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The rate of the nonperturbative decay of a ’t Hooft-Polyakov monopole into a dyon and a charged
fermion is calculated in an external electric field. The subleading semiclassical preexponential factor is
presented. The leading exponential factor is shown to be in full agreement with the previous results
derived in a different technique. Analogous treatment is shown to hold for the two-fermionic decay of the
lightest bound state in Thirring model. Thus restoring the ‘‘effective meson-fermion vertex’’ becomes
possible.
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I. INTRODUCTION

The physics of magnetic monopoles has attracted atten-
tion for a long time. Charge quantization [1], baryon decay
[2,3], duality in gauge theories [4,5], and confinement
description [6] are just a few examples of important issues
associated with monopoles.

The ’t Hooft-Polyakov monopole, which will be the
main object of our study, is stable as a BPS state; its decay
is impossible unless some external field comes into play.
On the other hand, there exists a growing interest to the
spontaneous and induced Schwinger decay processes in
external fields, as well as to the induced vacuum decay
processes, see e.g. Ref. [7]. Therefore, it is natural to study
the nonperturbatively allowed decay of a monopole into a
dyon and a fermion.

This paper is organized as follows. In Sec. II some
general facts on monopole physics and induced decays
are reviewed. We examine the conditions under which a
semiclassical treatment is valid for the considered prob-
lem. The decay rate is calculated in Sec. III. The elaborated
technique is simplified and applied to the bound state decay
of the Thirring model in Sec. IV, and the results are
summarized in Sec. V.

II. PRELIMINARIES

A. Monopoles: nonperturbative and nonlocal objects

Since the historic paper by Dirac [1] the question how to
incorporate the dynamics of magnetic monopoles into the
standard quantum field-theoretical paradigm has been non-
trivial. Treating monopoles and charges within the same
framework is made difficult by the two obstructions: inap-
plicability of the perturbation theory and nonlocality.

Because of Dirac’s quantization condition [8], the
charge g of a monopole is g2 � 1

�� 137 so that no reason-
able perturbation series can be derived with respect to this

parameter, unlike the standard QED perturbation theory in
powers of �. Several attempts have been made to elaborate
a self-contained QED with monopoles [9,10].

These two fundamental problems inevitable for the
pointlike Dirac monopoles arise under a different guise
for the ’t Hooft-Polyakov monopole. The monopole con-
figuration is a nontrivial solution to the classical field
equations. It exhibits some properties of a point particle,
but it cannot be treated as if it were generated by some
local field operator [11]. The ’t Hooft-Polyakov monopole
should be thought of as a kind of semiclassical object
rather than a quantum particle since its characteristic size
is roughly 1=� times greater than its de Broglie wave-
length. In the dual theory [4] the monopoles correspond to
the original gauge bosons, which do have a local descrip-
tion; however, in the original theory itself no local descrip-
tion is possible.

The nonperturbative issues of monopole dynamics can
be studied via geometric and topological methods, permit-
ting description of dynamics of monopoles [14] and dyons
in terms of geodesics on the moduli spaces of solutions to
the Bogomolny equations [15,16]. Processes which have
an explicit quantum field-theoretical interpretation like
scattering of monopoles into monopoles or dyons have
been shown to take place. However, no quantum field
theoretical model of these processes exists so far.

String theory suggests describing dyons as �p; q� strings
with ends fixed on some D branes [17]. This descrip-
tion was recently proposed to induce the process
‘‘gauge boson! monopole, dyon’’ or ‘‘monopole!
dyon, charge’’ in an external field by Gorsky, Saraikin,
and Selivanov [7]. The existence of a corresponding junc-
tion in string theory is mentioned to show that there
are some attempts to elaborate a local perturbativelike
treatment of monopoles. The string vertex is not directly
used in the calculations below. However, its existence
provides us with a heuristic apology for introducing an
‘‘effective coupling,’’ which is absent at the perturbation
theory level.
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There exists a wide class of processes in field theory
becoming nonperturbatively allowed once an external field
comes into play. The obvious example is the Schwinger
spontaneous e�e� pair production in an external electric
field (for a review, see Ref. [18]), or an analogous process
for the spontaneous Schwinger-like monopole pair produc-
tion in the magnetic field [19]. Another class of nonpertur-
bative phenomena consists of false vacuum decay
processes in a scalar field theory. The generic case of false
vacuum decay in a distorted Higgs-like potential was
initially discussed in Refs. [20,21]. There exists a deep
similarity between spontaneous Schwinger processes and
false vacuum decay. Formally, these two phenomena are
identical in 1� 1 dimensions [22]. The action Scl of a
classical configuration of e�e� paths in Euclidean
domain contributing to the semiclassical pair creation
probability w� e�Scl behaves like ‘‘const1�volume��
const2�surface�.’’ The same behavior is typical for the
action of a classical bubble in the thin wall approximation,
describing, in its turn, a semiclassical vacuum decay proba-
bility. This statement can be considered as a hint to a better
understanding of more general cases for the both types of
processes.

B. Induced vs spontaneous

History of the false vacuum decay teaches us a lesson
that if a process is possible as a spontaneous one, there
should exist related induced ones [23,24]. The same argu-
ment works for the Schwinger processes. A possibility of
an induced Schwinger-type monopole decay was first sug-
gested in Ref. [7]. Monopoles were first treated as triggers
for vacuum decay in a scalar field theory long ago [25].

This interpretation allows one to symbolically introduce
an effective ‘‘charge-monopole-dyon’’ vertex, although it
does not exist at the level of perturbation theory. As in our
previous papers [26,27], ’t Hooft-Polyakov monopole is
treated as a semiclassical object, for which the notion of
the trajectory is well defined. Only trajectories far larger
than the monopole size are dealt with, in order not to break
down the semiclassical approximation. The trajectory of
the monopole is analytically continued into the Euclidean
domain, where a correction to its Green function is calcu-
lated, yielding the decay rate.

We can not describe monopole in terms of a second-
quantized theory. What is meant here then by ‘‘the Green
function of a monopole’’? This Green function stands for
an effective one-particle description. One is incapable of
writing down a quantum field-theoretical path integral for
it, nevertheless, a 1-particle quantum-mechanical path in-
tegral for a particle with a given spin, electric charge e and
magnetic charge g in an external vector potential A� is
meaningful in the semiclassical approximation.

The close relation of the present problem to the issue of
false vacuum induced decay has already been pointed out.
In the course of calculations, both problems are dealt in a

semiclassical technique very close to that of worldline
instantons by Dunne and Schubert [28]. Therefore, the
structure of the result is similar:

 �� Ke�Scl ;

where the leading exponent behavior is governed by the
action on a classical configuration Scl, be it a field distri-
bution in field theory or a 1-particle trajectory in quantum
mechanics; the subleading preexponential factor K gener-
ally costs more efforts to be extracted [29]. It contains the
fluctuation determinants as well as contributions from
Jacobians, which arise when integrating out the collective
coordinates.

Basically, two techniques exist for calculating this pre-
factor. One can either study the fluctuation determinant of
the operator describing oscillations around the classical
solutions [30] or one can reduce the field-theoretical prob-
lem to that of 1-particle relativistic quantum mechanics
and obtain the prefactor in terms of the WKB method [22].

The level of complexity of the prefactor calculation
depends on the method applied. E.g., the prefactor in
Schwinger’s derivation of e�e� production rate comes at
the same price with the exponent. On the other hand, when
time-dependent field enters the play it often comes out to
be useful to calculate the determinants via the Gelfand-
Yaglom or Levit-Smilansky [31] method, or via the Riccati
equation method [32].

In a paper by one of us (A. K. M.) [26], the monopole
decay was studied by means of Feynman path integrals in
the leading semiclassical approximation. Proof of the ex-
istence of a negative mode in the spectrum was also given,
however, the full fluctuation determinant was not calcu-
lated. In our preceding paper this technique was extended
to inhomogeneous fields [27]. Here a calculation giving the
exponential and the preexponential factor is simulta-
neously presented.

III. MONOPOLE IN 4D

A monopole with a magnetic charge g, mass Mm �
MW=� (MW is the W-boson mass, �-coupling constant)
is considered in a constant external electric field in a four-
dimensional space-time. The rate of its decay into a dyon
of mass Md with electric and magnetic charges e, g re-
spectively, and a charged fermion of mass me will be
calculated. First the reader is reminded how Green func-
tions can be obtained for an electrically and magnetically
charged particle in an external field. Then a ‘‘loop correc-
tion’’ is calculated, although this notion has a limited
applicability, as commented above.

It has already been mentioned that the monopole Green
function has got only a semiclassical meaning in the pro-
posed approach. This means that one is bound by the
requirement for the charge-dyon loop to be larger than
the ’t Hooft-Polyakov monopole size. Technically this
will imply taking all loop integrals in the saddle-point
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approximation. On the other hand, the saddle–point ap-
proximation does a good job: it yields the imaginary part of
mass correction directly, avoiding the infinite real mass
renormalization part [33].

A self-consistent field-theoretical treatment of Abelian
monopoles not requiring introduction of Dirac strings was
performed by Zwanziger [9]. Let us consider fermionic
fields  i carrying both electric charge ei and magnetic
charges gi. Then the two U�1� currents will be describing
the interaction of the system with the external field, electric
current je and magnetic current jg

 j�e �
X
i

ei � i�
� i; (1)

 j�g �
X
i

gi � i�� i; (2)

satisfying the equations

 @�F�� � j�e ; @� ~F�� � j�g; (3)

~F�� being the dual tensor, ~F�� � 1
2 �

����F��. The most
general solutions to these equations have the form

 F�� � @�A� � @�A� � �je-dependent nonlocal terms�;

~F�� � @� ~A� � @� ~A� � �jg-dependent nonlocal terms�;

(4)

where A�, ~A� are some vector potentials. By inserting (4)
into (3) one gets a system of equations for the two poten-
tials A�, ~A�, which is more complicated than the usual
Maxwell equations for one vector potential. However, this
system is local, hence one can derive both the free part (not
shown here) and the interaction term of the Lagrangian
from these equations. It is important for us that the inter-
action Lagrangian is simply organized as

 Lint � �je�A� � j
g
� ~A�: (5)

The Green function for a scalar particle with electric
charge e and magnetic charge g can be given in terms of

the first-quantized formalism suggested by Affleck et al.
[35]
 

G�y; x� �
Z
dseim

2s

�
Z x�s��y

x�0��x
Dx�t�ei

R
s

0
_x2=4�e

R
A�dx��g

R
~A�dx� :

(6)

In a constant external field this can be calculated exactly.
On the other hand, this Green function is nothing else but
the matrix element

 G�y; x� �
�
y
�������� 1

D2 �m2

��������x
�
:

Because of the interaction term (5) the covariant derivative
for a particle having both electric and magnetic charges e
and g in an external field should look like [36]

 D� � @� � ieA� � ig ~A�:

The first-quantized treatment exists for fermions as well,
but it is easier for us to write down the fermionic Green
function by virtue of similarity

 GF�y; x� �
�
y
�������� 1

m� iD̂

��������x
�
:

Consider now a constant electric field E � �0; 0; E�. Let
us choose a vector potential in the form A��x� �

E
2 �

��x3; 0; 0; x0�, hence ~A� �
E
2 �0;�x2; x1; 0�. The Dirac op-

erator takes the form

 iD̂�m � i��D� �m � i���@� � ieA� � ig ~A�� �m:

(7)

A propagator of a fermionic particle with an electric charge
e and magnetic charge g is given by

 GF�y; x� � �m� iD̂y�G�0��y; x�; (8)

where the following auxiliary function is introduced

 G�0��y; x� � �
i

32�2 egE
2
Z 1

0
ds

ei���m
2�i��s�=2	e��1=2��eEs�0�3�gEs�1�2�eiS

sinh�eEs2 � sin�gEs2 �
: (9)

Terms i� will be omitted further. Here

 S �
eE
4
�y� x�2

k
coth

eEs
2
�
eE
2
�y0x3 � y3x0� �

gE
4
�y� x�2? cot

gEs
2
�
gE
2
�y1x2 � y2x1�; (10)

indices k and? denote the �0; 3� and �1; 2� components of 4-vector correspondingly. Deforming the s integration contour
(roughly speaking, turning it like s! is) [37] and making a transition to Euclidean quantities like x0 ! �ix0, one writes
down the Euclidean Green function

 G�0�E �y; x� �
1

32�2 egE
2
Z 1

0
ds

e��m
2s�=2e�1=2��eEs�0�3�igEs�1�2�e�Ss

sin�eEs2 � sinh�gEs2 �
; (11)

where
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 Ss �
eE
4
�y� x�2

k
cot
eEs

2
�
eE
2
�y0x3 � y3x0� �

gE
4
�y� x�2? coth

gEs
2
� i

gE
2
�y1x2 � y2x1�;

all the four-vectors in this expression are supposed to be taken in Euclidean space with the positive overall metric sign; the
index E will be omitted further. The fermionic propagator thus takes the form

 GF�y; x� � �m� ��a��y; x��G�0��y; x�; (12)

where
 

ak�y; x� �
�
eE
2
�y0 � x0� cot��

eE
2
�y3 � x3�;

eE
2
�y3 � x3� cot��

eE
2
�y0 � x0�

�
;

a?�y; x� �
�
gE
2
�y1 � x1� coth	� i

gE
2
�y2 � x2�;

gE
2
�y2 � x2� coth	� i

gE
2
�y1 � x1�

�
;

(13)

with � � eEs
2 and 	 � gEs

2 .
There are arguments in favor of thinking a (0, 1) mono-

pole to be a scalar particle and a (1, 1) dyon to be a spin- 1
2

particle [38], thus the fermionic Green function above
refers to dyons. If g is formally assumed to be zero, this
Green function describes the electrically charged fermions.

The correction to monopole’s Green function propagat-
ing from (0, 0, 0, 0) to T � �0; 0; 0; T�may be expressed in
terms of Feynman path integrals [26] and reduced to a
contraction of Green functions (here the ‘‘effective vertex’’
of the monopole-dyon-charged fermion interaction is sug-
gested to be of the form �
 �  )
 

�Gm�T; 0� � �2
Z
Gm�z; 0�Gm�T;w�

� tr�Ge�w; z�Gd�w; z�	dwdz; (14)

� being (an unknown [39]) dimensionless factor, indices

m, e, d belonging here and everywhere below to a mono-
pole, a charged fermion, and a dyon, respectively.
Substituting the above Green functions for their
Schwinger representations (9), one can express the trace
in Eq. (14) in terms of Schwinger parameters �i

 

Tr 
 tr�Md � â��cos�2 � �0�3 sin�2�

� �cosh	2 � i�
1�2 sinh	2��me � b̂�

� �cos�1 � �
0�3 sin�1�; (15)

here a, �2, 	2 

g
e �2 correspond to the dyon propagator

and b, �1 to that of the charged fermion. Schwinger
parameters �3, �4 corresponding to the monopole propa-
gation are also present in Eq. (14). Calculating the trace
one obtains

 Tr � 4
�
meMd cosh

�
g
e
�2

�
cos��1 � �2� �

�
eE
2

�
2
�w� z�2

k

cosh�ge��2

sin�1 sin�2
�
egE2

4
�w� z�2?

cos��1 � �2�

sinh�ge �2�

�
:

Performing Gaussian integrals over z and w, and introducing Feynman variables �3 � Ax, �4 � A�1� x�, with the
Jacobian of the substitution being A, one notes that no dependence on x enters formula (14), thus the x-integration is taken
off trivially, after which the correction to Green function becomes

 �G � const
Z d�1d�2AdA
�1 sin�1 sin�2 sinh�ge �2�

e���m
2
e=eE��1��M2

d=eE��2��M2
m=eE�A����eE�=4�T2=A���sin�1 sin�2�=�sin��1��2��	�	

�� e�1
� g cotg�2

e � sinhgAe � g coshgAe 	�A�cot�1 � cot�2� � 1	

�

�
meMd cosh

�
g
e
�2

�
cos��1 � �2� � eE

cosh�ge �2�A

sin�1 sin�2�A�cot�1 � cot�2� � 1	
�

�
eET

2

�
2

�
cosh�ge �2�

sin�1 sin�2�A�cot�1 � cot�2� � 1	2
�

egE cos��1 � �2� sinh�ge A�

�1 sinh�ge �2���
e
�1
� g cotg�2

e � sinhgAe � g coshgAe �	

�
: (16)

To integrate over variable A, the saddle-point approximation is employed. Generally, the saddle-point approximation
works for the integrals

 

Z �1
0

e�f�s�g�s�ds �

��������������������
2�

��f00�s0�

s
e�f�s0�g�s0� � O

�
1

�

�
; (17)
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when �! 1. Here s0 is the minimum point of f�s�. In the
present case

 �f�A� � �
M2
m

eE

	
A�

�eE�2

4M2
m
T2 1

A� const



(18)

satisfies this requirement since � � M2
m

eE is a large parameter
indeed, coefficient �eE�

2

4M2
m
T2 being not infinitesimal as T may

be made large enough for our purposes. In fact, the limit
T ! 1 will be used, so the latter statement is fairly
justified.

The saddle-point value A0 in the integral (16) over A is
assumed to satisfy A0 � 1, so in principle one could
consider asymptotics for hyperbolic functions in the form
sinhgAe � coshgAe �

1
2 e��gA�=e�, and raise gA

e to the exponent.
However, one should remember that since the monopole
and the dyon are being treated as pointlike particles, it is
obligatory to consider an external field small enough so
that the size of the loop (see Fig. 1) is larger than the size of
the monopole.

For such a field it is easy to show that M
2
m

gE � g2. So the
term gA=e must be neglected in the exponent compared to
m2A=eE. But gA=e is still large enough to consider hyper-
bolic functions cosh�ge A� and sinh�ge A� approximately
equal. Then the saddle-point value for A is

 A0 �
eET
2Mm

�
sin�1 sin�2

sin��1 � �2�
;

and the second derivative is

 

@2f

@A2
�

4M3
m

�eE�2T
:

In order to find the monopole mass correction one
should know the asymptotic form of the propagator of a

scalar particle in an external field. The scalar Euclidean
propagator has the following asymptotics:

 Gm�T; 0� �
1

16�3=2

gE�����������
MmT
p

e�MmT

sinhgET2Mm

; (19)

and the leading-order (in powers of T) contribution to its
variation due to the variation of the monopole mass

 �Gm�T; 0� � �
1

8
���
2
p
�3=2

�MmgE

��������
T
Mm

s
e�MmT

sinhgET2Mm

: (20)

Comparing this result with the one obtained after integra-
tion (16) over A one gets the mass correction

 

�Mm �
�2g

�32��3=2M

Z d�1d�2

�1 sinh�ge �2� sin��1 � �2�

e���m
2
e=eE��1��M2

d=eE��2��M2
m=eE���sin�1 sin�2�=�sin��1��2��	�

� e�1
� g cot�ge �2� � g�

�

	
meMd cosh

�
g�2

e

�
cos��1 � �2� �M2

m cosh
�
g�2

e

�
sin�1 sin�2

sin2��1 � �2�



: (21)

The terms proportional to E compared to the ones propor-
tional to any bilinear combination of masses have already
been neglected here. It was reasonable to leave them out
since such an assumption had already been taken when
integrating over A in the saddle-point technique. The last
step is to integrate over �1 and �2 using the saddle-point
method. Note that the custom integration via Cauchy theo-
rem fails, due to an essential nonanalyticity in �1 � �2

present in the expression being studied [roughly speaking,
it is like e�1=z in the vicinity of z � 0, as can be seen from
Eq. (21) above]. On the contrary, the saddle-point approxi-
mation remains valid, because all massive parameters are
considered to be large compared to

������
eE
p

.

However, due to the specified essential singularities, a
complicated deformation of the integration contour should
be performed. Formula (21) should rather be understood in
the following way: one starts with the Minkowskian Green
functions, for which path of integration is directed along
the imaginary axis of z 
 �1 � �2, being away from
essential singularities. Such a contour rotation refers not
only to Eq. (21), but to (8) and (9) as well. The original
Minkowskian Green function was defined with a contour
directed along imaginary s axis. When writing down the
Euclidean Green function (8), one should already have
given a prescription for turning the integration contour to
the real s axis. It is shown in Fig. 2 how it should have been

 

FIG. 1. Classical paths in �x3; x0� plane with arbitrary winding
numbers.
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done. Here singularities do not lie on integration path; and
saddle points are passed in the (imaginary) direction pre-
scribed by steepest descent condition. The deformation
was performed in the domain of analyticity of the inte-
grand, without traversing the singularities. The integral is
dominated by saddle points, and may be evaluated as sum
of integrals in the vicinities of each saddle point. A contour
(of real dimension 2) in C2 for Eq. (21) is constructed
in a similar way. It is not shown here due to high
dimensionality.

The function f��1; �2� �
m2
e

eE �1 �
M2
d

eE �2 �
M2
m

eE
sin�1 sin�2

sin��1��2�

is to be minimized. One gets the saddle-point values ��n�i

for �i, which come out to be the same as were obtained in
Ref. [26] by a different method

 

��n�1

��m�2

0@ 1A �  cos�1 M
2
m�m2

e�M2
d

2meMm

cos�1 M
2
m�m2

e�M2
d

2MdMm

0B@
1CA� 2�n

2�m

 !



�1 � 2�n

�2 � 2�m

 !
; n; m 2 Z; ��n�i > 0

the corresponding determinant being

 det ij

�
@2f

@�i@�j

�
� �4

sin2�1sin2�2

sin4��1 � �2�

�
M2
m

eE

�
2

� �4
�meMd�

2

�eE�2
: (22)

One can see that there exists a two-parameter family of
local minima of the saddle-point integral. Geometrically,
the integer parameters m, n denote multiply-wound clas-
sical solutions. The result is a sum over all saddle points.
The physical meaning of such a sum was discussed in
Ref. [27]. The semiclassical approximation counts all pos-
sible classical sub-barrier trajectories, which are arcs of a
circle, �i having direct meaning of an angular coordinate
on the particle trajectory in the Euclidean plane, taking
them with weights e�S


n;m given below.

Finally one obtains the mass correction as a sum over
winding numbers m, n

 Im�Mm � �
�2

8�
eE
Mm

� X
n;m�0

e�S
�
n;mcos2��1��2

2 �

sin��1 � �2��
e

�1�2�n� g cot�ge ��2 � 2�m�� � g�
g

��1 � 2�n� tanh�ge ��2 � 2�m��

�
X
n;m�1

e�S
�
n;mcos2��1��2

2 �

sin��1 � �2��
e

2�n��1
� g cot�ge �2�m� �2�� � g�

g
�2�n� �1� tanh�ge �2�m� �2��

�
;

with

 S�n;m �
m2
e

eE
���n�1 �

M2
d

eE
���m�2 �

meMd

eE
sin��1 � �2�; S�n;m �

m2
e

eE
���n�1 �

M2
d

eE
���m�2 �

meMd

eE
sin��1 � �2�:

This sum looks rather ugly, however, the contributions of higher winding paths are suppressed by the factor of
exp���m

2
e

eE 2�n�
M2
d

eE 2�m�	. So, for practical calculations only the leading term should be left in the sum. The leading
term is the one with ‘‘�’’ and zero winding numbers. It is given by

 Im�Mm � �
�2

4
���
2
p
�

eE
Mm

e�S0
cos2��1��2

2 �

sin��1 � �2��
e
�1
� g cot�ge �2� � g�

g
�1 tanh�ge �2�

; (23)

with the corresponding value of S0

 S0 �
m2
e

eE
�1 �

M2
d

eE
�2 �

meMd

eE
sin��1 � �2�:

IV. BOUND STATE IN 2D

If previous considerations are reduced to two dimen-
sions, then the situation would be technically simpler,
because instead of a monopole one would have a free scalar
particle, and a fermion–antifermion pair instead of a dyon

 

FIG. 2. Integration contour for Minkowskian and Euclidean
green functions.
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and a charged fermion. Thus the problem studied above
directly reduces to the decay of a bound state into a
fermion-antifermion pair in Thirring model. On the other
hand, for an induced Schwinger process in Thirring model
there exists an independent calculation of the preexponen-
tial factor in terms of the dual (Sine-Gordon) theory by
Gorsky and Voloshin [40]. Comparing the two calcula-
tions, we can extract the value of � for this decay.

One should note here that the first bound state of the
massive Thirring model should rather be rendered as a
pseudoscalar. Because of duality, a bound state in
Thirring model corresponds to a special kind of a soliton-
antisoliton classical configuration (the so-called ‘‘dou-
blet’’) in the Sine-Gordon model. A fermionic current j�

corresponds in the dual picture to the topological current in
sine-Gordon

 

� �� � ���@�
;

which can be rewritten as

 

� 3�� � @�
:

This suggests that the matrix element h0j � 3 j�i is
nonzero, 3 playing the same role for the 2-dimensional
case as �5 for the 4 dimensional. Thus an effective vertex
for the considered 2D case should necessarily contain the
3 � �i12 Pauli matrix. Let us show the final result of
the calculation. Here the resummation over winding num-
bers is done exactly, factors like 1

1�e��2��
2�=�eE�

being a con-

sequence thereof, �1 and �2 denoting masses of the
fermions, which are held arbitrary for the sake of general-
ity:

 Im�m �
��2

4m�1� e��2��
2
1�=�eE���1� e��2��

2
2�=�eE�� sin��1 � �2�

�
e�S

�
0

	
2cos2

�
�1 � �2

2

�
�

eE
�1�2

1

sin��1 � �2�




� e�S
�
0

	
2cos2

�
�1 � �2

2

�
�

eE
�1�2

1

sin��1 � �2�


�
;

where
 

�1 � cos�1m
2��2

1��
2
2

2m�1
;

�2 � cos�1m
2��2

1��
2
2

2m�2
;

S� �
�2

1

eE
�1�

�2
2

eE
�2�

�1�2

eE
sin��1� �2�;

S� �
�2

1

eE
�2�� �1��

�2
2

eE
�2�� �2��

�1�2

eE
sin��1� �2�:

Note that � is an essential parameter here, having the
dimension of a mass. Thirring model calculations for a
decay of bound state with mass m into two fermions with
equal masses � lead us to

 Im�m � �
�2

4m
e�S0

sin2�

�
2�

eE

�2

1

sin2�

�
;

where

 � � cos�1 m
2�

(resummation factor 1

�1�e��2��
2�=�eE��2

omitted here).

On the other hand, the decay rate in Thirring model in
the strong coupling limit (weak coupling limit of Sine-
Gordon model) is given [40] as

 � �
4g�

�3 e�S0 ;

where g is Thirring coupling constant, g� 1; � is the
mass of Thirring fermions, S0 is the classical action. Let us

suggest that the external meson is the lightest bound state
in the theory, for which in the mentioned limit m � �2�

2g . It

has been obtained by us � � 2 Im�m � 4�2g2

��4 e�S0 in terms

of Thirring model parameters. Comparison of these two
formulae yields

 � � �

����
�
g

s
;

which restores the coupling constant � in an induced
Schwinger process for the lightest Thirring meson.

V. CONCLUSION

The preexponential subleading asymptotic is obtained
for the nonperturbative monopole decay into a charged
fermion and a dyon in 3� 1 dimensions, as well as for
the decay of a bound state into a fermion-antifermion pair
in 1� 1 dimensions. These are the main new features of
our work, since these quantities have never been estimated
before up to this order. In the two-dimensional case the
effective vertex �� ���

g
p has been restored for the decay of a

bound state in the Thirring model. Generalization to in-
homogeneous fields, thermal field theory as well as to
charged fermion decay into a monopole-dyon pair are
going to be considered as the next problems.

ACKNOWLEDGMENTS

Authors are indebted to A. S. Gorsky for suggesting this
problem and fruitful discussions, to E. T. Akhmedov, F. V.
Gubarev, H. M. Kleinert and A. Yu. Morozov for their

NONPERTURBATIVE DECAY OF A MONOPOLE: THE . . . PHYSICAL REVIEW D 75, 065029 (2007)

065029-7



useful comments. Careful reading of the English text by
A. D. Mironov is gratefully acknowledged. One of us
(A. Z.) would like to thank D. V. Shirkov for his friendly
advice and moral support. This work is supported in part by
RFBR Grants No. 04-02-17227 (A. Z.), No. RFBR 04-01-
00646, and No. NSh-8065.2006.2 (A. M.).

APPENDIX

In order to obtain (11) one can act in the following way.
Green function of an electrically and magnetically charged
particle can be represented in terms of a Feynman path
integral:

 �
y
�������� 1

m2�D2� �eF��� g ~F�����

��������x
�
� e�1=2��eEs�0�3�igEs�1�2�

Z
Dxke

�
R
s

0
�� _x2
k
=4��ieAk _xk�dt

Z
Dx?e�

R
s

0
�� _x2
?
=4��igA? _x?�dt:

(A1)

The above integrals are Gaussian, so the Green function can be calculated by means of steepest descent method. The value
of the on-shell action is given in (12). The preexponential factor is given by a product of two determinants for k and ?
components being proportional to

 

1�������������
det�k�

p �
eE

sineEs2

;
1��������������

det�?�
p �

gE

sinhgEs2

: (A2)

Collecting everything together one gets expression (11). The differential operator m� D̂y [Euclidean version of (7)] acts
only on the terms that contain variable y. This action gives the values of ak and a?
 

�m����@�� ieA��y�� ig ~A��y���e�Ss�y;x� �
�
m�

eE
2
�k�y� x�k cot

eEs
2
�
eE
2
�0�y3� x3��

eE
2
�3�y0� x0�

�
gE
2
�?�y� x�? coth

gEs
2
� i

gE
2
�1�y2� x2�� i

gE
2
�2�y1� x1�

�
e�Ss�y;x�

� �m���a��y;x��e�Ss�y;x�: (A3)

Formula (15) can be obtained by substituting the propagator in the expression (14) by (12)

 tr �GeGd� � tr��Md � ad����G
d�0�
E �m� a

e
����G

e�0�
E �: (A4)

Note that G�0�E also possesses matrix structure [see (A1)]. Using the well-known formula for the exponent of a combination
of �-matrices one gets (15). After the trace has been calculated, integration over w and z should be done, being of the form

 

Z
d2zkd2wkd2z?d2w?�B� Ak�w� z�2k � A?�w� z�

2
?�e

��ak�w�z�2k�bkz
2
k
�ck�y�w�2k�e��a?�w�z�

2
?
�b?z2

?
�c?�y�w�2?��2��w1z2�w2z1�

�

�
B� Ak

@
@ak
� A?

@
@a?

�
�4e��T

2=��1=ak���1=bk���1=ck�	�

�akbk � akck � bkck��a?b? � a?c? � b?c?�
;

(A5)

where a, b, c, A, B, � are some constants. If the values of these constants are substituted one obtains (16).
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