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We determine torsion class constraints for the supergravity background produced by D6-branes
wrapping special Lagrangian cycles in a Calabi-Yau 3-fold. We employ a recently introduced method
which involves probing the putative background by all possible supersymmetric brane configurations. We
then lift this background to 11 dimensions to a product of 4-d Minkowski space and a 7-fold of G2

holonomy. The latter is a particular U(1) bundle over an almost complex manifold of SU(3) structure with
specific torsion class constraints. We construct the closed 3- and 4-forms which calibrate the 3- and 4-
cycles in the G2 holonomy manifold.
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I. INTRODUCTION

Supersymmetric solutions of supergravity theories have
long played a distinguished role in string theory because
they provide us with settings in which string theory can be
studied in a controlled fashion. In backgrounds with zero
flux the classification of supersymmetric backgrounds is
completely known. For instance in 11-d supergravity,
R1;10�n �Mn is a supersymmetric solution only if the
compactification manifold M has special holonomy.
There is a complete classification of such groups due to
Berger and, given the dimension n of M, we can say
immediately what sort of a manifold it has to be; if n �
2 m, it must be Calabi-Yau [with SU(m) holonomy], if n �
4 m, it must be Hyper-Kähler [with Sp(m) holonomy], if
n � 7, the manifold must have G2 holonomy, and lastly, if
n � 8, the compactification manifold has reduced holon-
omy group Spin(7). Charged branes source a field strength
for the gauge potential they couple to. Hence, supergravity
backgrounds which describe branes do contain flux and the
neat classification scheme described above breaks down. It
has thus been the object of much research in recent years,
to come up with an analogous exhaustive list of possible
manifolds in more realistic supergravity backgrounds
where the flux is turned on.

The classification scheme into which we fit the system
we study1 is that of intrinsic torsion classes of SU(3)
structures [3]. The subject of our study has two alternate
descriptions. The first is in type IIA string theory, where it
takes the form of D6-branes wrapping a special Lagrangian
3-cycle in a Calabi-Yau 3-fold. The second description is
from the 11-d point of view in which this system appears to
be pure geometry—it is simply the product of 4-d
Minkowski space and a G2 holonomy manifold in M-
theory (see [4] for a review of wrapped D6-branes and

their lifts to special holonomy manifolds). This problem is
discussed in [5–7] from a different point of view: the
SU(3) structure is deduced from requiring G2 holonomy
in M-theory and expressing these constraints in terms of
SU(3) structures.

We will apply a recently introduced technique [8] to
classify the backgrounds created by wrapped branes. As
we illustrate in the present work, this method provides us
with an efficient way of finding the torsion class constraints
on the geometry. The method has the additional advantage
of providing a physical meaning to these constraints—an
insight which is often hard to glean when using more
traditional methods involving supergravity Killing spinor
equations.

II. CLASSIFICATION SCHEME USING SU(3)
STRUCTURES

In this section we briefly summarize the ideas contained
in [3] that we will use to classify the supergravity solutions
of wrapped D6-branes. These ideas go by the name of
G-structures and have been the subject of much research
recently (see [1,2] for a fairly recent review and referen-
ces). G in the case at hand is SU(3). We will motivate why
we consider SU(3) structures and then outline the classifi-
cation scheme of [3].

As explained in [9], when we consider branes wrapped
on special Lagrangian cycles (or, for that matter, holomor-
phic cycles) of Calabi-Yau manifolds, it is natural to as-
sume that the Calabi-Yau manifold is replaced by an
almost complex manifold. This conclusion follows from
insisting that the supersymmetry preservation conditions in
the probe approximation for the wrapped branes continue
to have a meaning in the full supergravity solution [9]. The
existence of an almost complex structure means that forms
can be decomposed into sums of (p,q) forms. A (p,q)-form
can be written as a sum

 T � Tm1...mp �n1... �nqe
m1 ^ . . . ^ emp ^ e �n1 ^ . . . ^ e �nq ; (1)

where femg, m � 1; . . . ; d is a basis of (1,0)-forms and
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fe �mg � f�em��g are their complex conjugates and are (0,1)-
forms according to the almost complex structure. The al-
most complex manifold has real dimension 2d. We pick the
basis femg so that they provide a frame for the manifold.
The almost complex structure allows for U(d) transforma-
tions which rotate these (1,0) forms into each other while
preserving the metric.

In the case at hand d � 3. There are three SU(3) invari-
ant tensors one can form out of our basis of (1,0) forms:
 

gIJ � �m �n�emI e
�n
J � e

m
J e

�n
I �;

J �
i
2
�e1 ^ e�1 � e2 ^ e�2 � e3 ^ e�3�;

� � e1 ^ e2 ^ e3:

(2)

Here g is the metric, J is a (1,1)-form, and � is a (3,0)-
form. The last of these, �, is invariant only under SU(3)
but not under U(3). As we will discover, � appears in
physical quantities thus implying that the U(3) structure
implied by the existence of the almost complex structure is
further reduced to a SU(3) structure.

There is a classification of SU(3) structure manifolds in
terms of their so-called intrinsic torsion � [3]. The intrinsic
torsion � has five independent components [3]:

 � 2W 1 �W 2 �W 3 �W 4 �W 5; (3)

W i label the torsion classes and, as explained in [3], are
given in terms of the exterior derivatives of J and �:

 W 1 $ 	dJ

�3;0�; W 2 $ 	d�
�2;2�0 ;

W 3 $ 	dJ

�2;1�
0 ; W 4 $ J ^ dJ;

W 5 $ 	d�
�3;1�:

(4)

where the subscript 0 denotes primitive forms, e.g. if � 2
��2;2�0 then J ^ � � 0, and if � 2 ��2;1�0 then J ^ � � 0.

III. HOW BRANE PROBES HELP CHARACTERIZE
A BACKGROUND

In purely geometric backgrounds, minimal volume
cycles are stable, or calibrated. Branes wrapped on such
cycles have minimal energy/mass and therefore have noth-
ing to decay into. Using this observation we extend the
concept of calibrations to more general backgrounds, de-
fining calibrated forms to be those which give us lower
bounds on the mass, even in backgrounds where fields
other than the metric are turned on. Using D-brane actions
to define calibrating forms also has been considered inde-
pendently in [10].

Since we are interested in characterizing the supergrav-
ity background produced by a wrapped brane, our strategy
is as follows. We start with an ansatz for the metric for the
wrapped brane configuration. Given this putative super-
gravity background we probe it with all possible branes
which preserve supersymmetry. Such branes, being

Bogomol’nyi-Prasad-Sommerfeld (BPS), are not only sta-
ble but also static. We compute their mass (or tension) and
associate it with a calibrating form integrated over the
cycle wrapped by the probe [8]. In what follows, we use
this method to identify the calibrating forms in the super-
gravity background generated by D6-branes wrapping a
special Lagrangian 3-cycle. The properties of these cali-
brating forms give the torsion class constraints [8] and
thereby allows us to characterize the background.

We will identify the mass of the probe brane through the
action of the probe. Since the brane is static, the mass is
simply given by the Lagrangian density evaluated in the
supergravity background produced by the wrapped brane
and then integrated over the spatial part of the probe’s
worldvolume. It is this mass which we will use to find
calibrating forms. We now briefly describe the actions for
the different kinds of branes we will be using as probes.

The action of a D-brane in the so-called ‘‘string frame,’’
when no further worldvolume fields are present, is given by
the volume form on the worldvolume multiplied by an
overall factor of the dilaton and integrated over the world-
volume of the brane2:

 S � Tp
Z
e��

���������
deth
p

d�0 ^ . . . ^ d�p: (5)

Here �i are worldvolume coordinates, � is the dilaton, Tp
is the tension of the Dp-brane in 10-d and h is the pullback
of the space-time metric onto the D-brane.

The situation is slightly more complicated for NS5-
branes in type IIA string theory because there are now
additional terms in the action. One way of finding these
extra terms is by viewing the NS5-brane as an M5-brane in
M-theory on a circle bundle over the type IIA string-frame
geometry:

 ds2
11 � e�2�=3ds2

10 � e
4�=3�dy� Aidxi�2: (6)

Here the coordinate y is along the circle and Ai is the
Ramond-Ramond (R-R) 1-form in the 10-d space-time of
the type IIA background. Since the M5-brane descends to a
NS5-brane only if it is transverse to the circle, we will
assume that to be the case in what follows. For an M5-
brane in a purely geometric background (i.e. with a vanish-
ing 3-form), the worldvolume metric is given by the pull-
back of the space-time metric (6):

 e�2�=3�hab � e
2�aaab� � @aX

i@bX
j�e�2�=3gij

� e4�=3AiAj�; (7)

where h is the pullback of the 10-d string-frame metric g
and ab is the pullback of Ai on to the M5-brane. The action
is then given by the volume form, integrated over the entire
NS5-brane. Using the fact that the volume form on the M5-

2We are assuming that the pullback of the NS-NS B-field onto
the worldvolume also vanishes.
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brane is

 

����������������������������������������������������������
det	e�2�=3�hab � e2�aaab�


q
d�0 ^ . . . ^ d�5; (8)

and the identity

 det�hab � e2�aaab� � �1� e2�aaabhab� deth; (9)

the action can be expressed quite simply as
 

SNS5 � T5

Z
e�2�

����������������������������������������������
�1� e2�aaabhab�deth

q
d�0 ^ . . .^ d�5:

(10)

Given these actions, we now have a concrete method of
computing the mass of any D-brane or NS5-brane which
can be introduced as a supersymmetric probe into our
background. In each case, the mass will be given by the
integral of certain forms. By requiring these forms to be
calibrations, we will arrive at a set of constraints which
classify the background.

IV. PROBING A D6-BRANE ON A SPELL3-CYCLE

The background we want to probe is one created by D6-
branes wrapping a SpelL3-cycle in a Calabi-Yau 3-fold.
We introduce the following ansatz for the space-time met-
ric:

 ds2
10 � H2���dx

�dx� � gIJdy
IdyJ: (11)

Here x�, � � 0123 are the coordinates on the D6-brane
transverse to the Calabi-Yau, and yI, I � 4; . . . 9 are coor-
dinates on the 6-d manifold we call M that approaches the
underlying Calabi-Yau manifold as we ‘‘turn off’’ the D6-
branes. Since the 3� 1-dimensional space-time of the D6-
branes transverse to the Calabi-Yau is Poincaré invariant,
the warp factor H � H�y� is a function only of the coor-
dinates on the six-manifold M with metric gIJ.

In addition to the above ansatz we make the important
assumption that M has an almost complex structure de-
fined on it [9]. This means that there is an U(3) structure
which may be reduced to a SU(3) structure. The almost
complex structure on M then allows us to define J and �.
In the background produced by the D6-branes we can
introduce supersymmetric probes. We will wrap them on
supersymmetric cycles of M. These configurations will
have an interpretation as a brane wrapped on a supersym-
metric cycle of the underlying Calabi-Yau. We will require
that the configuration is supersymmetric, which for D-
branes means that

 	L �
1

p!
�A1...Ap�1	A1...Ap�1

	R: (12)

Here 	A1...Ap�1
is the volume form on the worldvolume of

the probe brane. Using the almost complex structure, it is
straightforward to show that supersymmetry requires that
the volume of the wrapped cycles are given by the pull-

backs of either Re	ei
�
, J, or 1
2 J ^ J depending on

whether the brane is wrapping a cycle corresponding to a
special Lagrangian cycle, holomorphic 2-cycle, or holo-
morphic 4-cycle, respectively, in the underlying Calabi-
Yau.

The D6-branes we are interested in wrap a special
Lagrangian 3-cycle calibrated by Re�. This can be sche-
matically represented as

 

We can now introduce probe branes into this background
and try to study them as objects in the worldvolume theory
on the noncompact part of the D6-branes. We will find that,
just as in [8], we get constraints on J and � giving us
important information about the manifold M.

A. D-brane probes

The simplest BPS probe we can introduce into this
background is a D2-brane completely transverse to M

 

This D2-brane appears as a flat 2-brane in the 4-d world-
volume of the D6-brane transverse to M. The action of this
probe is given by

 S � T2

Z
H3e��dt ^ dx1 ^ dx2; (15)

and its tension is

 T � T2H3e��: (16)

As argued in [8] the tension for a supersymmetric probe
brane is given by a calibrating form integrated over the
cycle the brane is wrapping. In this case the D2-brane is
wrapping a 0-cycle and therefore the tension is given by a
calibrated form only if

 d6	e
��H3
 � 0: (17)

From this condition, we can read off

 e�� � H�3; (18)

where we have absorbed the asymptotic value of the dila-
ton in T2. We will use this identity in what follows. As an
additional check, recall that the lift to M-theory of our
wrapped D6-brane configuration is pure geometry (see for
instance [4] for a comprehensive review of lifts of D6-
branes to geometry). The 11-d geometry is a product
R3;1 �N , where N is a G2 holonomy manifold. Using
this product form, and Eqs. (6) and (11), we can read off the
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relation e2�=3 � H2. This agrees with our identification
using the brane probe method.

Next, we introduce a D4-brane probe which wraps a
holomorphic cycle in the underlying Calabi-Yau. In order
for this probe to be BPS it must be oriented so that the total
number of Neumann-Dirichlet directions of the system is 0
mod 4. This is accomplished by, for instance, the following
configuration:

 

Supersymmetry requires that the volume form of a minimal
2-cycle in M is given by the (1,1)-form J. The action of
the D4 probe is given by the integral

 S � T4

Z
H3e��dt ^ dx1 ^ dx2 ^ J: (20)

The factor of H3 comes from the determinant of the metric
in the 0, 1, 2 directions. This D4-brane appears as a 2-brane
in the flat part of the D6-brane transverse to the original
Calabi-Yau. The tension of this 2-brane inside the 4-d
worldvolume theory of the D6-brane is given by

 T � T4

Z
�2

H3e��J � T4

Z
�2

J; (21)

where the second equality follows from (18). Using the
arguments outlined in [8] we conclude:

 d6J � 0; (22)

that is, the (1,1) form J is closed.
We now turn to a third possibility: a D4-brane wrapping

a SpelL3-cycle. This configuration preserves supersymme-
try if the probe is oriented such that it wraps a cycle
calibrated by Im� (recall that the D6-brane wraps a
SpelL3-cycle, calibrated by Re�). Diagramatically, we
can represent the setup as follows:

 

The volume form on the SpelL3-cycle is the pullback of
Im�. The action of the probe is then

 S � T4

Z
�3�R1;1

H2e�� Im� ^ dt ^ dx1; (24)

where �3 is the SpelL3-cycle the D4-brane wraps. In the 4-
d worldvolume theory of the D6-brane transverse to the
Calabi-Yau, this D4-brane appears to be a string with
tension of this string:

 T � T4

Z
�3

H2e�� Im� � T4

Z
�3

H�1 Im�; (25)

where the second equality follows from (18). Following the
logic which should by now be familiar, we reason that there
is a calibrating form for this tension, given by the quantity
integrated over in the above expression. Moreover, this
calibration is closed:

 d6	H�1 Im�
 � 0: (26)

This provides us with a new torsion class constraint. We
find that

 d�H�1�� 2 ��2;2�: (27)

In general d�H�1�� can also have a component in ��3;1�.
There is no such piece in our present case. Moreover, the
condition (26) tells us that d�H�1�� is real. We will return
to this condition later when we summarize the torsion class
constraints derived in this section.

Note that a D4-brane probe with worldvolume 01457
would also describe a D4-brane wrapping a SpelL3-cycle
in M, calibrated by Im�. As one would expect, the D4-
probe, even in this new orientation would lead to the same
calibration obtained above. Other supersymmetric D-brane
probes also can be introduced, but these do not lead to any
new constraints. Consider, for example, a D6-brane wrap-
ping a 4-cycle in M.

 

This BPS probe is a 2-brane in the worldvolume theory of
the D6-brane transverse to the Calabi-Yau. It has an action

 S � T6

Z
H3e��J ^ J ^ dt ^ dx1 ^ dx2 (29)

from which we can read off the tension of the 2-brane

 T � T6

Z
�4

H3e��J ^ J � T6

Z
�4

J ^ J; (30)

which leads to the constraint

 d6	J ^ J
 � 0: (31)

This is not a new constraint; it follows from the condition
(22) found above.

Having exhausted the calibrations we can obtain using
D-branes, we now turn to the somewhat more complicated
Neveu-Schwarz (NS) probes.

B. NS-brane probes

For the case at hand, NS5-branes can only be introduced
in two ways such that supersymmetry is preserved. In the
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first scenario, a NS5-brane wraps a SpelL3-cycle, and in
the second, it wraps a holomorphic 4-cycle.

Consider the SpelL wrapping first. For the configuration
to be supersymmetric the 3-cycle �3 must be calibrated by
Re� (the same as the background D6-brane). Visually, we
can represent this as follows:

 

The action for our NS5-brane probe is (10)
 

SNS5 � T5

Z
e�2�

����������������������������������������������
deth�1� e2�aaabh

ab�
q

dt ^ dx1 ^ dx2

^ d�1 ^ d�2 ^ d�3; (33)

where we have split the worldvolume coordinates into t, x1,
x2 transverse to M and�1,�2,�3 on �3. We are interested
in a static supersymmetric NS5-brane. As one can see from
the table above, the NS5-brane has two noncompact direc-
tions along the D6-brane transverse to M. It appears,
therefore, as a 2-brane in the worldvolume theory of the

D6-brane transverse to the Calabi-Yau. The tension of this
2-brane can be read off from (33) to be

 T � T5

Z
e�2�

����������������������������������������������
deth�1� e2�aaabh

ab�
q

d�1 ^ d�2 ^ d�3:

(34)

This expression can be simplified using the following
observation. On a SpelL cycle the pullback of the Kähler
form vanishes by definition. Although the geometry pro-
duced by the D6-brane is no longer complex it does retain
the almost complex structure of the underlying Calabi-Yau
and, as expected, the condition Jj�3

� 0 holds. That being
the case it is straightforward, although tedious, to show that

 deth � H6j�j�3
j2 � H6	�Re�j�3

�2 � �Im�j�3
�2
; (35)

i.e. the determinant of the pullback of the 10-d metric is the
sum of two nonnegative terms—the squares of the real and
imaginary parts of the pullback of � onto the 3-cycle.3 The
factor of H6 comes from the three noncompact worldvo-
lume directions of the NS5-brane, transverse to the Calabi-
Yau. The above expression enables us to rewrite the tension
as follows:

 T � T5

Z
H3e�2�

������������������������������������������������������������������������������������������
�1� e2�aaabhab�	�Re�j�3

�2 � �Im�j�3
�2�


q
d�1 ^ d�2 ^ d�3 (36)

in a form that is suggestive of a Bogomolnyi-type bound.
For a static configuration that cannot decay into something
energetically more favorable, we have to minimize the
tension. Since we have a product of two nonnegative ex-
pressions under the square root, clearly the tension is
minimal when both nonnegative terms are minimized sepa-
rately, i.e.
 

Re	ei
�j�3

 � 0 for some phase 
 and aaabhab � 0:

(37)

The later condition is only possible if a � Aj�3
� 0. As

discussed earlier, a NS5-brane probe in this background is
supersymmetric only when calibrated by Re�; in other
words, we put Im�j�3

� 0. This reasoning allows us to
determine a closed form. Notice that the mass of the 2-
brane (i.e. the NS5/D6-brane intersection in the noncom-
pact directions) is determined by

 T � T5

Z
�3

H3e�2� Re�: (38)

Because the R-R 1-form A vanishes on �3, any piece in
Re� which has a nonzero contraction with A will not
contribute to the mass. For a minimum mass configuration,

it is thus equally true that the tension can be computed by
 

T� T5

Z
�3

H3e�2�
�

Re��
1

2

Ak

AmAm
Re�ijkdxi^dxj^A

�

� T5

Z
�3

H3e�2�
�

Re��
1

AmAm
��6	A^ Im�
� ^A

�
:

(39)

Does a calibrating form exist, associated with this NS5-
brane? Such a calibrating form should compute the mini-
mum tension when integrated over any cycle which is
homologically equivalent to the minimal cycle. In general,
a cycle homologous to the minimal one will not have Ai
vanishing on it and the integral (38) over such a cycle will
not compute the minimum tension. The expression (39),
however, gives the minimal tension for all �3 in the same
homology class as the minimal cycle but not necessarily
minimal itself. Hence the calibration in question is given
by the closed form

 H3e�2�
�

Re��
1

AmA
m ��6	A ^ Im�
� ^ A

�
: (40)

Simplifying this expression using (18) gives finally the
constraint

 d
�
H�3

�
Re��

1

AmAm
��6	A ^ Im�
� ^ A

��
� 0: (41)3Of course, there are an infinite set of ways of breaking up the

term into two nonnegative parts by multiplying � by a phase.
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We shall see that there is a much more elegant expression
for the calibrating form when we lift to 11 dimensions. A
similar analysis can be carried out for a NS5-brane
wrapped on a 4-cycle in M:

 

The action for this configuration is given by adapting (10)
to the case at hand:
 

SNS5 � T5

Z
e�2�

���������������������������������������������
deth�1� e2�aaabhab�

q
dt^ dx1 ^d�1

^d�2 ^d�3 ^d�4

� T5

Z
e�2�H2

������������������������������������
�1� e2�aaabh

ab�
q 1

2
J^ J^ dt^dx1

� T5

Z
H�4

������������������������������������
�1� e2�aaabh

ab�
q 1

2
J^ J^ dt^dx1:

(43)

This NS5-brane appears as a string in the 3�
1-dimensional noncompact part of the worldvolume of
the D6-brane with tension

 T � T5

Z
�4

H�4
�������������������������������������
�1� e2�aaabh

ab�
q 1

2
J ^ J: (44)

For the tension to be minimal the pullback of the R-R 1-
form A onto the supersymmetric 4-cycle, �4 must vanish:
ab � 0. If that condition is satisfied then the tension is
given by

 T �
1

2
T5

Z
�4

H�4J ^ J: (45)

Just as above we can construct a closed form � by remov-
ing those terms in J ^ J that have a nonzero projection
along A:
 

� � H�4J ^ J�
1

3!

Al

AmA
m �J ^ J�ijkldx

i ^ dxj ^ dxk ^ A:

(46)

Again, a more elegant expression for the calibrating form
arises naturally in 11-d as we shall see below.

V. THE SUPERGRAVITY SOLUTION FOR
D6-BRANES: TORSION CLASSES AND THE

R-R 1-FORM

In this section we summarize our results from the pre-
vious section in terms of the torsion classes for the geome-
try. We also complete the characterization of the
supergravity solution by showing how to compute the R-
R 1-form A.

The torsion classes are given in (4). In the previous
section we found that (22) J is closed. In terms of torsion
classes this restricts us to

 W 1 �W 3 �W 4 � 0: (47)

In addition we found that the combination H�1 Im� is
closed [see (26)]. From this we can conclude that

 �d���3;1� � H�1dH ^�; (48)

 �d���2;2� � �d ����2;2�: (49)

Thus W 5 is fixed by the first of these equations. The last of
the above equations restricts W 2 to be real.

Having specified the torsion class of the metric g, we
turn to determining A. Here it is useful to combine our
techniques with those of generalized calibrations [11]. The
key idea underlying generalized calibrations is that for
states saturating a BPS bound, the mass and charge are
identical. A BPS p-brane couples (electrically) to a
(p� 1)-form and the BPS relation between mass and
charge implies that this (p� 1)-form gauge field is equal
to the effective volume form (i.e. the Lagrange density on
the worldvolume evaluated in the supergravity back-
ground) on the (p� 1)-dimensional worldvolume of the
p-brane. In our case we have a D6-brane with a (6� 1)-
dimensional worldvolume which couples electrically to a
7-form, the magnetic dual of the R-R 1-form A. Using the
generalized calibration idea we can write down an expres-
sion for the 7-form ~A7 by equating it with the Dirac-Born-
Infeld Lagrangian for the D6-brane—its effective mass
density:

 

~A 7 � T6e��H4dx0 ^ dx1 ^ dx2 ^ dx3 ^ Re�

� T6Hdx
0 ^ dx1 ^ dx2 ^ dx3 ^ Re�; (50)

where T6 is the tension of the D6-brane in 10-d, and we
have used the fact that the volume of the special
Lagrangian 3-cycle is given by the pullback of Re�.
From the above expression we can construct an 8-form
field strength:

 

~F 8 � d ~A7 � T6dx0 ^ dx1 ^ dx2 ^ dx3 ^ d�HRe��;

(51)

which is the Hodge dual of F2 � dA that defines A for us:

 F2 � �10d ~A7 � H�4 �6 d6�HRe�� (52)

 � dA: (53)

This last equation implicitly gives us a way of determining
A in terms of geometric data. We can further analyze the
above expression for F by noticing that it is a 2-form which
can be decomposed into (2,0), (0,2), and (1,1) components
using the almost complex structure. The torsion class con-
straints (49) simplify the expressions to
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F�2;0� � H�4 �6 �dH ^�� � iH�4@IH�I
JK

1
2dy

J ^ dyK;

F�0;2� � H�4 �6 �dH ^ ��� � �F�2;0���;

F�1;1� � H�3 �6 �dRe���2;2�: (54)

Finally, F has to satisfy the equation of motion: dF � 0:

 0 � d6�H�4 �6 d6�HRe���: (55)

This completes our analysis of the supergravity solution for
D6-branes wrapping special Lagrangian cycles in Calabi-
Yau 3-folds. We now turn to the lift of these results to 11
dimensions.

VI. THE 11-D LIFT OF WRAPPED D6-BRANES AND
G2 HOLONOMY MANIFOLDS

The 10-dimensional type IIA supergravity description of
wrapped D6-branes can be lifted to 11 dimensions with the
identification

 ds2
11 � e��2�=3�habdxadxb � e4�=3�d � AIdxI�2; (56)

where h is the 10-d string-frame metric (11), A is the R-R
1-form, and  is a compact coordinate along the 11th
dimension. Since the metric is invariant under translations
in  , there is no explicit  dependence. Generically,
type IIA solutions can have other fields turned on besides
the dilaton and R-R 1-form. Such solutions lift to 11-d
solutions with a nonzero 3-form potential. In our case there
are no such fluxes present so we lift to a purely geometric
background.

More explicitly with our identification of the dilaton in
(18) and the string-frame metric (11), the 11-dimensional
space-time is
 

ds2
11 � ���dx�dx� �H�2gIJdyIdyJ �H4�d � AIdyI�2:

(57)

This metric is a product of R3;1 and a 7-d manifold which is
an U(1) bundle over the almost complex manifold M:

 ds2
7 � H�2gIJdyIdyJ �H4�d � AIdyI�2: (58)

We denote this 7-d manifold M7. Since we have a purely
geometric supersymmetric solution in 11 dimensions with
4 supersymmetries, Berger’s classification immediately
tells us that the manifold M7 has G2 holonomy.4

A G2 holonomy manifold is, as its name implies, a 7-d
manifold whose holonomy group is the simple group G2.
Such a manifold always admits a distinguished harmonic
3-form �3 which satisfies d�3 � d ��3 � 0. The forms
�3 and �4 � ��3 calibrate 3- and 4-cycles in M7 and are
referred to as associative and co-associative calibrations,
respectively. We will now construct �3 and �4 using our

10-d analysis from the previous sections. Before proceed-
ing to the actual construction, however, we pause briefly to
discuss a point that will be useful. Physics is invariant
under gauge transformations of the R-R 1-form A: A!
A� d�. This invariance is explicit in the type IIA context
where the gauge field is defined through the field strength
(53). Since A appears in the expression for the metric (58),
one might wonder how gauge invariance is reflected in this
context. It turns out that this metric (58) is in fact gauge
invariant up to redefinitions of the coordinate  . In par-
ticular, the existence of the Killiing vector field @ allows
us to bring the metric back to its original form through the
transformation

 A! A� d�;  !  � �: (59)

The lesson here is that while neither A nor d is gauge
invariant on its own, the combination d � A is. The
significance of this observation will be apparent in a mo-
ment. We turn now to the construction of the forms �3 and
�4 which calibrate 3- and 4-cycles in M7. Three cycles in
M7 have two origins: (a) as three cycles in M and (b) as a
circle ( ) fibered over a 2-cycle in M (this circle is
pinched at zeroes of H). To connect to the discussion in
the previous sections in the type IIA context, consider
wrapping an M5-brane on these two different types of
cycles. Case (a) corresponds to NS5-branes wrapping spe-
cial Lagrangian cycles in the Calabi-Yau while case (b)
corresponds to D4-branes wrapping holomorphic 2-cycles
in the Calabi-Yau. We know how to compute the masses of
each of these objects. The tension of the nonwrapped part
of the D4-brane in case (b), as we discussed previously, is
given by

 T � T4

Z
�2

J � TM5

Z
�2�S1

�H�2J� ^ �H2d �; (60)

where we have made the usual identification

 T4 � TM5

Z
S1
d : (61)

Notice that we have paired the factors of H suggestively to
indicate their origins. Now according to our analysis we
should have a closed calibrating form:

 �0 � J ^ d : (62)

This form is in fact closed but it is not gauge invariant. We
might consider modifying the above expression to

 �00 � J ^ �d � A�: (63)

This form is gauge invariant by construction but it is no
longer closed:

 d�00 � J ^ F: (64)

Using the explicit expression for F given in Eq. (53) and
the torsion class constraints (49), it is possible to show that

4Manifolds with G2 holonomy have been constructed previ-
ously from 6-d manifolds with SU(3) structure; see, for example
[12]
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 J ^ F � �d�H�3 Re��; (65)

and, therefore,

 �3 � J ^ �d � A� �H�3 Re� (66)

is closed. We have somewhat hastily identified �3 with an
expression which is formally closed, without discussing
the physical meaning of the additional term; this term,
however, turns out to be easy to understand. In Sec. IV B,
we showed that supersymmetric NS5-branes wrapped on
special Lagrangian cycles were calibrated by H�3 Re�,
and that the pullback of A vanished on these cycles. From
the M-theory point of view, this is precisely when the only
nonzero contribution comes from the terms we just added.
This what we labeled case (a) above.

To construct �4 we could simply take the 7-d Hodge
dual of �3 but we prefer instead to derive it in a manner
similar to our derivation of �3 so that its interpretation as a
calibration is clear. Consider the possible origins of 4-
cycles in M7. There are again two possibilities: case (a),
where the 4-cycle is completely contained inside of M,
and case (b), when the 4-cycle is a circle fibered over a 3-
cycle in M. Again, to connect to our previous discussion
consider an M5-brane wrapping a 4-cycle. Case (a) corre-
sponds to a NS5-brane wrapping a holomorphic 4-cycle in
the Calabi-Yau while case (b) corresponds to a D4-brane
wrapping a special Lagrangian 3-cycle in the Calabi-Yau.
Let us compute the tension of the noncompact directions of
the D4-brane in case (b) as we did in Sec. IV. We find that

 T � T4

Z
�3

H�1 Im�

� TM5

Z
�3�S1

�H�3 Im�� ^ �H2d �; (67)

where we have again grouped the factors of H in a manner
suggestive of their origins. As before, the natural calibrat-
ing 4-form for this class of configurations is

 �000 � H�1 Im� ^ d : (68)

While closed this is not gauge invariant, so proceeding as
we did above we might consider

 �0000 � H�1 Im� ^ �d � A�: (69)

Mirroring the discussion for the 3-form, we have now
arrived at a gauge invariant version of the calibration which
is not closed:

 d�0000 � H�1 Im� ^ F; (70)

where F is given in (53). It is not difficult to show that

 H�1 Im� ^ F � �1
2dH

�4 ^ J ^ J � �1
2d�H

�4J ^ J�;

(71)

where the last equality makes use of our torsion constraint
dJ � 0. Thus the 4-form

 �4 � H�1 Im� ^ �d � A� � 1
2H
�4J ^ J (72)

is both closed and gauge invariant. The additional term
introduced here is precisely what we needed to cover
case (b) as discussed in Sec. IV B.

We have now assembled all the elements we sought.

VII. CONCLUSIONS

In this paper we provide a general description of the
supergravity solution of D6-branes wrapping special
Lagrangian cycles in Calabi-Yau manifolds. We also ex-
plicate the relationship of these solutions to metrics on G2

holonomy manifolds.
Our analysis is based on a fundamental assumption

concerning the geometry produced by wrapped branes—
that although the complex structure of the underlying
Calabi-Yau does not survive when a brane is wrapped on
a special Lagrangian cycle, there is an almost complex
structure that remains intact. We use methods advocated in
our paper [8] (see also [10]) to find the constraints on the
almost complex geometry. These constraints are expressed
in terms of the SU(3) invariant objects � and J which are
distinguished (3,0) and (1,1) forms in the almost complex
structure classification. Our constraints allow us to put
them in the context of SU(3) structures of [3]. Beyond
the constraints on the geometry we express other super-
gravity fields, in this case the R-R 1-form and dilaton, in
terms of these objects. To do this we couple our methods
with those of generalized calibrations [11].

Our methods are a generalization of [8] to string theory.
These methods are different from those usually employed
in finding supersymmetric supergravity solutions. We do
not make use of Killing spinor equations in supergravity.
We instead posit a putative metric and find constraints on it
by probing the background by all possible objects that have
an interpretation in the flat part of the worldvolume theory
of the wrapped brane. Part of the reason for writing this
paper is to advertise this method. There are several advan-
tages to it. The first, as we hope we have convinced readers,
is of the efficiency of the method in relation to Killing
spinor methods. Furthermore, our method gives a physical
meaning to the often opaque constraints one obtains on
geometric structures from Killing spinor considerations.
Directly relating the constraints to the idea of a calibrated
intersection makes the reason behind the constraint, if not
transparent, then at least less mysterious.

We lift the solutions for wrapped D6-branes to 11-d
where we find a product of a G2 holonomy geometry
with 4-d flat Minkowski space. We show how these special
G2 holonomy manifolds can be viewed as U(1) bundles
over an almost complex 6-fold. We show how the U(1)
bundle can be expressed in terms of geometric structures
on the 6-fold. We construct explicitly calibrating 3- and 4-
forms on the G2 holonomy manifold.

ANSAR FAYYAZUDDIN AND TASNEEM ZEHRA HUSAIN PHYSICAL REVIEW D 75, 065017 (2007)

065017-8



Our results are related to those of [5–7]. In these papers
a different point of view from ours is taken: the SU(3)
structures are deduced from requiring that the intrinsic
torsion of the G2 structure vanishes on G2 holonomy
manifolds. These G2 structures are expressed in terms of
SU(3) structures and the vanishing of the G2 intrinsic
torsion is then expressed in terms of the SU(3) structures.
These papers focus on the interesting case where
�d���2;2� � 0 � F�2;2�. Under these conditions the almost
complex structure on M becomes integrable, thus M
becomes a complex manifold and the metric g (in our
notation) is Kähler.

We hope that the general constraints that we have written
on a certain class of G2 holonomy manifolds (those related
to wrapped D6-branes) lead to new explicit solutions to the
constraints. Even in the absence of such explicit solutions
important results might still be obtainable. For instance, we
know [13] that wrapped D6-branes and their lift describe 4-

d N � 1 gauge theory at two different energy scales—the
ultraviolet perturbative and the infrared confined, respec-
tively. It would be interesting to discover how the data that
specify the manifolds relate to physics questions in gauge
theories in more general scenarios beyond the conifold.
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