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We discuss renormalization effects on neutrino masses and mixing angles in a supersymmetric string-
inspired SU�4� � SU�2�L � SU�2�R � U�1�X model, with matter in fundamental and antisymmetric tensor
representations and singlet Higgs fields charged under the anomalous U�1�X family symmetry. The quark,
lepton and neutrino Yukawa matrices are distinguished by different Clebsch-Gordan coefficients. The
presence of a second U�1�X breaking singlet with fractional charge allows a more realistic, hierarchical
light neutrino mass spectrum with bi-large mixing. By numerical investigation we find a region in the
model parameter space where the neutrino mass-squared differences and mixing angles at low energy are
consistent with experimental data.
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The experimentally measured values of gauge coupling
constants �3, �em, and the weak mixing angle sin2�W are
correctly predicted in the minimal supersymmetric stan-
dard model (MSSM), assuming a unification scale of the
order 1016 GeV. Moreover, the existing data from neutrino
oscillation experiments provide an important clue to phys-
ics beyond the successful standard model (SM) and
MSSM.

Experimental data on atmospheric and solar neutrino
oscillations [1] imply tiny but nonzero neutrino mass-
squared differences �m2

�ij . The negligible size of the neu-
trino masses, as compared to those of quarks and charged
leptons, might suggest that a theory beyond MSSM should
incorporate the right-handed neutrinos and an appropriate
(seesaw) mechanism to suppress adequately the neutrino
masses. Moreover, the observed large neutrino mixing
angles ��12

, ��23
present challenges for additional symme-

tries and a unified framework in which neutrinos and
quarks form part of same multiplet. Examples of higher
symmetries including the SM gauge group and incorporat-
ing the right-handed neutrino in the fermion spectrum, are
the partially unified Pati-Salam model, based on SU�4� �
SU�2�L � SU�2�R [2], and the fully unified SO(10). When
embedded into perturbative string or D-brane models,
these may be extended by additional Abelian or discrete
fermion family symmetries. Semirealistic models with
these characteristics have been discussed in the literature
[3–5].

Recently some models have been proposed to explain
the presence of large mixing angles in the neutrino sector,
in contrast to the smaller quark mixings. For example, the
mixing angle ��12

and the Cabibbo mixing �C could satisfy
the so called quark-lepton complementarity (QLC) relation
��12
� �C �

�
4 [6]. It has been shown [7] that this relation

can be reproduced if some symmetry exists among quarks

and leptons. Attempts to realize QLC in the context of
models unifying quarks and leptons such as Pati-Salam
have been made [8].

As another possibility, the symmetry Le � L� � L�
implies an inverted neutrino mass hierarchy and bimaximal
mixing ��12

� ��23
� �

4 , with ��13
� 0 [9]. This symmetry

alone does not give a consistent description of current
experimental data, but additional corrections and renor-
malization effects have still to be taken into account. It has
been shown [10] in the context of MSSM extended by a
spontaneously broken U�1�X factor, that the neutrino sector
respects an Le � L� � L� symmetry. Small corrections
from other singlet vacuum expectation values (v.e.v.’s),
which are usually present in a string spectrum, can lead
to a soft breaking of this symmetry and describe accurately
the experimental neutrino data.

Another important issue is the renormalization group
(RG) flow of the neutrino parameters from the high energy
scale where the neutrino mass matrices are formed, down
to their low-energy measured values. One can attempt to
determine the neutrino mass matrices from experimental
data directly at the weak scale. However, the Yukawa
couplings and other relevant parameters are not known at
the unification scale. A knowledge of these quantities at the
unification mass could provide a clue for the structure of
the unified or partially unified theory and the exact (family)
symmetries determining the neutrino mass matrices at the
grand unified theory (GUT) scale. Attempts to determine
the neutrino mass parameters in a top-bottom or bottom-up
approach have recently discussed in the literature [11–13].

In this paper we investigate further the neutrino mass
spectrum of a model with gauge symmetry SU�4� �
SU�2�L � SU�2�R � U�1�X based on the 4-2-2 models
[3,14–16], whose implications for quark and lepton masses
were recently investigated in Ref. [17]. These models

PHYSICAL REVIEW D 75, 065027 (2007)

1550-7998=2007=75(6)=065027(10) 065027-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.065027


present several attractive features. First, only ‘‘small’’
Higgs representations are needed and these commonly
arise in string models. Second, third generation fermion
Yukawa couplings are unified [18] up to possible small
corrections, fixing the value of tan� (the ratio of the up-
type to down-type Higgs v.e.v.’s) to be large, of order 50.
Unification of gauge couplings is allowed and, if one
assumes the model embedded in supersymmetric string,
might be predicted [19], even though the four-dimensional
gauge group has separate factors. Furthermore, the
doublet-triplet splitting problem is absent, since the col-
ored triplets can be given mass by coupling to antisym-
metric tensor representations which also arise from explicit
string constructions [3,14].

In string derived models a large number of standard
model singlet fields carrying quantum numbers only under
U�1�X appear in the spectrum of the effective field theory.
D- and F-flatness conditions require some of them to
obtain nonzero v.e.v.’s of the order of the U�1�X breaking
scale. In the present model, in order to describe accurately
the low-energy neutrino data we introduce two such sin-
glets charged under U�1�X [20]. The previous model [17]
with one singlet could achieve a normal hierarchy of light
neutrino masses with bi-large mixing. However, after study
of the renormalization group (RG) evolution and unifica-
tion it was found that the scale of light neutrino masses was
too large to be compatible with observation, due to strong
running in the large tan beta regime. Conversely, if we
imposed the correct scale of light neutrino masses, then
some heavy right-handed neutrinos (RHN) would have
masses above the unification scale, which is incompatible
with our effective field theory approach.

Thus three a priori independent expansion parameters
arise from the superpotential, two coming from the singlets
and one from the Higgses which receive v.e.v.’s at the
SU�4� � SU�2�R breaking scale. In general, a nonrenorma-
lizable operator may contain several products of the
SU�4� � SU�2�R breaking Higgses, thus different contrac-
tions of gauge group indices are possible leading to differ-
ent contributions depending on the Clebsch factors. We use
a minimal set of nontrivial Clebsch factors to construct the
Dirac mass matrices. Right-handed (SU�2�L singlet) neu-
trinos acquire Majorana masses through nonrenormaliz-
able couplings to the U�1�X-charged singlets and to
Higgses, while light neutrinos will obtain masses via the
seesaw mechanism.

The renormalization group equations (RGEs) for the
neutrino masses and mixing angles above, between and
below the seesaw scales are solved numerically, for several
sets of order 1 parameters which specify the heavy RHN
matrix. In each case the results at low energy are consistent
with current experimental data, given a normal hierarchy
of light neutrino masses, and provide further predictions
for the 1–3 neutrino mixing angle and for neutrinoless
double beta decay.

I. DESCRIPTION OF THE MODEL

In this section we present salient features of the string-
inspired Pati-Salam model extended by a U�1�X family
symmetry, the total gauge group being SU�4� � SU�2�L �
SU�2�R � U�1�X. The field content includes three copies of
�4; 2; 1� � ��4; 1; 2� representations to accommodate the
three fermion generations Fi � �Fi (i � 1; 2; 3),

 Fi �
ui ui ui �i
di di di ei

� �
�i

;

�Fi �
uci uci uci �ci
dci dci di eci

� �
��i

;

where the subscripts �i, ��i indicate the U�1�X charge. In
order to break the Pati-Salam symmetry down to SM gauge
group, Higgs fields H � �4; 1; 2� and �H � ��4; 1; 2� are
introduced

 H �
uH uH uH �H
dH dH dH eH

� �
x
;

�H �
uc�H uc�H uc�H �c�H
dc�H dc�H d �H ec�H

 !
�x

;

which acquire v.e.v.’s of the order MG along their neutral
components

 hHi � h�Hi � MG; h �Hi � h� �Hi � MG: (1)

The Higgs sector also includes the h � �1; �2; 2� field which
after the breaking of the PS symmetry is decomposed to the
two Higgs superfields of the MSSM. Further, two D �
�6; 1; 1� scalar fields are introduced to give mass to color
triplet components of H and �H via the terms HHD and
�H �HD [14].

Finally, we introduce two scalar singlet fields �, 	,
charged under U�1�X whose v.e.v.’s will play a crucial
role in the fermion mass matrices through nonrenormaliz-
able terms of the superpotential. In the stable SUSY vac-
uum the two singlets obtain v.e.v.’s to satisfy theD-flatness
condition including the anomalous Fayet-Iliopoulos term
[21]. The anomalous D-flatness conditions allow solutions
where the v.e.v.’s of the conjugate fields �� and �	 are zero
and we will restrict our analysis to this case. Note that in

TABLE I. Field content and U�1�X charges.

SU(4) SU�2�L SU�2�R U�1�X

Fi 4 2 1 �i
�Fi �4 1 �2 ��i
H 4 1 2 x
�H �4 1 �2 �x
� 1 1 1 z
	 1 1 1 z0

h 1 �2 2 ��3 � ��3

D1 6 1 1 �2x
D2 6 1 1 �2�x
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general a string model may have more than two singlets
and more than one set of Higgses Hi, �Hi, with different
U�1�X charge. All such fields may in principle also obtain
v.e.v.’s, however we find that two of them are sufficient to
give a set of mass matrices in accordance with all experi-
mental data. Hence we consider any additional singlet
v.e.v.’s to be significantly smaller.

The Higgses Hi, �Hi may obtain masses through H �H�,
H �H	 and H �H�	 couplings. However, in order to
break the Pati-Salam group while preserving SUSY we
require that one H- �H pair be massless at this level. This

‘‘symmetry-breaking’’ Higgs pair could be a linear combi-
nation of fields with different U�1�X charges, which would
in general complicate the expressions for fermion masses.
The chiral spectrum is summarized in Table I. We choose
the charge of the Higgs field h to be ��3 � ��3 so that the
3rd generation coupling F3

�F3h is allowed at tree level.
We now turn to the terms in the superpotential which can

give rise to fermion masses. Dirac type mass terms arise
after electroweak symmetry-breaking from couplings of
the form

 

WD � y33
0 F3

�F3h� Fi �Fjh
�X
m>0

yijm

�
�
MU

�
m
�

X
m0>0

yijm0
�
	
MU

�
m0

�
X
n>0

y0ijn

�
H �H

M2
U

�
n
�

X
k;‘>0

yijk;‘

�
�
MU

�
k
�
	
MU

�
‘

�
X
p;q>0

yijp;q

�
H �H

M2
U

�
p
�
�
MU

�
q
�

X
r;s>0

yijr;s

�
H �H

M2
U

�
r
�
	
MU

�
s
� � � �

�
: (2)

Apart from the heaviest generation, all masses arise at nonrenormalizable level, suppressed by powers of the fundamental
scale or unification scale MU. The couplings yijm;m0 , y

0ij
n etc. are nonvanishing and generically of order 1 whenever the

U�1�X charge of the corresponding operator vanishes, thus

 �i � �3 � ��j � ��3 � f�mz;�m0z0;�n�x� �x�;�kz� ‘z0;�p�x� �x� � qz;�r�x� �x� � sz0g:

Other higher-dimension operators may arise by multiplying any term by factors such as �H �H�‘�s=M2‘�s
U where ‘�x�

�x� � sz � 0. Such terms are negligible unless the leading term vanishes.
Neutrinos may in addition receive also Majorana type masses. These arise from the operators

 WM �
�Fi �FjHH

MU

�
�ij

0 �
X
t>0

�ij
t

�
�
MU

�
t
�
X
t0>0

�ij
t0

�
	
MU

�
t0

�
X
w>0

�0ijw

�
H �H

M2
U

�
w
�

X
k0;‘0>0

�ij
k0;‘0

�
�
MU

�
k0
�
	
MU

�
‘0

�
X

p0;q0>0

�ij
p0;q0

�
H �H

M2
U

�
p0
�
�
MU

�
q0

�
X
r;s>0

�ij
r0;s0

�
H �H

M2
U

�
r0
�
	
MU

�
s0

� � � �

�
: (3)

Couplings of this type are nonvanishing whenever the following conditions are satisfied:

 �� i � ��j � 2x � f�tz;�t0z0;�w�x� �x�;�k0z� ‘0z0 � p0�x� �x� � q0z;�r0�x� �x� � s0z0g:

II. FERMION MASS MATRICES

A. General structure

As can be seen from the superpotential Yukawa cou-
plings (2) and (3), three different expansion parameters
appear in the construction of the fermion mass matrices.
These are

 
 	
h�i
MU

; 
0 	
M2
G

M2
U

; 
00 	
h	i
MU

; (4)

given hH �Hi � M2
G. Note that, for nonrenormalizable Dirac

mass terms involving several products of H �H=M2
U, the

gauge group indices may be contracted in different ways
[16]. This can lead to different contributions to the up,
down quarks and charged leptons, depending on the
Clebsch factors Cijn�u;d;e;�� multiplying the effective

Yukawa couplings. Also, although the Clebsch coefficient
for a particular operator On may vanish at order n, the
coefficient for the operator O�n�p�;q containing p addi-
tional factors �H �H� and q factors of � and/or 	 is generi-
cally nonzero.

In our analysis we wish to estimate the effects of the
second singlet (	) contributions on the neutrino sector as
compared to the analysis presented in Ref. [17] without
affecting essentially the results in the quark sector. In order
to obtain a set of fermion mass matrices with the minimum
number of new operators, we assume fractional U�1�X
charges for H, �H, and 	 fields, while the combination
H �H and the singlet � are assumed to have integer charges.
Thus �i, ��i, x� �x, and z are integers, while z0, x and �x are
fractional. As a result, the Dirac mass terms involving
v.e.v.’s of 	 are expected to be subleading compared to
other terms. Suppressing higher-order terms involving
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products of 
, 
0, and 
00, the Dirac mass terms at the
unification scale are

 mij � �i3�j3m3 � �

m � �
00�m

0
� Cij�


0�n�vu;d; (5)

where m3 	 vu;dy33
0 , with vu and vd being the up-type and

down-type Higgs v.e.v.’s, respectively, and we omit the
order-one Yukawa coefficients yijm etc. for simplicity.

The Majorana mass terms are proportional to the com-
bination HH [see Eq. (3)] which has fractional U�1�X
charge. Thus, terms proportional to 	=MU become now
important for the structure of the mass matrix. The general
form of the Majorana mass matrix is then

 MN � MR��
ij
t 
t ��

ij
t0 �


00�t
0
��0ijw �
0�w ��

ij
k0;l0


k0 �
00�l
0

��ij
p0;q0 �


0�p
0

q
0
��ij

r0;s0 �

0�r
0
�
00�s

0
�;

where we define MR 	 M2
G=MU 	 
0MU.

B. Choice of U�1�X charges

Before we proceed to a specific, viable set of mass
matrices, we first make use of the observation [17] that
the form of the fermion mass terms above is invariant under
the shifts
 

�i ! �i � �; ��i ! ��i � ��;

x! x� ��; �x! �x� ��;
(6)

so that we are free to assign �3 � ��3 � 0. We further fix
x� �x � 1 and z � �1; we will choose the values of x and
z0 to be fractional such that the v.e.v. of 	 only affects the
overall scale of neutrino masses, as explained below. The
resulting U�1�X charges are presented in Table II.

The charge entries of the common Dirac mass matrix for
quarks, charged leptons and neutrinos are then

 QX
MD� �

�6 �3 �4
�5 �2 �3
�2 1 0

0
@

1
A; (7)

and the charge matrix for heavy neutrino Majorana masses
is

 QX
MN� � 2x�
�4 �1 �2
�1 2 1
�2 1 0

0
@

1
A: (8)

Now, we relate 
, 
0, 
00 with a single expansion parameter
, assuming the relations

 
0 �
����

p

; 
 � b1
����

p

; 
00 	 b2; (9)

where b1, b2 are numerical coefficients of order one. Then

the effective Yukawa couplings for quarks and leptons may
include terms
 

Yijf � b
m
1 

m=2� b1�m
1 1�m=2�Cijf 

n=2� b1
1�n=2��� �

(10)

with f � u, d, e, �, up to order 1 coefficients yijf . Which of
these terms survives, depends on the sign of the charge of
the corresponding operator. For a negative charge entry, the
first two terms are not allowed and only the third and fourth
contribute. Further, if a particular Cijf coefficient is zero,
then we consider only the fourth term.

Therefore, we need to specify the Clebsch-Gordan co-
efficients Cijf for the terms involving powers of hH �Hi=M2

U.
These coefficients could be found if the fundamental the-
ory was completely specified at the unification or string
scale. In the absence of a specific string model, here we
present a minimal number of operators which lead to a
simple and viable set of mass matrices. Up to possible
complex phases, we choose C12

d � C22
d �

1
3 , C23

u � 3 and
C11
u � C12

u � C21
u � C22

u � C31
u � C22

� � C31
� � 0 with

all others being equal to unity. The effective Yukawa
matrices at the GUT scale obtained under the above as-
sumptions are
 

Yu �

b14 b15=2 2

b1
7=2 b1

2 33=2

b12 b11=2 1

0
BB@

1
CCA;

Yd �

3 3=2

3 2

5=2 
3 3=2

 b11=2 1

0
BBB@

1
CCCA;

Ye �

3 3=2 2

5=2  3=2

 b1
1=2 1

0
BB@

1
CCA;

Y� �

3 3=2 2

5=2 b1
2 3=2

b12 b11=2 1

0
BB@

1
CCA;

(11)

where we suppress order-one coefficients. The quark sector
as well as the neutrino sector were studied in Ref. [17].
However, full renormalization group effects were not cal-
culated for the neutrino sector and as it turns out one singlet
is inadequate to accommodate the low-energy data.
Consequently, we introduced the second singlet 	, with
fractional charge, whose v.e.v. affects only the overall scale
of neutrino masses.

The desired matrix for the right-handed Majorana neu-
trinos may result from more than one choice of charge for
the H field and the 	 singlet field. These can be seen in
Table III.

TABLE II. Specific choice of U�1�X charges.

Field F1 F2 F3
�F1

�F2
�F3 h H �H � 	

U�1�X �4 �3 0 �2 1 0 0 x 1� x �1 z0

T. DENT, G. K. LEONTARIS, A. PSALLIDAS, AND J. RIZOS PHYSICAL REVIEW D 75, 065027 (2007)

065027-4



We choose the H charge to be x � � 6
5 so that 2x is

noninteger, and set the 	 singlet charge to � 3
5 . The analy-

sis for the quarks and charged leptons remains the as in
Ref. [17] since operators with nonzero powers 	r do not
exist for powers r < 5 and are negligible compared to the
leading terms.

With these assignments, the charge entries of the heavy
Majorana matrix Eq. (8) are

 QX
MN� �

� 32
5 � 17

5 � 22
5

� 17
5 � 2

5 � 7
5

� 22
5 � 7

5 � 12
5

0
B@

1
CA: (12)

Because of the fractional U�1�X charges contributions from
� or H �H alone vanish. However, we also have the singlets
H �H	=M3

U with v.e.v. b23=2 and �	=M2
U with a v.e.v.

b1b2
2, while for some entries one may have to consider

higher-order terms since the leading order will be vanish-
ing. In Table IV we explicitly write the operator for every
entry of MN . The Majorana right-handed neutrino mass
matrix is then

 MN �
�119=2 �123 �137=2

�12
3 �22

3=2 �23
2

�137=2 �232 5=2

0
B@

1
CAb2MR; (13)

with MR � 
0MU �
����

p

MU.
Having defined the Dirac and heavy Majorana mass

matrices for the neutrinos, it is straightforward to obtain
the light Majorana mass matrix from the seesaw formula

 m� � �mD�M
�1
N mT

D� (14)

at the GUT scale.

C. Setting the expansion parameters

Given the fermion mass textures in terms of the U�1�X
charges and expansion parameters, we need now to deter-
mine the values of the latter in order to obtain consistency
with the low-energy experimentally known quantities
(masses and mixing angles). Note that the coefficient b2

defined in Eq. (9) will determine the overall neutrino mass
scale through Eq. (13).

Consistency with the measured values of quark masses
and mixings fixes the value of  � 5� 10�2: for example,
the angle �12 of the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix is given by

����

p
� 0:22 up to small

corrections [17]. Hence the ratio of the SU(4) breaking
scaleMG to the fundamental scaleMU is also fixed through
M2
G

M2
U
�

����

p
� 0:22: the Pati-Salam group is unbroken over

only a small range of energy. We perform a renormaliza-
tion group analysis in order to check the consistency of this
prediction with the low-energy values of the gauge cou-
plings �s, �em, and the weak mixing angle sin2�W [22]

 sin 2�W � 0:23120; �3 � 0:118� 0:003;

aem �
1

127:906
:

If the underlying model at MU has a single unified gauge
coupling, then MG is fixed to be just below the unification
scale according to the analysis of gauge coupling unifica-
tion in the MSSM. Because of this fact, the low-energy
measured range for �3 affects the unification of the gauge
couplings. Thus, we add the following extra states:

 hL � �1; 2; 1�; hR � �1; 1; 2�;

which are usually present in a string spectrum [3]. It turns

TABLE IV. Operators producing the Majorana right-handed
neutrino matrix MN .

MN entry Operator v.e.v.

M11
N �H

�H
M2
U
�7 	
MU

b2
9=2

M12
N �H

�H
M2
U
�4 	
MU

b2
3

M13
N �H

�H
M2
U
�5 	
MU

b2
7=2

M22
N �H

�H
M2
U
� 	MU

b23=2

M23
N �H

�H
M2
U
�2 	
MU

b2
2

M33
N �H

�H
M2
U
�3 	
MU

b2
5=2

 

FIG. 1 (color online). Evolution of the gauge couplings. The
two lines for �3 indicate the range of initial conditions at MZ.

TABLE III. Possible choices for the U�1�X charges of the H
and 	 fields.

QX
H� � x � 2
3 � 4

3 � 5
3 � 6

5 � 7
8 � 1

4 � 3
4

QX
	� � z0 � 5
3 � 1

3
1
3 � 3

5 � 5
4 � 5

2 � 3
2
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out that we need 4 of each of these extra states for MG �
9:32� 1015 GeV to be consistent with the value of 
0

deduced from quark mass matrices.
In Fig. 1 we plot the evolution of the gauge couplings

from MZ to MU. In Fig. 2 we show in more detail the
evolution of the gauge couplings in the Pati-Salam energy
region. The two bands for the�4 and�2R couplings are due
to strong coupling uncertainty at MZ. For �3�MZ� �
0:1176, as can be seen from Fig. 3, we obtain MU �
1:96� 1016 GeV.

The remaining parameters to be determined are b1, b2,
and �ij of the right-handed neutrino mass matrix. We find
that MN is proportional to b2, MN � b2MRM

0
N , thus b2 is

related to the scale of the light matrix m�. Also, the choice
b1 � 1:1 leads to agreement with the data, while implying

 � 1:1

����

p
� 0:25.

III. RELATION OF THEORY TO NEUTRINO
OBSERVABLES

A. Running of neutrino masses and mixing angles

One of the problems one encounters when searching for
a specific mass matrix for the light neutrinos via the seesaw
formula is the effects induced by the renormalization group
equations. The low-energy neutrino data could be consid-
erably different from the results at the seesaw scale. The
running of neutrino masses and mixing angles has been
extensively discussed for energies below the seesaw scales
[23–25] as well as above [11,12,26]. The running of the
effective neutrino mass matrix m� above and between the
seesaw scales is split into two terms

 m� � �
v2

4
��
�n�
� 2Y

�n�

�M
�n�
�1Y

�n�
T
��; (15)

where � is related to the coefficient of the effective 5
dimensional operator LLhuhu, (n) labels the effective field
theories with Mn right-handed neutrino integrated out

(Mn  Mn�1  Mn�2; . . . ) and Y
�n�

� are the neutrino cou-
plings at an energy scale M between two RH neutrino

massesMn  M  Mn�1, while Y
�n�

� � 0 below the lightest
RH neutrino mass. These effective parameters govern the
evolution below the highest seesaw scale and obey the
differential equation [23–25]

 16�2 dX
�n�

dt
� �YeY

y
e � Y

�n�

�Y
�n�
y
��TX

�n�

� X
�n�

�YeY
y
e � Y

�n�

�Y
�n�
y
��T

� �2 Tr�Y
�n�

�Y
�n�
y
� � 3YuY

y
u � � 6=5g2

1 � 6g2
2�X
�n�

;

(16)

where X � �, Y�M�1YT� . The RGEs have been solved both
numerically and also analytically [11,12,25]. Numerically,
below the lightest heavy RH neutrino mass large renor-
malization effects can be experienced only in the case of
degenerate light neutrino masses for very large tan�
[25,27]. Above this mass things are more complicated
due to the nontrivial dependence of the heavy neutrino
mass couplings, unless M�c is diagonal. For the leptonic
mixing angles, in the case of normal hierarchy relevant to
our model, one expects negligible effects for the solar
mixing angle while �13 and �23 are expected to run faster
[13].

On the other hand, studying the analytical expressions
obtained after approximation, exactly the opposite behav-
ior is predicted and the solar mixing angle receives larger
renormalization effects than �13 or �23. However, possible
cancellations may occur and enhancement or suppression
factors may appear, thus the numerical solutions may differ
considerably from these estimates.

In our string-inspired model the Dirac and heavy
Majorana mass matrices at the unification scale are pa-
rametrized in terms of order 1 superpotential coefficients

 

FIG. 3 (color online). The unification point of Pati-Salam
gauge couplings for �3�MZ� � 0:1176.

 

FIG. 2 (color online). Close-up of the gauge couplings in the
Pati-Salam energy region.
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�ij�MU�whose exact numerical values are not known. The
flavour structure at the unification scale might also be
different from that at the electroweak scale MZ. Thus,
even if the Yukawa parameters are determined at MZ, to
understand the structure of the theory at MU, and conse-
quently any possible family symmetry, we would certainly
need the parameter values at MU.

In this section we study the renormalization group flow
of the neutrino mass matrices ‘‘top down’’ from the Pati-
Salam scale MG to the weak scale. We choose sets of
values of the undetermined order 1 coefficients at the
high scale and run the renormalization group equations
down to MZ where we calculate �m2

�ij and ��ij and com-
pare them with the experimental values. Study of a bottom-
up approach has been performed [13] and we will compare
our results to this work. The renormalization group analy-
ses of the neutrino parameters, successively integrating out
the right-handed neutrinos, is performed using the software
packages REAP/MPT [11].

(i) We generate appropriate numerical values for the
coefficients �11, �12, �13, �22, �23, so that after
the evolution ofm� to low energy we obtain values in
agreement with the experimental data. The coeffi-
cient �33 is set to unity (which can always be done
by adjusting the value of b2). Experimentally accept-
able solutions can be seen in Table V. In Table VI we
present the resulting values of �ij and �m2

ij at the
scale MZ. The mass-squared differences lie in the
ranges �m2

atm � 
1:33–3:39� � 10�3 eV2, �m2
sol �


7:24–8:85� � 10�5 eV2. These are consistent
with the experimental data �m2

atm;exp � 
1:3–3:4� �
10�3 eV2 and �m2

sol;exp � 
7:1–8:9� � 10�5 eV2.
The mixing angles are also found in the allowed
ranges �12 � 
29:4–37:6�, �23 � 
36:9–51:0�, and
�13 � 
0:86–12:50�.

(ii) In Fig. 4 we plot the running of the three light
neutrino Majorana masses (m1 <m2 <m3) in the
energy range MG �MZ. The initial (GUT) neutrino
eigenmasses are all larger than their low-energy

values. Significant running is observed mainly for
the heaviest eigenmass m�3

. For experimentally
acceptable mass-squared differences �m2

�ij at MZ,
in all cases their corresponding values at the GUT
scale lie out of the acceptable range. In this scenario
with hierarchical light neutrino masses, we find that
large renormalization effects occur above the heavy
neutrino threshold since the Yukawa couplings Y�
are large and the second term in Eq. (15) dominates.

Also, since m�1
<

������������
�m2

sol

q
, the solar angle turns out

to be more stable compared to the running of the
�23, as can be seen in Fig. 5. ’The running of light
neutrino mass-squared differences is displayed in
Fig. 6. These results are in agreement with the
findings of Ref. [13].

(iii) In Fig. 7 we plot the distribution �m2
atm versus

�m2
sol at the two scales MG (Table VII) and MZ

for the ten models of Table V. We find that the
hierarchy of the neutrino masses at the Pati-Salam
breaking scale tends to be greater than that at low

TABLE V. Numerical values of parameters �11, �12, �13,
�22, �23 at MG.

Solution �11 �12 �13 �22 �23

1 0.105 35 0.109 72 0.860 12 0.104 91 0.910 14
2 0.119 39 0.109 54 0.809 12 0.106 83 0.938 32
3 0.103 92 0.117 87 0.977 96 0.105 12 0.987 49
4 0.091 43 0.109 62 0.876 16 0.100 63 0.937 98
5 0.126 97 0.127 45 0.998 60 0.116 52 0.999 80
6 0.109 20 0.096 38 1.009 75 0.102 38 0.935 61
7 0.101 24 0.116 82 0.985 68 0.106 88 0.991 56
8 0.123 58 0.095 14 0.995 80 0.104 34 0.956 46
9 0.130 06 0.119 73 1.022 35 0.103 78 0.894 60
10 0.126 65 0.121 37 1.000 29 0.106 95 0.915 78

TABLE VI. Values of the physical parameters �m2
atm, �m2

sol,
�12, �13, �23 at MZ (mass units eV2).

Solution �m2
atm � 103 �m2

sol � 105 �12 �13 �23

1 2.7149 7.9621 29.442 3.9859 44.114
2 2.3145 7.9514 34.289 12.507 51.047
3 1.8978 8.6141 30.560 0.8656 46.230
4 3.0062 8.3217 34.347 1.8512 44.333
5 3.3905 7.2468 30.245 2.9355 36.900
6 3.2459 7.5351 34.296 1.3701 46.947
7 2.0171 7.9464 34.432 1.0086 50.279
8 1.3321 7.9060 37.646 6.1490 43.067
9 2.4867 8.8561 29.592 5.6007 42.970
10 2.1652 7.8869 29.189 3.1512 37.220

 

FIG. 4 (color online). The running of the light neutrino
masses.
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energies. Several models predict �m2
23=�m2

21 out
of the experimental range at MG, although after the
running at MZ they are consistent with the data.

(iv) Finally, we check the predictions of our model for
the effective neutrino mass parameter relevant for
��0� decay. This parameter can be written in terms
of the observable quantities as
 

jhmij � j�m1cos2�� � e
i�

������������
�msol

p
sin2���cos2�13

�
��������������
�matm

p
sin2�13ei�j: (17)

In the last column of Table VII the ��0�-decay predic-
tions are presented for solutions 1–10. Many current ex-
periments attempt to measure this quantity [28]; the best
current limit on the effective mass is given by the
Heidelberg-Moscow Collaboration [29]

 hmi � 0:35z eV; (18)

where the parameter z � O�1� allows for uncertainty aris-
ing from nuclear matrix elements.

In a recent analysis of neutrinoless double beta decay
[30] the allowable range of the effective mass parameter
was given for specific scenarios. In the case of the normal
hierarchy the bounds are

 0< hmi< 0:007 eV (19)

thus our results are in the experimentally acceptable
region.

B. Number of free parameters and predictivity

We now discuss the number of continuously or dis-
cretely adjustable parameters involved in fitting the ob-
served values of neutrino masses and mixings, taking into
account also the quark and charged lepton masses and
quark mixings and the preservation of gauge unification.
The number of parameters in the theory is a priori large,
consisting of the U(1) charges, the expansion parameters

 

FIG. 7 (color online). �m2
12 and �m2

23 at MZ and at MG.

TABLE VII. Values of the physical parameters �m2
atm and

�m2
sol at MG; the effective neutrino mass hmi related to ��0�

decay; and the parameter b2 which determines the scale of the
light matrix m�.

Solution �m2
atm�MG� � 103 �m2

sol�MG� � 105 hmi b2

1 10.5294 27.6096 0.003 61 3.41
2 8.1987 30.1333 0.006 33 2.88
3 7.2533 31.6108 0.006 07 1.50
4 11.7749 30.4352 0.007 53 1.28
5 14.093 23.7416 0.003 46 2.85
6 12.347 28.2642 0.008 22 1.26
7 7.4256 30.855 0.008 21 1.23
8 5.2910 29.8775 0.008 52 1.17
9 9.746 56 30.5418 0.003 79 3.64
10 8.996 95 25.8838 0.003 27 3.42

 

FIG. 6 (color online). Running of �m2
sol and �m2

atm.

 

FIG. 5 (color online). The evolution of the mixing angles.
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arising from the singlet v.e.v. and SU�4� � SU�2�R break-
ing Higgses, the underlying yij and�ij parameters, and the
Clebsch factors for (only) those operators containing one
or more powers of H �H.

In order to restrict our search and provide some non-
trivial relations between observables, we chose not to
consider all of these as independently adjustable, and to
restrict the values of others to respect some notion of
‘‘naturalness.’’ For the theory to provide a meaningful
explanation of the hierarchy and mixing of fermion
masses, numbers much smaller or larger than unity should
not be put in by hand, but arise from some power of a v.e.v.
breaking an underlying symmetry of the model. Thus, all
the coefficients of the operators producing fermion mass
terms in Eqs. (2) and (3) are numbers of order 1. We do not
rule out the possibility that some string model might give
rise to underlying superpotential coefficients much larger
or smaller than 1, but this would not lead to an explanation
of the observed hierarchy of fermion masses within our
framework.

To further remove free parameters, the magnitudes of
the yij parameters can be set to unity while still fitting the
observed fermion masses. (We did not include complex
phases.) We also imposed that the Clebsch factors should
be equal to unity except when this was incompatible with
observations, in which case we restricted their values to
zero or some simple rational number. Thus the 9 quark and
charged lepton masses and 3 quark mixing angles are
exchanged for the four discrete charges of F1;2 and �F1;2,
the two expansion parameters  and b1 and a small set of
discretely chosen Clebsch factors not equal to 1.

Thus the basic hierarchy of (both heavy and light)
neutrino masses is already fixed, up to the discrete choice
of x and z0 charges and the parameter b2, which mainly
influence the overall scale of neutrino masses without
affecting the structure of the mass matrix. As shown in
Table III and the accompanying discussion there is a
degeneracy since different choices for the charges can
produce the same effective mass matrices. Now we intro-
duce the �ij parameters which multiply the entries of the
RHN mass matrix: clearly if the choice of these were
totally unrestricted, there would be no prediction for the
light neutrino mass matrix. We apply the restriction that
their sizes should not differ by more than an order of
magnitude. In practice we may set �33 � 1 and impose
that the magnitude of �ij must be inside the range 
0:1; 1�.

With this restriction we find it is impossible to achieve a
solution with inverted hierarchy or quasidegenerate light
neutrino masses (after extensive searches, and using free-
dom to adjust Clebsch coefficients in the neutrino Dirac
matrix). In order to explain maximal mixing, some entries
in the light neutrino mass matrix must be very close in
magnitude, which together with the hierarchy of powers of
 in the Dirac and Majorana mass matrices, restricts the
possibilities considerably. However, we cannot give an

algebraic proof that other possibilities beyond normal hi-
erarchy are impossible, because the RG equations are not
analytically solved in the regime we are considering.

We considered the possibility of reducing the number of
continuously adjustable parameters by setting b1 � 1 ex-
actly (thus 
 �

����

p

) but this would require some�ij values
to be outside the range 
0:1; 1� hence it should be rejected
by our ‘‘naturalness’’ criterion.

IV. CONCLUSIONS

In this work, we studied the running of neutrino masses
and mixing angles in a supersymmetric string-inspired
SU�4� � SU�2�L � SU�2�R � U�1�X model. An accurate
description of the low-energy neutrino data forced us to
introduce two singlets charged under the U�1�X, leading to
two expansion parameters. The mass matrices are then
constructed in terms of three expansion parameters

 
 	
h�i
MU

; 
0 	
hH �Hi

M2
U

; 
00 	
h	i
MU

; (20)

where � and 	 are singlets and H, �H the SU�4� �
SU�2�R-breaking Higgses. The model is simplified by the
fractional U�1�X charges of H and 	, which ensure that the
parameter 
00 only appears as a prefactor to the heavy
Majorana neutrino masses.

The expansion parameter arising from the Higgs v.e.v.’s
defines the ratio of the SU(4) breaking scale MG to the
unification scale MU: we performed a renormalization
group analysis of gauge couplings under this constraint
and found successful unification with the addition of extra
states usually present in a string spectrum.

Assuming that only the third generation of quarks and
charged leptons acquire masses at tree level and under a
specific choice of U�1�X charges as well as Clebsch factors,
we examined the implications for the light neutrino masses
resulting from the seesaw formula. We found that the light
neutrino mass spectrum must be hierarchical, given the
requirement from naturalness that underlying superpoten-
tial couplings are of order 1. Also the mass hierarchy of
light neutrinos tends to be larger at the GUT scale than at
MZ due the renormalization group running. The solar
mixing angle �12 is stable under RG evolution while larger
renormalization effects are found for the atmospheric mix-
ing angle �23 and �13, always with their values at MZ in
agreement with experiment.
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