have extra contributions to the scalar
potential.
SU�2�R �U�1�H gauging: A similar situation occurs as

in the last case. The potential has no critical points.

SU�2�R � SO�1; 1�H gauging: We choose the linear
combination VbAb�; b � 0; 1; 5; 6; . . . ; ~n as the SO�1; 1�
gauge field and the noncompact TX4 as the Killing vector
for this gauging. The potential is given by

 P�5�TOT � ��P�R� � 2N iAN
iA�; (3.11)

where now N iA �
��
6
p

4 �h
aKX

a � �Vbhb�TX4 �f
iA
X with a � 2,

3, 4;KX
a were defined in (3.9); the coupling constant for the

SO�1; 1� gauging is absorbed in Vb’s.
At the base point of the hyperscalar manifold qC �

fV � 1; � � � � 	 � 0g the derivatives of the potential
are evaluated as

1One can take � � 0 but this will make the potential vanish
everywhere
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@’1P�5�TOTjqC � �
�
3’1 �

1���
2
p

�
V1 �

���
2
p
V0’

1

jj’jj4

�
~C
�
;

@’aP
�5�
TOTjqC � �’a

�
�3�

V0
~C

jj’jj4

�
;

@’dP
�5�
TOTjqC � �

�
�3’d �

1���
2
p

�
Vd �

���
2
p
V0’d

jj’jj4

�
~C
�
;

d � 5; 6; . . . ; ~n;

@VP
�5�
TOTjqC � 0;

@�P
�5�
TOTjqC �

���
2
p

4
�’4 ~C;

@�P
�5�
TOTjqC �

���
2
p

2
�’3 ~C;

@	P
�5�
TOTjqC �

���
2
p

2
�’2 ~C;

(3.12)

where

 

~C �
���
2
p
�Ve’e� �

V0

jj’jj2
; e � 1; 5; 6; . . . ; ~n:

In order to set the last three equations of (3.12) to zero one
might set ~C � 0, but applying this to the first equation
makes it impossible to vanish, unless � � 0, but that makes
the overall potential zero. Hence we set ’2

C � ’3
C � ’4

C �
0. Then all left to solve are the first and the third equations.
Motivated by (3.3) we set

 V1’
d � �’1Vd; 8d � 5; 6; . . . ; ~n: (3.13)

This reduces the first and third equations of (3.12) to
 

�’e
�
3�
��2V0’1 �

���
2
p
V1jj’jj4��V0’1 �

���
2
p
V1jj’jj4�

2�’1�2jj’jj6

�
� 0: (3.14)

Solving this for ’1 yields

 ’1 �

���
2
p
jj’jj4V0V1 �

���������������������������������������������������������
6jj’jj8V2

1 �3�V0�
2 � 8jj’jj6�

q
12jj’jj6 � 4�V0�

2
:

(3.15)

The constraint on VI’s is

 �V1�
2 � �V5�

2 � . . .� �V~n�
2 > 0; (3.16)

and since ’’s are real, by (3.15)

 �V0�
2 > 8

3jj’jj
6: (3.17)

The potential evaluated at the critical point is given by

 P�5�TOTj�C �
�
4

�
6jj’jj2 �

�V0’
1 �

���
2
p
V1jj’jj

4�2

�’1�2jj’jj4

�
(3.18)

which is positive definite. Now, given a set of VI ’s subject
to the constraint (3.16), the critical point is determined by

~n� 4 Eqs. (3.13) together with Eq. (3.15).2 Note that, in
some cases, there may be more than one solution because
of multivaluedness of (3.15). We calculated the Hessian of
the potential and showed that it is possible to obtain
positive eigenvalues and hence one can have stable de
Sitter vacua. Because of the lengthiness of the expressions
we give a particular example here.

Example: Suppose

 V0 � 2; V1 � 1; V5 � . . . � V~n � 0:

There are two critical points, given by

 �C
1 : ’1 � �

�
������
33
p

� 1�1=3

25=6
; ’5 � . . . � ’~n � 0;

�C
2 : ’1 �

�
������
33
p

� 1�1=3

25=6
; ’5 � . . . � ’~n � 0:

The values of the potential at these critical points read

 P�5�TOTj�C
1
� 3

4��
3
2�69� 11

������
33
p
��1=3;

P�5�TOTj�C
2
� 3

4��
3
2�69� 11

������
33
p
��1=3;

and the numerical values for the eigenvalues of the Hessian
(for ~n � 6) are

 

��0:799�;�0:799�;�0:743�;�0:686�;�0:686�;
0:667�; 1:142�; 2:991�; 2:991�; 29:058��

at �C
1 and

 

�0:843�; 1:102�; 1:102�; 1:876�; 2:186�; 2:186�;

6:526�; 7:143�; 7:143�; 20:441��

at�C
2 . Hence the second critical point is stable whereas the

first one is not.

3. U�1�R symmetry gauging

Without hypermultiplets: See [2] for a complete analysis
for the cases without tensors for all symmetric Jordan
theories. Here we will review a specific result, which will
be relevant when we will add a hypermultiplet into the
theory. As the U�1�R-gauge field, a linear combination
VIA

I of all the vectors in the theory will be taken. Using
(2.5), the potential is given by

 P�5�TOT � �P�R� � �2�
�
jjVjj2jj’jj2 �

2
���
2
p
V0Vi’i

jj’jj2

�
;

(3.19)

where i � 1; . . . ; ~n and jjVjj2 � �V1�
2 � �V2�

2 � . . .�
�V~n�

2. The derivatives of this potential are calculated as

2One has to make sure that Eq. (3.17) holds.
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 @’1P�5�TOT � �2�
�
’1 ~A�

���
2
p
V0V1

jj’jj2

�
;

@’aP
�5�
TOT � �2�

�
�’a ~A�

���
2
p
V0Va
jj’jj2

�
; a � 2; . . . ; ~n;

(3.20)

where

 

~A � jjVjj2 �
2
���
2
p
V0Vi’

i

jj’jj4
: (3.21)

A trivial way of making the derivatives (3.20) vanish is
to set Vi � 0. This leads to a Minkowski ground state with
broken supersymmetry (P1 � 0) as long as V0 � 0, i.e. the
U�1�R gauging is nontrivial.

The easiest way to solve the equations nontrivially, after
the derivatives are set to zero, is to solve the last equation
for V0; plug the resulting expression into the other equa-
tions; solve the equation before the last equation for V~n;

plug the resulting expression into the remaining equations;
solve the last of the remaining equations for V~n�1; plug the
resulting expression into the remaining equations, and so
forth. At the end one finds

 

���
2
p
V0’1 � V1jj’jj4; ’1Va � �’aV1: (3.22)

Vi’s satisfy the following constraint

 �V1�
2 � �V2�

2 � . . .� �V~n�
2 > 0: (3.23)

By plugging (3.22) into the potential (3.19), one evaluates
its value at the critical point as

 P�5�TOTj’C � �6��V1�
2 jj’jj

4

�’1�2
; (3.24)

which is negative and therefore corresponds to an AdS
critical point. Calculating the Hessian of the potential,
one finds that it always has the negative eigenvalue

 � 4��V1�
2�’1�2

2��’1�2 � . . .� �’~n�2� �
������������������������������������������������������������������������������
jj’jj4 � 16�’1�2��’2�2 � . . .� �’~n�2�

p
�’1�4

for any ~n, hence the critical point is not a minimum.
Moreover we found that, up to ~n � 4, the eigenvalues of
the Hessian are all negative. This means that the critical
point is a maximum rather than a minimum.3 The un-
boundedness of the potential from below may lead some-
one to think that the critical point is unstable. But an
analysis of small fluctuations of ’~x around the critical
point shows that, at least perturbatively, instabilities need
not occur [23]. It was shown in [24] and demonstrated in
[2] that a potential of the form (2.5) is sufficient to ensure
the positivity of the energy and thereby the stability, about
the AdS background at a critical point. To have supersym-
metry at the critical point one needs to have hPii � 0. We

calculated Pi � �
��
3
2

q
P;i � �

��
3
2

q
�VIh

I�;i as

 P1 �

���
2
p
V0’

1

jj’jj4
� V1; Pa � �

���
2
p
V0’

a

jj’jj4
� Va;

andEqs. (3.22) assure that these quantities vanish and
hence the critical point is supersymmetric.

With a universal hypermultiplet: The total potential is of
the form P�5�TOT � P�R� � P�H�. The most general way of
doing simultaneous U�1�R gauging together with U�1�
gauging of the hypermultiplet isometry is done by select-
ing a linear combination of compact Killing vectors from
(B3). One can easily see that at the base point qc � fV �
1; � � � � 	 � 0g of the hyperscalar manifold all these
compact generators vanish. Therefore one has N iA � 0

and as a consequence [19]

 P�H�jqc �
@P�H�

@’I

��������qc
�
@P�H�

@q

��������qc
� 0: (3.25)

On the other hand, P�R� of (2.9) is of the form P�R� �
f�’�g�q�, where g�q� � ~PI � ~PJ�q��

IJ for the generic fam-
ily. g�q� has an extremum point at the base point of the
hyperscalar manifold (i.e. dgdq jqc � 0). This leads to

 

@P�R�

@q

��������qc
�
@P�5�TOT

@q

��������qc
�
@2P�5�TOT

@’@q

��������qc
� 0

and hence the Hessian is in block diagonal form. We
already showed that the pure U�1�R gauging leads to at
least one negative eigenvalue of the Hessian. The fact that
g�q� � 0 makes it impossible to convert the nonminimum
critical points that correspond to the upper block of the

Hessian (
@2P�5�TOT

�@’�2
) to minimum points of the potential or

change its sign at the critical point. Therefore a U�1�H
gauging will not change the nature of an existing critical
point.

However, one has to check what the noncompact gen-
erators would do for which (3.25) does not hold.
U�1�R � SO�1; 1�H gauging: For the SO�1; 1� gauging, a

linear combination WIAI of all the vectors of the theory
will be taken as the gauge field. TheU�1�R gauge field must
be orthogonal to the SO�1; 1� gauge field. This leads to the
condition

 VIWI � 0: (3.26)
3See [2] for the general proof that this is the case for arbitrary

~n.
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The potential is again given by

 P�5�TOT � ��P�R� � 2N iAN
iA�; (3.27)

where this time N iA �
��
6
p

4 �VIh
IYaTXa �WIh

ITX4 �f
iA
X

where YaTXa , with a � 1, 2, 3, defines the linear combina-
tion of compact Killing vectors to be used; the SO�1; 1�
coupling constant is absorbed in WI’s and the P�R� term is

 P�R� � �4CIJKVIVJhK�Y
a ~Pa� � �Y

b ~Pb�: (3.28)

The first derivatives of the potential vanish by using (3.22)
and by setting

 W1 �
�

���
2
p
W0 � 2Wb’bjj’jj2

2’1jj’jj2
; b � 2; . . . ; ~n:

(3.29)

Plugging everything into the potential, one finds

 P�5�TOTj�C � �
3

2
�
�
V1

’1

�
2
jj’jj4�YaYa� (3.30)

which is manifestly negative and therefore this corresponds
to an AdS ground state. Note that all the ’~x’s in this
equation are fixed by (3.22). The stability is checked by
calculating the eigenvalues of the Hessian of the potential.
The calculation is tedious and although we were not able to
prove generally, all the gauge field combinations subject to
(3.22), (3.26), and (3.29) that we tried to lead to negative
eigenvalues for the Hessian and hence the corresponding
critical points were not minima. However the potential is in
the form suggested by [24] plus a term that is quadratic in
hI hence it is possible to obtain stable AdS vacua with
proper choices of VI and WI, provided that the eigenvalues
of the Hessian that belong to the hyperscalar sector are
positive.

B. YMESGT with compact (SO�2�) gauging, coupled to
tensor fields

The calculation was done in [17] for ~n � 3. Let us
trivially generalize their results to arbitrary ~n � 3. The
SO�2� subgroup of the isometry group of the scalar mani-
fold acts nontrivially on the vector fields A2

� and A3
�. Hence

these vector fields must be dualized to antisymmetric
tensor fields. The index ~I is decomposed as

 

~I � �I;M�

with I; J; K � 0; 1; 4; . . . ; ~n and M;N; P � 2, 3. The fact
that the only nonzero CIMN are C0MN for the theory at hand
requires A0

� to be the SO�2� gauge field because of �M
IN �

�MPCIPN (c.f Eq. (2.3)). All the other AI� with I � 0 are
spectator vector fields with respect to the SO�2� gauging.
The potential term (2.3) that comes from the tensor cou-
pling is found to be (taking �23 � ��32 � �1)

 P�T� �
1

8


�’2�2 � �’3�2�

jj’jj6
: (3.31)

For the function W~x that enters the supersymmetry trans-
formation laws of the fermions, one obtains
 

W1 � W4 � . . . � W~n � 0;

W2 �
’3

4jj’jj4
;

W3 � �
’2

4jj’jj4
;

(3.32)

so one must have ’2
C � ’3

C � 0 to preserve
supersymmetry.

1. No R-symmetry gauging

Without hypermultiplets: Taking the derivative of the
total potential P�5�TOT � P�T� with respect to ’~x, one finds

 @’1P�5�TOT � �
3

4


�’2�2 � �’3�2�

jj’jj8
’1;

@’aP
�5�
TOT � A’a; a � 2; 3;

@’bP
�5�
TOT �

3

4


�’2�2 � �’3�2�

jj’jj8
’b; b � 4; . . . ; ~n;

where

 A �
1

4

jj’jj2 � 3
�’2�2 � �’3�2�

jj’jj8
> 0:

@’aP
�5�
TOT � 0 then implies ’2

C � ’3
C � 0 (which then also

implies @’~xP�5�TOTj’C � 0, 8~x). But then P�5�TOTj’C � 0 and
we have a ~n� 2 parameter family of supersymmetric
Minkowski ground states, given by h’2i � h’3i � 0 and
arbitrary h’di, d � 1; 4; 5; . . . ; ~n.

With a universal hypermultiplet: The compact genera-
tors of (B3) vanish at the base point of the hyperscalar
manifold. Hence a U�1� gauging of the hyperisometries
will not introduce a non-Minkowski ground state.
SO�2� � SO�1; 1�H gauging: The SO�1; 1� gauge field is

chosen as a linear combination of all vector fields that are
not dualized to tensor fields. The total potential therefore is

 P�5�TOT � P�T� � 
P�H�;

where P�T� was given in (3.31) and P�H� � 2N iAN
iA

where

 N iA � Veh
eTX4 f

iA
X ; e � 0; 1; 4; 5; . . . ; ~n (3.33)

with TX4 given in (B3). At the base point of the hyperscalar
manifold the derivatives of the total potential with respect
to qX vanish. One can calculate the ’a-derivatives as
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 @’aP
�5�
TOTjqC �

’a ~B

4jj’jj8
; (3.34)

where

 

~B � jj’jj2 � 3
�’2�2 � �’3�2� � 4
V0jj’jj
2

� fV0 �
���
2
p
�V1’

1 � V4’
4 � . . .� V~n’

~n�jj’jj2g:

There are two possible ways to make (3.34) vanish.

Case 1 ~B � 0 One can solve the equation ~B � 0 for V1

and plug that into @’bP
�5�
TOTjqC � 0 to get

 �
2V0’

b �
���
2
p
Vbjj’jj

2fjj’jj2 � 3
�’2�2 � �’3�2�g

8V0jj’jj
6

� 0:

Solving this for Vb and plugging the resulting expression
together with the ~B � 0 equation into @’1P�5�TOTjqC , one
finds

 @’1P�5�TOTjqC !
9
�’2�2 � �’3�2� � 2�3� 10
�V0�

2�
�’2�2 � �’3�2�jj’jj2 � �1� 12
�V0�
2�jj’jj4

32
�V0�
2’1jj’jj8

which cannot be brought to zero. Hence there is no solution
for this case.

Case 2 ~B � 0 One has to have ’a � 0. Applying this to
the remaining first derivative equations, all there are left to
solve are the following expressions

 




jj’jj2

�
V1���

2
p �

V0’1

jj’jj4

�
~C � 0;




jj’jj2

�
Vb���

2
p �

V0’
b

jj’jj4

�
~C � 0

(3.35)

with
 

~C � V0 �
���
2
p
�V1’

1 � V4’
4 � V5’

5 � . . .� V~n’
~n�jj’jj2:

(3.36)

It is possible to set both expressions to zero by letting
~C � 0, but this will make the potential vanish at the critical
point. Setting 
 � 0 will turn off the hypergauging. Instead
letting

 

���
2
p
V0

jj’jj4
�
V1

’1 � �
V4

’4 � �
V5

’5
� . . . � �

V~n

’~n (3.37)

will make them vanish and the value of the potential at the
critical point becomes

 P�5�TOTj�C �
9
�V0�

2

4jj’jj4
; (3.38)

which is positive definite and hence the critical point is a de
Sitter ground state. Equations (3.37) set the restrictions on
choosing VI as

 �V1�
2 � �V4�

2 � �V5�
2 � . . .� �V~n�

2 > 0; V0 � 0:

Given a set of VI ’s subject to these constraints, the
coordinates of the critical point is totally determined by
(3.37). The non-negativeness of the eigenvalues of the
Hessian of the potential assures the stability of the vacuum.
For the special case V4 � . . . � V~n � 0 the Hessian is
calculated as

 

@@P�5�TOTj�C � diag
�

9
�V0�
2

�’1�6
;
1� 12
�V0�

2

4�’1�6
;
1� 12
�V0�

2

4�’1�6
;

3
�V0�
2

�’1�6
; . . . ;

3
�V0�
2

�’1�6

z�����������������}|�����������������{�~n�3�times

; 0;
9
�V0�

2

�2’1�4
;
9
�V0�

2

�4’1�4
;

9
�V0�
2

�4’1�4

�
;

and therefore the ground state is stable. For the more
general case the Hessian is not diagonal, but we were
able to show that the eigenvalues of the Hessian are non-
negative up to at least ~n � 6.

2. SU�2�R-symmetry gauging

Without hypermultiplets: The gauge group is SO�2� �
SU�2�R. For such a gauging one needs at least ~n � 6.
Choosing A4

�, A5
�, and A6

� as the SU�2�R gauge fields one
finds [18]

 P�5�TOT � P�T� � �P�R�

with

 P�R� � 6jj’jj2

and P�T� given in (3.31). It is easy to verify that the total
potential does not have any non-Minkowskian ground
states. In particular, in order to set the first derivatives to
zero, one must have ’2

C � ’3
C � � � 0 which means the

SU�2�R gauging is turned off and this case was already
covered in the previous section.

With a universal hypermultiplet: Inclusion of a hyper-
multiplet in the theory will change the potential to

 P�5�TOT � P�T� � ��P�R� � P�H��

with now

 P�R� � �4CIJK ~PI � ~PJhK; P�H� � 3
4h
IhJKX

I K
Y
J gXY;

(3.39)
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where KX
I are defined as

 KX
4 � TX1 ; KX

5 � TX2 ; KX
6 � TX3 ; (3.40)

and ~PI are defined accordingly. Remember thatKX
I � 0 for

compact generators at the base point of the hyperscalar
manifold and therefore one has P�H�jqC � 0. It is easy to
see that this case is very similar to the case before adding
the hypermultiplet and the only possibility is to have
Minkowski vacuum. An additional U�1�H gauging will
not change the situation but let us see what the SO�1; 1�H
gauging would do.
SO�2� � SU�2�R � SO�1; 1�H gauging: The SO�1; 1�

gauge field is chosen as the linear combination
VaA

a
�; a � 0; 1; 7; 8; . . . ; ~n. The total potential is

 P�5�TOT � P�T� � ��P�R� � P�H��;

where P�T� and P�R� are as given as in the last case and
P�H� � 2N iAN

iA is modified with

 N iA �
��
6
p

4 �h
IKX

I � h
aVaT

X
4 �f

iA
X : (3.41)

The calculations for finding the critical points is overly
complicated and the expressions are lengthy. Here, we will
show a particular example where a stable de Sitter vacuum
is found. The first derivatives of the total potential vanish
at4 V � 1; � � � � 	 � ’2 � . . . � ’8 � 0 except the
’1-derivative

 @’1P�5�TOTj’C � 9�
�
�1� �V1�

2�’1 �
�V0�

2

�’1�5
�

V0V1���
2
p
�’1�2

�
:

Setting this to zero determines the ’1-coordinates of the
critical points as a function of V0 and V1

 ’1 �
1���
2
p

�
V0V1 �

�������������������������������������
�V0�

2�8� 9�V1�
2�

p
1� �V1�

2

�
1=3
: (3.42)

The values of the total potential at these critical points are

 P�5�TOTj�C �
27�V0�3V0�’1�3 �

����������������������������������������������
9�V0�

2�’1�6 � 8�’1�12
p

�

8�’1�7
;

where ’1 was given in (3.42). The values of the potential
are positive definite and therefore the critical points corre-
spond to de Sitter vacua.

Example: In particular, we look at the ~n � 8 theory by
taking V0 � 1 and V1 � 4. There is a critical point located
at ’1 � �2�

����
38
p

17
��
2
p �1=3. The value of the potential at this point

is 27
4 �937� 152

������
38
p
�1=3�. With these choices one can cal-

culate the eigenvalues of the Hessian of the potential
numerically as

 

f1:095�; 19:574�; 19:574�; 127:337�; 218:959�;

218:959�; 254:777�; 284:796�; 284:796�; 693:122�;

2:168� 218:959�; 2:168� 218:959�g:

This shows that the critical point is stable.

3. U�1�R symmetry gauging

Without hypermultiplets: The gauge group is SO�2� �
U�1�R. For such a gauging one needs at least ~n � 3. A
linear combination A�
U�1�R� � VIA

I
� of vector fields

will be used as the U�1�R gauge field. The total scalar
potential in this case is

 P�5�TOT � P�T� � �P�R� (3.43)

with

 P�R� � �2jVj2jj’jj2 � 4
���
2
p
V0

Vi’i

jj’jj2
; (3.44)

where i � 1; 4; 5; . . . ; ~n, jVj2 � �V1�
2 � �V4�

2 � . . .�
�V~n�

2 and P�T� given in (3.31). The first derivatives of the
potential

 @’1P�5�TOT � ��D’
1 � 4�CV1�;

@’aP
�5�
TOT � ’a

�
D�

1

4jj’jj6

�
; a � 2; 3;

@’bP
�5�
TOT � �D’

b � 4�CVb�; b � 4; . . . ; ~n

(3.45)

must simultaneously vanish at the critical point(s). Here we
defined

 C �

���
2
p
V0

jj’jj2
; D �

6P�T�

jj’jj2
� 4�

�
jVj2 �

2
���
2
p
V0Vi’i

jj’jj4

�
:

There are two possibilities to set the second equation to
zero.

Case 1 ’a � 0 This means that P�T�j’C � @’~xP�T�j’C � 0

and consequently @’~xP�R�j’C � 0. Thus we are dealing
with simultaneous critical points of the individual poten-
tials P�T� and P�R�. These have already been discussed
above. In particular, the coordinates of the critical points
are entirely determined by (3.22), with a � 4; . . . ; ~n and
the potential corresponds to a supersymmetric anti-de
Sitter vacuum with the value given in (3.24). Also, it is
possible to have a Minkowski ground state with broken
supersymmetry by letting all VI vanish, except V0.

Case 2 ’a � 0 In this case one must have

 D � �
1

4jj’jj6
: (3.46)

The first and the last equations tell that
4There are other critical points where ’e�e � 2; . . . ; ~n� are not

all zero, but we found that they are unstable.
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 �
V1

’1 �
Vb
’b
�

D
4�C

(3.47)

which means jVj2 > 0 and hence

 D � �
4�V1

’1 C � �
4
���
2
p
�V0V1

’1jj’jj2
: (3.48)

This leads to

 ’1 � 16
���
2
p
�V0V1jj’jj

4: (3.49)

Plugging (3.48) and (3.49) into (3.46) one arrives at

 

1

2jj’jj6
� 384�2�V0�

2�V1�
2 � 4�jVj2�1� 64��V0�

2�:

(3.50)

Using jVj2 > 0 together with

 �32��V0�
2 � 1��V1�

2 > �64��V0�
2 � 1��VbVb�

which can be derived from (3.50), one obtains the condi-
tion

 32��V0�
2 > 1: (3.51)

If V0 is chosen big enough to satisfy this, new nontrivial
critical points exist. Equation (3.50) fixes jj’Cjj2 so that
Eqs. (3.47) and (3.49) fix ’1

C and ’bC. This in turn fixes

�’2

C�
2 � �’3

C�
2� but not’2

C and’2
C individually. Therefore

we have a one parameter family of critical points. The
value of the potential at the critical points is
 

P�5�TOTj’C � �32�2�V0�
2�V1�

2jj’jj2

� �jj’jj2jVj2�3� 64��V0�
2� (3.52)

which corresponds to a nonsupersymmetic anti-de Sitter
solution. This result agrees with [17] in the ~n � 3 limit.5

As pointed out in that work, these critical points are saddle
points of the total potential. The potential is in the form
suggested in [24] plus the semipositive definite paraboloid-
like P�T� term. This tells us that the ground state is stable.

With a universal hypermultiplet: Inclusion of a hyper-
multiplet in the theory changes the total potential to

 P�5�TOT � P�T� � ��P�R� � 2N iAN
iA� (3.53)

with now
 

P�R� � �4CIJK ~PI � ~PJhK;

N iA �

���
6
p

4
�VIhIYdTXd �f

iA
X ;

(3.54)

where YdTXd with d � 1, 2, 3, 8 defines the linear combi-
nation of compact Killing vectors to be used. Remember
that KX

I � 0 for compact Killing vectors at the base point
of the hyperscalar manifold and therefore one has

P�H�jqC � 0. In the last subsection we showed that a
U�1�H gauging will not change the nature of the existing
critical points in the theory and hence the critical points are
saddle points in this case too.
SO�2� �U�1�R � SO�1; 1�H gauging: This is very simi-

lar to the previous case. The only difference is

 N iA �
��
6
p

4 �VIh
IYdTXd �WIh

ITX4 �f
iA
X : (3.55)

The linear combination WIhI of the vector fields is used as
the SO�1; 1� gauge field. The SO�1; 1� coupling constant is
absorbed in WI’s and the fact that the U�1�R gauge vector
field must be orthogonal to the SO�1; 1�H gauge field tells
the orthogonality condition

 VIWI � 0: (3.56)

The only nontrivial way to set the first derivatives of the
potential to zero we found was done by using (3.29) with
b � 4; ::; ~n, (3.46) and (3.47) but this means that
@’~x�P�T� � �P�R�� and @’~xP�H� must vanish separately.
Thus we are dealing with simultaneous critical points of
the individual potentials P�T� � �P�R� and P�H� which have
already been discussed above. In particular, the value of the
potential at the one parameter family of critical points
becomes
 

P�5�TOTj�C � �32 ~�2�V0�
2�V1�

2jj’jj2

� ~�jj’jj2jVj2�3� 64��V0�
2�; (3.57)

where ~� � �
4 
�Y

2�2 � �Y3�2 � �Y4�2� and it corresponds to
an anti-de Sitter ground state, which is of the same form
(up to a positive rescaling of �) as before the hypermultip-
let was added to the theory. We expect that it may be
possible to obtain stable vacuum with proper choices of
the gauge parameters VI and WI, provided that the eigen-
values of the Hessian that belong to the hyperscalar sector
are positive.

C. YMESGT with noncompact (SO�1; 1�) gauging,
coupled to tensor fields

The calculation was done in [17] for ~n � 3. Let us
trivially generalize their results to arbitrary ~n � 2. The
SO�1; 1� subgroup of the isometry group of the scalar
manifold acts nontrivially on the vector fields A1

� and
A2
�. Hence these vector fields must be dualized to antisym-

metric tensor fields. The index ~I is decomposed as

 

~I � �I;M�

with I; J; K � 0; 3; 4; . . . ; ~n and M;N; P � 1; 2. The fact
that the only nonzero CIMN are C0MN for the theory at hand
requires A0

� to be the SO�1; 1� gauge field because of
�M
IN ��MPCIPN (c.f Eq. (2.3)). All the other AI� with I �

0 are spectator vector fields with respect to the SO�1; 1�
gauging. The potential term (2.3) that comes from the
tensor coupling is found to be (taking �23 � ��32 � �1)5P�5�TOT;~n�3j’C � �

3
8

1
jj’jj4
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 P�T� �
1

8


�’1�2 � �’2�2�

jj’jj6
: (3.58)

For the function W~x that enters the supersymmetry trans-
formation laws of the fermions, one obtains
 

W3 � W4 � . . . � W~n � 0;

W1 � �
’2

4jj’jj4
;

W2 �
’1

4jj’jj4
:

(3.59)

Since W2 can never vanish, there can be no N � 2 super-
symmetric critical point.

1. No R-symmetry gauging

Without hypermultiplets: Taking the derivative of the
total potential P�5�TOT � P�T� with respect to ’~x, one finds

 @’1P�5�TOT � B’1; @’2P�5�TOT � �B’
2;

@’bP
�5�
TOT � �B’

b �
’b

4jj’jj6
; b � 3; . . . ; ~n;

where

 B � �
3

4

�’1�2 � �’2�2

jj’jj8
�

1

4jj’jj6
< 0: (3.60)

Since @’1P�5�TOT cannot be brought to zero there are no
critical points.

With a universal hypermultiplet: The compact genera-
tors of (B3) vanish at the base point of the hyperscalar
manifold. Hence a U�1� gauging of the hyperisometries
will not introduce critical points.
SO�1; 1� � SO�1; 1�H gauging: The SO�1; 1�H gauge

field is chosen as a linear combination of all vector fields
that are not dualized to tensor fields. The total potential
therefore is

 P�5�TOT � P�T� � 
P�H�;

where P�T� was given in (3.31) and P�H� � 2N iAN
iA

where

 N iA � VeheTX4 f
iA
X ; e � 0; 3; 4; 5; . . . ; ~n

with TX4 given in (B3). At the base point of the hyperscalar
manifold the q-derivatives of the total potential vanish.
One can calculate the ’1-derivative as

 @’1P�5�TOTjqC � �
’1�jj’jj2 � 3
�’1�2 � �’2�2� � 4
V0jj’jj2�V0 �

���
2
p
Vi’ijj’jj2��

4jj’jj8
;

where i � 3; . . . ; ~n. Setting this expression to zero and solving for V~n and plugging the resulting expression into the
@’jP

�5�
TOTjqC � 0, j � 2; . . . ; ~n� 1 equations gives

 @’2P�5�TOTj�C � 0; @’kP
�5�
TOTj�C �

2V0’k �
���
2
p
Vk�jj’jj2�jj’jj2 � 3
�’1�2 � �’2�2���

8V0jj’jj6
� 0; k � 3; . . . ; ~n� 1:

Solving the equations in the second line for Vk and plugging everything into the ’~n-derivative of the potential gives

 @�~nP�5�TOTj’C �
�3
�’1�2 � �’2�2� � jj’jj2�2 � 4jj’jj2�5
�’1�2 � �’2�2� � 3jj’jj2�
�V0�

2

32
�V0�
2’~njj’jj8

and this cannot be brought to zero. Therefore there are no
critical points for this type of gauging either.

2. SU�2�R-symmetry gauging

Without hypermultiplets: The gauge group is SO�1; 1� �
SU�2�R. For such a gauging one needs at least ~n � 5.
Choosing A3

�, A4
�, A5

� as the SU�2�R gauge fields one finds

 P�5�TOT � P�T� � �P�R�

with

 P�R� � 6jj’jj2 (3.61)

and P�T� given in (3.58). Taking the derivative of the total
potential with respect to ’~x one finds

 @’1P�5�TOT � �B� 12��’1;

@’2P�5�TOT � ��B� 12��’2;

@’bP
�5�
TOT � ��B� 12��’b �

’b

4jj’jj6
; b � 3; . . . ; ~n;

(3.62)

with B defined in (3.60). Setting the first equation to zero
means

 B � �12� (3.63)

since ’1 � 0. The last equation then implies ’bC � 0.
From (3.63) we find
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1

jj’Cjj
6 � 24�: (3.64)

The value of jj’Cjj2 � �’1
C�

2 � �’2
C�

2 is fixed by � but not
’1
C and ’2

C individually. The value of the potential at these
critical points is

 P�5�TOTj’C �
3

8jj’Cjj4
(3.65)

and therefore it corresponds to a one parameter family of
de Sitter ground states. The stability of the critical points is
checked by calculating the eigenvalues of the Hessian of
the potential, which are easily found as

 

�
0;

3
�’1
C�

2 � �’2
C�

2�

jj’Cjj8
;

1

4jj’Cjj
6
; . . . ;

1

4jj’Cjj
6|������������������{z������������������}

�~n�2� times

�
:

The eigenvalues are all non-negative, thus the one parame-
ter family of de Sitter critical points is found to be stable.

With a universal hypermultiplet: Since a U�1�H hyper-
gauging will not change the nature of the critical points we
will just do the SO�1; 1�H hypergauging.
SO�2� � SU�2�R � SO�1; 1�H gauging: The SO�1; 1�

gauge field is chosen as the linear combination VaAa�, a �
0; 6; 7; 8; . . . ; ~n. The total potential is

 P�5�TOT � P�T� � ��P�R� � P�H��;

where P�T� is as given as in the last case; P�R� and P�H� �
2N iAN

iA are modified with
 

P�R� � �4CIJK ~PI � ~PJhK;

N iA �
��
6
p

4 �h
IKX

I � h
aVaT

X
4 �f

iA
X :

At the base point of the hyperscalar manifold, the
q-derivatives of the total potential are found as

 @VP
�5�
TOTjqC � 0;

@�P
�5�
TOTjqC �

27

4
�’5

�
2Vb’

b �

���
2
p
V0

jj’jj2

�
;

@�P
�5�
TOTjqC �

27

2
�’4

�
2Vb’

b �

���
2
p
V0

jj’jj2

�
;

@	P
�5�
TOTjqC �

27

2
�’3

�
2Vb’b �

���
2
p
V0

jj’jj2

�
;

with b � 6; . . . ; ~n. There are two ways of setting these
expressions to zero. The first one is to set ’3

C � ’4
C �

’5
C � 0 and the second one is to set 2Vb’

b �
��
2
p
V0

jj’jj2
� 0.

One can show that the first case leads to the second one
(and vice versa), and we choose to proceed with the second
case. With this choice the ’~x-derivatives of the potential

(at the base point of the hyperscalar manifold) are eval-
uated as

 

@’1P�5�TOTj�C � ’1

�
9��

3
�’1�2 � �’2�2� � jj’jj2

4jj’jj8

�
;

@’2P�5�TOTj�C � �’2

�
9��

3
�’1�2 � �’2�2� � jj’jj2

4jj’jj8

�
;

@’dP
�5�
TOTj�C �

3

4
’d
�
�12��

�’1�2 � �’2�2

jj’jj8

�
;

d � 3; . . . ; ~n:

The only way to set these equations to zero is to have’dC �
0 together with � � 1

18jj’jj6
. Note that, setting ’dC � 0

implies V0 � 0. So, in order to have the potential term
coming from the SO�1; 1�H gauging not vanish we must
have at least ~n � 6. Plugging everything into the total
potential, one finds that

 P�5�TOTj’C �
3

8jj’Cjj
4 :

The value of � determines jj’Cjj2 � �’1
C�

2 � �’2
C�

2 but
not the ’1

C and ’2
C individually. Therefore we found a one

parameter family of de Sitter ground states. The eigenval-
ues of the Hessian of the potential, evaluated at the family
of critical points, are found to be

 

�
0;

1

4jj’jj6
; . . . ;

1

4jj’jj6
;

z����������������}|����������������{�~n�3� times

1� 2VbVb
4jj’jj6

;
1

8jj’jj4
;

1

8jj’jj4
;

1

2jj’jj4
;

1

2jj’jj4
;
3
�’1�2 � �’2�2�

jj’jj8

�
:

The eigenvalues are all non-negative and therefore the
critical points are stable.

3. U�1�R-symmetry gauging

Without hypermultiplets: The calculation in [17] for ~n �
3 was later generalized to arbitrary ~n � 3 in [19]. Let us
briefly quote their results. A linear combination
A�
U�1�R� � VIAI� of the vector fields is taken as the
U�1�R gauge field. The scalar potential is now

 P�5�TOT � P�T� � �P�R�;

where

 P�R� � �4
���
2
p
V0Vi’ijj’jj�2 � 2jVj2jj’jj2 (3.66)

with i � 3; . . . ; ~n and jVj2 � ViVi. Demanding @’~xP�5�TOT �

0, one obtains the following conditions
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’iC
jj’Cjj4

� 16
���
2
p
�V0Vi;

1

jj’Cjj6
� �

1

2
�16

���
2
p
�V0jVj�2 � 8�jVj2;

(3.67)

with the constraints

 jVj2 > 0; 32��V0�
2 < 1: (3.68)

Given a set of VI subject to (3.68), we see that jj’jj2 and ’i

(and thus �’1�2 � �’2�2) are completely determined by
(3.67) but ’1 and ’2 are otherwise undetermined. The
value of the potential at this one parameter family of
critical points becomes

 P�5�TOTj’C � 3�jj’jj2jVj2�1� 32��V0�
2� (3.69)

and this corresponds to de Sitter vacua. The stability is
checked by calculating the eigenvalues of the Hessian of
the potential at the critical point. We can use the SO�1; 1�
invariance together with the SO�~n� 2� of the’i to take for
any critical point ’C � �’1; 0; ’3; 0; . . . ; 0�. With these
choices the Hessian becomes block diagonal at the critical
point. ’2 is a zero mode and the sector ’4; . . . ; ’~n consists
of a unit matrix times 1

4 jj’jj
�6. The only nondiagonal part

of the Hessian is

 @~x@~yP
�5�
TOTj~x;~y�1;3 � �

�’1�2
6�’1�2 � 5�’3�2� �’1
8�’1�2’3 � 3�’3�3�

�’1
8�’1�2’3 � 3�’3�3� 1
4 
2�’

1�4 � 37�’1�2�’3�2 � 5�’3�4�

 !

with � � jj’jj�8
2�’1�2 � �’3�2��1. The determinant and
the trace of this part of the Hessian are

 

det @@P�5�TOT �
12�’1�6 � 12�’1�4�’3�2 � 11�’1�2�’3�4

4jj’jj14
2�’1�2 � �’3�2�2
;

tr@@P�5�TOT �
26�’1�4 � 57�’1�2�’3�2 � 5�’3�4

4jj’jj8
2�’1�2 � �’3�2�

which are both positive because of �’1�2 > �’3�2 and
therefore the family of critical points is found to be stable.
We note that, although the above quantities are both posi-
tive, they are slightly different than the ones found in [19],
where the authors fixed the coupling constants with � � 1.

With a universal hypermultiplet: Inclusion of a hyper-
multiplet in the theory changes the total potential to

 P�5�TOT � P�T� � ��P�R� � 2N iAN
iA� (3.70)

with now

 P�R� � �4CIJK ~PI � ~PJhK; N iA �
��
6
p

4 �VIh
IYdTXd �f

iA
X ;

(3.71)

where YdTXd with d � 1, 2, 3, 8 defines the linear combi-
nation of compact Killing vectors to be used. This potential
also has a one parameter family of de Sitter critical points.
The U�1� gauging in the hypersector will scale P�R� by a
positive factor at the base point of the hyperscalar mani-
fold, which can be embedded in VI’s. Because of
@2P�5�TOT

@’@q jqc � 0, as we discussed before, the only thing that
remains to be checked is the stability of the hypersector.
Because of the lengthiness of the expressions, we give a
particular example. Taking Y1 � Y2 � 0, Y4 � �

���
3
p
Y8

we arrive at a further restriction on V0 in order to maintain

stability,

 64��V0�
2 > 1:

This restriction (together with (3.68)) is necessary and
sufficient to obtain stable dS vacua.

Example: Using the SO�1; 1� and the SO�~n� 2� invar-
iances as in the previous case before we added hypers, we
calculated the coordinates of the critical point for the
specific case V0 �

3
2 , V3 � 1, � � 1

96 , Y8 � 1 as

 ’1 �
���
7
p ������

486
p

; ’3 �
���
2
p ������

363
p

;

’2 � ’4 � . . . � ’~n � 0:

The value of the potential at this critical point is 1

8
��


p

3�36
and

the eigenvalues of the
@2P�5�TOT

@q2 part of the Hessian at this

critical point are found to be

 

4
��
3
p
�3

64
��


p

3�36
; 4

��
3
p
�3

64
��


p

3�36
; 2505�128

��
3
p

512
��


p

3�36
; 2505�128

��
3
p

512
��


p

3�36
;

which are all positive. Note that it is also possible to obtain
unstable critical points with different choices of Yd and VI.
To conclude this subsection we investigate the situation
with an additional noncompact hypergauging.
SO�1; 1� �U�1�R � SO�1; 1�H gauging: This is very

similar to the previous case. The only difference is

 N iA �
��
6
p

4 �VIh
IYdTXd �WIhITX4 �f

iA
X : (3.72)

The linear combination A�
SO�1; 1�� � WIA
I
� of the vec-

tor fields is used as the SO�1; 1� gauge field. The SO�1; 1�
coupling constant is absorbed in WI’s and the fact that the
U�1�R gauge vector field must be orthogonal to the
SO�1; 1�H gauge field tells the orthogonality condition

 VIWI � 0: (3.73)
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The first derivatives of the potential can be set to zero by
using (3.46) and (3.47) and W0 � �

���
2
p
Wb’

bjj’jj2, b �
3; . . . ; ~n. We found that the potential has a one parameter
family of de Sitter ground states. The stability again de-
pends on the values taken for the constants. The calculation
is quite messy and here we will look at a particular example
with stable ground state.

Example: For the constants in the theory, we take the
following numbers:V0 �

1
2
��
2
p ; V3 �

1
4 ; Ve �We �

0; �e � 4; :::; ~n�; � � 2�
���
3
p

; W0 �
1

96
��������������
2�2�

��
3
p
�

p ; W3 �

� �2�
��
3
p
�3=2

96�7�4
��
3
p
�
; Y1 � Y2 � 0; Y5 � � Y4��

3
p � 1

3

����������������������
5
2 �2�

���
3
p
�

q
.

The point ’1 � 2, ’2 � 1, ’3 � 1, ’e � 0 is a critical
point. The value of the potential at this critical point is 7

128

and the eigenvalues of the Hessian at this critical point
become 481

128 ;
481
128 ;

1
576 �490�

�����������������
216 430
p

�; 0; . . . ; 0, which are
all non-negative and hence this corresponds to a stable de
Sitter vacuum.

D. Summary

Our results are summarized in Table I for the theories
that do not include hypers and Table II for theories that
include a universal hypermultiplet and have noncompact
SO�1; 1�H gauging of hyperisometries.

IV. MAGICAL JORDAN FAMILY

It is possible to apply the results obtained for the generic
Jordan family to the magical Jordan family, provided that
there are enough vector fields in the magical family mem-
ber to do the gauging that is being ‘‘imported’’ from the
generic family. For instance, the SO�2� � SU�2�R gauging
requires at least ~n � 6 vector multiplets and thus this
generic family model cannot be embedded in the smallest
member of the magical Jordan family M � SL�3;R�

SO�3� . It can
only be embedded into the bigger members of the family.
In this section we will see two examples of such embed-
dings. These models also contain other critical points that
are special to the magical family case, i.e. that were not
obtained in the generic case.

What is more interesting for the magical Jordan family is
a non-Abelian gauging of the isometry group will intro-
duce a potential term due to the tensor coupling. This is
because of the fact that, unlike in the generic Jordan family
theories, in the magical Jordan family theories there are
vector fields that are nontrivially charged under the non-
Abelian gauge group. By ‘‘nontrivial’’ we mean that there
are other vectors than the ones in the adjoint representation
of the gauge group K, that are not singlets. These vector
fields should be dualized to tensor fields and this dual-
ization introduces a scalar potential P�T�. An example to

TABLE II. Ground states of d � 5, N � 2 supergravity with one hypermultiplet and with noncompact SO�1; 1� gauging of the
hypersector. The columns represent different R-symmetry gaugings whereas the rows represent different tensor couplings. Note that
noncompact hypergauging implies broken supersymmetry. The Minkowskian ground states are not listed. ‘‘—’’ means there are no
ground states.

No R-sym. gauging SU�2�R gauging U�1�R gauging

MESGT dS (stable) dS (stable� unstable) AdS (stable b� unstable)
YMESGT with tensors and gauge group SO�2� dS (stable a) dS (stable� unstable) AdS (stable b �unstable)
YMESGT with tensors and gauge group SO�1; 1� — dS (stable) dS (stable� unstable)

aUp to n � 6 at least.
bWe have not found explicit results but the form of the expressions suggests that it is possible to obtain stable vacua.

TABLE I. Ground states of d � 5, N � 2 supergravity without hypermultiplets. The columns represent different R-symmetry
gaugings whereas the rows represent different tensor couplings. ~n denotes the minimum number of vector multiplets that must be
coupled to the theory in order to make the respective gauging possible. ‘‘—’’ means there are no ground states.

No R-sym. gauging SU�2�R gauging U�1�R gauging

MESGT Minkowski (supersymmetric)
arbitrary ~n � 0

—
~n � 4

AdS (supersymmetric,
stable) � Minkowski

(nonsupersymmetric) ~n � 1
YMESGT with tensors
and gauge group SO�2�

Minkowski (supersymmetric)
~n � 3

Minkowski (supersymmetric)
~n � 6

AdS (supersymmetric,
stable � nonsupersymmetric,

stable) � Minkowski
(nonsupersymmetric) ~n � 3

YMESGT with tensors
and gauge group SO�1; 1�
(broken susy)

—
~n � 2

dS (stable) ~n � 5 dS (stable) ~n � 3
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such a gauging will be investigated in the last part of this
section.

A. M � SL�3;R�=SO�3�

M is described by the hypersurface N�h� �
C~I ~J ~Kh

~Ih~Jh ~K � 1 of the cubic polynomial

 N�h� � 3
2

���
3
p
h3�IJhIhJ �

3
��
3
p

2
��
2
p �IMNhIhMhN; (4.1)

where
 

I; J � 0; 1; 2; M;N � 4; 5;

�IJ � diag��;�;��; �0 � �12;

�1 � �1; �2 � �3:

In this parametrization the nonvanishing C~I ~J ~K’s are
 

C003 � �C113 � �C223 �
��
3
p

2 ;

C044 � C055 � �
��
3
p

2
��
2
p ;

C244 � �C255 �
��
3
p

2
��
2
p ;

C145 �
��
3
p

2
��
2
p ;

and their permutations. N�h� indeed is the determinant of
the Jordan algebra JR3 element

 

~h �

���
3
p���

2
p

h0 � h2 h1 h4

h1 h0 � h2 h5

h4 h5
���
2
p
h3

0B@
1CA:

To solve N�h� � 1 we take the parametrization:

 hI �

���
2

3

s
xI; hM �

���
2

3

s
bM; h3 �

1� bT �xb���
3
p
jjxjj2

;

where jjxjj2 � �IJxIxJ and bT �xb � bMxI�IMNbN .

1. SO�2� �U�1�R gauging

The fields h0 and h3 are chargeless under the action of
the compact SO�2� generator

 ~� 2 �

0 1 0
�1 0 0
0 0 0

0@ 1A
while h1 and h2 are forming a doublet with charge 2; and
h4 and h5 are forming another doublet with charge 1. To
gauge the SO�2� subgroup of the symmetry group we will
use a linear combination of the fields A0

� and A3
�. The

U�1�R symmetry will be gauged by another linear combi-
nation of the same fields. We will split the indices as i; j �
0; 3; m; n � 1, 2, 4, 5.

The symplectic matrix �mn that appears in the potential
is given by

 �mn �

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

0BBB@
1CCCA

and the nonvanishing �mn
i ’s are

 �44
0 � �55

0 � �
1
2; �11

3 � �22
3 �

1��
2
p :

Now the potential terms P�T� � 3
��
6
p

16 h
i�mn

i hmhn and
P�R� � �4CijkViVjhk become:
 

P�T� � 3
��
6
p

16 
�h
0
�h4�

2 � �h5�
2�

�
���
2
p
h3
�h1�

2 � �h2�
2��jN�h��1; (4.2)

 

P�R� � �2V0

�
V0jjxjj

2

�
���
2
p
V3

�
2x0 1� bT �xb

jjxjj2
� 
�b4�2 � �b5�2�

��
: (4.3)

Here we defined h~I �
1
3

@
@h~I NjN�1. One should note that

determinants of the vector/tensor field metric a
o

~I ~J and the
hypersurface metric g~x ~y are given by 1 and 243

16jjxjj4
, respec-

tively. This tells us that both metrics are positive definite on
the scalar manifold when jjxjj2 � 0.

The total potential is:

 P�5� � P�T� � �P�R�; (4.4)

where P�T� and P�R� were given in (4.2) and (4.3). It is quite
difficult to calculate the most general solution for the
critical points of this potential. Instead, we look at specific
sectors.

Sector 1: b4 � b5 � 0 at the critical point
This sector looks quite similar to the generic case with

SO�2;1��SO�1;1�
SO�2� as the scalar manifold with SO�2� �U�1�R

gauging, yet there is an important difference. In the generic
case, to have the metrics a

o
~I ~J and g~x ~y positive definite, we

were forced to look at the sector h0 � 0. Now this restric-
tion does not apply anymore and this will help us find more
ground states.

To find the critical points of the scalar manifold, we take
the derivatives of the total potential with respect to all the
scalars of the manifold (i.e. x0, x1, x2, b4, b5) and set them
equal to zero. These derivatives are given by
 

P�5�	;0 � ��A� �B�x0 �
x0

4jjxjj6
� 4

���
2
p
�
V0V3

jjxjj2
;

P�5�	;1 � �A� �B�x1;

P�5�	;2 � �A� �B�x2;

P�5�	;4 � P�5�;5 � 0;

(4.5)

where
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 A �
3

4

�x1�2 � �x2�2

jjxjj8
�

1

4jjxjj6
;

B � 4V0

�
V0 �

2
���
2
p
V3x0

jjxjj4

�
;

and 	: at b4 � b5 � 0. The case with x0 � 0 is almost
equivalent to the generic case and it was studied in
Sec. III B 3. There are two possibilities for setting the first
derivatives of the potential to zero.

Case 1 x1
C � x2

C � 0 Letting V0 � 0, we can get a
Minkowski ground state with broken supersymmetry. Or
one can set the above equations to zero by letting

���
2
p
V3 �

V0�x
0�3. The value of the potential then becomes P�5�j’C �

�6��V0x0�2 and this corresponds to a stable, supersym-
metric anti-de Sitter critical point. The same analysis we
did in Sec. III B 3 shows that this critical point is a saddle
point.

Case 2 �x1
C�

2 � �x2
C�

2 � 0 Setting the first derivatives of
the potential to zero, one arrives at (c.f. Eqs. (3.49) and
(3.50))
 

x0

jjxjj4
� 16

���
2
p
�V0V3;

1

jjxjj6
�

1

2
�16

���
2
p
�V0V3�

2 � 8��V0�
2:

(4.6)

In order for these equations to be consistent, one needs

 32��V3�
2 > 1; V0V3 � 0: (4.7)

There is a one parameter family of anti-de Sitter ground
states which do not preserve the full N � 2 supersymme-
try, and the value of the potential at these critical points is
given by

 P�5�j’C � �
3

8

1

jjxjj4
< 0: (4.8)

Now we come to the case with x0 � 0. Equations (4.5)
reduce to

 V0V3 � 0;
1

2
xa
�
8��V0�

2 �
1

jjxjj6

�
� 0; a � 1; 2:

(4.9)

It is not possible to solve the second equation by letting V0,
so one sets V3 � 0. The second equation then is solved by
8��V0�

2jjxjj6 � �1. The potential evaluated at the critical
point is given by P�5�j’C � �

3
8

1

�x1�2��x2�2�

and this is a one

parameter family of stable and AdS vacua with broken
supersymmetry (xaC � 0) Pa � 0).

Sector 2: x1 � x2 � 0 at the critical point
The derivative of the potential with respect to the scalar

x2 is

 P�5�;2 � �

�b4�2 � �b5�2�
4� 8D� 5D2 � 128

���
2
p
�V0V3�x

0�3 � 8�x0�6�

32�x0�4
; (4.10)

where D � 
�b4�2 � �b5�2�x0.

Case 1 �b4�2 � �b5�2 � 0 Setting b4 � b5, the b4 and b5

derivatives of the potential become

 P�5�;4 � P�5�;5

�
b5f�b5�2 � 3�b5�4x0 � �x0�2�16

���
2
p
�V0V3 � �x0�3�g

4�x0�2
:

(4.11)

One way to set this equal to zero is to make b5 � 0. But
this means b4 � 0 and this case was already covered in
Sector 1. Instead, we set

 �b5�2 � 3�b5�4x0 � �x0�2�16
���
2
p
�V0V3 � �x0�3�: (4.12)

Plugging this in the x1 derivative of the potential yields

 P�5�;1 �
�b5�2f�1� �b5�2x0��2� �b5�2x0�g

4�x0�2
: (4.13)

This vanishes if we set x0 � 1�
��
2
p

�b5�2
. Plugging this into the x0

derivative of the potential, one finds

 P�5�;0 � �
10� 7

���
2
p
� 16�1�

���
2
p
���V0�

2�

4�b5�2
: (4.14)

This can only vanish if one selects the lower sign. One finds
the value of the ratio � of the coupling constants as a
function of V0 as

 � �
10� 7

���
2
p

16�
���
2
p
� 1��V0�

2
: (4.15)

The value of the potential at the critical point is given by

 P�5�j’C �
3�10� 7

���
2
p
� �b5�12�

8�b5�4
(4.16)

and b5 is determined as a solution to the equation

 2V3�b
5�6 � �

���
2
p
� 1� �4� 3

���
2
p
��b5�12�V0: (4.17)

So, the sign of the value of the potential at the critical point
can be tuned by carefully choosing V0 and V3. Using
Mathematica, we found that the Hessian has at least one
positive and one negative eigenvalue for any choice of V0

and V3 and hence the critical point is a saddle point. The
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same result can be obtained by setting b4 � �b5.

Case 2 4� 8D� 5D2 � 128
���
2
p
�V0V3�x0�3 � 8�x0�6 In

this case the x1-derivative of the potential vanishes and
the b4 and b5-derivatives reduce to

 

P�5�;4
b4
�
P�5�;5
b5

�
�4� 
�b4�2 � �b5�2�x0f�4� 
�b4�2 � �b5�2�x0g

32�x0�3
:

(4.18)

Setting x0 � 2�2
��
2
p

�b4�2��b5�2
makes this expression vanish.

Plugging this into the x0-derivative equation yields

 P�5�;0 � �
10� 7

���
2
p
� 16�1�

���
2
p
���V0�

2�

2
�b4�2 � �b5�2�
: (4.19)

Again, as in the last case, this can only vanish by selecting
the lower sign. This sets the value of � as given in (4.15).
The value of the potential at the critical point is found as

 P�5�j’C �
3�640� 448

���
2
p
� 
�b4�2 � �b5�2�6�

128
�b4�2 � �b5�2�2
: (4.20)

�b4�2 � �b5�2 can be tuned by carefully choosing V0 and V3

as in the last case, but b4 and b5 are otherwise not deter-
mined. Using Mathematica, we found that the Hessian of
the potential at this one parameter family of critical points
has both positive and negative eigenvalues for any choice
of V0 and V3, as in the last case; so the ground states are
‘‘saddle curves,’’ i.e. they are neither minima or maxima.

2. SO�1; 1� �U�1�R gauging

The fields h1 and h3 are chargeless under the action of
the noncompact SL�2;R�SO�2� generator

 ~� 3 �

1 0 0
0 �1 0
0 0 0

0@ 1A
while h0 and h2 are forming a doublet with charge 2; and
h4 and h5 are forming another doublet with charge 1. To
gauge the SO�1; 1� subgroup of the symmetry group we
will use a linear combination of the fields A1

� and A3
�. The

U�1�R symmetry will be gauged by another linear combi-
nation of the same fields. We will split the indices as i; j �
1; 3; m; n � 0, 2, 4, 5.

The symplectic matrix �mn that appears in the potential
is given by

 �mn �

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

0BBB@
1CCCA

and the nonvanishing �mn
i ’s are

 �00
3 �

1��
2
p ; �22

3 � �
1��
2
p ; �45

1 �
1
2; �54

2 �
1
2:

Now the potential terms P�T� � 3
��
6
p

16 h
i�mn

i hmhn and
P�R� � �4CijkViVjhk become:

 P�T� �
3
���
6
p

16

	
h1h4h5 �

h3���
2
p ��h0�

2 � �h2�
2�



jN�h��1;

(4.21)

 P�R� � 2V1

	
V1jjxjj

2 � 2V3

�
�

���
2
p
x1 1� bT �xb

jjxjj2

�
���
2
p
b4b5

�

: (4.22)

Here we defined h~I �
1
3

@
@h~I NjN�1. One should note that

determinants of the vector/tensor field metric a
o

~I ~J and the
hypersurface metric g~x ~y are given by 1 and 243

16jjxjj4 , respec-
tively. This tells us that both metrics are positive definite on
the scalar manifold when jjxjj2 � 0.

The total potential is:

 P�5� � P�T� � �P�R�; (4.23)

where P�T� and P�R� were given in (4.21) and (4.22). It is
quite difficult to calculate the most general solution for the
critical points of this potential. Instead, we look at specific
sectors.

Sector 1: b4 � b5 � 0 at the critical point
This sector looks quite similar to the generic case with

SO�2;1��SO�1;1�
SO�2� as the scalar manifold with SO�1; 1� �U�1�R

gauging, yet there is an important difference. In the generic
case, to have the metrics a

o
~I ~J and g~x ~y positive definite, we

were forced to look at the sector h0 � 0. Now this restric-
tion does not apply anymore and this will help us find more
ground states.

To find the critical points of the scalar manifold, we take
the derivatives of the total potential with respect to all the
scalars of the manifold (i.e. x0, x1, x2, b4, b5) and set them
equal to zero. These derivatives are given by

 P�5�	;0 � �A� �B�x0;

P�5�	;1 � ��A� �B�x1 �
x1

4jjxjj6
� 4

���
2
p
�
V1V3

jjxjj2
;

P�5�	;2 � ��A� �B�x2; P�5�	;4 � P�5�;5 � 0;

(4.24)

where

 A �
jjxjj2 � 3
�x0�2 � �x2�2�

4jjxjj8
;

B � 4V1

�
V1 �

2
���
2
p
V3x1

jjxjj4

�
;

and 	: at b4 � b5 � 0. The case with x0 � 0 is almost
equivalent to the generic case and it was studied in
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Sec. III C 3. Setting the first derivatives of the potential to
zero, one arrives at (c.f. Eq. (3.67))
 

1

jjxjj6
� �256��V1V3�

2 � 8��V1�
2;

x1

jjxjj4
� 16

���
2
p
�V1V3:

(4.25)

There is a one parameter family of ground states where the
potential at the critical point is given by

 P�5�j’C � 3�jjxjj2�V1�
2�1� 32��V3�

2�; (4.26)

with V1 � 0. Choosing 1> 32��V3�
2 leads to jjxjj2 > 0,

whereas 1< 32��V3�
2 leads to jjxjj2 < 0, therefore this

family of ground states correspond to de Sitter vacua.
It was found in the generic case that this family of de

Sitter vacuum is stable. Let us check if the stability applies

to the magical model at hand. The stability is manifested
by the positivity of the eigenvalues of the Hessian of the
potential. The Hessian, evaluated at the family of critical
points, is of the block diagonal form

 �@@P�5��j’C �
E3�3 0

0 F2�2

	 

: (4.27)

E has one zero eigenvalue. The product of the remaining
two eigenvalues is 3��x0�2��x2�2�

4jjxjj14 . This tells us one must have
jjxjj2 > 0 in order to have positive eigenvalues. Note the
fact that in the generic case this restriction came from the
positivity rule of the metrics a

o
~I ~J and g~x ~y whereas now it is

a requirement to have the eigenvalues of the Hessian
positive definite. The sum of the eigenvalues of E is

 Tr �E� �
13�x0�4 � 3�x1�4 � 14�x1�2�x2�2 � 11�x2�2 � �x0�2�22�x1�2 � 2�x2�2�

4jjxjj10 :

This is positive definite in the region jjxjj2 > 0.
The product of the eigenvalues of F is

 

det�F� �
1

16

	
��x1�2jjxjj4 �

1

jjxjj6

�
�x1�2

jjxjj2
� 2

�
2

�
2�x1�2

jjxjj2

�
�x1�2

jjxjj2
� 2

�

and their sum is

 Tr �F� �
1

2
x0

	
2

jjxjj4
� �x1�2

�
1

jjxjj6
� 2

�

: (4.28)

These two quantities are not positive definite every-
where on the domain of the family of de Sitter vacua. In
the region where x1 and x2 are close to zero their limits are

 lim
x1;x2!0

det�F� �
1

4�x0�6
; lim

x1;x2!0
Tr�F� �

1

�x0�3
:

These are positive in the region x0 > 0. In the region where
jjxjj2 is close to zero the limits become
 

lim
jjxjj2!0

det�F� !
1

16jjxjj6

�
�x1�2

jjxjj2
� 2

�
2
;

lim
jjxjj2!0

Tr�F� !
x0�x1�2

2jjxjj6
:

Again, these are positive in the region x0 > 0. Thus these
two regions on the scalar manifold contain stable de Sitter
vacua. There are also the relations (4.25) that tell us x1 and

�x0�2 � �x2�2� can be tuned by a careful choice of Vi’s. But
x0 and x2 are otherwise not fixed. Although x0 is not fixed,
it is not possible to make a transition between x0 > 0 and
x0 < 0 and at the same time to keep jjxjj2 > 0 fixed. Hence,

in reality only the second case, where jjxjj2 is small and
positive, and x0 > 0, is a stable de Sitter ground state.

We now look at the case where x0 � 0 at the critical
point. To make the third expression in (4.24) zero there are
two possibilities:

(1) A� �B � 0: The second expression gives us:

 

x1

jjxjj4
� 16

���
2
p
�V1V3: (4.29)

Plugging this back into A� �B � 0 we find

 

1

jjxjj6
� �256��V1V3�

2 � 8��V1�
2: (4.30)

The left-hand side of this equation is negative definite.
Hence V1 � 0 and also 32��V3�

2 > 1 and by (4.29), x1 �

0. The potential evaluated at the critical point is given by

 P�5�j’C � 3��V1�
2�1� 32��V3�

2�jjxjj2 (4.31)

which is positive, hence we have another de Sitter ground
state, but this is unstable as explained before, for it leads to
the same Hessian (4.27).

(2) x2
C � 0: In this case jjxjj2 � ��x1�2. From the sec-

ond expression in (4.24) we find

 V1 � 0 or �x1�3 � �

���
2
p
V3

V1
(4.32)

at the critical point. Setting V1 � 0 leads to a one parame-
ter family of Minkowski ground states with broken super-
symmetry (unless V3 � 0, which turns off the U�1�R
potential). For the other case the potential at this point
becomes
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 P�5�j’C �
6
���
2
p
�V1V3

x1 (4.33)

which is negative definite because of (4.32) and hence this corresponds to a supersymmetric anti-de Sitter critical point.
The Hessian of the scalar potential evaluated at the critical point is given by

 diag
�
�

1� 32��V3�
2

4�x1�6
;�

24��V3�
2

�x1�6
;
1� 32��V3�

2

4�x1�6
;
8��V3�

2

�x1�3
�
�x1�3

4
;
8��V3�

2

�x1�3
�
�x1�3

4

�
;

which has both positive and negative eigenvalues and therefore the critical point is a saddle point of the potential.
Sector 2: x1 � x2 � 0 at the critical point
The derivative of the potential with respect to the scalar x2 is

 P�5�;2 j’C � �

�b4�2 � �b5�2�
2� 2x0
�b4�2 � �b5�2� � �x0�2�b4�2�b5�2�

8�x0�2
: (4.34)

There are 4 possible ways of setting this equal to zero, i.e.

 b4 � �b5; b4 � �

�������������������������������
�2� 2�b5�2x0

p
����������������������������������
2x0 � �b5�2�x0�2

p : (4.35)

Inserting either of the last two values for b4 into the
x0-derivative of the potential, one finds

 P�5�;0 j’C � 4��V1�
2x0: (4.36)

But since x0 � 0, because otherwise the potential diverges
at this point, one must have V1 � 0, i.e. theU�1�R potential

must be turned off. Applying this to the b5-derivative of the
potential, one finds

 P�5�;5 j’C � �
�b5�3�1� �b5�2x0�2

2�x0�2�2� �b5�2x0�2
: (4.37)

Setting this equal to zero requires either b5 � 0 or 1�
�b5�2x0 � 0 but both options make the potential vanish at
the critical point, so these critical points are Minkowskian.

For the b4 � b5 case we first note that P�5�;2 j’C � 0.
Furthermore

 P�5�;4 j’C � P�5�;5 j’C �
b5
2� 5�b5�2x0 � 3�b5�4�x0�2 � 16

���
2
p
�V1V3�x

0�3�

4�x0�3
: (4.38)

One way to set this equal to zero is to make b5 � 0. But
this means b4 � 0 and this case was already covered in
Sector 1. In particular, the potential at the critical point in
this case is (note that the restrictions V1 � 0, 1> 32��V3�

2

apply),

 P�5�j’C � 3��V1�
2�x0�2 (4.39)

which is non-negative.
Another way to set (4.38) equal to zero is to have

 2� 5�b5�2x0 � 3�b5�4�x0�2 � �16
���
2
p
�V1V3�x

0�3:

(4.40)

Plugging this into P�5�;1 � 0 and solving the resulting

expression together with P�5�;0 � 0 we find

 x0 � �
a

�b5�2
(4.41)

and

 �x0�6 �
2� 6a� 5a2 � a3

a
; (4.42)

where a � 16��V1�
2. Plugging (4.40), (4.41), and (4.42)

into the potential we get

 P�5�j’C �
3� 6a� 3a3

8�x0�4
: (4.43)

Since the left-hand side of (4.42) is positive definite a is
constrained as:

 0< a< 2�
���
2
p

or 1< a< 2�
���
2
p
:

In both regions the value of the potential at the critical
point (4.43) is positive, thus the critical point corresponds
to a de Sitter vacuum. Unfortunately, using Mathematica
we found that none of these choices for a yields non-
negative eigenvalues for the Hessian of the potential
(some eigenvalues are always negative); therefore this de
Sitter vacuum is unstable.

For the b4 � �b5 case the value of the potential at the
critical point is the same and the critical point is unstable as
well.

B. M � SL�3;C�=SU�3�

M is described by the hypersurface N�h� �
C~I ~J ~Kh

~Ih~Jh ~K � 1 of the cubic polynomial

O. ÖGETBIL PHYSICAL REVIEW D 75, 065033 (2007)

065033-20



 N�h� � 3
2

���
3
p
h4�IJh

IhJ � 3
��
3
p

2
��
2
p �IMNh

IhMhN; (4.44)

where
 

I; J � 0; 1; 2; 3; M;N � 5; 6; 7; 8;

�IJ � diag��;�;�;��; �0 � �14;

�1 � 12 
 �1; �2 � �2 
 �2; �3 � 12 
 �3:

(4.45)

The nonvanishing CIJK’s are

 C004 � �C114 � �C224 � �C334 �
��
3
p

2 ;

C055 � C066 � C077 � C088 � �
��
3
p

2
��
2
p ;

C355 � C377 � �C366 � �C388 �
��
3
p

2
��
2
p ;

C156 � C178 � �C258 � C267 �
��
3
p

2
��
2
p ;

(4.46)

and their permutations. N�h� is the determinant of the
Jordan algebra JC3 element

 

~h �

���
3
p���

2
p

h0 � h3 h1 � ih2 h6 � ih8

h1 � ih2 h0 � h3 h5 � ih7

h6 � ih8 h5 � ih7
���
2
p
h4

0B@
1CA:

To solve N�h� � 1 we take the parametrization:

 hI �

���
2

3

s
xI; hM �

���
2

3

s
bM; h4 �

1� bT �xb���
3
p
jjxjj2

;

where jjxjj2 � �IJxIxJ and bT �xb � bMxI�IMNbN .

1. SU�2� �U�1� gauging

This is the smallest member of the magical Jordan
family that admits SU�2� � SO�3� gauging. Here we will
gauge a SU�2� �U�1� subgroup of the isometry group
SL�3;C�. The vector fields A1

�, A2
�, A3

� will be used to
gauge SU�2� and the vector A0

� will be the U�1� gauge
field. The vector fields AM� are charged under SU�2� �
U�1� and must be dualized to tensor fields. The vector field
A4
� is a spectator vector field. The dualization of the vector

fields to tensor fields introduces the scalar potential [18]

 P�T� � 1
8b
M �xMP�PR �xRS�ST �xTNb

N; (4.47)

where �xMN � �IMNx
I and the symplectic invariant matrix

is

 �PR �

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

0BBB@
1CCCA:

The gauge fields A1
�, A2

�, A3
� can be used to simultaneously

gauge SU�2�R and this gauging leads to the potential term

 P�R� � 6jjxjj2: (4.48)

The total potential P�5� � P�T� � P�R� does not admit any
ground states. However P�T� itself does admit a Minkowski
ground state at bM � 0. Using the SU�2� symmetry, one
can rotate the fields such that x2 � x3 � 0 at the critical
point. With this choice the eigenvalues of the Hessian of
the potential are found to be6

 

f0;0;0;0;2�x0� x1�3;2�x0� x1�3;2�x0� x1�3;2�x0� x1�3g

and it is easy to see that the ground state is a minimum in
the region jjxjj2 > 0, x0 > 0 only.

In the above model, one can simultaneously gauge
U�1�R instead of the full SU�2�R by taking a linear combi-
nation of A0

� and A4
� as a U�1�R gauge field. P�T� is still

given by (4.47), but P�R� now is

 P�R� � �2V0

�
V0jjxjj2 �

���
2
p
V4

�
2x0 1� bT �xb

jjxjj2
� bTb

��
;

(4.49)

where bTb � bMbN�MN . There are three ways of making
the bM-derivatives of the total potential P�5� �
P�T� � �P�R� vanish.

Case 1 bM � 0 The xI-derivatives of the potential become

 P�5�;0 � �2�V0

�
2V0x

0 �
2
���
2
p
V4
2�x0�2 � jjxjj2�

jjxjj4

�
;

P�5�;a � 4�V0x
a�V0 �

2
���
2
p
V4x0

jjxjj4
�; a � 1; 2; 3:

(4.50)

These vanish if one sets xa � 0 and
���
2
p
V4 � V0�x0�3. The

value of the potential at this critical point is

 P�5�j’C � �6��V0�
2�x0�2 (4.51)

which is negative definite, hence the critical point is an
anti-de Sitter ground state. The Hessian of the potential
evaluated at the critical point is given by
 

@@P�5�’C � diag��12��V0�
2;�4��V0�

2;�4��V0�
2;

� 4��V0�
2; 2�1� 2��V0�

2��x0�3;

2�1� 2��V0�
2��x0�3; 2�1� 2��V0�

2��x0�3;

2�1� 2��V0�
2��x0�3�: (4.52)

Depending on the choice of V0 and V4 this can be either an
anti-de Sitter maximum or saddle point.
Another way of making these derivatives vanish is to set
V0 � 0. This case was already covered before. It leads to a
Minkowski minimum with broken supersymmetry (unless
also V4 � 0).

6One can arrive at the same result by doing a noncompact
SO�2; 1� �U�1� (without R-symmetry) gauging.
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Case 2 b5 � b6 and b7 � b8 Using the SU�2� invariance,
the scalar fields can be rotated such that x2 � x3 � 0. The
first derivatives of the potential vanish with
 

2
���
2
p
�V0V4 � �x

0 � x1�2�x0 � x1�;

2��V0�
2 �

x0 � 3x1

x0 � x1 ;

x1 � �
�b6�2 � �b8�2��x0 � x1�2:

(4.53)

Given a set of VI ’s, the values for x0, x1, and �b6�2 � �b8�2

are uniquely determined by these equations. The value of
the potential at the critical point is

 P�5�j’C � �3�x0 � x1�2 (4.54)

and this corresponds to an anti-de Sitter vacuum.
Considering the fact that we already used two thirds of
the gauge freedom by choosing x2 � x3 � 0, we conclude
that this actually is a three-parameter family of ground
states. Using Mathematica, we found that this is a maxi-
mum of the total potential. Case 2: b5 � �b6 and b7 �
�b8 This is very similar to the last case. We again use the
SU�2� invariance to set x2 � x3 � 0. The first derivatives
of the potential vanish with
 

2
���
2
p
�V0V4 � �x

0 � x1��x0 � x1�2;

2��V0�
2 �

x0 � 3x1

x0 � x1 ;

x1 � 
�b6�2 � �b8�2��x0 � x1�2;

(4.55)

and again, this is a three-parameter family of anti-de Sitter
ground states; the value of the potential at the critical
points is

 P�5�j’C � �3�x0 � x1�2: (4.56)

With hypermultiplets: One can add a universal hyper-
multiplet to the theory and gauge simultaneously the sub-
group SU�2� �U�1� of the hyperscalar isometry group
SU�2; 1� together with the SU�2�R. The total potential
P�5� � P�T� � P�R� � P�H� is then given by
 

P�T� � 1
8b
M �xMP�PR �xRS�

ST �xTNb
N;

P�R� � �4CIJK ~PI ~PJhK;

P�H� � 2N iAN
iA;

(4.57)

with

 N iA �
��
6
p

4 h
IKX

I f
iA
X ;

where we defined (B3)

 KX
0 � TX8 ; KX

1 � TX1 ; KX
2 � TX2 ; KX

3 � TX3 :

(4.58)

This theory does not admit any ground states. One can

gauge an additional SO�1; 1�H symmetry. This type of
gauging admits stable and unstable de Sitter vacua. But
this type of calculation has been done various times in the
last section and therefore we skip it here.

2. SO�2; 1� �U�1� gauging

We will gauge a SO�2; 1� �U�1� subgroup of the isome-
try group SL�3;C�. The vector fields A0

�, A1
�, A2

� will be
used to gauge SO�2; 1� and the vector A3

� will be the U�1�
gauge field. The vector fields AM� are charged under
SO�2; 1� �U�1� and must be dualized to tensor fields.
The vector field A4

� is a spectator vector field. The dual-
ization of the vector fields to tensor fields introduces the
scalar potential [18]

 P�T� � 1
8b
M �xMP�PR �xRS�ST �xTNb

N; (4.59)

where �xMN � �IMNxI and the symplectic invariant matrix
is

 �PR �

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

0BBB@
1CCCA:

P�T� itself admits a Minkowski ground state as in the last
case. In this model, one can gauge the U�1�R � SU�2�R
symmetry by taking a linear combination of A0

� and A4
� as a

U�1�R gauge field. A scalar potential

 P�R� � 2V3

�
V3jjxjj2 �

���
2
p
V4

�
�2x3 1� bT �xb

jjxjj2
� bT�3b

��
(4.60)

is introduced. The only critical points of the total potential
P�5� � P�T� � �P�R� are found at bM � 0 by setting V3 �
0, i.e. by turning off the U�1�R potential. These are a four-
parameter family of Minkowski ground states and they
are minima only in the region jjxjj2 > 0, x0 > 0.
Supersymmetry is broken unless also V4 � 0.

C. Summary

The gaugings of certain theories in the generic Jordan
family can be reproduced in the magical Jordan family,
provided there are enough vector fields to do the respective
gaugings. The stability of the ground states of these theo-
ries still needs to be checked and in some cases the stability
puts constraints on the gauge parameters. In this section we
reproduced the Minkowski and anti-de Sitter ground states
for SO�2� �U�1�R gauging and the de Sitter ground states
for SO�1; 1� �U�1�R gauging that were already found in
the generic Jordan family case. In addition to the existing
ground states, we encountered other ground states that are
special to the magical Jordan family case, such as de Sitter
and anti-de Sitter saddle points and curves. Although we
did not do a complete analysis, we can conclude that the
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magical Jordan family theories are richer than the generic
Jordan family theories in the numbers and properties of
ground states.

The compact non-Abelian SU�2� �U�1� gauging leads
to Minkowski vacua; and also anti-de Sitter vacua when
accompanied by a simultaneous U�1�R symmetry gauging.
However the simultaneous SU�2�R gauging does not admit
any critical points, even after including hypers in the
model. The model with noncompact non-Abelian
SO�2; 1� �U�1� gauging has Minkowski vacuum, but
doing a simultaneous U�1�R gauging results in a theory
with no ground states.

The other members of the magical Jordan family (M �
SU 	 �6�=USp�6� and M � E6��26�=F4) have a very simi-
lar structure to the above theories and contain them as
subsectors. Although they admit gaugings of bigger sub-
groups, such as SO�m� 1� or SO�m; 1� with m � 3, the
form of the scalar potentials corresponding to the SO�3�
and SO�2; 1� gaugings of the above model suggests that it
is not likely for the bigger members of the magical Jordan
family, subject to SO�m� 1� or SO�m; 1� gaugings, to
have ground states of different nature than the ones found
in this section.

V. GENERIC NON-JORDAN FAMILY

The scalar manifold M � SO�1; ~n�=SO�~n� can be de-
scribed by the hypersurface N�h� � C~I ~J ~Kh

~Ih~Jh ~K � 1 of
the cubic polynomial

 N�h� � 3
��
3
p

2
��
2
p �

���
2
p
h0�h1�2 � h1
�h2�2 � . . .� �h~n�2��: (5.1)

The nonvanishing CIJK’s are

 C011 �
��
3
p

2 ; C022 � C033 � . . . � C0~n ~n � �
��
3
p

2
��
2
p ;

and their permutations. To solve N�h� � 1 we take the
parametrization

 h0 �

���
2

3

s �
1���

2
p
�’1�2

�
1���
2
p ’1
�’2�2 � . . .� �’~n�2�

�
;

h1 �

���
2

3

s
’1; ha �

���
2

3

s
’1’a; a � 2; . . . ; ~n:

In contrast to the Jordan families, C~I ~J ~K’s are no longer
constant or equal to C~I ~J ~K’s. The scalar field dependent
C~I ~J ~K are defined as

 C~I ~J ~K � a
o ~I ~I0

a
o ~J ~J0

a
o ~K ~K0

C~I0 ~J0 ~K0

where the inverse of the vector field metric a
o

~I ~J is given by

a
o ~I ~J
� h~Ih~J � h~I

~xh
~J
~yg

~x ~y. For the symmetric non-Jordan
family, the scalar field metric g~x ~y is diagonal

 g~x ~y � diag
	

3

�’1�2
; �’1�3; . . . ; �’1�3



which is positive definite for ’1 > 0.

A. Maxwell-Einstein supergravity

1. No R-symmetry gauging

We add one hypermultiplet to the theory and gauge a
noncompact SO�1; 1�H symmetry of the hyperscalar mani-
fold. As the SO�1; 1� gauge field, we take a linear combi-
nation WIA

I
� of all the vectors in the theory. The potential

is given by

 P�5�TOT � P�H� � 2N iAN
iA; (5.2)

where N iA �
��
6
p

4 �WIh
I�TX4 f

iA
X . The only way to make the

first derivatives of the potential vanish at the base point of
the hyperscalar manifold without making the potential
itself vanish is to set

 W1 �
W0�2� �’1�3
�’2�2 � . . .� �’~n�2�����

2
p
�’1�3

;

Wa � �
���
2
p
’aW0; a � 2; . . . ; ~n:

(5.3)

The coordinates of the critical point is entirely determined
by WI’s. The value of the potential at the critical point
becomes

 P�5�TOTj’C �
9

4

�W0�
2

�’1�4
(5.4)

and the Hessian of the potential at the critical point is given
by
 

@@P�5�TOTj’C � diag
	

9�W0�
2

�’1�6
;
3�W0�

2

’1 ; . . . ;
3�W0�

2

’1 ;|����������������{z����������������}
~n�1times

0;

9�W0�
2

2�’1�4
;
9�W0�

2

4�’1�4
;
9�W0�

2

4�’1�4



which is semipositive definite in the physically relevant
region ’1 > 0, therefore the critical point is a stable de
Sitter vacuum. We already had many examples of having
SO�1; 1�H gauging mixed with other gaugings in the ge-
neric Jordan family section. Similar analysis for the non-
Jordan family shows that it is possible to obtain de Sitter
ground states with other gauge groups that include
SO�1; 1�H. Therefore we omit the results for K �
SO�1; 1�H gaugings of generic non-Jordan family theories.

2. SU�2�R-symmetry gauging

This calculation was done in [18]. Let us briefly quote
their results. The vectors A2

�, A3
�, A4

� are chosen as the
SU�2� gauge fields. This group rotates h2, h3, h4 together
but the other scalars are not charged under the action of this
SU�2�, therefore no tensor fields need to be introduced.
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The scalar potential (2.4) becomes

 P�5�TOT � P�R� � �
1

2
�’1�2
�’2�2 � �’3�2 � �’4�2� �

3

2’1 :

(5.5)

It is easy to verify that this potential does not have any
critical points.

3. U�1�R-symmetry gauging

This calculation was done in [19] for ~n � 3. Let us
trivially generalize their results to arbitrary ~n. A linear
combination VIAI� of all the vectors in the theory is taken
as the U�1�R gauge field. The scalar potential (2.5) is given
by
 

P�5�TOT � P�R�

�
1

’1 f�2
���
2
p
V0V1 � 2jVj2 � �’1�3
V0jj ~’jj2

�
���
2
p
�V1 � V2’2 � . . .� V~n’

~n��2g; (5.6)

where we defined jVj2 � �V2�
2 � . . .� �V~n�

2 and jj~’jj2 �
�’2�2 � . . .� �’~n�2. The only way to make the first de-
rivatives of the potential vanish without making the poten-
tial itself vanish is to set
 

V1 �
V0�2� �’

1�3jj ~’jj2����
2
p
�’1�3

;

Va � �
���
2
p
’aV0; a � 2; . . . ; ~n:

(5.7)

The coordinates of the critical point are entirely deter-
mined by VI’s. The value of the potential at the critical
point becomes

 P�5�TOTj’C � �
24�’1�2�V1�

2

�2� �’1�3jj ~’jj2�2
(5.8)

and the Hessian of the potential at the critical point is given
by

 @@P�5�TOTj’C � diag
�3 ~A;� ~A�’1�5; . . . ;� ~A�’1�5�|��������������������{z��������������������}
~n�1times

;

where ~A � �V1�
2

�2��’1�3jj ~’jj2�2
> 0. Thus the critical point is an

anti-de Sitter maximum.

B. Yang-Mills/Einstein supergravity with tensor
coupling

The Lagrangian of the theory is not invariant under the
full isometry group SO�1; ~n�, but it is invariant under the
subgroup G � 
SO�~n� 1; 1� � SO�1; 1�� 32 T~n�1, where
T~n�1 is the group of translations in an ~n� 1-dimensional
Euclidean space. Having a closer look at N, we see that the
subgroup SO�1; 1� cannot be gauged because all the vector
fields are charged under it and there is no vector field to be

used as the gauge field. Only the gauging of the subgroup
SO�2� � SO�~n� 1; 1� will result in a potential term due to
dualization of the vector fields to tensor fields.

1. No R-symmetry gauging

The group SO�2� rotates h2 and h3 into each other and
therefore acts nontrivially on the vector fields A2

� and A3
�.

These fields must be dualized to tensor fields. The field A1
�

is chosen as the SO�2� gauge field. The index ~I is decom-
posed as

 

~I � �I;M�;

where I; J; K � 0; 1; 4; 5; . . . ; ~n and M;N; P � 2; 3. The
scalar potential (2.3) is found as

 P�5�TOT � P�T� �
�’1�5

8

�’2�2 � �’3�2�: (5.9)

This potential has an ~n� 2 parameter family of
Minkowski minima at ’2 � ’3 � 0.

2. SU�2�R-symmetry gauging

The vector fields A4
�, A5

�, A6
� are chosen as SU�2�R

gauge fields, whereas A1
� will be used to gauge SO�2�.

The vectors A2
�, A3

� transform nontrivially under SO�2�,
therefore they are dualized to tensor fields. The total po-
tential P�5�TOT � P�T� � �P�R� is given by

 P�T� �
�’1�5

8

�’2�2 � �’3�2�;

P�R� � �
1

2
�’1�2
�’4�2 � �’5�2 � �’6�2� �

3

2’1 :
(5.10)

It is easy to verify that the total potential does not have any
critical points.

3. U�1�R-symmetry gauging

As in the last model, A1
� is the SO�2� gauge field and

because the vectors A2
�, A3

� transform nontrivially under
SO�2�, they are dualized to tensor fields. A linear combi-
nation VIAI�; I � 0; 1; 4; 5; . . . ; ~n of vector fields is used as

the U�1�R gauge field. The total potential P�5�TOT � P�T� �
�P�R� is given by

 P�T� �
�’1�5

8

�’2�2 � �’3�2�;

P�R� �
1

’1 f�2
���
2
p
V0V1 � 2jVj2 � �’1�3
V0jj ~’jj

2

�
���
2
p
�V1 � V4’4 � . . .� V~n’

~n��2g;

(5.11)

where jVj2 � �V4�
2 � . . .� �V~n�

2 and jj ~’jj2 �
�’2�2 � . . .� �’~n�2. The first derivatives of the potential
are given by
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@’1P�5�TOT �
5

8
�’1�4
�’2�2 � �’3�2� �

4
���
2
p
�V0V1 � 2jVj2

�’1�2
� 2�’1A2;

@’aP
�5�
TOT �

1

4
�’1�2’a��’1�3 � 16�V0A�; a � 2; 3;

@’bP
�5�
TOT � �2

���
2
p
��’1�2�

���
2
p
’bV0 � Vb�A; b � 4; . . . ; ~n;

(5.12)

where

 A � jj~’jj2V0 �
���
2
p
�V1 � ’

4V4 � . . .� ’~nV~n�: (5.13)

There are three ways of making these expressions vanish.

Case 1 ’a � A � 0 In this case we have

 P�5�TOTj’C � �’
1@’1P�5�TOTj’C (5.14)

which means the potential vanishes at the critical point.

Case 2 ’a � 0, A � 0 In this case one must have Vb �
�

���
2
p
’bV0 to make the third expression in (5.12) vanish.

Plugging this into the first expression and setting it equal to
zero, one finds the conditions

 V1 �
jj ~’jj2V0���

2
p ; or V1 �

2� �’1�3jj ~’jj2V0���
2
p
�’1�3

: (5.15)

The first of these leads to a Minkowski minimum. The
second choice gives the value of the potential at the critical
point as

 P�5�TOTj’C � �
12��V0�

2

�’1�4
(5.16)

and the Hessian of the potential at the critical point is

 @@P�5�TOTj’C � diag
	
�

24��V0�
2

�’1�6
;
�’1�5

4
�

8��V0�
2

’1 ;
�’1�5

4
�

8��V0�
2

’1 ;�
8��V0�

2

’1 ; . . . ;�
8��V0�

2

’1|����������������������{z����������������������}
�~n�3�times



(5.17)

which means the critical point can be a maximum or a saddle point depending on the choice of VI ’s.

Case 3 ’a � 0 In this case one must have Vb � �
���
2
p
’bV0 together with �’1�3 � 16�V0A. Plugging these in the first

equation in (5.12), solving this for V1 one finds the value of the potential at the critical point as

 P�5�TOTj’C � �
�’1�5��3�’1�3 � 32��5� ��
�’2�2 � �’3�2��V0�

2�

256�2�V0�
2 (5.18)

which might correspond to de Sitter or anti-de Sitter,
depending on the choice of VI ’s. It was shown in [19]
that the de Sitter solution is a saddle point when ~n � 3.
The calculation for the stability of the solutions is tedious
but using Mathematica, we confirmed that the de Sitter
solutions are saddle points for any ~n and we showed that
the anti-de Sitter solutions are either maxima or saddle
points, again depending on the choice of VI ’s.

C. Summary

SU�2�R gauging does not lead to any critical points, even
with the addition of tensors; whereas the model with pure
U�1�R gauging has Minkowski and AdS critical points. The
only way of adding tensors to the theory is done by gauging
the SO�2� subgroup of the isometry group. Pure SO�2�
gauging leads to Minkowski minima. U�1�R � SO�2�
gauging has Minkowski, dS, and AdS critical points. The
dS solution is always unstable but the AdS solution can be
made stable by properly choosing VI’s (c.f. [24]). Coupling

hypers to the theory and gauging SO�1; 1�H leads to stable
de Sitter vacua as in the generic Jordan case.

VI. CONCLUSIONS

In this paper, after reviewing the ground state solutions
of the 5D, N � 2 supergravity theories with symmetric
scalar manifolds that had been discovered earlier, we
studied the vacua of the gauged 5D, N � 2 supergravity
theories that had not been discussed in the literature.
Consistent with earlier results, in the absence of hypers,
we showed that all the generic Jordan family, the magical
Jordan family, and the generic non-Jordan family theories
admit stable anti-de Sitter vacua, whereas only the theories
of the first two families admit stable de Sitter vacua and all
the above families have unstable de Sitter and anti-de Sitter
ground states.

For the generic Jordan family, the only gauge groups K
that lead to the introduction of tensor fields are the Abelian
groups SO�2� and SO�1; 1�. The former leads to super-
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symmetric Minkowski ground states only, unless accom-
panied by a simultaneous U�1�R gauging. With U�1�R
gauging one can obtain nonsupersymmetric Minkowski
ground states, and moreover, there are supersymmetric
and nonsupersymmetric anti-de Sitter critical points result-
ing from the combined scalar potential of the SO�2� and
U�1�R gaugings. The SO�1; 1� gauging, on the other hand,
breaks the supersymmetry and leads to stable de Sitter
vacua by a simultaneous R-symmetry (SU�2�R or U�1�R)
gauging. Pure SO�1; 1� gauging does not lead to any criti-
cal points. It is interesting to observe that whereas the
SO�1; 1� � SU�2�R gauging has stable de Sitter vacua, its
compact counterpart, namely SO�2� � SU�2�R gauging
admits Minkowski vacua only. We also note that some of
the stable de Sitter models we studied—such as the one
with SO�1; 1� � SU�2�R gauging and no hypermultiplets,
or the one with SO�2� � SO�1; 1�H gauging, which has one
hypermultiplet—have critical points, for which the
Hessians of the potential evaluated at these points have
zero eigenvalues. This is related to the fact that the poten-
tial has a family of critical points rather than a single point
and therefore it has flat direction(s) at these points.

We showed that it is possible to embed certain generic
Jordan family models into the magical Jordan family theo-
ries, provided that there are a sufficient number of vector
fields in the magical theory to do the respective gauging.
However, in some cases the stability puts additional con-
straints on the gauge parameters. In these models, we
encountered other critical points than the ones obtained
in the generic case, such as de Sitter and anti-de Sitter
saddle points and curves. These are special to the magical
Jordan family. Although we found numerous critical points
of these models, we could not do a complete analysis due
to the complexity of the magical Jordan family theories. In
addition to this, coupling a hypermultiplet and gauging a
subgroup of its scalar manifold might lead to nontrivial
critical points that are beyond those found in this paper.
These are left as open questions for future investigation.

Other than the embeddings of the generic Jordan family
cases, one can gauge non-Abelian subgroups of the isome-
try groups of the magical theories and dualize nontrivially
charged vector fields to tensor fields which yield additional
contributions to the scalar potential. The compact SO�3� �
U�1� gauging leads to a Minkowski vacuum. A simulta-
neous SU�2�R gauging leads to a theory with no critical
points whereas a simultaneous U�1�R gauging has an
anti-de Sitter solution. On the other hand, the noncompact
non-Abelian SO�2; 1� �U�1� gauging only leads to a
Minkowski ground state and adding a simultaneous
R-symmetry gauging results in a theory with no ground
states.

For the generic non-Jordan family, the model with the
full R-symmetry gauged does not have any critical points,
even after adding tensor coupling. The pure U�1�R gauging
leads to Minkowski and anti-de Sitter ground states. Tensor

coupling to these models can only be achieved by doing a
compact SO�2� gauging. A simultaneous SO�2� �U�1�R
gauging results in Minkowski, anti-de Sitter, and de Sitter
ground states. The de Sitter solutions are found to be
unstable whereas the anti-de Sitter solutions can be made
stable by proper choices of the parameters VI that define
the linear combination of the vector fields that is used as
the U�1�R gauge field.

We also added a universal hypermultiplet to the models
we considered and investigated the potentials coming from
the gauging of the hyperisometries. For the generic Jordan
family, we showed that a simultaneous compact U�1�H
gauging does not change the sign of the potential at the
existing critical points of the models that the hypermultip-
let is added to, but a noncompact SO�1; 1�H gauging gen-
erally leads to de Sitter vacua. It is interesting to see that
the SO�1; 1� gaugings of both real and hyperscalar isome-
tries help in finding de Sitter ground states. This result is
not limited to the generic Jordan family and applies to the
other families.
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APPENDIX A: THE ‘‘VERY SPECIAL
GEOMETRY’’

The bosonic sector of the 5D, N � 2 gauged Yang-
Mills-Einstein supergravity7 coupled to tensor multiplets
and hypermultiplets is described by the Lagrangean (with
metric signature �� �����) [15,16,25]
 

ê�1LN�2
bosonic � �

1

2
R�

1

4
a
o

~I ~JH
~I
��H

~J��

�
1

2
gXYD�q

XD�qY �
1

2
g~x ~yD�’

~xD�’~y

�
ê�1

6
���
6
p CIJK


����	FI��F
J
��A

K
	

�
ê�1

4g

����	�MNBM��D�BN�	 �V �’; q�:

(A1)

Here, non-Abelian field strengths FI
�� � FI�� �

gfIJKA
J
�A

K
� , �I � 0; 1; . . . ; n� of the gauge group K and

the self-dual tensor fields BM�� �M � 1; 2; . . . ; 2m� are

7For the full Lagrangean, see [16,17]

O. ÖGETBIL PHYSICAL REVIEW D 75, 065033 (2007)

065033-26



grouped together to define the tensorial quantity H ~I
�� �

�FI
��; B

M
��� with ~I � 0; 1; . . . ; n� 2m. The potential

term V �’; q� is given by

 V �’; q� � g2�P�T��’� � �P�R��’; q� � 
P�H��q��;

(A2)

where
 

P�T� � 2W~xW
~x;

P�R� � �4 ~P � ~P� 2 ~P~x � ~P~x;

P�H� � 2N XN
X;

(A3)

and � � g2
R=g

2, 
 � g2
H=g

2. The quantities given in the
above expression are defined as
 

W~x � �
��
6
p

8 �MNhM~xhN �
��
6
p

4 h
IK~x

I ;

~P � hI ~PI;

~P~x � hI~x ~PI;

N X �
��
6
p

4 h
IKX

I ;

(A4)

where K~x
I and KX

I are Killing vectors acting on the scalar
and the hyperscalar parts of the total scalar manifold
Mscalar �MVS 
MQ; ~PI are the Killing prepotentials
which will be defined below; �MN is the inverse of �MN ,
which is the constant invariant antisymmetric tensor of the
gauge group K; and hI and hI~x are elements of the very
special manifold MVS described by the hypersurface

 N�h� � C~I ~J ~Kh
~Ih~Jh ~K � 1; ~I; ~J; ~K � 0; . . . ; ~n (A5)

of the ~n� 1-dimensional space M � fh~I 2 R~n�1jN�h� �
C~I ~J ~Kh

~Ih~Jh ~K > 0g with metric

 aIJ � �
1
3@I@J lnN�h�: (A6)

The terms P�T� and P�H� are semipositive definite in the
physically relevant region, whereas P�R� can have both
signs. MVS is determined completely by the totally sym-
metric tensor C~I ~J ~K. The scalar field metric on this hyper-
surface is the induced metric from the embedding space,
which is given by

 g~x ~y �
3
2a~I ~Jh

~I
;~xh

~J
;~yjN�1 � �3C~I ~J ~Kh

~Ih~J
;~xh

~K
;~yjN�1; (A7)

where ~x denotes a derivative with respect to ’~x. The
definitions
 

a
o

~I ~J � a~I ~J N�1 � �2C~I ~J ~Kh
~K � 3h~Ih~J;

h~I � C~I ~J ~Kh
~Jh ~K � a

o
~I ~Jh

~J;

h~I
~x � �

���
3

2

s
h~I
;~x;

h~I ~x � a
o

~I ~Jh
~J
~x �

���
3

2

s
h~I;~x

(A8)

help us write the algebraic constraints of the very special
geometry

 h~Ih~I � 1; h~I
~xh~I � h~I ~xh

~I � 0; h~I
~xh

~J
~yoa~I ~J � g~x ~y:

(A9)

There are also differential constraints to be satisfied:
 

h~I ~x;~y �
��
2
3

q
�g~x ~yh~I � T~x ~y ~zh

~z
~I
�;

h~I
~x;~y � �

��
2
3

q
�g~x ~yh

~I � T~x ~y ~zh
~I ~z�;

(A10)

where ‘‘;’’ is the covariant derivative using the Christoffel
connection calculated from the metric g~x ~y and

 T~x ~y ~z � C~I ~J ~Kh
~I
~xh

~J
~yh

~K
~z : (A11)

Using (A7)–(A9) one can derive

 a
o

~I ~J � h~Ih~J � h
~x
~I
h~J ~x; (A12)

 h~x
~I
h~J ~x � �2C~I ~J ~Kh

~K � 2h~Ih~J: (A13)

The indices ~I, ~J, ~K are raised and lowered by a
o

~I ~J and its

inverse a
o ~I ~J. P�T� can now be written in a more compact

form

 P�T� � 3
8�

MN�PRCMRIhNhPhI �
3
��
6
p

16 �MN
I hMhNhI

(A14)

with �M
IN being the transformation matrices of the tensor

fields under the gauge group K

 �MN
I � �M

IP�PN � 2��
6
p �MRCIRP�PN: (A15)

Gauging the R-symmetry introduces the potential term
P�R� � �4 ~P � ~P� 2 ~P~x � ~P~x, where ~P � hI ~PI and ~P~x �

hI~x ~PI are vectors that transform under the R-symmetry
group that is being gauged. For the SU�2�R gauging one
can take

 

~P I � ~eI;

where ~eI satisfy ~eA � ~eB � dCAB ~eC and ~eA � ~eB � �AB
when A, B, C are the SU�2�R adjoint indices (dCAB are the
SU�2� structure constants); and ~eI � 0 otherwise. With this
convention and the use of (A8) and (A9) the potential term
simplifies to

 P�R� � �4CAB ~K�ABh ~K: (A16)

If the U�1�R subgroup of SU�2�R is being gauged one can
take
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~P I � VI ~e;

where ~e is an arbitrary vector in the SU�2� space and VI are
some constants that define the linear combination of the
vector fields AI� that is used as the U�1�R gauge field

 A�
U�1�R� � VIAI�:

The potential term then can be written as

 P�R� � �4CIJ ~KVIVJh ~K: (A17)

If tensors are coupled to the theory the VI have to be
constrained by

 VIf
I
JK � 0

with fIJK being the structure constants of K. When the
target manifold MVS is associated with a Jordan algebra,
the following equality holds componentwise

 C~I ~J ~K � C~I ~J ~K � const:

APPENDIX B: KILLING VECTORS OF THE
HYPERISOMETRY

The eight Killing vectors kX� that generate the isometry
group SU�2; 1� of the hyperscalar manifold are given by
[21]

 

~k1 �

0
1
0
0

0BBB@
1CCCA; ~k2 �

0
2�
0
1

0BBB@
1CCCA; ~k3 �

0
�2	

1
0

0BBB@
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0
0
�	
�

0BBB@
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V
�
�=2
	=2

0BBB@
1CCCA;

~k6 �

2V�
�2 � �V � �2 � 	2�2
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1
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(B1)

The corresponding prepotentials are
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(B2)

It is easier to see that the Killing vectors close to the SU�2; 1� algebra if they are recasted in the following combinations8

 SU�2�

8>>><>>>:
T1 �

1
4�k2� 2k8�;

T2 �
1
4�k3� 2k7�;

T3 �
1
4�k1� k6� 3k4�;

U�1�
�
T8 �

��
3
p

4 �k4� k1� k6�;
SU�2;1�
U�2�

8>>>>>><>>>>>>:

T4 � k5;
T5 ��

1
2�k1� k6�;

T6 ��
1
4�k3� 2k7�;

T7 ��
1
4�k2� 2k8�:

(B3)

8This basis is chosen for convenience such that the generators T1, T2, T3, and T8 are the isotropy group of the point �V;�; �; 	� �
�1; 0; 0; 0�. The metric hyperscalar manifold becomes diagonal at this point. In all the theories that have hypercoupling, we will take
this basis point qC for a possible candidate of the hypercoordinates of a critical point.
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The Killing vectors KX
I are then given by V�I k

X
� and the

corresponding prepotentials ~PI are V�I ~p�, where V�I are
constants that determine which isometries are being
gauged and what linear combination of vector fields are
being used.9
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