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I consider the case of two interacting scalar fields,� and  , and use the path integral formalism in order
to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the
resulting equation of motion for the classical field which should be an improvement of the usual
semiclassical procedure. As an application I use this method in order to enforce Gauss’s law as a classical
equation in a non-Abelian gauge theory. I argue that the theory is renormalizable and equivalent to the
usual Yang-Mills theory as far as the gauge field terms are concerned. There are additional terms in the
effective action that depend on the Lagrange multiplier field � that is used to enforce the constraint. These
terms and their relation to the confining properties of the theory are discussed.
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I. INTRODUCTION

Consider the case of two scalar fields, � and  , interact-
ing with the action

 S��; � �
Z
d4xL��; � (1)

where

 L � 1
2�@��

2 � 1
2m

2�2 � g
4!�

4 � 1
2�@ �

2 � 1
2M

2 2

� g0

2�
2 2 � g00

4! 
4: (2)

The classical equation for � is obtained from

 

�S
��
� ����m2���

g
3!
�3 � g0� 2 � 0: (3)

If one wishes to treat  quantum-mechanically the usual,
semiclassical, procedure leads one to replace all terms
containing  in (3) by their quantum expectation values.
There are, however, several problems associated with this
procedure, conceptual as well as technical: One may use a
background field method in order to derive the first (one-
loop) quantum corrections to the effective potential and
associated mass terms. If, however, a higher order calcu-
lation is needed, one would have to modify the propagator
using the one-loop result, and be careful in order to avoid
double-counting for any relevant diagrams. The procedure
depends on the model examined and on relative order-of-
magnitude estimates. One would like to have a more self-
consistent approach in order to incorporate quantum ef-
fects on classical fields and vice-versa.

Here I use the path integral formalism in order to de-
scribe this problem and I get the resulting Feynman rules
that enable one to study the interactions between the
classical and quantum fields. The result is what one would

expect: the classical field propagates only in tree diagrams,
not in loops, and the quantum field propagates as usual,
providing the quantum corrections. This leads to an effec-
tive equation of motion for the classical field that should be
an improvement upon the semiclassical procedure. The
Feynman rules presented here reorganize the entire pertur-
bation series and enable one to treat these problems in a
self-consistent manner that can easily be extended in other
models.

The path integral approach has been used before in order
to treat pure classical mechanics [1,2] and investigate
problems of classical behavior in quantum field theory
[3,4]. The formalism developed here has many similarities
to these previous works. The main method is an extension
of [1,2] to the case of interactions between classical and
quantum fields (there are, however, some important differ-
ences even in the case of purely classical fields).

In Sec. II I develop the main formalism, derive the
Feynman rules and get an effective action from which
the equation of motion for the classical field can be ob-
tained. An important advantage of this method is that it is a
self-consistent procedure that can be used in order to
calculate higher order effects.

In Sec. III I use this method in order to treat Gauss’s law
as a classical equation in a non-Abelian gauge theory.
Because of the asymmetry of the Feynman rules described
here, the effective action contains, besides the usual Yang-
Mills terms, additional terms that depend on the Lagrange
multiplier field that is used to enforce the classical con-
straint. These terms are of the Coleman-Weinberg type [5],
and are reminiscent of phenomenological effective actions
that have been used in order to describe confinement [6–8].
They have similar interpretation here, where one can also
see the region of validity of perturbation theory.

Since the method presented here is new I include two
sections of comments. In Sec. IV I discuss the applications
to non-Abelian gauge theory and in Sec. V I make some
general comments regarding this method.*Electronic address: metaxas@central.ntua.gr
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II. PATH INTEGRAL AND EFFECTIVE ACTION

In order to calculate
 

Z�J; J0� �
Z
�d���d ������cl�

� exp
�
i
Z
L��; � � J�� J0 

�
; (4)

where �cl is the solution of (3), I use the Lagrange multi-
plier � and ghost fields c, �c, similarly to the work in [1,2],
and adding another source �, the path integral to be
evaluated becomes
 

Z�J; J0;�� �
Z
�d���d ��d���dc��d �c�

� exp
�
i
Z

~L� J�� J0 ���
�

(5)

where

 

~L � L� �
�S
��
� �c

�2S

��2 c (6)

is the modified Lagrangian with the corresponding modi-
fied action ~S. For the simplest case of two interacting scalar
fields with (2) we get

 

~S � S�
Z
x

�
�K�� �cKc�

g
3!
��3 � g0�� 2

�
g
2

�c�2c� g0 �c 2c
�
; (7)

where K � ����m2�. The propagators and the vertices
can be deduced from here. For the � and � fields we get

 

Z
�d���d��ei

R
�1=2��K���K��J����

� Ne��i=2�
R
�2JG���G��; (8)

where N is a normalization factor, independent of the
sources, and G � 1=�k2 �m2 � i��, in momentum space,
is the usual Feynman propagator. Accordingly there is no
��� propagator, there are, however, a mixed ���
propagator equal to G, and a �� � propagator equal to
�G. The remaining  �  and ghost propagators as well
as the various vertices are as usual from (7).

One can now check: at one-loop order the loops with the
��� propagator cancel with the ghost loops and similar
cancellations exist in higher loops, loops with the �� �
propagator do not appear because of the Feynman rules of
the modified action (the vertices are at most linear in �)
with the final result that the � field does not have quantum
corrections but only propagates classically through tree
diagrams. A typical line with the � and � fields is either
the sum of two ��� and one �� � propagator, or a
single ��� propagator, in both cases equal to G. The  
field, of course, propagates also in loops as a genuine

quantum field and gives the quantum corrections to the
classical field �.

I should note here that the propagator G that we get for
the classical field is the Feynman propagator, and not the
retarded one that is usually employed in classical mechan-
ics. There are two reasons for that: first, the boundary
conditions used in the path integral (the field goes to zero
at infinity) are different than the ones usually employed in
classical mechanics (the field configuration is given at an
initial time). One can check with a more careful evaluation
of (8) that we get, indeed, the Feynman prescription. This
is true even if we have only the classical field in our theory.
One can presumably use the path integral formalism with
different boundary conditions in order to attack purely
classical problems. Then the retarded propagator would
probably emerge, as in [2]. A second, physical reason that
is relevant here, is that we want to study interactions
between the classical and quantum fields. The possibility
of particle creation and annihilation is essential for both the
classical and quantum fields. Our classical field, therefore,
admits both particles and antiparticles propagating
classically.

Renormalization of the theory proceeds as usual. All
divergent terms come from loops of the quantum field  
and depend on the quantum-classical coupling g0 or the
quantum coupling g00, not on g. The classical parameters g
and m get also renormalized. However, pairs of terms like
g��3 and g�4 in the modified action ~S have the same
divergencies associated with, accordingly the renormaliza-
tion procedure does not affect the classical nature of the
field �.

I will now proceed to show how the classical equation
for � gets modified in the presence of quantum interac-
tions. If we use the generating functional Z�J; J0;�� to
construct W�J; J0;��, the generating functional for con-
nected diagrams, and from that ���; ; ��, the effective
action, we see that the appropriate equation is

 

�
��

��

�
��0
� 0: (9)

This can be verified if we consider the theory with only the
classical field and use the properties of the Legendre trans-
formation in order to express the classical equation
�S=�� � �� � 0 in terms of the effective action. So
the equation of motion for the classical field � can be
taken from the tadpole one-particle irreducible graphs with
one external field � that contain  loops and lines of the �
and � fields, but not loops of the classical field. For the
case of the two interacting scalar fields of (2) we get at one-
loop order

 � ���m2�� �
@Veff��; �

@�
(10)

where
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 Veff �
g
4!
�4 �

g0

2
�2 2 �

i
2

Z d4k

�2��4

� ln
��k2 �m2

���k
2 �M2

 � � �g
0� �2

�k2 �m2
��

�
(11)

is the usual one-loop effective potential of the original
theory without the � loop (m2

� � m2 � 1
2g�

2 � g0 2,
M2
 � M2 � g0�2 � 1

2g
00 2). In fact (11) also contains

the loop with only the  field. Since this is, however,
�-independent it does not contribute to (10). One can
check that when the quantum-classical coupling g0 is
zero this reduces to the ordinary equation for a classical
Klein-Gordon field. Regularization and renormalization
are performed as usual, as was discussed above.

This result can, of course, be also obtained using a
background field perturbation theory. However, if one
wishes to study higher order corrections, perturbation the-
ory has to be reorganized at any order so as to incorporate
the previous order result and avoid any multiple-counting.
This problem does not appear here since we have a well-
defined effective action, that depends on the auxiliary field
�, with fixed Feynman rules from the beginning.

The resulting equation for the classical field is written as
an equation of motion from an effective action that con-
tains what one would expect—arbitrary loops of the quan-
tum field but not loops of the classical field. It depends on
the vacuum expectation value of the quantum field  ,
enabling one to also study problems of symmetry breaking.
Even for  � 0, of course, it provides the quantum cor-
rections to the classical equations of motion. What is more
important, this method allows one to include higher order
corrections self-consistently through the effective action
formalism.

The complete effective action also describes the quan-
tum properties of the field  . One can then determine the
effects of the classical field on the quantum field via its
effective potential or other terms. There are also higher
order terms that involve powers or derivatives of the aux-
iliary field �. Their relevance, if any, to the combined
dynamics of the system is not clear from this work. In
the simple example described here, since there is no sym-
metry breaking, we have to set � � 0 anyway in order to
derive the effective equation of motion. In cases with
symmetry breaking, however, these terms may turn out to
be important. One interesting case will be described in the
next section in the context of the non-Abelian gauge the-
ory, where they may be relevant to the confining properties
of the theory.

III. AN APPLICATION IN NON-ABELIAN GAUGE
THEORY

The formalism of the preceding section applies strictly
in the case of two interacting fields. Here, however, I will
show how it can be used in the case of the non-Abelian

gauge theory, in order to treat Gauss’s law as a classical
equation. The strategy will be the following: I will choose
first a noncovariant gauge in which pure Yang-Mills theory
is well-defined and renormalizable, and use the Feynman
rules derived here in order to map a sector of the theory
onto the usual Yang-Mills theory, and identify the remain-
ing (or missing) terms as additional contributions to the
effective action, that depend on �.

For the non-Abelian gauge theory with action S and
Lagrangian

 L � �1
4F

a
��F

a�� (12)

where Fa�� � @�Aa� � @�Aa� � gfabcAb�Ac�, I will use
Lagrange multipliers �a and ghost fields �ca, ca, and get
the modified action

 

~S � S�
Z
�a

�S
�Aa0
� �ca

�2S

�Aa0�A
b
0

cb (13)

in order to treat Gauss’s law

 

�S
�A0

� �D 	 ~E � 0 (14)

classically (S and L in this section will denote the Yang-
Mills values). In the modified action we add a source term
�a�a together with the source terms Ja�Aa�, as before, in
order to derive the Feynman rules. We also have to add a
gauge-fixing term, so I will choose a noncovariant gauge
that is well-defined and does not depend on A0, namely, the
axial gauge-fixing term

 Lax � �
�n 	 A�2

2�
(15)

with a purely spatial four-vector n� � �0; ~n�.
The usual Feynman rules for Yang-Mills theory with

action S in the axial gauge involve the gauge field propa-
gator

 Gab
�� �

��ab

k2

�
g�� �

k�n� � k�n�
k 	 n

� k�k�
n2 � �k2

�k 	 n�2

�

(16)

and the usual QCD vertices [9]. The new Feynman rules
that we get for the modified action, using (8), involve an
A0 � A0 propagator

 

~G 00 � G00 �Gc (17)

(I will not denote the color indices where obvious) and
A0 � � as well as �� � propagators

 G0� � �G�� � Gc (18)

where Gc � 1= ~k2 is the Coulomb propagator. The remain-
ing propagatorsG0i andGij are the same as the usual Yang-
Mills theory. That is, the effect of the classical constraint of
Gauss’s law has been to split the Coulomb interaction from
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the propagator and treat it classically. We also have the
usual vertices of QCD, and an additional set of vertices: for
every QCD vertex that contains A0 we have a vertex where
an A0 leg is replaced by �. There is also the ghost sector
which is similar to the previous section, and will be de-
scribed shortly. This ghost sector is not related to the usual
Fadeev-Popov ghosts, which I will assume that decouple
[9]. We can now discuss renormalizability and relation to
the usual Yang-Mills theory.

As far as the gauge field terms A2, A3 and A4 terms are
concerned we get the same terms as usual Yang-Mills
theory: what used to be a G00 propagator can now be
formed as either the sum of ~G00, two G0� and one G��,
or ~G00 and one G0�, in both cases equal to the usual G00.
This can be verified for every diagram. There is one
difference: The ghost loop cancels an instantaneous
Coulomb loop from every diagram in the usual Yang-
Mills theory that contains a closed A0 loop. I will assume
that regularization can be performed so that these loops
vanish, that is, relations like

 

Z
k

1

~k2
� ~k� ~p�2

� 0 (19)

hold, together with usual axial gauge integrals like

 

Z
k

1

�n 	 k�2
� 0: (20)

This assumption is supported by results of split dimen-
sional regularization [10]. In fact, even without this as-
sumption, it is possible that the theory will be
renormalizable, since it is the same closed loop that is
missing from every would-be Yang-Mills diagram, the
verification of this, however, would be highly noncovar-
iant. In any case, with the previous assumption, the theory
is renormalizable and equivalent to the usual Yang-Mills
theory as far as the gauge fields are concerned. The diver-
gencies of the remaining terms ��S=�A0 in the modified
action are the same as their counterparts in S, as in the
previous section, so these are renormalizable too. We now
turn to the discussion of the � terms.

Consider first the one-loop terms with external legs �
with zero momentum, for what would be an effective
potential term U���. All the propagators can run inside
the loop with one exception: The A0 � � and �� � propa-
gators cannot appear because the vertices are linear in �.
An example of such a diagram is shown in Fig. 1. So the
Coulomb interaction is missing. Had these terms been
there we would have the full covariant propagator G�� in
the loop. All these diagrams, therefore, would add up to
zero (their value would be the same as an effective poten-
tial term for A0 in the usual Yang-Mills theory which does
not exist because of gauge invariance). Accordingly the
sum of the diagrams that contain a Coulomb interaction
between two external legs � has to be subtracted. The
relevant vertices (�� A0 � Ai) are the same as the QCD

vertex (A0 � A0 � Ai) and the missing terms with a
Coulomb interaction running between two external legs
� correspond to an effective interaction term

 �L � m2Ai
kikj
~k2
Aj (21)

(in momentum space, with k the momentum running in the
loop) with

 m2 � g2C�2 (22)

where facdfbcd � C�ab, �2 � �a�a. One can add this
effective interaction term in the usual Yang-Mills action
in order to derive the terms in the effective action that
depend on �. It corresponds to missing terms so the pieces
calculated have to be subtracted. The calculation is highly
noncovariant, however, once we have identified the effect
of the missing diagrams as an effective interaction term to
be added to the usual Yang-Mills action, there is no reason
to continue in the axial gauge in order to complete the
calculation [11]. It is more convenient to choose a
Feynman gauge-fixing term, �@�A��2=2, in which case
the effective propagators become

 D00 �
�1

k2 (23)

 Dij �
1

k2

�
�ij �

m2kikj

�k2 �m2� ~k2

�
: (24)

 

FIG. 1. An example of a diagram used for the calculation of
U��� and the derivation of Eqs. (21) and (22). The wiggly lines
denote Ai, Aj fields. The curly lines denote the � field and the
solid lines denote A0. The solid lines with a dot denote the
modified A0 � A0 propagator, ~G00, derived in the text, that does
not contain the Coulomb interaction; the �� A0 and �� � lines
that carry the Coulomb propagator cannot be also added in its
place, because the vertices are only linear in �.
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The usual Fadeev-Popov ghosts do not contribute and the
calculation of the relevant terms gives the final form of the
effective action:

 � �
Z
x
�Z����D 	 ~E�

1

4
Z���F2 �U��� (25)

with

 U��� � c1g
4�4�ln�

2

�2 �
1
2� (26)

 Z��� � 1� c2g2 ln�
2

�2 (27)

where c1 � C2=64�2, c2 � C=6�2. We have an effective
action of the Coleman-Weinberg form [5] with a few
differences:

First, the potential appears with the opposite sign, since
it corresponds to missing diagrams. The counterterms that
were needed for its renormalization were chosen so that
U00�0� � 0 and U0��� � 0. The condition U0�0� � 0 does
not fix the counterterms, so we have to pick the scale �
(primes denote derivatives with respect to �).

The factors Z in the first two terms of the effective action
(25) can be calculated in the same manner, in terms of
missing diagrams. They are expected to be the same by
individual diagram inspection. A first calculation gives the
result presented above. Z��� was calculated from the
�-dependent, ~p2 coefficient, of the A0 � A0 wavefunction
renormalization diagrams with external momentum p
(subtracted from the tree level term). Other terms (Ai �
Aj for example) should give the same value for Z. This,
however, will have to be verified, because of the asymme-
try of the Feynman rules described here. In any case, for
the preliminary analysis presented below, the main fact that
we need is that renormalization conditions can be chosen
so that Z��� � 1.

Although there is only one coupling constant in the
theory the one-loop terms are reliable when g2 ln��=�� is
small, since the tree value for U is 0 and for Z is 1.

Another possibility that was not encountered in the
simple model of the previous section, is the generation of
�r��2 terms, because of the asymmetry of the Feynman
rules described here. The tree level value of this term
should be set to zero by counterterms, it is a possible
fine-tuning problem of the method. Generation of these
terms at higher order via the Coleman-Weinberg mecha-
nism does not affect the analysis presented below.

At � 
 � we have Z 
 1 and ordinary perturbative
Yang-Mills theory. As a first approximation to the effective
action we take the Abelian, electric parts, for Z 
 1

 �0 �
Z
x
�r2A0 �

1

2
A0r

2A0 �U���: (28)

The equations

 

��0

��
� 0 (29)

 

��0

�A0
� 0 (30)

have the simultaneous solution

 A0 � ��B (31)

with �B the solution of

 r2� �
@U
@�

: (32)

Note, first, that, although similar in form, the two Eqs. (29)
and (30) are quite different conceptually: The first equation
is an expression of the classical nature of Gauss’s law and
should be satisfied identically to all orders. The second
equation is a usual semiclassical equation, only to be
satisfied approximately.

Equation (32) has a soliton (bounce, bubble) solution
�B�r�, spherically symmetric in the three-dimensional ra-
dius r, similar to the bounce solutions that are associated
with tunneling at zero and finite temperature [12,13],
although here it is not related to either tunneling or finite
temperature. �B�r� is of order � for sufficiently small r,
and goes rapidly to zero for r larger than the radius RB of
the bounce (which is of order 1

g2� ). It corresponds to a

confining potential for the electric field (31), reminiscent of
a bag model, such that deep inside the bounce we have
ordinary perturbative Yang-Mills theory with a zero elec-
tric field, and a strong electric field appearing as we get
closer to the bounce radius (in fact, the bounce solution is
not of the thin wall type, it resembles more the three-
dimensional thick wall bubbles of [13], and has to be
determined numerically).

As we approach the radius of the bubble, however, when
� goes to zero, the approximation Z 
 1 does not hold; in
fact, when � is nonperturbatively small Z goes to zero and
the full nonperturbative features of QCD become impor-
tant [6,7]. Our perturbative parameter is the same as that
for Coleman-Weinberg models, namely g2 ln��=��, and
only when this is small can the higher loop effects be
neglected. It is, of course, possible to improve on these
results with the use of the renormalization group, and even
when this is not the case, the effective action presented
here may be quite useful phenomenologically.

Another important fact that should be mentioned for the
effective action (25) proposed here, as well as for the
‘‘dynamically induced’’ mass term (22), is that they are
gauge invariant, provided the auxiliary field � is gauge
covariant (under a gauge transformation V we have �!
V�V�1). The consequences of this gauge invariance, and
its possible associated BRS symmetries, are not obvious
because of the peculiarities of the Feynman rules described
here; this is, however, another indication in support of the
arguments presented above, namely, that the theory is
renormalizable and compatible with ordinary, perturbative
Yang-Mills theory.
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IV. COMMENTS

The upshot of this work, as far as the non-Abelian gauge
theory is concerned is the following: there is a sector of the
theory, namely, the Coulomb interaction, that is purely
classical in nature, by virtue of Gauss’s law; this cannot
be expressed self-consistently in perturbation theory unless
one employs a skewed set of Feynman rules of the type
described here. This has the effect of generating additional
terms in the effective action that reveal both the appearance
of the confining properties of the theory and the limits of
validity of perturbation theory.

The appearance of the inverted effective potential term
U��� that was described in the previous section does not
indicate an energetic instability of the theory, it is, how-
ever, related to the instability of the perturbative vacuum.
In fact, there is no direct Hamiltonian interpretation for the
effective action presented here, � remains an auxiliary
Lagrange multiplier that has to be eliminated via ��=�� �
0. The perturbative vacuum � � �, however, cannot exist
for all space, since it has infinite action. A finite action
soliton solution that was presented in the previous section
shows signs of confining behavior and, at the same time,
gives clues about the region of validity of perturbation
theory.

It is not clear whether this method hints on fundamental
results (problems rather) of the usual quantization proce-
dure of non-Abelian gauge theories, or is purely of a
heuristic value, I would like, however, to make some com-
ments in support of the former: First of all, something that
is obvious, but should be, nevertheless, mentioned, is that
this method does not change at all the rules for the Abelian
gauge theory. The Coulomb interaction splits again as
presented here. Since, however, photons do not have any
self-interactions, the result is equivalent to the usual
Feynman rules for Abelian gauge theory (the inclusion of
fermions is also straightforward). The usual Fadeev-Popov
procedure (Abelian or non-Abelian) also is not related and
does not change by the method presented here. However, in
the process of quantization of the non-Abelian gauge the-
ory, while changing from the Hamiltonian formalism with
noncovariant gauge fixing to the Lagrangian formalism
with covariant gauge fixing there are many manipulations
of constraints such as Gauss’s law. The treatment of these
constraints is not completely justified from the present
point of view. In many cases the actual, physical, fields
are used as Lagrange multipliers, and a relation such as (8)
does not appear. It is possible that some important piece of
information of the theory is lost in the process.

V. DISCUSSION

In this work I developed a formalism in order to treat
interactions between quantum and classical fields through
the path integral. It seems that one is able to describe
quantum-classical interactions in field theory self-

consistently with this method. The path integral formalism
is particularly simple and can hopefully be generalized in
other cases involving such interactions.

Some further applications of this work, besides the con-
ceptual problem of quantum-classical interactions, would
be in cases of a nonrenormalizable classical interaction,
such as gravity. Note that, in the example described in
Sec. II, there is nothing that demands the classical field,
�, to have a renormalizable quantum equivalent. Even a
nonrenormalizable self-interaction of the classical field
does not generate higher order terms since there are no
classical loops. There may be of course quantum-classical
interaction terms that generate higher order terms, so the
problem of renormalizability then depends on the specifics
of the model. Even so, this method may be useful in
treating the stress-tensor renormalization equations

 G�� � �8�GhT��i (33)

in a self-consistent way.
I have also given an example of an application of this

work in the case of the non-Abelian gauge field theory by
using this method in order to treat Gauss’s law as a clas-
sical equation. This is different in spirit than the previous
discussion, it shows, however, another application of this
method in this case, where it can be useful for studying the
infrared properties of the theory. The treatment of the
Coulomb interaction as purely classical in nature has re-
sulted in the generation of purely quantum terms of the
Coleman-Weinberg type that are related to the confinement
mechanism.

Even though the treatment of the non-Abelian gauge
theory presented here has a different motivation than pre-
vious works, there are several common features with vari-
ous other approaches to confinement [6–8,14–18].
Namely we find: the appearance of a negative metric
propagator (the �� � line which is crucial in describing
the classical nature); the emergence of a ‘‘dynamical’’
mass term (22) and an effective potential generated
through radiative corrections; an effective action reminis-
cent of older phenomenological actions that were used to
describe confinement (although with important differences
described before).

This method can probably be useful in various other
problems in theories that have infrared singularities: one
can, presumably, use this method in order to study the
infrared modes of these theories classically, and include
the quantum corrections from higher momentum modes
self-consistently. The problem here, of course, is the use of
an arbitrary cut-off scale, and care should be taken in order
to derive cut-off independent results.
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