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We consider the constraints on string networks with junctions in which the strings may all be different,
as may be found, for example, in a network of �p; q� cosmic superstrings. We concentrate on three aspects
of junction dynamics. First we consider the propagation of small-amplitude waves across a static three-
string junction. Then, generalizing our earlier work, we determine the kinematic constraints on two
colliding strings with different tensions. As before, the important conclusion is that strings do not always
reconnect with a third string; they can pass straight through one another (or in the case of non-Abelian
strings become stuck in an X configuration), the constraint depending on the angle at which the strings
meet, on their relative velocity, and on the ratios of the string tensions. For example, if the two colliding
strings have equal tensions, then for ultrarelativistic initial velocities they pass through one another.
However, if their tensions are sufficiently different they can reconnect. Finally, we consider the global
properties of junctions and strings in a network. Assuming that, in a network, the incoming waves at a
junction are independently randomly distributed, we determine the root-mean-square (r.m.s.) velocities of
strings and calculate the average speed at which a junction moves along each of the three strings from
which it is formed. Our findings suggest that junction dynamics may be such as to preferentially remove
the heavy strings from the network leaving a network of predominantly light strings. Furthermore the
r.m.s. velocity of strings in a network with junctions is smaller than 1=

���
2
p

, the result for conventional
Nambu-Goto strings without junctions in Minkowski space-time.
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I. INTRODUCTION

The evolution of cosmic string networks and their ob-
servational consequences are attracting a great deal of
interest, particularly since they may lead to indirect obser-
vational tests of superstring theory. The annihilation of two
branes at the end of brane inflation [1–5] is thought to lead
to the formation of cosmic superstrings which can be
either fundamental F-strings, Dirichlet D-strings, or
�p; q�-strings, bound states of the two [6–9]. Most impor-
tantly, the predicted tensions of these strings are not only
compatible with current observational bounds (G� &

2:3� 10�7 using the third year Wilkinson Microwave
Anisotropy Probe (WMAP) data [10]), but they also lie
in a window which may be testable with the future LISA
gravitational-wave detector [11–13].

Whilst cosmic superstrings share many of the properties
of standard grand unified (GUT) cosmic strings [14,15],
they differ in some important respects. First, when 2 F-
strings (or 2 D-strings) intersect, they do not necessarily
‘‘intercommute’’—or exchange partners—with probabil-

ity P � 1 [16,17]. (An exception for local cosmic strings is
when they intercommute at speeds very close to the speed
of light [18].) The effect of reducing P is to increase the
density of strings in the final scaling solution and hence the
gravity wave signal, though the exact manner in which this
happens is under debate [11–13,19,20]. Second, the differ-
ent kinds of strings in a cosmic superstring network can
meet at junctions [21]. Thus when an F and D-string
intersect they cannot intercommute, but rather two junc-
tions are formed and the original strings become connected
by a third �p; q� bound state. Junctions also exist in non-
Abelian string networks, for which the fundamental group
�1�M� of the vacuum manifold M is non-Abelian.

Even though several authors have addressed both ana-
lytically and numerically the cosmological evolution of
string networks with junctions [19,22–28], the late-time
behavior of the network is still not fully understood, par-
ticularly when there are different types of string. One
possible outcome is that the junctions play a minor role
and the network reaches a scaling solution similar to that of
a GUT string network. In that case it is possible to make
predictions for cosmic superstring networks by extracting
the information from the GUT string simulations, with
suitable allowance for P � 1 and in principle for different
tensions. A second possibility is that the presence of junc-
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tions makes the network freeze and eventually dominates
the energy density of the Universe. Similar questions have
been addressed for networks of domain walls with junc-
tions [29–34].

In a previous paper [35] we studied the dynamics of
junctions in a local string network in which the individual
strings have no long-range interactions and are well de-
scribed by the Nambu-Goto action. We set up the equations
of motion for three strings of tensions �j (j � 1, 2, 3)
meeting at a junction at position X�t�, and were able to
solve for the dynamics of X�t� as well as to determine how
the junction moved along each of the strings. A related
approach has also been developed in the context of repre-
sentations of baryons as pieces of open string connected at
one common point [36,37]. Having constructed this for-
malism, we initially presented a simple highly symmetric
exact oscillating loop solution. As in the case of ordinary
cosmic strings, the existence of exact loop solutions may
be important in analyzing the likely behavior of loops in
general. Loops of strings with junctions generally evolve
rather differently to standard string loops; they do not
oscillate periodically and initial analysis indicates that
the number of cusps on the loops may be rather different
than for conventional Nambu-Goto loops. We intend to
return to these points in a future publication.

Our second result concerned the intersection of two
strings with equal tensions �1, meeting at an angle �,
but with equal and opposite velocities v. When these
strings collide, for them to exchange partners and become
linked by a third string of tension �3 requires a strong
kinematical constraint. We also discussed the case of non-
Abelian strings, which may become joined by a new string
lying along the direction of motion of the two initial
strings, and we found the kinematic constraint for this
case too.

We expect that these kinematical constraints could have
significant consequences on the evolution of string net-
works with junctions: if the relative velocity of the strings
is large, no junction will form and the strings will pass
through each other. This in turn means that fewer loops will
be formed, and hence that the network would radiate less
energy. It may thus be important to include these con-
straints in analytic and numerical models of network evo-
lution with junctions.

In this paper we extend the work of [35], and focus on
three aspects of junction dynamics which we believe will
be important to understand the global properties of the
network. After a review of the equations of motion describ-
ing junction evolution in Sec. II, we first consider the
propagation of small-amplitude waves across a static junc-
tion formed of three strings with generally different ten-
sions (Sec. III). Such small waves will inevitably be
present on strings in a network, and will radiate gravita-
tionally. We determine the fraction of energy transmitted
and reflected across the junction. Then, in Secs. IV and V,

we generalize the kinematic constraints of [35] to the case
in which the two colliding strings have different tensions
�1 and �2. Since the initial velocity of strings is crucial to
determining the importance of the kinematical constraints,
in Secs. VI and VII we consider the global properties of
junctions and strings in a network. Assuming that, in a
network, the incoming waves at a junction are randomly
distributed, we determine the r.m.s. velocities of strings
and calculate the average speed at which a junction moves
along each of the three strings from which it is formed. Our
findings suggest that junction dynamics may be such as to
preferentially remove the heavy strings from the network.
Finally we conclude in Sec. VIII.

II. REVIEW OF THE BASICS

We begin by briefly reviewing the equations of motion
for strings that form Y junctions obtained in [35].

We choose the temporal world sheet coordinate to be the
global time, � � t, and use the conformal gauge in which
the spatial coordinates x��; t� satisfy

 

_x � x0 � 0; _x2 � x02 � 1; (1)

where _x � @tx and x0 � @�x. The action for three strings
of tensions �j (j � 1, 2, 3) meeting at a junction is

 S � �
X
j

�j

Z
dt
Z
d���sj�t� � ��

������������������������
x02j �1� _x2

j �
q

�
X
j

Z
dtfj�t� � �xj�sj�t�; t� �X�t�	; (2)

where X�t� is the position of the vertex, fj are Lagrange
multipliers, and the sj�t� are the values of the spatial world
sheet coordinate at the vertex. It is straightforward to
generalize this action to include other vertices, present,
for example, in loop configurations.

Varying xj yields the wave equation, with solution

 x j��; t� �
1
2�aj��� t� � bj��� t�	; (3)

where, in order to satisfy the gauge conditions (1),

 a 02j � b02j � 1: (4)

The Lagrange multipliers impose boundary conditions that
may be written

 a j�sj � t� � bj�sj � t� � 2X�t�; (5)

while varying X gives a relation between the Lagrange
multipliers which can be reduced to

 

X
j

�j��1� _sj�a0j � �1� _sj�b0j	 � 0: (6)

Eliminating the a0j using the time derivative of (5) then
yields
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_X � �
1

�

X
j

�j�1� _sj�b0j; (7)

where

 � � �1 ��2 ��3: (8)

At the junction, the amplitudes b0j of the incoming waves
are known from the initial conditions; those of the outgoing
waves, a0j, together with the position of the vertex, are
given by (5) and (6), provided the _sj are known. Finally,
the latter may be found by solving the constraint equations
a02j � 1. The result depends on the string tensions and on
the angles between the unit vectors b0j. Relative to [35], we
introduce a slight change of notation, writing for example
c1 � b02 � b03 (denoted by c23 in [35]). It will be useful to
introduce the quantities �j defined, for example, by

 �1 � �2 ��3 ��1: (9)

Then the value of _sk is given by

 1� _sk �
�Mk�1� ck�

�kM
; (10)

where the Mj are defined by M1 � �2�3 along with two
similar equations, and

 M �
X
j

Mj�1� cj�: (11)

Notice that since the _sk 
 1, it follows that the string
tensions satisfy triangle inequalities,

 �j � 0: (12)

Finally, it follows from (10) that the _sj satisfy the energy
conservation condition

 

X
j

�j _sj � 0: (13)

III. SMALL-AMPLITUDE WAVES

A first interesting application of these results is to the
reflection and transmission of small-amplitude waves at a
junction. Small-amplitude waves are expected to build up
on strings as a result of self-intersections and interactions
with other strings, and they will radiate gravitationally. It is
important to understand how they propagate across a
junction.

Consider three straight, static strings, for which

 a 0j � b0j � �cos�j; sin�j; 0� � ej; (14)

with the junction at X � 0. The equilibrium condition
_sj � 0 determines the angles between them through (10);
for example, we have

 

c1 � cos��3 � �2� �
�2

1 ��
2
2 ��

2
3

2�2�3
;

sin��3 � �2� �
�

2�2�3
;

(15)

where

 � �
�������������������
��1�2�3
p

: (16)

Note that as a consequence of (12), � is real.
Now suppose there is a small incoming perturbation on

the first string, so that b01 � e1 � �b01, with

 �b01�s� � 	f1 cosks; (17)

where 	 is a small dimensionless parameter and f1 is a unit
vector satisfying e1 � f1 � 0; we set �b02 � �b03 � 0.

The simplest case is where f1 � �0; 0; 1� since then all
�cj � 0, and therefore � _sj � 0 so that the junction re-
mains at the same value of � on all strings. In that case, the
outgoing waves are also in the z-direction. From (7) we
find

 � _X�t� � �
�1

�
	f1 coskt (18)

and hence

 �a01�s� �
�1

�
	f1 cosks;

�a02�s� � �a03�s� � �
2�1

�
	f1 cosks:

(19)

It is then straightforward to find the fraction of energy
transmitted along the strings of tension �2;3 and reflected
along the string of tension �1. Since

 �Ej �
�j

4

Z
d���a02j � �b02j �; (20)

we find

 R1 �
�2

1

�2 ; T2 � 4
�1�2

�2 ; T3 � 4
�1�3

�2 : (21)

For instance, suppose that �1  �2 ��3, so that the
initial perturbation is along the light string. Then, as ex-
pected, almost all the energy is essentially reflected off the
junction.

The results are more interesting if we take f1 in the
xy-plane, because then the values of sj do oscillate and
the junction no longer stays at a fixed position on each
string. Let us set

 f j � �� sin�j; cos�j; 0�; (22)

so that ej � fj � 0 for each j, and again take �b01 of the
form (17), with �b02 � �b03 � 0. Then we have
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 �c1 � 0; �c2 � �
�

2�1�3
	 coskt;

�c3 �
�

2�1�2
	 coskt:

(23)

It follows that

 � _s1 �
��2 ��3��1

�
	 coskt;

� _s2 � �
�1�1

�
	 coskt � �� _s3:

(24)

Despite this difference, the expressions for the outgoing-
wave amplitudes are very similar, except that they are no
longer all in the same direction. We find

 � _X�t� � 	 coskt
�
��2 ��3��1

�
e1 �

�2 ��3

�
f1

�
(25)

from which it follows that
 

�a01�s� � �
�1

�
	f1 cosks; �a02�s� �

2�1

�
	f2 cosks;

�a03�s� �
2�1

�
	f3 cosks:

(26)

The fact that the amplitudes of the outgoing waves are
the same in magnitude independent of the orientation of f1

is at first sight remarkable, but actually it follows from the
fact that we can regard the waves as representing massless
particles propagating along the strings. The amplitudes of
the outgoing waves can be derived from conservation of
energy and momentum. It follows that the reflection and
transmission coefficients are as given in (21), a result that
has also been obtained in the more general setting of
multivolume junctions by [38].

Comparing (24) with (26), one interesting point
emerges: in the first case, a01 is in phase with b01, whereas
in the second case it is in antiphase. This means that if the
incoming wave is at an intermediate angle, the reflected
wave is tilted in the opposite direction.

IV. COLLISIONS OF STRAIGHT STRINGS

As summarized in the introduction, in [35] we discussed
the collision of two straight strings of equal tension, �1 �
�2, and derived kinematical constraints on such a process.
Here we wish to extend this discussion to the case of
unequal tension, and hence it will be useful to define

 �� � �1 ��2; �� � �1 ��2: (27)

Since �i � 0, �3 is bounded by

 �� 
 �3 
 ��: (28)

This extension is nontrivial as the problem now lacks the
symmetry associated with the equal-tension case, and as a
first step one must determine the orientation and velocity of

the joining string after the collision. This is the aim of the
present section.

Consider two strings of tension�1 and�2 parallel to the
xy-plane but at angles �� to the x-axis, and approaching
each other with velocities�v in the z-direction. Before the
collision (for t < 0, see Fig. 1) we take

 x 1;2��; t� � ��

�1� cos�;�
�1� sin�;�vt�; (29)

where 
�1 �
��������������
1� v2
p

. Thus

 a 01;2 � ��

�1 cos�;�
�1 sin�;�v�;

b01;2 � ��

�1 cos�;�
�1 sin�;�v�:

(30)

At the collision, t � 0, we suppose that the strings inter-
change partners. Now, since �� � 0, we can no longer
conclude that the third—joining—string formed after the
two original strings exchange partners, will be static and
that it will lie either along the x- or y-axis. It is still true that
this third string must be parallel to the xy-plane and that
there are two orientations for it, depending on which ends
of the original strings are joined to each other. To be
specific, let us assume that the two ends in the positive-x
region are joined at a new vertex, X, while those in the

 

x link

α

− v

− v

− v
v

v

v

µ3
θ

−v

v

u

y

y

µ1

µ2

x

x

K 1

K2

µ1

µ2

µ1

µ2

FIG. 1 (color online). Two colliding strings, of unequal ten-
sion, joined by a third string (an x-link).
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negative-x region are joined to the other end of the new
string which has tension �3. We call this an x-link—see
Fig. 1. (The corresponding y-link is obtained by replacing
�! ��=2� �� and will be discussed below.)

The new string of tension�3 thus lies at an angle � to the
x axis, and moves in the z-direction with some velocity u;
thus

 x 3��; t� � �

�1
u � cos�; 
�1

u � sin�; ut�; (31)

where 
u � 1=
��������������
1� u2
p

. We now determine � and u. It
follows from (31) that

 b 03 � �

�1
u cos�; 
�1

u sin�;�u�; (32)

and thus

 c1 � �

�1
u 
�1 cos��� �� � uv;

c2 � �
�1
u 
�1 cos��� �� � uv;

c3 � 2
�2cos2�� 1:

(33)

The position of the vertex is of course X�t� � x3�s3�t�; t�,
so from (31),

 

_X � � _s3
�1
u cos�; _s3
�1

u sin�; u�: (34)

Thus, from (7) and (10), we obtain

 M _X�M3�1�c3�b03��M1�1�c1�b01�M2�1�c2�b02;

(35)

whose three components are

 �M _s3 �M3�1� c3�	
�1
u cos�

� �M1�1� c1� �M2�1� c2�	

�1 cos�;

�M _s3 �M3�1� c3�	

�1
u sin�

� �M1�1� c1� �M2�1� c2�	
�1 sin�;

�M�M3�1� c3�	u

� �M1�1� c1� �M2�1� c2�	v:

(36)

Dividing the y-component of (36) by the x-component, and
comparing with the z-component gives

 

tan�
tan�

�
u
v
�
M1�1� c1� �M2�1� c2�

M1�1� c1� �M2�1� c2�
: (37)

The first equality here allows us to eliminate �. The second,
combined with (33), then allows us to obtain an equation
for u, which simplifies to a quadratic for u2 (see
Appendix A):
 

�2
��sin2��u4 � ��2

3�1� v
2� ��2

��v2cos2�� sin2��	u2

��2
�v2cos2� � 0: (38)

This equation always has one positive root which then
determines � from (37). Notice that when �� � 0 as in
[35], then u � 0 and � � 0: this is the symmetric case. On

the other hand, in the limit when the bound in (28) is
saturated, i.e., �2

� ! �2
3, then u! v and �! �. Also,

when v! 1 for �� > 0, then u! 1 and again �! �.
The intercommutation produces kinks on the original

strings, moving along them at the speed of light; they are in
fact at the same positions as in the equal-tension case,
namely, at

 K1;2 � �
�1 cos�;�
�1 sin�;�v�t: (39)

V. KINEMATIC CONSTRAINTS

Having found the orientation and velocity of the con-
necting string, the physical condition that the junctions
must move apart imposes the requirement

 _s 3 > 0 (40)

where _s3 is given in (10). This in turn implies kinematic
constraints on the values of v and � of the colliding strings
for which an x-link can be formed. Replacing � by �=2�
� gives a similar condition for the formation of a y-link.

When �� � 0, constraint (40) reproduces the results of
[35], namely

 �< arccos
�
�3

2�1

�
�x-link�; (41)

 �> arcsin
�
�3

2�1

�
�y-link�: (42)

If these bounds are not satisfied, then Abelian strings
presumably pass through one another. Essentially this
same result, in the special case of all tensions equal �1 �
�2 � �3, was obtained earlier in the context of hadronic
strings [39], and also when �� � 0 from a different start-
ing point in the context of Type-I strings [40].

For non-Abelian strings, as discussed in [35], there is a
third possibility, namely, that a link forms in the direction
of motion of the two initial strings (a z-link). Indeed if the
string fluxes on strings 1 and 2 do not commute, then for
topological reasons the strings cannot simply pass through
one another: they may only do so with the formation of a
third string. Note that in this case we do not have strings
with three different tensions meeting at a vertex: at one end
of string 3 it is attached to two segments of string 1, and at
the other to two segments of string 2. Hence the linking
string in this case does lie along the z-axis, simplifying the
analysis. In effect, we have two vertices of the type dis-
cussed in [35]. The triangle inequalities (12) now require
that both �3 
 2�1 and �3 
 2�2. Furthermore the kine-
matic constraint in this case is that the total length of
string 3 must increase; we must add the rates from the
two ends. It is not absolutely necessary that _s3 at one
particular vertex should be positive. The required condition
is
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2�1v��3

2�1 ��3v
�

2�2v��3

2�2 ��3v
> 0: (43)

Solving for v gives the limit

 v >
4�1�2 ��2

3 �
�������������������������������������������������
�4�2

1 ��
2
3��4�

2
2 ��

2
3�

q
2��1 ��2��3

: (44)

These different constraints are summarized in Figs. 2
and 3 showing the ��; v� plane for � � 3. Figure 2 shows
the three constraints for the case �� � 0 (Eqs. (41), (42),
and (44)) and various values of�3. For non-Abelian strings
there are three different regimes: (i) if �3 >

���
2
p
�1 there is

a kinematically forbidden region for all �; (ii) for
2�1=

���
3
p

>�3 >
���
2
p
�1 only a restricted range of � are

forbidden; (iii) for �3 < 2�1=
���
3
p

the whole ��; v� plane is
included in at least one of the allowed regions. Allowed
regions for the formation of an x-link are to the left of the
solid lines, those for a y-link to the right of the dashed lines,
while for a z-link in the non-Abelian case they are above
the horizontal dotted lines.

Figure 3 shows the allowed regions for a number of
cases with �� > 0. (The sign of �� does not affect the
limits.) The allowed x-link regions are to the left of the
curves, and those for a z-link above the horizontal lines.
(The y-link regions can be found by the substitution �!
�=2� �.)

When �� � 0, it does not seem to be possible to solve
(40) analytically for all �. We note, however, that there are
certain limiting cases for which an analytic solution is
possible. First, in the low-velocity limit, v! 0, it is clear
from (38) that also u! 0. In this limit, sin� � ���=�3��
sin�. It is then straightforward to show that an x-link is
only possible if

 sin 2��v�0� <
�2
� ��

2
3

�2
� ��

2
�

: (45)

Note that the value of � increases if �3 decreases, or if ��
increases. [Recall that the triangle inequalities impose the
restrictions (28).]

We can also find a solution for � � 0. Here u is readily
obtainable from (38) and then (40) yields

 v2
���0� <

�2
3��

2
� ��

2
3�

�2
���

2
3 ��

2
��
� v2

c: (46)

Thus vc defined in (46) increases with �2
�. Both these

limits indicate that in general the kinematic constraints
exclude a smaller region of the ��; v� plane as the string
tensions become more different. This behavior is readily
seen in Fig. 3.
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(1.0, 0.8, 1.2), dashed line; (1.3, 0.5, 1.2), dotted line; (1.4, 0.4,
1.2), solid line; (1.2, 0.8, 1.0), dashed line; (1.3, 0.7, 1.0), dotted
line; (1.4, 0.6, 1.0), solid line; (1.4, 1.2, 0.4), solid line.
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FIG. 2 (color online). Kinematic constraints for �� � 0.
Allowed regions for x-links are to the left of the full curves;
for y-links to the right of the dashed curves; and, for z-links in
the non-Abelian case, above the horizontal dotted lines. The
values of �3 are 1.4, 1.2, 1.0. Allowed regions are shaded for the
�3 � 1:4 case.
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In the equal-tension case,�� � 0, vc is always less than
1. Here, however, v2

c 
 1 only if

 �2
3 � ���� � j�

2
1 ��

2
2j: (47)

If this condition is satisfied by the tension of the potentially
linking string, there is a velocity vc above which Abelian
strings will necessarily pass through each other rather than
intercommuting. However, when the condition is violated,
the entire high-velocity region v! 1 for all � is included
in the allowed region. The bounding curve in this case
bends to the right, and reaches � � �=2 at a finite velocity,
above which an x-link is kinematically allowed for any
angle �. This velocity constraint for � � �=2 is

 v2
����=2� >

�2
���

2
3 ��

2
��

�2
3��

2
� ��

2
3�
: (48)

Note that this limit is equal to 1=v2
c.

VI. RATE OF CHANGE OF STRING LENGTHS

One of the important reasons for studying the kinematics
of string collisions is that the results may throw some light
on the question of how a network of such strings would
evolve in the early universe. If we ignore the Hubble
expansion and any energy loss mechanisms, then the en-
ergy in the string network is fixed, but some strings will
shorten and others will grow. We may ask how fast, on
average, is this growth or shortening.

It is reasonable to assume that at any string junction, the
unit vectors b0j representing the ingoing waves are ran-
domly distributed on the unit sphere, and mutually inde-
pendent. (This might not be true if, for example, two of the
strings come from the same other vertex, but that is pre-
sumably not a common situation.) If the strings are all of
the same tension, then because of energy conservation it is
clear that h _sji must vanish for each j, but this is not
necessarily so if the tensions are different. And as we shall
see, even for the equal-tension case, the zero mean does not
mean that the distribution is symmetrical; it is actually not
true that strings are as likely to grow as to shrink.

Let us start by looking at the distribution of the variables
cj, assuming that the unit vectors b0j are randomly distrib-
uted on the unit sphere, and mutually independent. Let us
choose the z-axis along the direction of b03, and b02 in the
�x; z� plane; b02 � �sin�; 0; cos��. Then b01 �
�sin� cos�; sin� sin�; cos�� and we may assume a uni-
form distribution in the variables c1, c2, and � where

 c3 � c1c2 �
��������������
1� c2

1

q ��������������
1� c2

2

q
cos�: (49)

Our aim is to calculate the probability distribution for, say,
the rate _s1 at which the first string grows. Specifically, let
P� _s1�d _s1 be the probability that _s1 lies between _s1 and _s1 �
d _s1. Clearly,

 P� _s1� �
1

8�

Z 1

�1
dc1

Z 1

�1
dc2

Z 2�

0
d��

�
_s1 � 1

�
�M1�1� c1�

�1M

�
; (50)

where we have used (10), and M �M�c1; c2; c3� is de-
fined in (11).

The resulting calculation is fairly lengthy, so we relegate
the details to Appendix B. The distribution P� _s1� takes
three different analytic forms in three intervals, namely

 1: � 1< _s1 <
�2

3 ��
2
1 ��

2
2

2�1�2
;

2:
�2

3 ��
2
1 ��

2
2

2�1�2
< _s1 <

�2
2 ��

2
1 ��

2
3

2�1�3
;

3:
�2

2 ��
2
1 ��

2
3

2�1�3
< _s1 < 1:

(51)

(Without loss of generality, we have chosen �2 � �3.) To
write the final expressions for the probability distribution
concisely, it is useful to introduce the constant

 Q �
�

3�1�2�3
: (52)

Then the expressions for P� _s1� in the three regions are

 

1: P� _s1� � Q�2�2
1

�
1� _s1

1� _s1

�
2 �2�2 � 2�3 ��1� � �2�1 ��2 ��3� _s1

��1 _s1 ��2 ��3�
3 ;

2: P� _s1� � Q�2
2

�2�1 ��2 ��3�

�1�1� _s1�
2 ;

3: P� _s1� � Q�2
1�

2
1

��1 � 2�2 � 2�3� � �2�1 ��2 ��3� _s1

��1 _s1 ��2 ��3�
3 :

(53)

The probability distribution has kinks at the boundaries
between these regions, given by (53). The form of the
distribution is illustrated for various cases in Fig. 4.

In the particular case where the tensions are all equal, the
distribution has a single kink, at _s1 � �

1
2 . Its form is

 1: P� _s1� �
27

� _s1 � 2�3

�
1� _s1

1� _s1

�
2

�
_s1 <�

1

2

�
;

3: P� _s1� �
4 _s1 � 5

� _s1 � 2�3

�
_s1 >�

1

2

�
:
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It is interesting that although the mean value of _s1 in this
distribution is zero, as it must be, the distribution is not
symmetrical—the dotted curve in Fig. 4. At any particular
time, it is most probable that one of the three legs is
growing, while the other two are shrinking (of course at
a slower rate).

More generally, if �2 � �3, there is only a single kink;
three of the curves in Fig. 4 are examples of this case, with
�1 � 1:4, 1.0, and 0.2.

It is now straightforward (if tedious) to compute the
average value of _s1. We find
 

h _s1i �
3�1 ��

3�1
�
Q
�1

�
���1 ����2

1 ln
��1

4�2�3

� ��1 � �3��
2
2 ln

��2

4�1�3
� ��1 � �2��

2
3 ln

��3

4�1�2

�
:

(54)

Note that the expression (54) is symmetrical under the
interchange �2 $ �3, as it should be. It is also easy to
check that it satisfies the consistency condition

 �1h _s1i ��2h _s2i ��3h _s3i � 0: (55)

Finally it is interesting to note that in general h _s1i is
more likely to be positive if �1 is small, or if the other two
tensions are very different. In Fig. 5, the average value is
plotted against j�2 ��3j for various values of �1. Notice

that for �1 
 1, h _s1i is always positive. It appears that in a
network of strings there may be a tendency for the lighter
strings to grow at the expense of the heavier ones. This
seems to be consistent with results obtained by studying
the statistical mechanics of such networks of strings [41].

VII. AVERAGE STRING VELOCITY

For ordinary Nambu-Goto strings in flat space-time, the
r.m.s. transverse string velocity in a random tangle of
strings is 1=

���
2
p

. It is interesting to ask whether this figure
would be different for junction-forming strings. It is easy in
principle to answer this question. For example the square
of the velocity of the first string adjacent to the vertex is

 

_x 2
1 �

1
2�1� a01 � b01�; (56)

and using (5) and (7) this can be expressed in terms of the
cj. We have
 

�1� _s1�a01 � b01 �
�1

�
�1� _s1� �

2�2

�
�1� _s2�c3

�
2�3

�
�1� _s3�c2: (57)

Using (10) this becomes

 a 01 �b
0
1

�
�1M1�1�c1��2�1M2�1�c2�c3�2�1M3�1�c3�c2

��1M1�1�c1��2�1M2�1�c2��2�1M3�1�c3�
:

(58)

We can then compute the average over the probability
distribution already obtained by plugging this expression
into an integral of the same form as (50). In this case, there
does not seem to be any obvious way of obtaining an
analytic result, but it is possible to make some progress.
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FIG. 5 (color online). Average value of _s1 plotted against
j�2 ��3j for �1 � 0:2, 0.6, 1.0, and 1.4.
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FIG. 4 (color online). The distribution of P� _s1� plotted against
_s1. The curves shown are for ��1; �2; �3� � �1:4; 0:8; 0:8�,
dashed line; (1.4, 1.2, 0.4), dotted line; (1.4, 1.4, 0.2), solid
line; (1.0, 1.0, 1.0), dotted line; (1.0, 1.4, 0.6), solid line; (0.2,
1.4, 1.4), solid line.
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It seems to be slightly easier to compute the average of x02

rather than _x2:

 hx021 i �
1

2
h1� a01 � b01i

�

�
2�2

1�1� c2��1� c3�

�M1�1� c1� � 2�1��3�1� c2� � �2�1� c3�	

�
:

(59)

Then if we use as independent variables c2, c3,  with
now

 c1 � c2c3 �
��������������
1� c2

2

q ��������������
1� c2

3

q
cos ; (60)

we can perform the  integration, to yield

 hx021 i �
�2

1

2

Z 1

�1
dc2

Z 1

�1
dc3
�1� c2��1� c3�������������������

F2 �G2
p ; (61)

where

 F � 2�1��3�1� c2� � �2�1� c3�	 � �2�3�1� c2c3�;

(62)

and

 G � �2�3

��������������
1� c2

2

q ��������������
1� c2

3

q
: (63)

Remarkably (61) can be evaluated to give the general result
 

h _x2
1i � h�1� x021 �i

�
�2

1 � 13 ��2

15��2
1 � ��2�

�
�4�1 � �����1 � ���2

15�1��1 � ���2
ln

2�1

�1 � ��

�
�4�1 � �����1 � ���2

15�1��1 � ���2
ln

2�1

�1 � ��
; (64)

where we have introduced �� � �2 ��3. A number of
interesting features can be seen. First, the result is inde-
pendent of �2 ��3, depending only on the single ratio
��=�1. Second, the limit �� � 0 gives

 h _x2
1i �

1
15�1� 8 ln2	 ’ 0:436; (65)

independently of �1. In particular we note that, even for
strings of equal tension, the r.m.s. velocity is not 1=

���
2
p

as it
is for ordinary Nambu-Goto strings without junctions.
Surprisingly, on the contrary, this value is obtained when
�� � �1, a limit in which the triangle inequality is only just

satisfied.
For completeness, in Fig. 6 we have plotted vrms ����������
h _x2

1i
q

, for various choices of �1, a function of j�2 ��3j.

VIII. CONCLUSIONS

In an earlier paper [35], we considered the kinematic
constraints on the possibility of intercommuting of strings
that form junctions. Concentrating on the case where the
approaching strings have equal tensions, we showed that if

the relative velocity with which they meet is too large, no
exchange can take place and the strings will pass through
one another (or, for non-Abelian strings, become joined by
a string in the direction of the relative velocity or form a
linked X configuration). In this paper we have extended the
analysis to the more realistic case where the approaching
strings have different tensions. For some values of the
string tensions, it may happen that ultrarelativistic strings
can exchange partners.

We first studied the reflection and transmission of small-
amplitude waves at string junctions—something that may
be important in predicting the gravitational radiation from
strings. We determined the fraction of energy transmitted
and reflected across the junction, and showed how the
reflected wave is generally tilted in the opposite direction
to the incoming wave.

In Secs. IV and V, we generalized the kinematic con-
straints (41) and (42) of I to the case in which the two
colliding strings have different tensions �1 and �2. The
question of whether strings always intercommute is vital in
understanding the evolution of a network of strings; in
particular, it affects the final density of strings found in
the scaling regime of a network, if indeed a scaling solution
is reached. We have established the criteria required for
intercommuting in terms of the incoming velocity and
angle of approach, as a function of the string tensions. A
particularly important combination of tensions is that given
in the inequality (47). If this inequality is satisfied, for
instance when �1 � �2, then ultrarelativistic strings can-
not intercommute. If it is violated, then ultrarelativistic
strings may intercommute. Our result that intercommuting
does not always happen appears at first sight to be in
contrast to the claim in [42], but we believe the regime
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FIG. 6 (color online). R.m.s. value of the string velocity v
plotted against j�2 ��3j for several values of �1.
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where their results are applicable corresponds to low ve-
locities of approach as the moduli approximation they use
breaks down for high velocities. It is in the high-velocity
regime that intercommutation may break down.

Since the initial velocity of colliding strings is crucial to
determining the importance of the kinematical constraints,
in Secs. VI and VII we considered the global properties of
junctions and strings in a network. A plausible assumption
for a string network is that the incoming waves at a
junction are randomly distributed. This has allowed us to
make progress in determining the r.m.s. velocities of
strings. In particular (ignoring energy loss mechanisms
such as expansion of the universe) we have calculated the
average speed at which a junction moves along each of the
three strings from which it is formed. Our results are
intriguing. For example, even for the case of equal-tension
strings, although the average velocity of the junctions is
zero as expected, the distribution of the velocities is not
peaked around zero, but around a negative velocity (ac-
tually around _si � �1=2) indicating that even in this ap-
parently symmetric case, it is most probable that at any
particular time, one of the three legs is growing, while the
other two are shrinking, all be it at a slower rate. The case
of unequal tensions can also be solved analytically and our
results suggest that junction dynamics may be such as to
preferentially remove the heavy strings from the network.
It thus seems likely that the system will evolve to one
where the lightest strings are dominating the dynamics,
though of course junctions are still present. Regarding the

r.m.s. velocities of the strings themselves, we showed that
they are generically smaller than the 1=

���
2
p

characteristic of
Nambu-Goto networks, even in the case when the strings
all have equal tensions.

In a future publication we intend to present some exact
solutions for loops containing junctions. Given the new
features we have uncovered for the dynamics of string
networks with junctions, we should not be surprised to
find important results concerning the distribution of kinks
and cusps in these more complicated configurations. This
in turn could have a bearing on the gravitational radiation
emitted from loops of strings with junctions.
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APPENDIX A

Here we outline the calculation of Eq. (38). Let �� �
�1 ��2, so that

 M1;2 � ��� ��3���3 ����; M3 � �2
3 ��

2
�:

Then the second equality in (37) yields

 

u
v
�
���1� 


�1
�1
u cos� cos�� ��3�uv� 


�1
�1
u sin� sin��

�3�1� 

�1
�1

u cos� cos�� ����uv� 

�1
�1

u sin� sin��
:

Next we can eliminate cos� and sin�. From the first equal-
ity in (37),

 cos� �
v cos�����������������������������������������

v2cos2�� u2sin2�
p ;

sin� �
u sin�����������������������������������������

v2cos2�� u2sin2�
p :

Thus multiplying up and grouping all the terms involving

�1 on the right, gives
 

��3u���v� � ���u��3v�uv

�

�1
�1

u����������������������������������������
v2cos2�� u2sin2�
p ����v��3u�vcos2�

� ���u��3v�usin2�	:

Now square to obtain

 �v2cos2�� u2sin2����3u�1� v2� ���v�1� u2�	2

� ��1� v2��1� u2�����v2cos2�� u2sin2��

��3uv	
2:

On expansion, the terms in uv, which come from the cross
terms in each square bracket, cancel, and we are left with

 F��2
3u

2�1� v2� ��2
��1� u

2��v2cos2�� u2sin2��	 � 0;

where

 F � �1� v2��v2cos2�� u2sin2�� � v2�1� u2�

which vanishes only if v � �u. Thus we finally get the
quadratic (38) for u2:
 

�2
��sin2��u4 � ��2

3�1� v
2� ��2

��v2cos2�� sin2��	u2

��2
�v

2cos2� � 0:

This always has one positive root as the discriminant is
positive.

APPENDIX B

To carry out the integral in Eq. (50), it is convenient to
go over to a more symmetrical form by changing variable
from� to c3, using (49). This introduces a Jacobian factor,
which is the inverse of
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dc3

d�
� �

��������������
1� c2

1

q ��������������
1� c2

2

q
sin� � �

���
J
p
;

where

 J � �1� c2
1��1� c

2
2� � �c3 � c1c2�

2

� 1� c2
1 � c

2
2 � c

2
3 � 2c1c2c3:

Note that the physically allowed region in �c1; c2; c3� space
is characterized by J � 0. There is also a factor of 2
because there are two values of � for each c3. Letting
w1 � 1� _s1, we arrive at
 

P�1� w1� �
1

4�

Z 1

�1
dc1

Z 1

�1
dc2

Z 1

�1
dc3

��J����
J
p

� �
�
w1 �

�M1�1� c1�

�1M

�
: (B1)

It is straightforward to perform the c3 integral using the
delta function. This gives

 P�1� w1� �
1

4�
�
�1

M1

M3

1

w2
1

Z 1

�1
dc1�1� c1�

�
Z 1

�1
dc2

��J����
J
p ; (B2)

where now

 J � �1� c2
1��1� c

2
2� � �c3�w1� � c1c2	

2: (B3)

Here c3�w1� is obtained by equating to zero the argument
of the delta function in (B2) and solving for c3:

 c3�w1� � 1�
M1

M3
�1� c1�

�
1�

�
�1w1

�
�
M2

M3
�1� c2�:

(B4)

Now since, by (B3), J is a quadratic function of c2, we can
go on to perform the c2 integral in (B2). It is clear from
(B3) that J 
 0 when c2 � �1, so the effective limits of
integration for the c2 integral are given by the roots of J �
0. If there are no real roots, the contribution is zero.
Specifically, J has the form

 J �
1

M2
3

�A� 2Bc2 � Kc
2
2�; (B5)

where

 A � �1� c2
1�M

2
3 �H

2; B � �M2 � c1M3�H;

K � M2
2 �M

2
3 � 2c1M2M3;

(B6)

with

 H � M2 �M3 � �1� c1�Y; (B7)

where

 Y � M1

�
�

�1w1
� 1

�
: (B8)

Note that by the triangle inequality, Y is positive. The
discriminant, which determines whether real roots exist, is

 B2 � AK � �1� c2
1��K �H

2� � �1� c2
1�D; (B9)

say. If the roots are c2�, then the c2 integral reduces to

 

Z c2�

c2�

dc2���
J
p �

�M3����
K
p : (B10)

Thus

 P�1� w1� �
�M1

4�1w
2
1

Z 1

�1
dc1
�1� c1�����

K
p ��D�: (B11)

Now from (B6)–(B8),
 

D��M2�M3�
2�2�1�c1�M2M3��M2�M3��1�c1�Y	

2

��1�c1���2M2M3�2�M2�M3�Y��1�c1�Y
2	: (B12)

It is useful to change the variable from c1 to  defined by

 2 � K � �M2 �M3�
2 � 2�1� c1�M2M3: (B13)

The range of values of  corresponding to �1< c1 < 1 is
then

 jM2 �M3j< <M2 �M3: (B14)

For convenience, we shall assume in what follows that
�2 � �3, so the lower limit is M2 �M3. The effect of
the condition that the square bracket in (B12) be positive is
to require that

  > c �
j�M2 �M3�Y � 2M2M3j

Y
: (B15)

Hence

 P�1� w1� �
�M1

4�1w2
1

Z �

�

d
M2M3

�M2 �M3�
2 � 2

2M2M3
;

(B16)

where

 � � M2 �M3; � � max�c;M2 �M3�: (B17)

The integral (B16) can be rewritten as

 P�1� w1� �
�M1

8�1M2
2M

2
3w

2
1

Z �

�
�2
� � 

2�d; (B18)

and hence evaluated to yield the final result

 P�1� w1� �
�M1

24�1M
2
2M

2
3

�� � ��2�2� � ��

w2
1

:

(B19)

We must distinguish three different ranges of values of
w1 corresponding to the following ranges of Y:
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1: 0< Y <M3; � �
2M2M3

Y
� �M2 �M3�;

2: M3 < Y <M2; � � M2 �M3;

3: M2 < Y; � � �M2 �M3� �
2M2M3

Y
:

(B20)

It is straightforward to rewrite the distribution in terms of
the string tensions �j and the variable _s1. The values of _s1

corresponding to the three ranges are easily seen to be
those in (51), and the corresponding expressions for
P� _s1� are given in (53).
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