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We consider N � 1 supersymmetric QCD with the gauge group U�N� and Nf � N quark flavors. To
get rid of flat directions we add a meson superfield. The theory has no adjoint fields and, therefore, no
’t Hooft-Polyakov monopoles in the quasiclassical limit. We observe a non-Abelian Meissner effect:
condensation of color charges (squarks) gives rise to confined monopoles. The very fact of their existence
in N � 1 supersymmetric QCD without adjoint scalars was not known previously. Our analysis is
analytic and is based on the fact that the N � 1 theory under consideration can be obtained starting from
N � 2 SQCD in which the ’t Hooft-Polyakov monopoles do exist, through a certain limiting procedure
allowing us to track the status of these monopoles at various stages. Monopoles are confined by
Bogomol’nyi-Prasad-Sommerfield (BPS) non-Abelian strings (flux tubes). Dynamics of string orienta-
tional zero modes are described by a supersymmetric CP�N � 1� sigma model on the string world sheet. If
a dual of N � 1 SQCD with the gauge group U�N� and Nf � N quark flavors could be identified, in this
dual theory our demonstration would be equivalent to the proof of the non-Abelian dual Meissner effect.
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I. INTRODUCTION

Seiberg and Witten demonstrated [1] that the dual
Meissner effect takes place in N � 2 Yang-Mills theories.
Shortly after [1], Hanany, Strassler, and Zaffaroni dis-
cussed [2] formation and structure of the chromoelectric
flux tubes in the Seiberg-Witten solution. Their analysis
showed that details of the Seiberg-Witten confinement are
quite different from those we expect in QCD-like theories.
The confining strings in the Seiberg-Witten solution are, in
fact, Abelian strings of the Abrikosov-Nielsen-Olesen type
[3]. The ‘‘hadronic’’ spectrum in the Seiberg-Witten model
is much richer than that in QCD (for a review, see e.g. [4].)
The discovery of non-Abelian strings [5,6] and non-
Abelian confined monopoles [7,8] was a significant step
towards QCD. They were originally found in N � 2
models which are quite distant relatives of QCD. To get
closer to QCD one needs to have less supersymmetry.
Another conspicuous feature of N � 2 Yang-Mills theo-
ries which drastically distinguishes them from QCD-like
theories is the presence of scalar and spinor fields in the
adjoint representation.

To advance along these lines it is highly desirable to
break N � 2 down to N � 1 and get rid of the adjoint
superfield by making it very heavy, without destroying
non-Abelian strings and confined monopoles. A partial
success in this direction was reported in Ref. [9]. Adding
a mass term to the adjoint superfield of the type �W �
�A2 breaks N � 2. As long as the mass parameter � is
kept finite, the non-Abelian string in this N � 1 model is
well defined and supports confined monopoles. However,
at �! 1, as the adjoint superfield becomes heavy and we
approach the limit of N � 1 SQCD, an infrared problem

develops. This is due to the fact that in N � 1 SQCD
defined in a standard way the vacuum manifold is not an
isolated point; rather, there exists a flat direction (a Higgs
branch). On the Higgs branch there are no finite-size
Bogomol’nyi-Prasad-Sommerfield (BPS) strings [10].
Thus one arrives at a dilemma: either one has to abandon
the attempt to decouple1 the adjoint superfield, or, if this
decoupling is performed, confining non-Abelian strings
cease to exist [9].

In this paper we report that a relatively insignificant
modification of the benchmark N � 2 model solves the
problem. All we have to do is to add a neutral meson
superfield M coupled to the quark superfields through a
superpotential term. Acting together with the mass term of
the adjoint superfield, it breaks N � 2 down to N � 1.
The limit �! 1 in which the adjoint superfield com-
pletely decouples, becomes well defined. No flat directions
emerge. The limiting theory is N � 1 SQCD supple-
mented by the meson superfield. We show that it supports
non-Abelian strings. The junctions of these strings present
confined monopoles, or, it is better to say, what becomes of
the monopoles in the theory where there are no adjoint
scalar fields. There is a continuous path following which
one can trace the evolution in its entirety: from the

1Below we use the word decouple in two opposite meanings:
first, if a field becomes very heavy and disappears from the
physical spectrum, so that it can be integrated out; second, if all
coupling constants of a certain field vanish so that it becomes
sterile. With regards to the adjoint fields decoupling, it means
making them very heavy. With regards to the meson superfield
M decoupling, it means sterility. Each time it is perfectly clear
from the context what is meant. We hope this will cause no
confusion.
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’t Hooft-Polyakov monopoles which do not exist without
the adjoint scalars to the confined monopoles in the
adjoint-free environment. As far as we know, this is the
first demonstration (in a fully controllable weak coupling
regime) of the Meissner effect in N � 1 theories without
adjoint superfields. If a dual of N � 1 SQCD with the
additional meson superfield could be found, in this dual
theory our demonstration would be equivalent to the proof
of the non-Abelian dual Meissner effect.

The organization of the paper is as follows. In Sec. III we
review the benchmarks N � 2 super-Yang-Mills theory
with the gauge group U�N� and Nf � N quark flavors. We
introduce the Fayet-Iliopoulos (FI) term [11] in the U(1)
subgroup, crucial for the string construction, and a meson
superfield M, coupled to the quark superfields through a
cubic superpotential. We add the mass terms to the adjoint
superfields. The latter two terms in the superpotential break
N � 2. In Sec. III we discuss the spectrum of elementary
excitations, in particular, in the limit�! 1. We show that
the limiting theory is essentially N � 1 SQCD. The only
distinction is the meson superfield which survives in the
limit �! 1. The vacuum of this theory, which will be
referred to as the M model, is isolated (i.e. there are no flat
directions). As usual, we construct non-Abelian strings and
determine the world sheet theory. This is the contents of
Sec. IV. One of the crucial points of our analysis is deter-
mination of the fermion zero modes. To count these modes
we engineer an appropriate index theorem (Sec. V). This
theorem applies to the two-dimensional Dirac operator
which we encounter in the string analysis. In Sec. we
derive the index � � 4N. We observe four supertransla-
tional zero modes and 4�N � 1� superorientational modes.
In Sec. VI we discuss how the monopoles evolve when we
vary the adjustable parameters of the M model: from the ’t
Hooft-Polyakov limit to the limit of confined monopoles in
a highly quantum regime in N � 1 SQCD. In Sec. VII the
same issue is discussed from the brane perspective.
Section VIII summarizes our findings. Finally, in the ap-
pendix we present explicit expressions for the fermion zero
modes in the case of two flavors.

II. FROM N � 2 SQCD TO N � 1

To begin with, let us briefly review N � 2 supersym-
metric QCD. The gauge symmetry of our benchmark
model is SU�N� � U�1�. It has Nf � N matter hypermul-
tiplets. The field content of this model is as follows. The
N � 2 vector multiplet consists of the U(1) gauge fields
A� and SU�N� gauge field Aa�, (here a � 1; . . . ; N2 � 1),
their Weyl fermion superpartners ��1

�; �2
�� and ��1a

� ; �2a
� �,

and complex scalar fields a and aa, the latter in the adjoint
of SU�N�. The spinorial index of �’s runs over � � 1, 2. In
this sector the global SU�2�R symmetry inherent to the
N � 2 model at hand manifests itself through rotations
�1 $ �2.

The quark multiplets of the SU�N� � U�1� theory con-
sist of the complex scalar fields qkA and ~qAk (squarks) and
the Weyl fermions  kA and ~ Ak, all in the fundamental
representation of the SU�N� gauge group. Here k �
1; . . . ; N is the color index while A is the flavor index, A �
1; . . . ; N. Note that the scalars qkA and �~qkA form a doublet
under the action of the global SU�2�R group.

In addition, we introduce the Fayet-Iliopoulos D term
for the U(1) gauge field which triggers the squark
condensation.

The undeformed N � 2 theory we start from has a
superpotential,

 W N�2 �
���
2
p

Trf12
~QAQ� ~QAaTaQg � Trm ~QQ;

(2.1)

where Aa and A are chiral superfields, the N � 2
superpartners of the gauge bosons of SU�N� and U(1),
respectively, while Ta are generators of SU�N� normalized
by the condition

 TrTaTb � 1
2�

ab:

Moreover, m is the quark mass matrix, a numerical N � N
matrix mB

A (to be elevated to a superfield matrix later on).
We write the quark superfields QkA as N � N matrices in
color and flavor indices. The trace in (2.1) runs over the
appropriate indices.

Now we deform this theory in two ways each of which
breaks N � 2 supersymmetry down to N � 1. First, we
add superpotential mass terms for the adjoint chiral super-
fields from the U(1) and SU�N� sectors, respectively,

 �W �

����
N
2

s
�1

2
A2 �

�2

2
�Aa�2; (2.2)

where �1 and �2 are mass parameters. Clearly, the mass
term (2.2) splits the gauge N � 2 supermultiplets, break-
ing N � 2 supersymmetry down to N � 1. As will be
discussed later in detail, in the large-� limit the adjoint
multiplets decouple and then we recover N � 1 SQCD
with Nf � N flavors. This theory has a Higgs branch (see,
for example, [12]). The presence of quark massless states
in the bulk associated with this Higgs branch obscure
physics of non-Abelian strings in this theory [9]. In par-
ticular, the strings become infinitely thick.

Can one avoid this shortcoming? The answer is yes. To
this end we introduce another N � 2 breaking deforma-
tion. Namely, we uplift the quark mass matrix mB

A to the
superfield status,

 mB
A ! MB

A;

where M represents N2 chiral superfields of the mesonic
type (they are color singlets). With this uplifting we have to
add a kinetic term for MB

A ,

 �SMkin �
Z
d4xd2�d2 ��

2

h
Tr �MM; (2.3)
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where h is a new coupling constant (it supplements the set
of the gauge couplings). At h � 0 the matrix field M
becomes sterile, it is frozen and in essence returns to the
status of a constant numerical matrix as in Ref. [9]. The
theory acquires flat directions (a moduli space). With non-
vanishing h these flat directions are lifted and M is deter-
mined by the minimum of the scalar potential, see below.

The elevation of the quark mass matrix to superfield is a
crucial step which allows us to lift the Higgs branch which
would develop in this theory in the large � limit if M were
a constant matrix.

The bosonic part of our SU�N� � U�1� theory has the
form
 

S �
Z
d4x

�
1

4g2
2

�Fa���2 �
1

4g2
1

�F���2 �
1

g2
2

jD�aaj2

�
1

g2
1

j@�aj2 � Trjr�qj2 � Trjr� �~qj2 �
1

h
j@�M0j2

�
1

h
j@�M

aj2 � V�q; ~q; aa; a;M0;Ma�

�
: (2.4)

Here D� is the covariant derivative in the adjoint repre-
sentation of SU(2), while

 r� � @� �
i
2
A� � iA

a
�T

a: (2.5)

Moreover, the matrix MA
B can be always decomposed as

 MA
B �

1
2�

A
BM

0 � �Ta�ABM
a: (2.6)

We use this decomposition in Eq. (2.4). The coupling
constants g1 and g2 correspond to the U(1) and SU�N�
sectors, respectively. With our conventions the U(1)
charges of the fundamental matter fields are �1=2.

The potential V�qA; ~qA; aa; a;M0;Ma� in the Lagrangian
(2.4) is a sum of various D and F terms,

 

V�qA; ~qA; aa; a;M0;Ma� �
g2

2

2

�
1

g2
2

fabc �abac � Tr �qTaq� Tr~qTa �~q
�

2
�
g2

1

8
�Tr �qq� Tr~q �~q�N��2

�
g2

2

2
j2 Tr~qTaq�

���
2
p
�2a

aj2 �
g2

1

2
jTr~qq�

����
N
p

�1aj
2

�
1

2
Tr
����������a� 2Taaa�q�

1���
2
p q�M0 � 2TaMa�

��������2

�

���������a� 2Taaa� �~q�
1���
2
p �~q�M0 � 2TaMa�

��������2
�
�
h
4
jTr~qqj2 � hjTrqTa~qj2; (2.7)

where fabc stands for the SU�N� structure constants. The
first and second terms here represent D terms, the next two
terms are FA terms, while the term in the curly brackets
represents the squark F terms. Two last terms are F terms
of theM field. In Eq. (2.7) we also introduced the FID term
for the U(1) field, with the FI parameter �. Note that the FI
term does not break N � 2 supersymmetry [2,13]. The
three parameters which do break N � 2 down to N � 1
are �1, �2, and h.

The FI term triggers the spontaneous breaking of the
gauge symmetry. The vacuum expectation values (VEV’s)
of the squark fields can be chosen as

 hqkAi �
���
�

p 1 0 . . .
. . . . . . . . .
. . . 0 1

0
@

1
A; h �~qkAi � 0;

k � 1; . . . ; N; A � 1; . . . ; N;

(2.8)

up to gauge rotations. The VEV’s of the adjoint fields
vanish,

 haai � 0; hai � 0; (2.9)

and so do those of the M fields,

 hMai � 0; hM0i � 0: (2.10)

The color-flavor locked form of the quark VEV’s in
Eq. (2.8) and the absence of VEV’s of the adjoint scalar
aa and the meson scalar Ma in Eqs. (2.9) and (2.10) result
in the fact that, while the theory is fully Higgsed, a diago-
nal SU�N�C�F symmetry survives as a global symmetry.
Namely, the global rotation

 q! UqU�1; aaTa ! UaaTaU�1;

M ! U�1MU;
(2.11)

where U is a matrix from SU�N� is not broken by the
VEV’s (2.8), (2.9), and (2.10). This is a particular case of
the Bardakç�-Halpern mechanism [14]. The presence of
this symmetry leads to the emergence of orientational zero
modes [6] of the ZN strings in the model (2.4).

Note that the vacuum expectation values (2.8), (2.9), and
(2.10) do not depend on the supersymmetry breaking pa-
rameters �1 and �2. This is because our choice of parame-
ters in (2.4) ensures vanishing of the adjoint VEV’s, see
(2.9). In particular, we have the same pattern of symmetry
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breaking all the way up to very large values �1 and �2,
where the adjoint fields decouple.

With N matter hypermultiplets, the SU�N� part of the
gauge group is asymptotically free, implying generation of
a dynamical scale �. In the ultraviolet (UV) we start with a
small g2

2, and let the theory evolve in the infrared. If the
descent to � were uninterrupted, the gauge coupling g2

2
would explode at this scale. Moreover, strong coupling
effects in the SU�N� subsector at the scale � would break
the SU�N� subgroup through the Seiberg-Witten mecha-
nism [1]. Since we want to stay at weak coupling, we
assume that

���
�
p
� �, so that the SU�N� coupling running

is frozen by the squark condensation at a small value,
namely,

 

8�2

Ng2
2

� ln

���
�
p

�
� 	 	 	 � 1: (2.12)

Now let us discuss the elementary excitation spectrum in
the theory (2.4). Since both U(1) and SU�N� gauge groups
are broken by the squark condensation, all gauge bosons
become massive. From (2.4) we get for the U(1) gauge
boson mass (we refer to it as photon)

 mph � g1

��������
N
2
�

s
; (2.13)

while (N2 � 1) gauge bosons of the SU�N� group acquire a
common mass

 mW � g2

���
�

p
: (2.14)

This is typical of the Bardakç�-Halpern mechanism. To get
the masses of the scalar bosons we expand the potential
(2.7) near the vacuum (2.8), (2.9), and (2.10) and diagonal-
ize the corresponding mass matrix. The N2 components of
the 2N2-component2 scalar qkA are eaten by the Higgs
mechanism for U(1) and SU�N� gauge groups. Another
N2 components are split as follows: one component ac-
quires the mass (2.13). It becomes a scalar component of a
massive N � 1 vector U(1) gauge multiplet. The remain-
ing N2 � 1 components acquire masses (2.14) and become
scalar superpartners of the SU�N� gauge boson in the
N � 1 massive gauge supermultiplet.

Moreover, 6N2 real scalar components of the fields ~qAk,
aa, a, Ma, and M0 produce the following states: six states
have masses determined by the roots of the cubic equation
 

�3
i � �

2
i �2�!

2
i � 2	i� � �i�1� 2	i � 	

2
i � 2	i!i�

� 	2
i !

2
i � 0; (2.15)

for i � 1. Namely, these states form degenerate pairs with
the masses

 mU�1� � g1

�������������
N
2
��1

s
: (2.16)

Each root of Eq. (2.15) for i � 1 determines masses of two
degenerate states.

Above we introduced N � 2 supersymmetry breaking
parameters ! and 	 associated with the U(1) and SU�N�
gauge groups, respectively,

 !1 �
g1�1���
�
p ; !2 �

g2�2���
�
p ; (2.17)

and

 	1 �
h

2g2
1

; 	2 �
h

2g2
2

: (2.18)

Now we are left with 6�N2 � 1� states. They acquire
masses

 mSU�N� � g2

��������
��2

p
; (2.19)

where each root of Eq. (2.15) for i � 2 determines masses
of 2�N2 � 1� degenerate states.

When the supersymmetry breaking parameters !i and
	i vanish, two mass eigenvalues (2.16) coincide with the
U(1) gauge boson mass (2.13). The corresponding states
form the bosonic part of the N � 2 long massive U(1)
vector supermultiplet [13]. The one remaining eigenvalue
in (2.16) becomes zero. It corresponds to the massless field
M0 which decouples (becomes sterile) in this limit. With
nonvanishing values of!1 and 	1 this supermultiplet splits
into the massive N � 1 vector multiplet, with mass
(2.13), plus three chiral multiplets with masses given by
Eq. (2.16).

The same happens with the states with masses (2.19). If
!’s and 	’s vanish they combine into the bosonic parts of
(N2 � 1) N � 2 massive vector supermultiplets, with
mass (2.14), plus the massless field Ma. If !’s and 	’s
do not vanish, these multiplets split into (N2 � 1) N � 1
vector multiplets (for the SU�N� group), with mass (2.14),
and 3�N2 � 1� chiral multiplets, with masses (2.19).

III. N � 1 SQCD WITH THE MESONIC M FIELD

Now let us take a closer look at the spectrum obtained
above, assuming the limit of very large N � 2 supersym-
metry breaking parameters !i,

 !i � 1:

In this limit the largest masses mU�1� and mSU�N� become

 m�largest�
U�1� � mU�1�!1 �

����
N
2

s
g2

1�1;

m�largest�
SU�N� � mSU�2�!2 � g2

2�2:

(3.1)

Clearly, in the limit �i ! 1 these are the masses of the2We mean here real components.
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heavy adjoint scalars a and aa. At !i � 1 these fields
leave the physical spectrum; they can be integrated out.

The low-energy bulk theory in this limit contains mas-
sive gauge N � 1 multiplets and chiral multiplets with
two lower masses mU�1� and two lower masses mSU�N�.
Equation (2.15) gives for these masses

 m�1�U�1� �

����������
hN�

4

s �
1�

1

2!1

�����������������������
	1�	1 � 1�

q
� 	 	 	

�
;

m�2�U�1� �

����������
hN�

4

s �
1�

1

2!1

�����������������������
	1�	1 � 1�

q
� 	 	 	

�
;

(3.2)

for the U(1) sector and

 m�1�SU�N� �

������
h�
2

s �
1�

1

2!2

�����������������������
	2�	2 � 1�

q
� 	 	 	

�
;

m�2�SU�N� �

������
h�
2

s �
1�

1

2!2

�����������������������
	2�	2 � 1�

q
� 	 	 	

�
;

(3.3)

for the SU�N� sector.
It is worth emphasizing again that there are no massless

states in the bulk theory. As we have already mentioned, at
h � 0 the theory (2.4) develops a Higgs branch in the
large-� limit (see, for example, [9]). If h � 0, M becomes
a fully dynamical field, and the Higgs branch is lifted, as
follows from Eqs. (3.2) and (3.3).

At large� one can readily integrate out the adjoint fields
Aa and A. Instead of the superpotential terms (2.1) and
(2.2) we get

 W � �
�Tr ~QQ�2

4�1
�
�Tr ~QTaQ�2

�2
� TrM ~QQ: (3.4)

At �1;2 ! 1 the first two terms disappear, we are left with
W � TrM ~QQ, and our model (2.4) reduces to N � 1
SQCD with the extra mesonic M field. The bosonic part of
the action takes the form

 S �
Z
d4x

�
1

4g2
2

�Fa���2 �
1

4g2
1

�F���2 � Trjr�qj2

� Trjr� �~qj2 �
1

h
j@�M0j2 �

1

h
j@�Maj2 �

g2
2

2

��Tr �qTaq� Tr~qTa �~q�2 �
g2

1

8
�Tr �qq� Tr~q �~q�N��2

� TrjqMj2 � Trj �~qMj2 �
h
4
jTr~qqj2 � hjTrqTa~qj2

�
:

(3.5)

The vacuum of this theory is given by Eqs. (2.8) and
(2.10). The mass spectrum of elementary excitations over
this vacuum consists of the N � 1 gauge multiplets for
the U(1) and SU�N� sectors with masses given by
Eqs. (2.13) and (2.14), and the chiral multiplets of the
U(1) and SU�N� sectors with masses given by the leading

terms in Eqs. (3.2) and (3.3). The scale of the theory (3.5) is
determined by the scale of the theory (2.4) in the N � 2
limit by the relation

 �2N
N�1 � �N

2 �N: (3.6)

In order to keep the theory (3.5) at weak coupling we
assume that

 g2

���
�

p
� �N�1: (3.7)

Our N � 1 SQCD with the M field, the M model,
belongs to the class of theories introduced by Seiberg
[15] to give a dual description of conventional N � 1
SQCD with the SU�Nc� gauge group and Nf flavors of
fundamental matter, where

 Nc � Nf � N

(for reviews see Refs. [12,16]). There are significant dis-
tinctions, however.

Let us point out the main differences of the M model
(3.5) from those introduced [15] by Seiberg:

(i) Our theory has the U�N� gauge group rather than
SU�N�;

(ii) Our theory has the FID term instead of a linear inM
superpotential in Seiberg’s models;

(iii) We consider the case Nf � N which would corre-
spond to Seiberg’s Nc � 0. Our theory (3.5) is
asymptotically free while Seiberg’s dual theories
give the most reliable description of the original
N � 1 SQCD in the range Nf < 3=2Nc which
corresponds to Nf > 3N. In this range the theory
(3.5) is not asymptotically free.

In addition, it is worth noting that at Nf > N the vacuum
(2.8) and (2.10) becomes metastable: supersymmetry is
broken [17]. The Nc � Nf � N supersymmetry-
preserving vacua have vanishing VEV’s of the quark fields
and nonvanishing VEVof theM field.3 The latter vacua are
associated with the gluino condensation in pure SU�N�
theory, h��i � 0, arising upon decoupling of Nf flavors
[12]. In the case Nf � N considered here the vacuum (2.8)
and (2.10) preserves supersymmetry. Thus, despite a con-
ceptual similarity between Seiberg’s models and ours,
dynamical details are radically different.

To conclude this section let us mention that if a theory
dual to the one in (3.5) were known our results would imply
a non-Abelian confinement of quarks in the former theory.
We will qualitatively discuss this issue in Sec. VIII.

IV. NON-ABELIAN STRINGS

Non-Abelian strings were shown to emerge at weak
coupling in N � 2 supersymmetric gauge theories [5–
8]. The main feature of the non-Abelian strings is the

3This is correct for the version of the theory with �-parameter
introduced via superpotential.
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presence of orientational zero modes associated with rota-
tions of their color flux in the non-Abelian gauge group.
This feature makes such strings genuinely non-Abelian.

As long as the solution for the non-Abelian string sug-
gested and discussed in [6,7] for N � 2 SQCD does not
depend on the adjoint fields it can be generalized to N �
1 SQCD upon introducing the mass term (2.2) for the
adjoint fields and then taking the limit �1;2 ! 1. This
was done in Ref. [9]. However, as we have already ex-
plained above, N � 1 SQCD has the Higgs branch which
obscures physics of the non-Abelian strings. The string
becomes infinitely thick in the limit �i ! 1 due to the
presence of massless fields in the bulk.

In particular, in [9] it turned out impossible to follow the
fate of the confined monopoles (present in N � 2 SQCD)
all the way down to N � 1 SQCD which one recovers in
the limit �1;2 � 1. Below we will show that this obstacle
does not arise in the model (2.4). The reason is that N � 1
SQCD with the mesonic field M has no massless states in
the bulk in the limit �i !1, as was demonstrated in
Sec. III.

Let us generalize the string solutions found in [6,7] to
the model (2.4). In addition to the conventional Abrikosov-
Nielsen-Olesen (ANO) strings [3] this model supports ZN
strings. These arise due to a nontrivial homotopy group

 �1�SU�N� � U�1�=ZN� � 0: (4.1)

It is easy to see that this nontrivial topology amounts to
winding of just one element of the diagonal matrix (2.8) at
infinity. Such strings can be called elementary; their ten-
sion is 1=N of that of the ANO string. The ANO string can
be viewed as a bound state of N elementary strings.

More concretely, the ZN string solution (a progenitor of
the non-Abelian string) can be written [6] as follows:
 

q �


2�r� 0 . . . 0

. . . . . . . . . . . .

0 . . . 
2�r� 0

0 0 . . . ei�
1�r�

0BBBBB@

1CCCCCA; ~q � 0;

ASU�N�
i �

1

N

1 . . . 0 0

. . . . . . . . . . . .

0 . . . 1 0

0 0 . . . ��N � 1�

0BBBBB@

1CCCCCA
� �@i��
�1� fNA�r��;

AU�1�
i �

I
2
Ai �

I
N
�@i��
1� f�r��;

a � aa � M0 � Ma � 0;

(4.2)

where i � 1, 2 labels coordinates in the plane orthogonal to
the string axis, r and � are the polar coordinates in this
plane, and I is the unit N � N matrix. The profile functions

1�r� and 
2�r� determine the profiles of the scalar fields,
while fNA�r� and f�r� determine the SU�N� and U(1) fields

of the string solution, respectively. These functions satisfy
the following rather obvious boundary conditions:

 
1�0� � 0; fNA�0� � 1; f�0� � 1; (4.3)

at r � 0, and
 


1�1� �
���
�

p
; 
2�1� �

���
�

p
;

fNA�1� � 0; f�1� � 0
(4.4)

at r � 1.
As long as our ansatz (4.2) does not involve the fields ~q,

a, and M the classical string solution does not depend on
N � 2 SUSY breaking parameters. The classical solution
is the same as that found [6] in the N � 2 SQCD limit. In
particular, the profile functions satisfy the following first-
order equations:
 

r
d
dr

1�r��

1

N
�f�r�� �N� 1�fNA�r��
1�r� � 0;

r
d
dr

2�r��

1

N
�f�r�� fNA�r��
2�r� � 0;

�
1

r
d
dr
f�r��

g2
1N
4

�
1�r��

2��N� 1��
2�r��
2�N�� � 0;

�
1

r
d
dr
fNA�r��

g2
2

2

�
1�r��

2��
2�r��
2� � 0:

(4.5)

Numerical solutions of the Bogomol’nyi equations (4.5)
for N � 2 (Z2 strings) were found in Ref. [6].

The string (4.8) is 1=2-BPS saturated. It automatically
preserves two supercharges out of four present in the bulk
theory. The tension of this elementary string is

 T1 � 2��; (4.6)

to be compared with the ANO string tension

 TANO � 2N�� (4.7)

in our normalization.
The elementary strings are bona fide non-Abelian. This

means that, besides trivial translational moduli, they ac-
quire moduli corresponding to spontaneous breaking of a
non-Abelian symmetry. Indeed, while the ‘‘flat’’ vacuum
(2.8), (2.9), and (2.10) is SU�N�C�F symmetric, the
solution (4.2) breaks this symmetry down to U�1� �
SU�N � 1�.

To obtain the non-Abelian string solution from the ZN
string (4.2) we apply the diagonal color-flavor rotation
(2.11) which preserves the vacuum. To this end it is con-
venient to pass to the singular gauge where the scalar fields
have no winding at infinity, while the string flux comes
from the vicinity of the origin. In this gauge we have (for
details see the review paper [18])
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q �
1

N

�N � 1�
2 �
1� � �
1 �
2�

�
n 	 n� �

1

N

�
;

ASU�N�
i �

�
n 	 n� �

1

N

�
"ij
xi
r2 fNA�r�;

AU�1�
i �

1

N
"ij
xi
r2 f�r�;

~q � 0;

a � aa � M0 � Ma � 0; (4.8)

where we parametrize the matrices U of SU�N�C�F rota-
tions as follows:

 

1

N

8>>><
>>>:U

1 . . . 0 0
. . . . . . . . . . . .
0 . . . 1 0
0 0 . . . ��N � 1�

0BBB@
1CCCAU�1

9>>>=
>>>;
l

p

� �nln�p �
1

N
�lp: (4.9)

Here nl is a complex vector in the fundamental represen-
tation of SU�N�, and

 n�l n
l � 1; (4.10)

(l; p � 1; . . . ; N are color indices). In Eq. (4.8) for brevity
we suppress all SU�N� indices. At n � f0; . . . ; 1g we get
the field configuration quoted in Eq. (4.2).

The vector nl parametrizes orientational zero modes of
the string associated with flux rotations in SU�N�. The
presence of these modes makes the string genuinely non-
Abelian.

To derive an effective world sheet theory for the orienta-
tional collective coordinates nl of the non-Abelian string
we follow Refs. [6,7,19], see also the review [18]. From the
string solution (4.2) it is quite clear that not each element of
the matrixU will give rise to a modulus. The SU�N � 1� �
U�1� subgroup remains unbroken by the string solution
under consideration; therefore the moduli space is

 

SU�N�
SU�N � 1� � U�1�

 CP�N � 1�: (4.11)

Assume that the orientational collective coordinates nl are
slowly varying functions of the string world sheet coordi-
nates xk; k � 0, 3. Then the moduli nl become fields of a
(1� 1)-dimensional sigma model on the world sheet.
Since the vector nl parametrizes the string zero modes,
there is no potential term in this sigma model.

To obtain the kinetic term we substitute our solution,
which depends on the moduli nl, in the action (2.4), assum-
ing that the fields acquire a dependence on the coordinates
xk via nl�xk�. Then we arrive at the CP�N � 1� sigma
model (for details see the review paper [18]),

 S�1�1�
CP�N�1� � 2�

Z
dtdzf�@kn�@kn� � �n�@kn�2g; (4.12)

where the coupling constant � is given by a normalizing
integral defined in terms of the string profile functions.
Using the first-order equations for the string profile func-
tions (4.5) one can see that this integral reduces to a total
derivative and is given by the flux of the string determined
by fNA�0� � 1, namely

 � �
2�

g2
2

: (4.13)

The two-dimensional coupling constant is determined by
the four-dimensional non-Abelian coupling.

The relation between the four-dimensional and two-
dimensional coupling constants (4.13) is obtained at the
classical level. In quantum theory both couplings run. So
we have to specify a scale at which the relation (4.13) takes
place. The two-dimensional CP�N � 1� model is an effec-
tive low-energy theory good for the description of internal
string dynamics at low energies, much lower than the
inverse thickness of the string which, in turn, is given by
g2

���
�
p

. Thus, g2

���
�
p

plays the role of a physical ultraviolet
cutoff in (4.12). This is the scale at which Eq. (4.13) holds.
Below this scale, the coupling � runs according to its two-
dimensional renormalization-group flow.

The sigma model (4.12) is asymptotically free [20]; at
large distances (low energies) it gets into the strong cou-
pling regime. The running coupling constant as a function
of the energy scale E at one loop is given by

 4�� � N ln
�

E
�CP�N�1�

�
� 	 	 	 ; (4.14)

where �CP�N�1� is the dynamical scale of the CP�N � 1�
model. As was mentioned above, the UV cutoff of the
sigma model at hand is determined by g2

���
�
p

. Hence,

 �N
CP�N�1� � gN2 �

N=2e��8�
2=g2

2�: (4.15)

Note that in the bulk theory, due to the VEV’s of the squark
fields, the coupling constant is frozen at g2

���
�
p

. There are
no logarithms in the bulk theory below this scale. Below
g2

���
�
p

the logarithms of the world sheet theory take over.
In the limit of large �2 we are interested in here,

 �2 � g2

���
�

p
;

the coupling constant g2 of the bulk theory is determined
by the scale �N�1 of the N � 1 SQCD (3.5) with the M
field included, as shown in Eq. (3.6). In this limit Eq. (4.15)
gives

 �CP�N�1� �
�2

N�1

g2

���
�
p ; (4.16)

where we take into account that the first coefficient of the�
function in N � 1 SQCD is 2N.

To conclude this section let us note a somewhat related
development: non-BPS non-Abelian strings were recently
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considered in metastable vacua of a dual description of
N � 1 SQCD at Nf > N in Ref. [21].

V. FERMIONIC SECTOR OF THE WORLD SHEET
THEORY

In this section we discuss the fermionic sector of the
low-energy effective theory on the world sheet of the non-
Abelian string in N � 1 SQCD with the M field, as well
as supersymmetry of the world sheet theory. First we note
that our string is 1=2 BPS saturated. Therefore in the N �
2 limit (when N � 2 breaking parameters �i and h
vanish) four supercharges out of eight present in the bulk
theory are automatically preserved on the string world
sheet. They become supercharges in the CP�N � 1� model
(4.12).

For simplicity in this section we will discuss the case
N � 2 limiting ourselves to the CP�1� model.
Generalization to arbitrary N is straightforward. The action
of the (2, 2) supersymmetric CP�1� model is

 S�1�1�
CP�1� � �

Z
dtdzf12�@kS

a�2 � 1
2�

a
1i�@0 � i@3��a1

� 1
2�

a
2i�@0 � i@3��a2 �

1
2��

a
1�

a
2�

2g; (5.1)

where we used the fact that CP�1� is equivalent to the O�3�
sigma model defined in terms of a unit real vector Sa,

 Sa � n�l 
anl; �Sa�2 � 1: (5.2)

This model has two real bosonic degrees of freedom. Two
real fermion fields �a1 and �a2 are subject to constrains

 �a1S
a � 0; �a2S

a � 0: (5.3)

Altogether we have four real fermion fields in the model
(5.1).

Now we break N � 2 supersymmetry of the bulk
model by switching on parameters �i and h. The 1=2
‘‘BPS-ness’’ of the string solution requires only two super-
charges. However, as we will show below, the number of
the fermion zero modes on the string does not change. This
number is fixed by the index theorem. Thus, the number of
(classically) massless fermion fields in the world sheet
CP�N � 1� model does not change. It was shown in [9]

that the (2, 2) supersymmetric sigma model with the
CP�N � 1� target space does not admit (0, 2) supersym-
metric deformations. Therefore, it was concluded in [9]
that the world sheet theory has ‘‘accidental’’ SUSY en-
hancement. A similar phenomenon was found earlier in
[22] for domain walls.

On the other hand in the recent publication [23] it was
suggested that superorientational zero modes can mix with
supertranslational modes. It was shown that the sigma
model with the C� CP�N � 1� target space does admit
(0, 2) supersymmetric deformations. It is not clear at the
moment if this mixing really occurs in the effective theory
on the string. If it occurs then the emerging (0, 2) super-
symmetric C� CP�N � 1� model has a �-deformed four-
fermion interaction

 

S�1�1�
CP�1� � �

Z
dtdz

�
1

2
�@kS

a�2 �
1

2
�a1i�@0 � i@3��

a
1

�
1

2
�a2i�@0 � i@3��a2

�
1

2

1

1� cj�2j
2=�g2

2��
��a1�

a
2�

2

�
; (5.4)

where c is an unknown coefficient. Also the first constraint
in (5.3) is replaced with �a1S

a � c=2��2�1 � ��2
��1�, where

�1 is the right-moving two-dimensional fermion field asso-
ciated with the supertranslational zero modes. If this con-
jecture [23] is correct the four-fermion term disappears in
the large � limit. To find out which scenario is correct one
has to calculate the coefficient in front of the four-fermion
term in (5.4). We left this for future work.

In any case, the world sheet supersymmetric model has
N vacua which are interpreted as N elementary strings of
the bulk theory. This number is protected by Witten’s index
and survives N � 2 breaking deformations. We will use
this result in the next section. The kinks which interpolate
between these vacua are confined monopoles. Below we
will show that the occurrence of four (4�N � 1� in the
general case) superorientational fermion zero modes on
the non-Abelian strings follows from an index theorem.
In the appendix we present explicit solutions for these
modes for the case N � 2.

A. Index theorem

The fermionic part of the action of the model (3.5) is

 

Sferm �
Z
d4x

�
i

g2
2

��a �6D�a �
i

g2
1

�� �6@�� Tr
 � i �6r � � Tr
 ~ i 6r �~ � �
2i
h

Tr
 �� �6@ ��

�
i���
2
p Tr
 �q�� � � � ~ �� �~q� � � ���q� ~q� �� �~ �� �

i���
2
p Tr
 �q2Ta��a � � � ~ �a�2Ta �~q� � � ��a�2Taq� ~q2Ta� ��a �~ ��

� iTr
~q� �� � � ~ q�� � � � �~q ��� � �q� �~ ���� � iTr� ~  M� � �~ �M�
�
; (5.5)
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where the matrix color-flavor notation is used for matter
fermions � ��kA and � ~ ��Ak and the traces are performed
over the color-flavor indices. Contraction of the spinor
indices is assumed inside all parentheses, for instance,
�� � � �� �. Moreover, � denotes the fermion compo-
nent of the matrix M superfield,

 �AB �
1
2�

A
B�

0 � �Ta�AB�
a: (5.6)

In order to find the number of the fermion zero modes in
the background of the non-Abelian string solution (4.8) we
have to carry out the following program. Since our string
solution depends only on two coordinates xi (i � 1, 2), we
can reduce our theory to two dimensions. Given the theory
defined on the �x1; x2� plane we have to identify an axial
current and derive the anomalous divergence for this cur-
rent. In two dimensions the axial current anomaly takes the
form

 @iji5  F
�; (5.7)

where F� � �1=2�"ijFij is the dual U(1) field strength in
two dimensions.

Then the integral over the left-hand side over the �x1; x2�
plane gives us the index of the 2D Dirac operator �
coinciding with the number of the 2D left-handed minus
2D right-handed zero modes of this operator in the given
background field. The integral over the right-hand side is
proportional to the string flux. This will fix the number of
the chiral fermion zero modes4 of the string with the given
flux. Note that the reduction of the theory to two dimen-
sions is an important step in this program. The anomaly
relation in four dimensions involves the instanton charge
F�F rather than the string flux and is therefore useless for
our purposes.

The reduction of N � 1 gauge theories to two dimen-
sions is discussed in detail in [24] and here we will be brief.
Following [24] we use the rules

  � ! � �;  ��; ~ � ! � ~ �; ~ ��;

�� ! ���; ���; �� ! ���; ���:
(5.8)

With these rules the Yukawa interactions in (5.5) take the
form
 

LYukawa � i
���
2
p

Tr
� �q��̂� � � �̂� ��

� � ~ ��̂� � ~ ��̂�� �~q� c:c:�

� iTr
~q� ��� �  ����

� � ~ �q�� � ~ �q��� � c:c:�; (5.9)

where the color matrix �̂ � �1=2��� Ta�a.
It is easy to see that LYukawa is classically invariant under

the chiral U�1�R transformations with the U�1�R charges
presented in Table I. The axial current associated with this

U�1�R is not anomalous [24]. This is easy to understand. In
two dimensions the chiral anomaly comes from the dia-
gram shown in Fig. 1. The U�1�R chiral charges of the fields
 and ~ are the same while their electric charges are
opposite. This leads to cancellation of their contributions
to this diagram.

It turns out that for the particular string solution we are
interested in the classical two-dimensional action has more
symmetries than generically, for a general background. To
see this, please note that the field ~q vanishes on the string
solution (4.8). Then the Yukawa interactions (5.9) reduce to
 

i
���
2
p

Tr
� �q��̂� � � �̂� ��� � iTr
 ~ �q�� � ~ �q���

� c:c: (5.10)

The fermion  interacts only with �’s while the fermion ~ 
interacts only with � . Note also that the interaction in the
last line in (5.5) is absent because M � 0 on the string
solution. This property allows us to introduce another
chiral symmetry in the theory, the one which is relevant
for the string solution. We will refer to this extra chiral
symmetry as U�1� ~R.

The U�1� ~R charges of our set of fields are also shown in
Table I. Note that  and ~ have the opposite charges under
this symmetry. The corresponding current then has the
form

 

~j i5 �
� � � � � � � �

�~ � ~ � �
�~ � ~ � � 	 	 	

�i � � � � i � � � � i
�~ � ~ � � i

�~ � ~ � � 	 	 	

 !
;

(5.11)

where the ellipses stand for terms associated with the � and
� fields which do not contribute to the anomaly relation.

Clearly, in quantum theory this symmetry is anomalous.
Now the contributions of the fermions  and ~ double in
the diagram in Fig. 1 rather than cancel. It is not difficult to
find the coefficient in the anomaly formula

TABLE I. The U�1�R and U�1� ~R charges of fields of the two-
dimensional reduction of the theory.

Field  �  � ~ � ~ � �� �� �� �� q ~q

U�1�R charge �1 1 �1 1 �1 1 �1 1 0 0
U�1� ~R charge �1 1 1 �1 �1 1 1 �1 0 0

 

FIG. 1. Diagram for the chiral anomaly in two dimensions.
The solid lines denote fermions  , ~ , the dashed line denotes the
photon, while the cross denotes insertion of the axial current.4Chirality is understood as the two-dimensional chirality.
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 @i~ji5 �
N2

�
F�; (5.12)

which can be normalized, e.g. from [25]. The factor N2

appears due to the presence of 2N2 fermions  kA and ~ Ak.
Now, taking into account that the flux of the ZN string

under consideration is

 

Z
d2xF� �

4�
N
; (5.13)

(see the expression for the U(1) gauge field for the solution
(4.2) or (4.8)) we conclude that the total number of the
fermion zero modes in the string background

 � � 4N: (5.14)

This number can be decomposed as

 � � 4N � 4�N � 1� � 4; (5.15)

where 4 is the number of the supertranslational modes
while 4�N � 1� is the number of the superorientational
modes. Four supertranslational modes are associated with
four fermion fields in the two-dimensional effective theory
on the string world sheet, which are superpartners of the
bosonic translational moduli x0 and y0. Furthermore,
4�N � 1� corresponds to 4�N � 1� fermion fields in the
N � 2CP�N � 1�model on the string world sheet (4.12).
CP�N � 1� describes dynamics of the orientational moduli
of the string. For N � 2 the latter number (4�N � 1� � 4)
counts four fermion fields �a1 , �a2 in the model (5.1) or
(5.4).

We explicitly determine four superorientational fermion
zero modes for the case N � 2 in the appendix. Note that
the fermion zero modes of the string in N � 1 SQCD
with the M field are perfectly normalizable provided we
keep the coupling constant h nonvanishing. Instead, in
conventional N � 1 SQCD without the M field the sec-
ond pair of the fermion zero modes (proportional to �a1)
become non-normalizable [9]. This is related to the pres-
ence of the Higgs branch and massless bulk states in
conventional N � 1 SQCD. As was already mentioned
more than once, in the M model, Eq. (3.5), we have no
massless states in the bulk.

Note that in both translational and orientational sectors
the number of the fermion zero modes is twice larger than
the one dictated by 1=2 ‘‘BPS-ness.’’

VI. EVOLUTION OF THE MONOPOLES

Since the supersymmetric CP�N � 1�model is an effec-
tive low-energy theory describing world sheet physics of
the non-Abelian string, all consequences of this model
ensue, in particular, N degenerate vacua and kinks which
interpolate between them—the same kinks that we had
discovered in N � 2 SQCD [7] and interpreted as (con-
fined) non-Abelian monopoles, the descendants of the
’t Hooft-Polyakov monopole [26].

Let us briefly review the reason for this interpretation
[7,8,27] and discuss what happens with these monopoles as
we deform our theory and eventually end up with the M
model. It is convenient to split this deformation into several
distinct stages. We will describe what happens to the
monopoles as one passes from one stage to another.

A qualitative evolution of the monopoles under consid-
eration as a function of the relevant parameters is presented
in Fig. 2.

(i) We start from N � 2 SQCD turning off the N � 2
breaking parameters h and �’s as well as the FI
parameter in the theory (2.4), i.e. we start from the
Coulomb branch of the theory,

 �1 � �2 � 0; h � 0; � � 0; M � 0:

(6.1)

As was explained in Sec. II, the field M is frozen in
this limit and can take arbitrary values (the notorious
flat direction). The matrix MA

B plays the role of fixed
mass parameter matrix for the quark fields. First we
consider the diagonal matrix M, with distinct diago-
nal entries,

 MA
B � diagfM1; . . . ;MNg: (6.2)

Shifting the field a one can always make
P
AMA � 0

in the limit�1 � 0, thereforeM0 � 0. If allMA’s are
different the gauge group SU�N� is broken down to
U�1��N�1� by a VEV of the SU�N� adjoint scalar

 hakl i � �
1��
2
p �klMl: (6.3)

Thus, there are ’t Hooft-Polyakov monopoles em-
bedded in the broken gauge SU�N�. Classically, on
the Coulomb branch the masses of (N � 1) elemen-
tary monopoles are proportional to

 j�MA �MA�1�j=g
2
2:

 

Λ CP(1)

Λ−1

CP(1)

∆ m
−1 ξ −1/2

ξ =0

∆ m =0

ξ =0

∆ m >> ξ 1/2

The ’t Hooft−Polyakov
monopole

Almost free monopole

B

ξ −1/2

< << ∆ m < ξ1/2

Confined monopole,
quasiclassical regime

∆ m 0

Confined monopole,
highly quantum regime

FIG. 2 (color online). Various regimes for the monopoles and
flux tubes in the simplest case of two flavors.
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This is shown in the upper left corner of Fig. 2 for the
case

 N � 2; �m � M1 �M2:

In the limit �MA �MA�1� ! 0 the monopoles tend
to become massless, formally, in the classical ap-
proximation. Simultaneously their size becomes in-
finite [28]. The mass and size are stabilized by
confinement effects which are highly quantum. The
confinement of monopoles occurs in the Higgs
phase, at � � 0.

(ii) Now we introduce the FI parameter �which triggers
the squark condensation. The theory is in the Higgs
phase. We still keep N � 2 breaking parameters h
and �’s vanishing,
 

�1 � �2 � 0; h � 0;

� � 0; M � 0:
(6.4)

If we allow � to be nonvanishing but small,

 jMAj �
���
�

p
; (6.5)

then the effect which comes into play first is the
spontaneous breaking of the gauge SU�N� by the
condensation of the adjoint scalars. The next gauge
symmetry breaking, due to � � 0, which leads to
complete Higgsing of the model and the string for-
mation (confinement of monopoles) is much
weaker. Thus, we deal here with the formation of
‘‘almost’’ ’t Hooft-Polyakov monopoles, with a
typical size j�MA �MA�1�j

�1: Only at much
larger distances,��1=2, the chromoelectric charge
condensation enters the game, and forces the mag-
netic flux, rather than spreading evenly à la
Coulomb, to form flux tubes (the upper right corner
of Fig. 2).
Let us verify that the confined monopole is a junc-
tion of two strings. AtMA � 0 the global SU�N�C�F
group is broken by condensation of the adjoint
scalars (6.3), and non-Abelian strings become
Abelian ZN strings. Their orientational moduli
space is lifted [7,8]. Consider the junction of two
ZN strings (4.8), namely the Ath string with

 nl � �lA (6.6)

and the ‘‘neighboring’’ (A� 1)th string with

 nl � �lA�1; (6.7)

(cf. solution (4.2) which is written for A� 1 � N).
The flux of the junction is given by the difference of
the fluxes of these two strings. Using (4.8) we get
that the flux of the junction is

 4�� diag1
2f. . . 0; 1;�1; 0; . . .g (6.8)

with the nonvanishing entries located at the posi-

tions A and (A� 1). These are exactly the fluxes of
N � 1 distinct ’t Hooft-Polyakov monopoles occur-
ring in the SU�N� gauge theory provided that SU�N�
is spontaneously broken down to U�1�N�1. We
see that in the quasiclassical limit of large jMAj
the Abelian monopoles and the junctions of
the Abelian ZN strings are in one-to-one
correspondence.
At large MA the monopoles, albeit confined, are
weakly confined. Now, if we further reduce jMAj,

 �CP�N�1� � jMAj �
���
�

p
; (6.9)

the size of the monopole j�MA �MA�1�j
�1 be-

comes larger than the transverse size of the attached
strings. The monopole gets squeezed in earnest by
the strings—it becomes a bona fide confined mono-
pole (the lower left corner of Fig. 2). At nonzeroMA
the effective CP�N � 1� model on the string world
sheet becomes massive with the potential deter-
mined by so-called twisted-mass terms [7,8,27].
Two ZN strings correspond to two neighboring va-
cua of the CP�N � 1� model. The monopole (aka
the string junction of two ZN strings) is interpreted
as a kink interpolating between these two vacua.
In [7] the first-order equations for the 1=4 BPS
string junction of two Z2 strings were explicitly
solved in the case N � 2, and the solution shown
to correspond to the kink solution of the two-
dimensional CP�1� model. Moreover, it was shown
that the mass of the monopole matches the mass of
the CP�1�-model kink both in the quasiclassical
(�m� �CP�1�) and quantum (�m� �CP�1�)
limits.

(iii) Now let us switch off the mass differences MA still
keeping the N � 2 breaking parameters vanish-
ing,
 

�1 � �2 � 0; h � 0;

� � 0; M � 0:
(6.10)

The values of the twisted mass in the CP�N � 1�
model equal MA while the size of the twisted-mass
sigma-model kink/confined monopole is of the or-
der of j�MA �MA�1�j

�1.
As we further diminish MA approaching �CP�N�1�

and then getting below �CP�N�1�, the size of the
monopole grows, and, classically, it would explode.
This is where quantum effects in the world sheet
theory take over. It is natural to refer to this domain
of parameters as the ‘‘regime of highly quantum
dynamics.’’ While the thickness of the string (in the
transverse direction) is��1=2, the z-direction size
of the kink representing the confined monopole
in the highly quantum regime is much larger,
��1

CP�N�1�, see the lower right corner in Fig. 2.
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In this regime the confined monopoles become
truly non-Abelian. They no longer carry average
magnetic flux since

 hnli � 0; (6.11)

in the strong coupling limit of the CP�N � 1�
model [29]. The kink/monopole belongs to the
fundamental representation of the SU�N�C�F group
[29,30].
Let us stress that in the limit MA � 0 the global
group SU�N�C�F is restored in the bulk and both
strings and confined monopoles become non-
Abelian. One might argue that this restoration
could happen only at the classical level. One could
suspect that in quantum theory a ‘‘dynamical
Abelization’’ (i.e. a cascade breaking of the gauge
symmetry U�N� ! U�1�N ! descrete group)
might occur. This could have happened if the ad-
joint VEV’s that are classically vanished at M � 0
(see (2.9)) could have developed dynamically in
quantum theory. At MA � 0 the global SU�N�C�F
group is explicitly broken down to U�1�N�1 by
quark masses. At MA � 0 this group is classically
restored. If it could still be dynamically broken this
would mean a spontaneous symmetry breaking.
Let us show that this does not happen in the theory
at hand. First of all, if a global symmetry is not
spontaneously broken at the tree level then it cannot
be broken by quantum effects at week coupling in
‘‘isolated’’ vacua. Second, if the global group
SU�N�C�F were broken spontaneously at MA � 0
this would ensure the presence of massless
Goldstone bosons. However, we know that there
are no massless states in the spectrum of the bulk
theory, see Secs. II and III.
Finally, the breaking of SU�N�C�F in the MA � 0
limit would mean that the twisted masses of the
world sheet CP�N � 1� model would not be given
by MA; instead they would be shifted, m�tw�A �

Ma � cA�CP�N�1�, where cA are some coefficients.
In [7,8] it was shown that the BPS spectrum of the
CP�N � 1� model on the string should coincide
with the BPS spectrum of the four-dimensional
bulk theory on the Coulomb branch because the
central charges which determine masses of the BPS
states cannot depend on the nonholomorphic pa-
rameter �. The BPS spectrum of the CP�N � 1�

model is determined by m�tw�A while the BPS spec-
trum of the bulk theory on the Coulomb branch is
determined by MA. In [31] it was shown that the
BPS spectrum of both theories coincide at m�tw�A �
MA. Thus, we conclude that cA � 0 and the twisted
masses go to zero in the MA � 0 limit. Again we
conclude that the global SU�N�C�F group is not
broken in the bulk and both strings and confined

monopoles become non-Abelian at MA � 0.
(iv) Thus, at zero MA we still have confined ‘‘mono-

poles’’ (interpreted as kinks) stabilized by quantum
effects in the world sheet CP�N � 1� model. Now
we can finally switch on the N � 2 breaking
parameters �i and h,

 �i � 0; h � 0; � � 0; M � 0:

(6.12)

Note that the last equality here is automatically
satisfied in the vacuum, see Eq. (2.10).
As we discussed in Secs. IV and V the effective
world sheet description of the non-Abelian string is
still given by the supersymmetric CP�N � 1�
model. This model obviously still has N vacua
which should be interpreted as N elementary non-
Abelian strings in the quantum regime, and kinks
can interpolate between these vacua. These kinks
should still be interpreted as non-Abelian confined
monopoles/string junctions.
Note that although the adjoint fields are still present
in the theory (2.4) their VEV’s vanish (see (2.9))
and the monopoles cannot be seen in the semiclas-
sical approximation. They are seen as the CP�N �
1� model kinks. Their mass and inverse size is
determined by �CP�N�1� which in the limit of large
�i is given by Eq. (4.16).

(v) Now, at the last stage, we take the limit of large
masses of the adjoint fields in order to eliminate
them from the physical spectrum altogether,

 �i ! 1; h � 0; � � 0; M � 0:

(6.13)

The theory flows to N � 1 SQCD extended by the
M field.
In this limit we get a remarkable result: although the
adjoint fields are eliminated from our theory and the
monopoles cannot be seen in any semiclassical de-
scription, our analysis shows that confined non-
Abelian monopoles still exist in the theory (3.5).
They are seen as CP�N � 1�-model kinks in the
effective world sheet theory on the non-Abelian
string.

VII. A BRANE PERSPECTIVE

Let us elucidate how some important features of the
consideration above are seen in the brane picture. To this
end we will rely on Type IIA string approach to our M
model. Consider the brane picture for N � 2 and N � 1
SQCD (see Ref. [32] for a review). We will limit ourselves
to the special case of equal numbers of colors and flavors
relevant to the present work.
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The N � 2 theory involves N D4 branes extended in
the directions of the (0, 1, 2, 3, 6) coordinates, two NS5
branes with coordinates along (0, 1, 2, 3, 4, 5), localized at
x6 � 0 and x6 � 1=g2 and Nf � N D6 branes with the
world volume along (0, 1, 2, 3, 7, 8, 9). The D4 branes are
stretched between NS5 branes along x6, while the coordi-
nates of D6 branes in x6 are arbitrary. The NS5 branes can
be split in the x7 direction which corresponds to the in-
troduction of the Fayet-Iliopoulos term in the U(1) factor
of U�N�, namely,

 �x7 � �:

The Higgs branch in this theory occurs when the D6
branes touch the D4 branes. After this, the D4 branes can
split in pieces which can be moved in the (7, 8, 9) direc-
tions. The coordinates of these pieces in the (7, 8, 9)
directions, along with the Wilson line of A6, yield coor-
dinates on the Higgs branch of the moduli space.
Fluctuations of the ends of the D4 branes in the (4, 5)
plane provide the coordinates on the Coulomb branch of
the moduli space.

To break N � 2 SUSY down to N � 1 we rotate one
of the NS5 branes. The angle of rotation corresponds to the
mass of the adjoint scalar in the superpotential (2.2). The
fact that this superpotential does not vanish removes the
Coulomb branch of the moduli space. The positions of the
D4 branes in the (4, 5) plane are now fixed.

Now, let us switch on the meson fieldM. It turns out that
it emerges as a particular limiting brane configuration in
the setup described above, without any additional branes.
Consider the situation when the x6 coordinates of all D6
branes are the same. First, in this limit the open strings
connecting the pairs of the D6 branes yield a massless field
which is in the adjoint representation with respect to the
flavor group U�N�. In the field-theory language this is
nothing but our M field. Taking into account the standard
three-string vertex we immediately derive the superpoten-
tial WM � TrM ~QQ. On the other hand, since all D6
branes have the same x6 coordinate, it is impossible to
split the pieces of the D4 branes—such a splitting would
require different values of x6 for the pair of the D6 branes.
Thus, the Higgs branch disappears. We see that in the brane
language the introduction of the M field is in one-to-one
correspondence with the disappearance of the Higgs
branch.

Consider now the evolution of the monopoles discussed
in Sec. VI within the framework of the brane picture. In the
N � 2 theory in the regime (6.1) the monopole is repre-
sented by a D2 brane stretched between two NS5 branes in
the x6 direction and two D4 branes located at x4A � MA
and x4�A�1� � M�A�1�, which yields the correct monopole
mass

 

j�MA �MA�1�j

g2
2

:

Switching on the Fayet-Iliopoulos parameter � in the
regime (6.4) corresponds to a displacement of one of the
NS5 branes in the x7 direction. Since the D4 branes split in
two pieces at the common x6 coordinate where the D6
branes are located, and each piece is attached to the NS5
brane, a squark condensate develops. It is proportional to���
�
p

. This regime supports quasiclassical non-Abelian
strings which have a transparent geometrical interpretation
[5]. The non-Abelian strings are identified with the D2
brane parallel to the D6 branes stretched between two
NS5 branes along the x7 coordinate. Geometrically, the
string tension equals �x7, in full agreement with the field-
theory result.

The D2 brane representing the monopole in the Higgs
phase is located as follows. It extends along two coordi-
nates, x6 and x4. Along the x6 coordinate the D2 brane is
stretched between the common position of the D6 branes
and the NS5 brane. In the x4 direction it is stretched
between two D4 branes.

From this picture one immediately recognizes the mono-
pole to be a junction of two non-Abelian strings since it is
stretched between two different non-Abelian strings in the
x4 direction. If one switches off the Fayet-Iliopoulos term
then the monopole in the Higgs phase geometrically
smoothly transforms into the ’t Hooft-Polyakov monopole.

This picture implies that in the semiclassical regime of
large MA the monopole mass is the same as the mass of the
’t Hooft-Polyakov monopole. With MA decreasing we
eventually find ourselves in the purely quantum regime
described by lifting type IIA string to M theory and, hence,
lifting the D2 brane to M2 brane. In M theory the monopole
in the Higgs phase can be easily described by the M2 brane
wrapping the appropriate circle on the Riemann surface,
using its identification with the kink in the CP�N � 1�
model [31].

Finally in the regime (6.12) we rotate one of the NS5
branes which results in vanishing vacuum expectation
values of the adjoint scalars. However, the M2 brane
representing the non-Abelian string is still clearly identi-
fied. The monopoles are the M2 branes wrapped around the
Riemann surface responsible for this regime upon rotation
of the branes.

Let us emphasize that the monopoles in all regimes are
represented by the M2 branes, and their evolution from the
Coulomb branch to the Higgs one corresponds just to
different placement of one and the same brane in a certain
brane background.

Note that the brane picture suggests the possibility of a
more general situation, when only k of the D6 branes have
the same x6 coordinates. Then, the massless meson field M
belongs to the U�k� subgroup of the flavor group. In
particular, one can consider the case Nf > N, introduce a
meson field of some rank, and perform the standard
Seiberg duality transformation by exchanging two NS5
branes.
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VIII. DISCUSSION AND CONCLUSIONS

Let us summarize our findings. Deformation of N � 2
SQCD leads us to the M model, N � 1 SQCD supple-
mented by the M field, see (3.5). We observe confined non-
Abelian monopoles in this model which has no monopoles
whatsoever in the semiclassical limit. Why are we sure that
the objects we observe are ‘‘non-Abelian monopoles?’’ We
know this because we can start from the N � 2 theory on
the Coulomb branch where the standard ’t Hooft-Polyakov
monopoles are abundant, and trace their evolution stage by
stage, as one varies the adjustable parameters to eventually
arrive at N � 1 SQCD.

This is the main result of the present paper. As was
mentioned above the confined monopoles are in the highly
quantum regime so they do not carry average magnetic flux
(see Eq. (6.11)). They are genuinely non-Abelian.
Moreover, they acquire global flavor quantum numbers.
In fact, they belong to the fundamental representation of
the global SU�N�C�F group (see Refs. [29,30] where this
phenomenon is discussed in the context of the CP�N �
1�-model kinks).

In particular, the monopole-antimonopole ‘‘meson’’
formed by the string configuration shown in Fig. 3 belongs
to the adjoint representation of the global ‘‘flavor’’ group
SU�N�C�F, in accordance with our expectations. Similar
there are ‘‘baryons’’ built of N monopoles connected
by strings to each other to form a close necklace
configuration.

We believe that the emergence of these non-Abelian
monopoles can shed light on mysterious objects introduced
by Seiberg: ‘‘dual magnetic’’ quarks which play an impor-
tant role in the description of N � 1 SQCD at strong
coupling [12,15].

It is curious to note that monopolelike configurations
apparently occur in lattice QCD. In particular, in the recent
publications [33] the occurrence of the monopolelike con-
figurations is traced back to the color-octet operator ~qTaq.
We would like to stress that the non-Abelian monopoles
observed here are totally different. In the limit �! 1 all
traces of ‘‘Abelization’’ (i.e. cascade breaking of the gauge
symmetry U�N� ! U�1�N ! descrete subgroup) typical
of the N � 2 limit are erased. In fact, it is clear from
(2.8) that h~qTaqi � 0 in the M-model vacuum and cannot
be used to construct monopoles. Our monopoles are not

seen classically. The confined non-Abelian monopoles
emerge as CP�N � 1�-model kinks living on the string,
deep in the quantum regime.

Now, let our imagination run away with the hypothetical
dual of the M model. In this model it is not chromomag-
netic but rather chromoelectric flux tubes that will form
(upon ‘‘monopole’’ condensation) in a highly quantum
regime. The number of degenerate chromoelectric flux
tubes must grow with N. Quarks are confined; inside
mesons a quark and its antipartner must be attached to a
pair of strings, in contradistinction with QCD where the
confining bond between quark and antiquark is built from a
single string. It is thus clear that even if a dual to the M
model is found, it is not yet quite QCD. However, it is
pretty close.
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APPENDIX: SUPERORIENTATIONAL ZERO
MODES

In this appendix we find explicit expressions for four
superorientational fermion zero modes of the non-Abelian
string in the theory (3.5) with N � 2. Half-criticality of the
string in question ensures that two supercharges are pre-
served in the world sheet theory. Following the general
method of [7,9] we generate two superorientational fer-
mion zero modes applying SUSY transformations to our
string solution (4.8). Essentially repeating the calculation
made in [9] we get

 

� Ak _2 �

�
a

2

�
Ak

1

2
2
�
2

1 �

2
2�
�

a
2 � i"

abcSb�c2�;

� Ak _1 � 0;

�a1 �
i���
2
p

x1 � ix2

r2 fNA

1


2

�a2 � i"

abcSb�c2�;

�a2 � 0:

(A1)

We see that supersymmetry generates for us only two
fermion superorientational modes out of four predicted
by the index theorem. They are parametrized by the two-
dimensional fermion field �a2 . This was expected, of
course. The modes proportional to �a1 do not appear.

 

FIG. 3 (color online). Monopole and antimonopole bound by
strings in a meson. Open and closed circles denote monopole and
antimonopole, respectively.
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The nonzero fermion fields here have the U�1� ~R charge
�1 while the fields which are zero have charge�1. Clearly
we need to find two more zero modes of charge�1. We do
it by explicitly solving the Dirac equations. From the
fermion part of the action of the model (5.5) we get the
relevant Dirac equations

 

i

g2
2

�6D�a �
i���
2
p Tr � aq � 0;

i
h

�6@�a �
i
2

Tr �q �~ a � 0;

i 6r � �
i���
2
p �a�a �q� � 0; i 6r �~ �

i
2
�a�qa� � 0: (A2)

After some algebra one can check that Eqs. (A1) do satisfy
the first and the third of the Dirac equations (A2) provided
the first-order equations for the string profile functions
(4.5) are satisfied.

Now let us find two additional fermion zero modes by
solving the second and the fourth of the Dirac
equations (A2). The fields with the U�1� ~R chiral charge
�1 vanish,

 

�~ kA
_2
� 0; �a1 � 0: (A3)

In order to find the fields with the U�1� ~R chiral charge �1
we use the following ansatz5 (cf. Ref. [9]),

 

�a2 � ��r�
�a1 � i"
abcSb�c1�;

�~ kA_1 �
x1 � ix2

r
 �r�

�
a

2

�
kA

�a1 � i"

abcSb�c1�:
(A4)

Here we introduce two profile functions ��r� and  �r�
parametrizing the fermion fields �2 and �~ _1.

Substituting (A4) into the Dirac equations (A2) we get
the following equations for fermion profile functions:

 

d
dr
 �

1

r
 �

1

2r
�f� fNA� � i
1� � 0;

�
d
dr
� � i

h
2

1 � 0:

(A5)

Below we present the solution to these equations in the
limit

 h� g2
1  g

2
2: (A6)

This latter assumption is not a matter of principle, rather it
is just a technical point. It allows us to find an approximate
analytic solution to Eqs. (A5). If the condition (A6) is met
the mass of the fermions �~ and � ,

 m0 �

���
h
2

s
� (A7)

(see Eqs. (3.2) and (3.3)), becomes much smaller than the
masses of the gauge bosons (see Eqs. (2.13) and (2.14);
note that the fermions �~ and � are superpartners of ~q andM
and have the same mass). Thus, the fields �~ and � develop
long range tails with the exponential falloff determined by
the small masses (A7). This allows us to solve Eqs. (A5)
analytically treating separately the domains of large and
small r.

In the large r domain, at r� mW , we can drop the terms
in (A5) containing f and fNA and use the first equation to
express  in terms of � . We then get

  � �
2i

h
���
�
p

d
dr
�: (A8)

Substituting this into the second equation in (A5) we obtain

 

d2

dr2
� �

1

r
d
dr
� �m2

0� � 0: (A9)

This is a well-known equation for a free field with massm0

in the radial coordinates. Its solution is well known too,

 � � �
ih
2

���
�

p
K0�m0r�; (A10)

where K0�x� is the imaginary-argument Bessel function,
and we fix a certain convenient normalization (in fact, the
normalization constant of the profile functions is included
in �a1). At infinity K0�x� falls off exponentially,

 K0�x� 
e�x���
x
p ; (A11)

while at x! 0 it has a logarithmic behavior,

 K0�x�  ln
1

x
: (A12)

Taking into account Eq. (A8) we get the solutions for the
fermion profile functions at r� 1=mW ,

 � � �
ih
2

���
�

p
K0�m0r�;  � �

d
dr
K0�m0r�: (A13)

In particular, at r� 1=m0 we have

 � �
ih
2

���
�

p
ln

1

m0r
;  

1

r
: (A14)

In the intermediate domain r � 1=mW we neglect the
small mass terms in (A5). We then arrive at

5One can show that profile functions in front of all other
possible structures have singular behavior either at r � 0 or at
r � 1.
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d
dr
� � 0;

d
dr
 �

1

r
 �

1

2r
�f� fNA� � 0: (A15)

The first equation here shows that � � const, while the
second one is identical to the equation for the string profile
function 
1, see Eq. (4.5). This gives the fermion profile
functions at intermediate r,

 � � �
ih
2

���
�

p
ln
mW

m0
;  � �

1

r
���
�
p 
1; (A16)

where we fixed the normalization constants matching these
solutions with the ones in the large-r region, see (A14).

Equations (A13) and (A16) present our final result for
the fermion profile functions. They determine two extra
fermion superorientational zero modes proportional to �a1
via Eq. (A4).

Now if we substitute the fermion zero modes (A1) and
(A4) in the action (5.5) we get the effective N � 2 CP�1�
model (5.1) on the string world sheet,6 cf. Ref. [9].
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[14] K. Bardakç� and M. B. Halpern, Phys. Rev. D 6, 696

(1972).
[15] N. Seiberg, Nucl. Phys. B435, 129 (1995).

[16] M. Shifman, Prog. Part. Nucl. Phys. 39, 1 (1997).
[17] K. Intriligator, N. Seiberg, and D. Shih, J. High Energy

Phys. 04 (2006) 021.
[18] M. Shifman and A. Yung (unpublished).
[19] A. Gorsky, M. Shifman, and A. Yung, Phys. Rev. D 71,

045010 (2005).
[20] A. M. Polyakov, Phys. Lett. B 59, 79 (1975).
[21] M. Eto, K. Hashimoto, and S. Terashima, hep-th/0610042.
[22] A. Ritz, M. Shifman, and A. Vainshtein, Phys. Rev. D 70,

095003 (2004); A. Ritz, Continuous Advances in QCD
2004, edited by T. Gherghetta (World Scientific,
Singapore, 2004), p. 428.

[23] M. Edalati and D. Tong, hep-th/0703045.
[24] E. Witten, Nucl. Phys. B403, 159 (1993).
[25] M. A. Shifman, Phys. Rep. 209, 341 (1991).
[26] G. ’t Hooft, Nucl. Phys. B79, 276 (1974); A. M. Polyakov,

Pis’ma Zh. Eksp. Teor. Fiz. 20, 430 (1974) [JETP Lett. 20,
194 (1974)].

[27] D. Tong, Phys. Rev. D 69, 065003 (2004).
[28] E. J. Weinberg, Nucl. Phys. B167, 500 (1980); B203, 445

(1982).
[29] E. Witten, Nucl. Phys. B149, 285 (1979).
[30] K. Hori and C. Vafa, hep-th/0002222.
[31] N. Dorey, J. High Energy Phys. 11 (1998) 005.
[32] A. Giveon and D. Kutasov, Rev. Mod. Phys. 71, 983

(1999).
[33] M. N. Chernodub, Phys. Rev. Lett. 95, 252002 (2005);

M. N. Chernodub and S. M. Morozov, Phys. Rev. D 74,
054506 (2006).

6In doing so one has to redefine the normalization of the fields
�a1 .

A. GORSKY, M. SHIFMAN, AND A. YUNG PHYSICAL REVIEW D 75, 065032 (2007)

065032-16


