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Hot and/or dense, normal-conducting systems of relativistic fermions exhibit a particular collective
excitation, the so-called plasmino. We compute the one-loop self-energy, the dispersion relation, and the
spectral density for fermions interacting via attractive boson exchange. It is shown that plasminos also
exist in superconductors.
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I. INTRODUCTION

In relativistic fermionic systems at high temperature
and/or high density, there are two types of fermionic ex-
citations. Besides the ordinary excitation branches of par-
ticles and antiparticles, there are additional collective
excitations, the so-called plasmino and antiplasmino
[1,2]. These branches have opposite chirality compared
to the ordinary excitation branches [2]. They coincide
with the normal fermionic branches for vanishing mo-
menta. For large momenta, they approach the light cone
and their spectral strengths vanish exponentially. The plas-
mino (antiplasmino) branch has a minimum (maximum)
for small, nonzero momenta. These excitations have been
extensively investigated for normal-conducting matter [3–
18]; for a review see, for instance, Ref. [19].

With the exception of heavy-ion collisions, in the labo-
ratory it is hard to achieve sufficiently large temperatures
and densities such that a relativistic description for fermi-
ons becomes necessary, even if they are as light as elec-
trons. On the other hand, there is a plethora of
astrophysical situations where fermions have to be treated
relativistically. For instance, the core of compact stellar
objects could be sufficiently dense to consist of deconfined
quark matter. The quark Fermi energy is then of the order
of �� 500 MeV. Thus, at least the light up and down
quark flavors have to be considered as relativistic particles,
since m� 5 MeV� �. However, quark matter in com-
pact stellar objects, if sufficiently cold, is not a normal-
conducting system, but a color superconductor [20,21]. In
this paper, we therefore investigate whether the plasminos
known from normal-conducting systems survive in a su-
perconductor. This is a question of general interest, inde-
pendent of the specific nature of the superconductor (i.e.,
ordinary, color, etc.). To our knowledge, this problem has
not been considered previously, since electrons can to good
approximation be considered as nonrelativistic in the
condensed-matter context, and plasminos are absent if
the temperature is smaller than the mass (at least for zero
chemical potential [8]). It is also possible to formulate our

expectation regarding the existence of plasminos in super-
conductors: plasminos are low-momentum excitations
which, for large chemical potential �� p, are buried
deep down in the Fermi sea. On the other hand, super-
conductivity is a Fermi-surface phenomenon. We thus
expect that superconductivity should not exert a destructive
influence on the presence of the plasmino excitations.
Nevertheless, it requires an explicit calculation to prove
this, which is the purpose of the present paper. We shall see
that our expectations regarding the existence of plasminos
in superconductors are confirmed.

The outline of this paper is the following. In Sec. II, we
consider a normal-conducting system consisting of mass-
less fermions interacting via scalar and vector boson ex-
change. For the sake of simplicity, we restrict our
consideration to zero temperature. This case has been
studied before by Blaizot and Ollitrault in Ref. [9]. We
largely confirm their results and extend them by computing
the spectral density. We then study a superconducting
system in Sec. III. Section IV concludes this paper with a
summary of our results.

Our units are @ � c � kB � 1 and the metric tensor is
g�� � diag��;�;�;��. Four-vectors are denoted by
capital letters, K 	 �k0; ~k�. Three-vectors have modulus
k 	 j ~kj and direction k̂ 	 ~k=k. Our computations are
done in the imaginary-time formalism where space-time
integrals are denoted as

R
X 	

R1=T
0 d�

R
V d

3 ~x, while
energy-momentum sums are

R
K 	 T

P
n

R
d3 ~k=�2��3

with n � 0;
1
 2; . . . labeling the Matsubara frequen-
cies for bosons, !b

n � 2n�T, and fermions, !f
n � �2n�

1��T, respectively.

II. NORMAL-CONDUCTING FERMIONS

In this section the dispersion relation and the spectral
density of massless normal-conducting fermions is re-
viewed in the limit T ! 0 [9]. We first investigate the
case where the interaction between the fermions is medi-
ated by scalar bosons and compute the one-loop fermion
self-energy. We then use the Dyson-Schwinger equation
for the fermion propagator to perform a resummation of the
one-loop self-energy to all orders. From the thus obtained
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quasiparticle propagator, we determine the dispersion re-
lation and the spectral density. Finally, we conclude this
section with a discussion of the case where the interaction
is mediated by vector bosons. Note that this treatment is
not fully self-consistent in the sense that we do not use the
result for the resummed quasiparticle propagator to recom-
pute the one-loop self-energy for an iteration of the above
procedure. Moreover, we do not solve a Dyson-Schwinger
equation for the scalar boson propagator, which would lead
to the generation of a boson mass �g�.

A. Self-energy

The inverse propagator for massless noninteracting fer-
mions can be written in the form

 G�1
0 �P� � P6 ���0 	 �0

X
e�


G�1
0;e �P��

e
~p; (1)

where we introduced the energy projectors

 �
~p �
1
2�1
 �0 ~� � p̂�; (2)

and the free inverse propagators for positive/negative-
energy solutions

 G�1
0;
�P� 	 p0 ��� p: (3)

Equation (1) can be easily inverted to give

 G0�P� �
X
e�


G0;e�P��
e
~p�0; (4)

with G0;
�P� � 1=�p0 ��� p�.
For fermions interacting with scalar bosons, the interac-

tion part of the Lagrangian is of Yukawa-type, LI �
g �  �. The (perturbative) one-loop self-energy has the
form [22]

 ��P� � �g2T
X
n

Z d3 ~k

�2��3
D0�K � P�G0�K�: (5)

We assume the boson to be massless as well, with propa-
gator D0�Q� � �1=Q2, thus there is no tadpole contribu-
tion to the fermion self-energy. Performing the sum over
the Matsubara frequencies, one obtains

 ��P� � �g2
Z d3 ~k

�2��3


1

2Eb

X
e�


�e
~k
�0

�
1� Ne

F�k� � NB�Eb�
p0 ��� e�k� Eb�

�
Ne
F�k� � NB�Eb�

p0 ��� e�k� Eb�

�
: (6)

Here, Eb � j ~k� ~pj is the energy of the exchanged boson,
N
F �E� � �e

�E���=T � 1��1 are the thermal distribution
functions for fermions and antifermions, and NB�E� �
�eE=T � 1��1 is the corresponding one for bosons.

We now project onto the self-energies for positive/nega-
tive-energy solutions,

 �
�P� 	
1
2 Tr��
~p �0��P��; (7)

and perform an analytic continuation, p0 ��! !� i�,
where ! is the (real-valued) fermion energy relative to the
vacuum [9].

Using Eq. (7), one readily calculates the imaginary part
of the self-energy for positive/negative-energy solutions,

 Im �
�!;p� � Ima�!;p� 
 p Imb�!;p�: (8)

Because of rotational invariance, the functions Ima�!;p�
and Imb�!;p�, which were first calculated in Ref. [9], only
depend on the modulus of the momentum. For the sake of
completeness we list the results in Appendix A. The real
part of the self-energy for positive/negative-energy solu-
tions is

 Re �
�!;p� � Rea�!;p� 
 pReb�!;p�; (9)

with the functions Rea�!;p� and Reb�!;p� given in
Appendix A.

We show the functions (8) and (9) in Figs. 1 and 2,
respectively. The shape of the imaginary and real parts
reflects the different regions shown in Fig. 13. The peak
of the imaginary parts in the region of low energies and
momenta is due to the 1=p singularity of the function Ima,
cf. Eq. (A5). The corresponding peak seen in the real parts,
however, is due to the 1=p2 singularity of the function Reb,
cf. Eq. (A11). This is the reason why the singularities
appear with the same signs in the imaginary parts, but
with opposite signs in the real parts of the self-energies
for particles and antiparticles, cf. Eq. (7).

B. Dispersion relation

The full inverse fermion propagator is given by

 G�1�P� � G�1
0 �P� ���P� 	 �0

X
e�


G�1
e �P��

e
~p; (10)

where the full inverse propagator for positive/negative-
energy solutions is

 G�1

 �P� 	 G�1

0;
�P� ��
�P�: (11)

The dispersion relations p0 �� 	 ! � !�
�p� are given
by the roots of the real parts of the inverse propagators,

 ReG�1

 �!

�

; p� � 0: (12)

We show the solutions of these equations in Fig. 3. The
ordinary particle and antiparticle excitations correspond to
the uppermost and the lowermost curve, respectively.
Besides these, for low momenta we find two additional
roots of both Eqs. (12). The two solutions in the timelike
region belong to the plasmino and antiplasmino branches.
For massless particles right(left)-handedness implies posi-
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tive (negative) helicity, while for massless antiparticles
right(left)-handedness implies negative (positive) helicity.
Since plasminos have opposite chirality from particles, the
plasmino solution is actually a root of G�1

� � 0, while the
antiplasmino is a root of G�1

� � 0. This also holds for the
two additional solutions in the spacelike region. However,
since the imaginary parts for particles and antiparticles are

large in this region, these excitations are strongly damped
and do not have appreciable spectral weight, cf. Fig. 4. The
plasmino solutions approach the light cone and can no
longer be found numerically for large momenta. The size
of the momentum region where plasminos are found de-
pends on the value of the coupling constant. For decreasing
coupling constant, this region shrinks.

 

FIG. 2. The real parts of the self-energy for massless fermions (left panel) and antifermions (right panel) at T � 0 and for an
exemplary value of the coupling constant g2=�4�� � 1.

 

FIG. 1. The imaginary parts of the self-energy for massless fermions (left panel) and antifermions (right panel) at T � 0 and for an
exemplary value of the coupling constant g2=�4�� � 1.
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C. Spectral density

The spectral density is determined from the relation [23]

 �
�!;p� � �
1

�
ImG
�!;p�: (13)

If the imaginary part of the self-energy vanishes (see
region IV of Fig. 13), the spectral density is proportional
to a 	-function with support on the quasiparticle mass
shell, ! � !�
�p�,

 �
�!;p� �
X
!�


Z
�!�
�	�!�!
�

�;

Z
�!
�

� �

��������@ReG�1

 �!;p�
@!

��������
�1

!�!�


;

(14)

which corresponds to an infinite lifetime of the associated
quasiparticle. This is the case for the plasmino branch and
that part of the particle excitation branch, which is shown
in Fig. 3. (For larger momenta, the particle excitation
branch enters region Ia of Fig. 13 where the imaginary
part is nonzero and, consequently, the particle excitation
becomes unstable.) On the other hand, a nonzero imagi-
nary part gives rise to a nonzero width of the spectral
density,

 �
�!;p�

�
1

�
Im�
�!;p�

�G�1
0;
�!;p� � Re�
�!;p��2 � �Im�
�!;p��2

:

(15)

This leads to a finite quasiparticle lifetime which is in-
versely proportional to the width of the spectral density

around the quasiparticle mass shell. This is the case for all
other fermionic excitation branches which lie outside
region IV of Fig. 13.

In Fig. 4 we show the spectral density in a contour plot.
Comparing this figure to Fig. 3, one can easily distinguish
the particle, plasmino, antiplasmino, and antiparticle
branches (from top to bottom). As mentioned above, the
two solutions in the spacelike region do not have suffi-
ciently large spectral weight to appear in the contour plot.
In other words, the width of the spectral density at the
respective mass shell is large and, consequently, these
excitations are strongly damped. Note also that the spectral
weight of the two plasmino branches rapidly decreases for
larger momenta.

D. Fermions interacting via vector bosons

The self-energy for fermions interacting via vector bo-
son exchange is

 �v�P� � �g2T
X
n

Z d3 ~k

�2��3
D���K � P���G0�K���:

(16)

For massless vector bosons, this is a gauge-dependent
expression. One easily convinces oneself that, in
Feynman gauge for the gauge boson propagator, �v�P� �
2��P�. It was shown in Ref. [9] that the same result holds
also in Coulomb gauge. Finally, in the hard-thermal-loop
(HTL) and hard-dense-loop (HDL) limit [2], i.e., for T,
�� p0, p, the result is gauge independent, and again we
have �v�P� � 2��P�, provided one takes the HTL/HDL
limit on both sides of this equation. Therefore, all these

 

FIG. 4 (color online). Contour plot of the spectral density of
fermionic excitations in the limit of vanishing temperature and
for g2=�4�� � 1.
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FIG. 3. Dispersion relations of fermions for g2=�4�� � 1 at
zero temperature. The thin lines represent the light cone.
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cases are covered by the above discussion for scalar boson
exchange via rescaling the coupling constant, g! g=

���
2
p

.

III. SUPERCONDUCTING FERMIONS

We now turn to the question whether there are plasminos
in superconductors. Our rationale is the following. We take
the superconducting ground state as a basis for our calcu-
lation. Then, the fermion in the loop in Eq. (5) is no longer
represented by a free propagator, G0�P�, but by a quasi-
particle propagator appropriate for superconducting sys-
tems, G0. We compute the one-loop self-energy for
quasiparticle excitations in the superconductor.
Afterwards, we resum the one-loop self-energy via a
Dyson-Schwinger equation to obtain the propagator for
quasiparticles and charge-conjugate quasiparticles. The
poles of the propagator determine the dispersion relation.
Finally, we calculate the spectral density.

Note that this treatment is not fully self-consistent. As in
the normal-conducting case, we do not use the resummed
quasiparticle propagator to obtain a self-consistent result
for the one-loop self-energy. Moreover, we do not solve a
gap equation for the superconducting gap parameter.
Rather, we shall use an exemplary constant value for the
gap function of particles, ���P� � 0:25�, and set the gap
function for antiparticles to zero,���P� � 0. The assump-
tion of a constant gap function is justified only for pointlike
four-fermion interactions as in e.g. the Nambu–Jona-
Lasinio model. For a boson exchange interaction of non-
zero range, the gap function does depend on energy and
momentum. Setting the antiparticle gap to zero is justified
only in weak coupling, because then the contribution of the
antiparticle modes to the gap equation is negligible
[24,25]. Since antiparticle modes live far from the Fermi
surface, a nonzero value (of reasonable magnitude) for the
antiparticle gap would only have a negligible influence on
our results for the excitation spectrum and spectral density
of antiparticles.

Finally, we also do not solve a Dyson-Schwinger equa-
tion for the scalar boson propagator which would give rise
to a mass �g�. Nevertheless, we expect that the compli-
cations arising from a fully self-consistent treatment, in-
cluding the energy-momentum dependence of the gap
function and nonvanishing antiparticle gaps, will only
lead to quantitative, but not qualitative, changes of our
results concerning the existence of plasminos in
superconductors.

Let us finally note that, in a superconductor, fermions
carry a charge with respect to a local (gauge) symmetry.
This symmetry is spontaneously broken by condensation
of Cooper pairs. An implicit assumption of our approach is
that interactions due to exchange of vector bosons of the
gauge interaction are negligible as compared to scalar
boson exchange, i.e., that the one-loop fermion self-energy
is dominated by the scalar interaction. If the fermions do

not carry any charge, we are strictly speaking not consid-
ering a superconductor but a superfluid.

A. Self-energy

If fermions interact via scalar boson exchange, and if we
only allow for pairing in the even-parity channel, the
quasiparticle propagator reads [25,26]

 G 0�P� �
X
e�


p0 � ��� ep�

p2
0 � ��� ep�

2 � j�e�P�j
2 �e

~p�0: (17)

(Note that our G0 corresponds to G� in Ref. [25].)
The analogue of Eq. (5) for the superconducting system

now reads

 ��P� � �g2T
X
n

Z d3 ~k

�2��3
D0�K � P�G0�K�: (18)

We compute the Matsubara sum using the mixed represen-
tation for the boson propagator,

 D 0��; ~q� �
1

2Eb
f�1� NB�Eb��e�Eb� � NB�Eb�eEb�g;

(19)

as well as the quasifermion propagator,

 G 0��; ~k� � �
X
e�


�
�1� neF�


e � ��� ek�
2
e

e�
e�

� neF

e � ��� ek�

2
e
e
e�

�
�e
~k
�0; (20)

where 
e 	
��������������������������������������
��� ek�2 � j�ej

2
p

, neF 	 �e

e=T � 1��1. At

vanishing temperature, the self-energy then becomes
 

��P� � �g2
Z d3 ~k

�2��3
1

4Eb

X
e�


�e
~k
�0

��
1�

�� ek

e

�


1

p0 � 
e � Eb

�

�
1�

�� ek

e

�
1

p0 � 
e � Eb

�
: (21)

We now project onto positive/negative-energy states ac-
cording to Eq. (7). After analytic continuation, the results
for the imaginary and the real part of the self-energy can
again be written in the form of Eqs. (8) and (9). The
functions Ima�!;p�, Imb�!;p� are available in closed
form and are given in Appendix B. However, the real parts
Rea�!;p�, Reb�!;p� have to be computed numerically.
The results are shown in Figs. 5 and 6.

Again, the shape of the imaginary and real parts reflects
the different energy domains in Fig. 14, which are slightly
different from those in Fig. 13. Apart from this, the overall
shape is rather similar to that of the corresponding imagi-
nary and real parts for normal-conducting fermions,
cf. Figs. 1 and 2. Note, though, that the peaks are somewhat
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broader and flatter. This means that the damping of quasi-
particles is larger than in the normal-conducting case.

B. Dispersion relation

We now compute the dispersion relation for supercon-
ducting fermions. As usual, it is advantageous to distin-
guish particles and charge-conjugate particles by

introducing the Nambu-Gor’kov basis. The propagator
for quasiparticles and charge-conjugate quasiparticles
then reads, cf. Eq. (136) of Ref. [21],

 G 
 � ��G
0 �
�1 � �
 ���f�G�0 �

�1 � ��g�1�
��1:

(22)

Here, the inverse free propagator for particles and charge-

 

FIG. 6. The real parts of the self-energy for massless superconducting fermions (left panel) and antifermions (right panel), at T � 0,
for �� � 0:25� and �� � 0.

 

FIG. 5. The imaginary parts of the self-energy for massless superconducting fermions (left panel) and antifermions (right panel), at
T � 0, for �� � 0:25� and �� � 0.
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conjugate particles is

 �G
0 �
�1�P� � �0

X
e�


�p0 
 ��� ep���
e~p : (23)

Note that G�0 is identical to G0 of Sec. II. Also, if we set
�
 	 0, G� becomes identical to G0 in Eq. (17).
Furthermore, the self-energy for particles, ��, is the one
we computed above, cf. Eq. (18). In the following, we only
need its decomposition in terms of projections onto posi-
tive and negative energies,

 ���P� � �0

X
e�


�e�P��e
~p: (24)

The self-energy for charge-conjugate particles, ��, can
then be computed from �� via [21]

 ���P� 	 C�����P��TC�1 � ��0

X
e�


�e��P��
�e
~p ;

(25)

where C � i�2�0 is the charge-conjugation matrix, and
where we have used the identity C��C�1 � ��T�. Finally,
�� is the order parameter for condensation. If condensa-
tion occurs in the even-parity channel [25],

 ���P� �
X
e�


�e�P��
e
~p�5: (26)

The charge-conjugate order parameter �� is defined as

 ���P� 	 �0��
��P��y�0 � �

X
e�


��e�P�����e~p �5: (27)

The dispersion relation is given by the poles of the
propagator (22). Inserting Eqs. (23)–(27) into Eq. (22),
we obtain
 

G
�P� � f�G�0 �
�1�P� ����P�g

X
e�


��e~p ��p0 ��� ep

� �e�P���p0 ��� ep� �e��P��

� j�e�P�j2��1: (28)

In order to see which poles belong to solutions for positive
or negative energy, respectively, we perform the following
projection of the quasiparticle propagator (28):

 G 
e �P� 	
1
2 Tr�G
�P��0�e

~p�: (29)

This gives

 

G���P� �
p0 ��� p�����P�

�p0 ��� p� ���P���p0 ��� p� ����P�� � j���P�j
2 ; (30a)

G���P� �
1

p0 ��� p� ���P�
; (30b)

G���P� �
1

p0 ��� p� ����P�
; (30c)

G���P� �
p0 ��� p� ���P�

�p0 ��� p� ���P���p0 ��� p� ����P�� � j���P�j2
: (30d)

Since we have set �� � 0, there is a cancellation of
terms between numerator and denominator in the propa-
gators G�� and G��. This leads to a reduction in the number
of poles.

After analytic continuation p0 ��! !� i�, we ob-
tain from the poles of G�� and G�� (these propagators have
the same poles) the dispersion relation for particle, hole,
antiplasmino, and antiplasmino-hole excitations (remem-
ber that the latter belong to the positive-energy part of the
spectrum, and remember also that charge-conjugate anti-
particles correspond to positive-energy solutions). These
dispersion relations are shown in Fig. 7 for a value of the
coupling constant g2=�4�� � 1. For comparison, the thin
lines in this figure show the excitation branches of quasi-
particles when setting �� 	 0, i.e., the poles of the propa-
gator (17) for the upper choice of signs. As seen in the
normal-conducting case, Fig. 3, there were additional col-
lective excitations in the spacelike domain. We also find

the corresponding excitations (plus their hole counterparts)
in the superconducting case. These excitations do not have
an appreciable spectral density (see below), they are
strongly damped. The gap in the excitation spectrum is
clearly visible. However, compared to the gap 2�� �
0:5� in the case �� � 0 (thin lines), it is shifted with
respect to the Fermi surface p � � to smaller values of
momentum. This effective shift of the Fermi surface is well
known from Fermi-liquid theory and decreases with the
coupling constant g.

From the poles of G��, we obtain the dispersion relation
of antiparticle and plasmino excitations (as well as that of
the additional excitation), while the poles of G�� corre-
spond to plasmino-hole and antiparticle-hole excitations
(as well as to the additional excitation in the hole sector).
These dispersion relations are shown in Fig. 8. For com-
parison, we show the excitation branches of normal anti-
particles and antiparticle holes. As in the normal-

ARE THERE PLASMINOS IN SUPERCONDUCTORS? PHYSICAL REVIEW D 75, 065022 (2007)

065022-7



conducting case, plasmino excitations, as well as the addi-
tional strongly damped ones, exist only in a region of
momenta smaller than the Fermi momentum. The size of
this region shrinks with decreasing values of the coupling
constant.

C. Spectral density

The spectral densities corresponding to the propagators
(30) are computed via

 �
e �!;p� � �
1

�
ImG
e �!;p�; (31)

e � 
. For the explicit calculation, see Appendix C.
In Fig. 9 we show a contour plot of ���. For small

momenta, the particle and hole branches are undamped,
since in this region the imaginary part of the self-energy
vanishes. Consequently, the spectral density is a delta
function. For larger momenta, due to a nonzero imaginary
part of �� the spectral density broadens on both the
particle and the hole branch, however, for the particle
branch this broadening is less pronounced than for the
hole branch. One also observes the antiplasmino branch
which is strongly damped by a nonzero imaginary part of
the self-energy. Although the antiplasmino-hole branch
corresponds to a pole of G��, it does not have appreciable
spectral strength in ���, due to a numerical cancellation of
terms in the numerator of the expression for ���,
cf. Eq. (C1).

In Fig. 10 we show the spectral density ���. The spectral
strength on the particle and hole branch is comparable to
that for ���. However, in contrast to that spectral density,
now the antiplasmino-hole branch is clearly visible and the

 

FIG. 9 (color online). The spectral density ��� for supercon-
ducting fermions, T � 0, g2=�4�� � 1,�� � 0:25�, and�� �
0.
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FIG. 8. Dispersion relation for superconducting fermions with
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antiplasmino branch is suppressed due to a numerical
cancellation of terms, cf. Eq. (C4).

In Figs. 11 and 12 we show the spectral densities ��� and
���, respectively. We clearly distinguish the plasmino and
antiparticle branches, as well as the corresponding hole
excitations. The antiparticle and antiparticle-hole branches
are strongly damped because of the nonvanishing imagi-
nary part of the self-energy in this region of the energy-
momentum plane. Note that results similar to ours have
been obtained in Ref. [27], applying the maximum entropy
method to extract the spectral functions from Dyson-
Schwinger equations.

IV. SUMMARY

In this work, we have studied the fermionic excitation
spectrum in normal-conducting and superconducting sys-
tems. For the sake of simplicity, we have taken the fermi-
ons to be massless and we have considered only the most
simple case of an interaction mediated by massless scalar
bosons. Moreover, we restricted our consideration to zero
temperature. In normal-conducting, relativistic fermionic
systems, there exist additional collective excitations, the
so-called plasminos. These have opposite chirality com-
pared to the usual particle excitations.

The goal of the present work was to investigate whether
such excitations also exist in superconducting systems. In
order to answer this question, we have first computed the
one-loop fermion self-energy. Using this self-energy, we
have determined the resulting dispersion relation from the
poles of the full fermion propagator. We do indeed find
plasmino excitations in superconducting systems.

In addition, we have also identified collective excitations
which, at least for normal-conducting systems, lie in the
spacelike region of the energy-momentum plane. Both the
plasmino and these additional collective excitations exist
only in a region of low energies and momenta. We then
calculated the spectral density and found that the additional
collective excitations are strongly damped and do not carry
appreciable spectral weight.
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FIG. 11 (color online). The spectral density ��� for supercon-
ducting fermions, T � 0, g2=�4�� � 1,�� � 0:25�, and�� �
0.

 

FIG. 12 (color online). The spectral density ��� for supercon-
ducting fermions, T � 0, g2=�4�� � 1,�� � 0:25�, and�� �
0.

 

FIG. 10 (color online). The spectral density ��� for supercon-
ducting fermions, T � 0, g2=�4�� � 1,�� � 0:25�, and�� �
0.
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APPENDIX A: IMAGINARY AND REAL PART OF
THE SELF-ENERGY OF NORMAL-CONDUCTING

FERMIONS

The imaginary and real part of the self-energy, see
Eqs. (8) and (9), respectively, can be computed analyti-
cally. One distinguishes different regions in the energy-
momentum plane as shown in Fig. 13. In these regions, the
functions Ima�!;p� and Imb�!;p� assume the following
values, see Ref. [9]:

 I b: Ima�!;p� �
g2

32�
!; (A1)

 Im b�!;p� � �
g2

32�
; (A2)

 Ia: Ima�!;p� � �
g2

32�
1

4p
�2��!�p��2��!�p�;

(A3)

 

Imb�!;p� � �
g2

32�
1

2p3 �2��!� p�



�
!2 � p2 �

!
2
�2��!� p�

�
;

(A4)

 I I: Ima�!;p� �
g2

32�
1

4p
�2��!� p��2��!� p�;

(A5)

 

Imb�!;p� �
g2

32�
1

2p3 �2��!� p�



�
!2 � p2 �

!
2
�2��!� p�

�
;

(A6)

 

III: Ima�!;p� ��
g2

32�
!; (A7)

 Im b�!;p� �
g2

32�
; (A8)

 I V: Ima�!;p�� Imb�!;p��0: (A9)

The real part of the self-energy is the sum of a vacuum
and a matter contribution. After renormalization, one ob-
tains at the renormalization scale � the result

 

Rea�!; ~p� � �
g2

32�2
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��

�2��!� p��2��!� p�
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�������� !� p
!� p� 2�

��������
�
�2��!� p��2��!� p�

4p

 ln

�������� !� p
!� p� 2�

���������! ln

��������!
2 � p2

�2

��������
�

(A10)
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2
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 ln

�������� !�p
!�p�2�

��������
�
�2��!�p�
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�
!2�p2�

!
2
�2��!�p�

�

 ln

�������� !�p
!�p�2�

���������1

2
ln

��������!
2�p2

�2

��������
�
:

(A11)

Comparing this to Eq. (B6) of Ref. [9], we obtain an
additional term �!�=�2p2� in Eq. (A11).

APPENDIX B: IMAGINARY PART OF THE SELF-
ENERGY OF SUPERCONDUCTING FERMIONS

Superconductivity is a consequence of the formation of
Cooper pairs at the Fermi surface, i.e., it involves particles,
but not antiparticles. Therefore, it is permissible to set the
antiparticle gap function to zero, ���P� � 0. In the fol-
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FIG. 13. The different domains in the energy-momentum
plane, which occur in the computation of the imaginary part of
the self-energy.
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lowing, we abbreviate the particle gap function as
���P� 	 �. The fact that particles have a gap but antipar-
ticles do not forces us to compute particle and antiparticle
contributions to the imaginary part of the self-energy (21)
separately. We therefore split the latter into two parts.
Using the projection (7), we obtain

 Im �
�!;p� �
X
e�


Im��e�
 �!;p�; (B1)

 Im ��e�
 �!;p� � Ima�e��!;p� 
 p Imb�e��!;p�; (B2)

 

Ima�e��!;p� � �g2
Z d3 ~k

�2��3
1

8Eb

��
1�

�� ek

e

�

 	�p0 � 
e � Eb� �
�
1�

�� ek

e

�

 	�p0 � 
e � Eb�
�
; (B3)

 

p Imb�e��!;p� � �e�g2
Z d3 ~k

�2��3
p̂ � k̂
8Eb

��
1�

�� ek

e

�

 	�p0 � 
e � Eb� �
�
1�

�� ek

e

�

 	�p0 � 
e � Eb�
�
: (B4)

As in the case of normal-conducting fermions, we en-
counter different regions in the energy-momentum plane
when computing the functions Ima�e��!;p�, Imb�e��!;p�.
For the negative-energy contribution (e � �) to the self-
energy (21), these regions look the same as in Fig. 13,
because we have set the antiparticle gap to zero. However,
for the positive-energy contribution (e � �), they are of
slightly different shape due to the nonzero value for the
particle gap �. We show these regions in Fig. 14.

In the following, we list the functions Ima�
��!;p�,
Imb�
��!;p� in the different domains of Fig. 14:
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�p2 �!2�2

�
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2p
ln
�
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 Im b��� �
g2�2

32�p2

�
1�

2�!

!2 � p2 �
�2p2

�!2 � p2�2

�
2��!

2p
ln
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 I V: Ima��� � Imb��� � 0: (B13)

The negative-energy contribution to the self-energy van-
ishes except in region III of Fig. 13, where we find

 I II: Ima��� � �
g2

32�
! (B14)

 Im b��� �
g2

32�
: (B15)

APPENDIX C: SPECTRAL DENSITY OF
SUPERCONDUCTING FERMIONS

The spectral densities for superconducting fermions are
proportional to 	-functions in the region of the energy-
momentum plane, where the imaginary part of the self-
energy is zero. In this case, they can be computed from an
equation analogous to Eq. (14). On the other hand, if the
imaginary part is nonzero, they can be computed via

 ����!;p� �
1

�
1

A2 � B2 f�!� 2�� p� Re����

�!;� ~p��B� Im�����!;� ~p�Ag; (C1)

 ����!;p� �
1

�
Im���!��; ~p�

�!� p� Re���!��; ~p��2 � �Im���!��; ~p��2
; (C2)

 ����!;p� � �
1

�
Im�����!;� ~p�

�!� 2�� p� Re�����!;� ~p��
2 � �Im�����!;� ~p��

2 ; (C3)

 

����!;p� �
1

�
1

A2 � B2 f�!� p� Re���!��; ~p��B

� Im���!��; ~p�Ag; (C4)

where we have abbreviated
 

A��!���2����p�2��!�2��p�Re���!��; ~p�

��p�!�Re�����!;� ~p�

�Re���!��; ~p�Re�����!;� ~p�

� Im���!��; ~p�Im�����!;� ~p���
2; (C5)

 B � �!� 2�� p� Im���!��; ~p�

� �p�!� Im�����!;� ~p�

� Im���!��; ~p�Re�����!;� ~p�

� Re���!��; ~p� Im�����!;� ~p�:
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