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We consider the contribution of the Urca-type processes to the bulk viscosity of several spin-one color-
superconducting phases of dense two-flavor quark matter. In the so-called transverse phases which are
suggested to be energetically favorable at asymptotic densities, the presence of ungapped quasiparticle
modes prevents that spin-one color superconductivity has a large effect on the bulk viscosity. When all
modes are gapped, as for one particular color-spin-locked phase, the effect on the viscosity can be quite
large, which may have important phenomenological implications.
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I. INTRODUCTION

Dissipative processes play an important role in the evo-
lution of neutron stars. These processes are governed by
transport coefficients, such as the heat and electrical con-
ductivities, the neutrino diffusion coefficient, as well as the
shear and bulk viscosities. The conductivities are important
for stellar cooling as well as for the magnetic field decay.
Shear viscosity dampens differential rotation in a star and,
thus, leads to a uniform rigid-body rotation. Bulk viscosity,
on the other hand, dampens density oscillations inside the
star. Both differential rotation and oscillations could be
excited in newly formed (hot) neutron stars, or could
develop in old (cold) stars due to external perturbations,
e.g., such as matter accreted from a companion star.

It is interesting to note that, in the absence of viscosity,
all rotating stars would be unstable. The reason is that such
stars spontaneously develop instabilities as a result of the
emission of gravitational waves [1–5] (for reviews on this
topic see, e.g., Refs. [6,7]). The so-called r-mode (or
rotation-dominated) instabilities might be the most impor-
tant ones. They can develop at a relatively low angular
velocity [8], and therefore may be relevant for a large
number of compact stars.

The main theoretical uncertainty in predicting whether
the r-mode instabilities develop in a star lies in the poor
understanding of the viscosity of dense baryon matter, as
well as in the limited knowledge of the stellar composition.
There is hope, however, that a systematic approach, based
on a broad understanding of various properties of dense
baryonic matter, can eventually result in a clear picture
regarding the neutron star composition.

The viscosity of nuclear and mixed phases of dense
baryonic matter has been calculated under various condi-

tions and assumptions over the last three decades [9–18].
The bulk viscosity of normal conducting strange quark
matter was also calculated [19,20]. The latter might be
relevant if the baryon density in the central regions of
neutron stars is so high that matter becomes deconfined.

The physical conditions in the interior of such stars are
quite unique: this is the only place in the Universe where a
deconfined state of cold and dense baryonic matter can
naturally exist. This possibility has attracted a lot of atten-
tion since the notion of quarks was introduced [21–25].

If deconfined quark matter does exist inside stars, it is
most likely color-superconducting. (For reviews on color
superconductivity, see Refs. [26–32].) It is therefore of
great interest to study various transport properties of color-
superconducting phases of quark matter. First attempts
have already been made to estimate the heat and electrical
conductivity [33,34], as well as the bulk and shear viscos-
ities [35,36] in the color-flavor-locked (CFL) phase of
quark matter. Also, in the case of the two-flavor color-
superconducting (2SC) phase, one can argue that most
transport coefficients are dominated by the two ungapped
(blue) quasiparticles [32]. (For a recent detailed study of
the bulk viscosity in the 2SC phase, see Ref. [37].)

In this paper, we calculate the bulk viscosity of the four
most popular spin-one color-superconducting phases of
two-flavor (nonstrange) quark matter: the color-spin-
locked (CSL), planar, polar, and the A phase [38– 44].
One of these is likely to be the ground state of dense baryon
matter if the spin-zero Cooper pairing of quarks is pre-
vented by the constraints of charge neutrality and
�-equilibrium. Moreover, cooling calculations for neutron
stars favor small gaps of the order of 1 MeV [45] which is
the typical size of the gap in spin-one color superconduc-
tors [38–44]. The absence of strange quarks in the system
may be natural if the medium-modified constituent value
of the strange quark mass is larger than the corresponding
value of the chemical potential. The generalization of this
study to the case of spin-one color-superconducting
strange quark matter will be reported elsewhere [46].
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As is well known, in fully gapped spin-zero color-
superconducting phases, the thermal densities of the quark-
and hole-type quasiparticles are suppressed exponentially
by the energy gap, nqp / exp���0=T� where �0 and T are
the values of the spin-zero gap and the temperature, re-
spectively. This then translates into an exponential sup-
pression of the quasiparticle contributions to the transport
coefficients. In Ref. [35] such an argument was used in
order to get a simple estimate of the viscosity in the CFL
phase. It should be noted, however, that many transport
properties are not dominated by the quasiparticles when
there exist Nambu-Goldstone excitations in the low-energy
spectrum, as is the case in the CFL phase [33,34,36]. The
situation is expected to be different also in the case of spin-
one phases which, in general, are not isotropic, and whose
gap functions may have nodes for some directions of
momenta.

The effect of nonisotropic gaps and various topologies
of nodes on the neutrino emission and the cooling rate of
spin-one color-superconducting phases were recently dis-
cussed in detail [47,48]. Following a similar approach, in
this work we study the bulk viscosity.

Since the order parameter in spin-one color supercon-
ductors breaks rotational invariance, dissipative hydrody-
namics is more complicated than for isotropic media. For
instance, we expect that the viscosity becomes a tensor
[49]. We shall avoid these complications by making the
implicit assumption that the hydrodynamic equations are
averaged over solid angle. In this way, only one (angular-
averaged) bulk viscosity coefficient, � , will appear in the
hydrodynamic equations and will have to be extracted from
the (angular-averaged) neutrino-emission rate.

In addition, one of the spin-one superconducting phases
studied here, namely, the CSL phase, breaks baryon num-
ber, i.e., it is also a superfluid. Fortunately, it is not an
anisotropic superfluid because the order parameter does
not break rotational invariance. (Here we assume that the
magnetic field of the star is not strong enough to align the
spins of the Cooper pairs.) Nevertheless, isotropic super-
fluids still have a rather complicated hydrodynamic behav-
ior, involving three (instead of only one) bulk viscosity
coefficients [50,51]. However, it is not completely unreal-
istic to assume that the relative velocity between normal
and superfluid components is negligible compared to the
absolute velocity of the normal component. In this case,
only one coefficient contributes to energy dissipation. In
this sense, our treatment is completely analogous to that of
Ref. [16], the difference being that here we consider quark
matter instead of nucleonic matter. Let us finally note that
the dissipative hydrodynamics of anisotropic superfluids is
even more complicated, see for instance the case of super-
fluid He-3 [49,52].

In the CSL phase the breaking of baryon number gives
rise to a phonon as the corresponding Goldstone excitation.
We neglect the contribution of the Goldstone mode to the

bulk viscosity coefficient for the following reason. First,
the effective theory for phonons is approximately scale-
invariant at very low energies. For scale-invariant super-
fluids, however, two of the three bulk viscosity coefficients
have been shown to vanish [51]. The remaining coefficient
may be nonzero, but corresponds to dissipation due to
relative motion of superfluid and normal component,
which we have already assumed to vanish.

The remainder of this paper is organized as follows. In
the next section, we introduce the formalism for calculat-
ing the bulk viscosity in nonstrange quark matter. In
Sec. III we calculate the bulk viscosity in the normal phase
of two-flavor quark matter. Then, in Sec. IV we present our
results for the bulk viscosity in spin-one color-
superconducting phases. The discussion of the results is
given in Sec. V.

II. BULK VISCOSITY

As mentioned in the introduction, the bulk viscosity is
responsible for the damping of density oscillations in
compact stars. The characteristic frequencies of interest
(e.g., set by the r-mode instabilities) are comparable to the
rotational frequencies of stars, i.e., ! & 104s�1 [6,7].
These frequencies are many orders of magnitude smaller
than the typical rates of strong interactions, and therefore
quark matter cannot be driven substantially out of equilib-
rium with respect to strong processes. This is the reason
why the bulk viscosity is dominated by the much slower,
flavor-changing weak processes [19,20]. In the case of
nonstrange quark matter studied here, the relevant pro-
cesses are electron capture by u quarks and � decay of d
quarks, see Fig. 1.

Let us assume that small oscillations of the quark matter
density are described by �n � �n0Re�ei!t� where �n0 is
the magnitude of the density variations. For such a periodic
process, the bulk viscosity � is defined as the coefficient in
the expression for the energy-density dissipation averaged
over one period, � � 2�=!,

 h _Edissi � �
�
�

Z �

0
dt�r � ~v�2; (1)

where ~v is the hydrodynamic velocity associated with the
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FIG. 1. Diagrammatic representation of the weak processes
that contribute to the bulk viscosity of nonstrange quark matter
in stellar cores.
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density oscillations. By making use of the continuity equa-
tion, _n� nr � ~v � 0, we derive

 h _Edissi � �
�!2

2

�
�n0

n

�
2
: (2)

In order to solve for � , the dissipated energy on the left-
hand side has to be calculated explicitly. This can be done
as follows.

The density oscillations drive quark matter slightly out
of � equilibrium, but not out of thermal equilibrium which
is restored almost without delay by strong processes. The
corresponding instantaneous quasiequilibrium state can be
unambiguously characterized by the total baryon number
density n and the lepton fraction Xe,
 

n � 1
3�nu � nd�; (3a)

Xe �
ne
n
; (3b)

where nu and nd are the number densities of up and down
quarks, while ne is the number density of electrons. (In the
case of strange quark matter, one should also add the
strangeness fraction Xs � ns=n where ns is the number
density of strange quarks [46].) Charge neutrality requires

 

2
3 nu �

1
3nd � ne � 0: (4)

Using this constraint together with the definitions in
Eq. (3), one can express the number densities and, in
fact, all thermodynamic quantities of quark matter in terms
of n and Xe. For the number densities, for example, one
finds
 

ne � Xen; (5a)

nu � �1� Xe�n; (5b)

nd � �2� Xe�n: (5c)

These number densities can also be expressed in terms of
the corresponding chemical potentials, ni � ni��i�. In �
equilibrium, the three chemical potentials are related as
follows: �d � �u ��e. In pulsating matter, on the other
hand, the instantaneous departure from equilibrium is de-
scribed by the small parameter

 �� � �d ��u ��e � ��d � ��u � ��e; (6)

where ��i denotes the deviation of chemical potential �i
from its value in � equilibrium. The quantity �� can be
conveniently expressed in terms of the variations of the two
independent variables �n and �Xe,

 �� � C
�n
n
� B�Xe; (7)

where, as follows from the definition, the coefficient func-
tions C and B are given by

 

C � nd
@�d

@nd
� nu

@�u

@nu
� ne

@�e

@ne
; (8a)

B � �n
�
@�d

@nd
�
@�u

@nu
�
@�e

@ne

�
: (8b)

When �� is nonzero the two Urca processes, shown
diagrammatically in Fig. 1, have slightly different rates.
To leading order in ��, we could write

 �� � � �� � �	��: (9)

(Note that our 	 is defined so that it is non-negative.) The
net effect of having different rates for the two processes is a
change of the electron fraction in the system:

 n
d��Xe�
dt

� 	��; (10)

This has the tendency to restore the equilibrium value of
Xe. Since the rate is finite, however, the weak processes
always lag behind the density oscillations. In order to see
this explicitly, we substitute �� from Eq. (7) into Eq. (10)
and get the equation for �Xe in a closed form,

 n
d��Xe�
dt

� 	
�
C
�n
n
� B�Xe

�
: (11)

The periodic solution to this equation can be found most
easily by making use of complex variables. Denoting
�Xe � Re��Xe;0e

i!t�, we derive the following result:

 �Xe;0 �
�n0

n
C

i
� B
; (12)

where, by definition, 
 � n!=	. In the last equation, the
lagging of the weak processes is indicated by a nonvanish-
ing imaginary part of �Xe;0. Such an imaginary part con-
trols the phase shift of the �Xe oscillations with respect to
the oscillations of density.

As we show in a moment, the same phase shift also leads
to a nonvanishing dissipation of the energy density,

 h _Edissi �
n
�

Z �

0
P _Vdt (13)

where V � 1=n is the specific volume.
The pressure oscillations around the equilibrium value

are driven by the oscillations of its two independent vari-
ables, i.e., the quark number density and the lepton frac-
tion,

 �P �
@P
@n

�n� nC�Xe; (14)

where C is the same as in Eq. (8a). In the derivation we
took into account that ni � @P=@�i and that the total
pressure is given by the sum of the partial contributions
of the quarks and electrons, P �

P
iPi��i�.

After taking into account the relation (14) together with
the solution for �Xe;0 in Eq. (12), the expression (13)
becomes
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 h _Edissi �
C
2
!�n0 Im��Xe;0�

� �
1

2

�
�n0

n

�
2 	!2C2

!2 � �	B=n�2
: (15)

By comparing this with the definition in Eq. (2), we finally
derive an explicit expression for the bulk viscosity,

 � �
	C2

!2 � �	B=n�2
: (16)

This expression shows that the viscosity is maximum in the
limit of zero frequency, �max � �!�0, and that it falls off as
1=!2 at high frequencies, !� !0 � 	B=n. It should be
also noted that !0 	 	, and that the maximum viscosity is
inversely proportional to the rate, i.e., �max 	 1=	. Because
the rates of the weak processes in a dense medium usually
have a power-law (or even an exponential) dependence on
the temperature, the bulk viscosity is a very sensitive
function of the temperature, too.

III. BULK VISCOSITY IN THE NORMAL PHASE

In order to calculate the bulk viscosity in the normal
phase of two-flavor quark matter, we need to determine the
corresponding thermodynamic coefficients B and C [see
Eq. (8)] and calculate the difference of the rates of the two
Urca processes shown in Fig. 1.

By making use of the following relations valid for non-
interacting quark matter
 

nu;d �
1

�2 ��
2
u;d �m

2
u;d�

3=2; (17a)

ne �
1

3�2 �
3
e; (17b)

we derive
 

C ’
m2
u

3�u
�
m2
d

3�d
; (18a)

B ’
�2

3
n
�

1

�2
u
�

1

�2
d

�
3

�2
e

�
: (18b)

Here we made use of the equilibrium relation satisfied by
the chemical potentials, �d � �u ��e, and neglected
higher-order mass corrections in the expression for B. In
the temperature regime of interest, T & mu;d, we also do
not need to take into account any corrections due to a
nonzero temperature.

It should be noted that the coefficient C, and therefore
the bulk viscosity which is proportional to C2, vanishes in
the case of massless quarks. Moreover, this statement
remains true even if the following (non-)Fermi liquid
correction due to strong forces are taken into account
[53–56],

 C0 �
4
s
3�

�
m2
d

�d

�
ln

2�d

md
�

2

3

�
�
m2
u

�u

�
ln

2�u

mu
�

2

3

��
: (19)

(For a recent discussion of (non-)Fermi liquid corrections
see, for example, Ref. [56].) Because of the large loga-
rithms on the right-hand side of Eq. (19), this correction
can become even larger than the leading-order result for C
in Eq. (18a). Our estimates show that, in two-flavor quark
matter, taking C0 into account may increase the value of the
viscosity by approximately an order of magnitude.
Therefore, in all numerical estimates below we add the
contributions from Eqs. (18a) and (19).

Now let us turn to the calculation of 	 defined by Eq. (9).
Following the original approach of Iwamoto [57], we get
the rate for � decay in the following form:
 

� ������ � 6
Z d3pdd

3pud
3p ��d

3pe
�2��8EdEuE ��Ee

jMj2�4�Pd � Pu

� Pe � P ���f�Ed ��d�
1� f�Eu ��u��

� 
1� f�Ee ��e��: (20)

Here, Pi and pi are the 4- and 3-momenta of the ith
particle, respectively, and f�E� � 1=�eE=T � 1� is the
Fermi distribution function. The scattering amplitude
squared is given by [57]

 jMj2 � 64G2
Fcos2�C�Pd � P ����Pu � Pe�



28
s
3�

G2
Fcos2�CEuEdE ��Ee�1� cos�d ���: (21)

After substituting this approximate form of jMj2, all angu-
lar integrals in Eq. (20) can be done exactly. Then, using
the dimensionless variables xi � �Ei ��i�=T (note that
� �� � 0), we obtain

 � ����� �
4
s
�6

G2
Fcos2�C�d�u�eT

5
Z 1

0
dx ��x

2
��J�x �� � ��;

(22)

where � � ��=T, and

 J�x� �
�Y3

j�1

Z 1
�1

dxjf�xj�
�
��x1 � x2 � x3 � x�

�
�2 � x2

2�1� ex�
: (23)

By noting that � ����� � ������, we finally derive the
expression

 	 �
17

15�2 G
2
Fcos2�C
s�d�u�eT4

’
17

15
G2
Fcos2�C
s�6Xe�1=3nT4
1�O�Xe��: (24)

This result, together with the explicit form for the coeffi-
cient functions C, C0, and B in Eqs. (18) and (19), is
sufficient to calculate the bulk viscosity of the normal
phase of dense quark matter. The numerical results are
presented in Fig. 2. In the calculation, we used the follow-
ing representative values of the parameters:
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�d � 500 MeV; md � 9 MeV; (25a)

�u � 400 MeV; mu � 5 MeV; (25b)

�e � 100 MeV; 
s � 1: (25c)

In order to understand the numerical results better, we
calculate the maximum value of the bulk viscosity, �max �
��! � 0�, and the characteristic frequency !0 � 	B=n,
which separates the low- and high-frequency regimes,

 �max 
 7:26� 1024

�
T

1 MeV

�
�4

g cm�1 s�1; (26)

 !0 
 460
�

T
1 MeV

�
4

s�1: (27)

The knowledge of these two quantities is sufficient for
determining the bulk viscosity at all frequencies,

 � �
�max

1� �!=!0�
2 : (28)

Taking into account the relations in Eqs. (26) and (27), the
temperature dependence of the results in Fig. 2 becomes
clear. In accordance with the first relation, the maximum
value of the viscosity (approached at low frequencies or
large �) becomes larger with decreasing temperature. Also,
in agreement with Eq. (27), the location of the ‘‘shoulder’’
(occurring at �0 � 2�=!0) shifts to smaller periods
(higher frequencies) when the temperature gets higher.

IV. BULK VISCOSITY IN SPIN-ONE COLOR-
SUPERCONDUCTING PHASES

In this section, we calculate the bulk viscosity of several
spin-one color-superconducting phases that have been pro-
posed and studied in detail in Refs. [39,40,42–44].
Following Ref. [47], we focus on the so-called transverse
phases in which only quarks of opposite chiralities pair.

Theoretical studies at asymptotically large densities sug-
gest that such phases are preferred [40,44].

In � equilibrium, the rates of the Urca processes were
calculated in Ref. [47] in four different spin-one phases.
Following the same method, here we generalize the calcu-
lation to the quasiequilibrium state, characterized by a
small but nonvanishing value of �� � �d ��u ��e.

Starting from equations analogous to Eq. (36) and (37)
in Ref. [47], we derive
 

�� � � �� �
2

3�6

sG

2�e�u�dT
5
X
r

Z 1

�1
d�

�
Z
x2
�dx�
Frr’u’d��; x� � ��

� Frr’u’d��; x� � ���; (29)

where � � cos�u � cos�d is the angle between the three-
momentum of the u=d quark and the z-axis. The functions
Frr’u’d��; x� are the same as in Ref. [47]. Their explicit
form is given by
 

Frr’u’d��;x��!rr���
X

e1;e2��

Z 1
0

Z 1
0
dxddxu

��e�e1

�����������������
x2
u�	�;r’

2
u

p
�1��1�ee2

�����������������
x2
d�	�;r’

2
d

p
�1��1

��ex��e1

�����������������
x2
u�	�;r’

2
u

p
�e2

�����������������
x2
d�	�;r’

2
d

p
�1��1;

(30)

where, by definition, � � ��=T and ’i � �i=T. For an
explicit form of the functions 	�;r and !rr, we refer the
reader to Refs. [44,47].

By expanding the rate difference (29) in powers of � and
extracting the coefficient of the linear term, we derive an
expression for 	 in the following general form:

 	�’d;’u� � 	�0�
13�
2
3H�’d; ’u��; (31)

where 	�0� is the same as in the normal phase of quark
matter, see Eq. (24), and H�’d; ’u� is a reduction factor
whose explicit form depends on the choice of a specific
spin-one color-superconducting phase. Note that, as in the
case of the neutrino-emission rates [47,48], 	 consists of
two qualitatively different contributions. The first one is
given by the term 1=3 in the square brackets of Eq. (31). It
originates from the ungapped modes that are present in all
considered spin-one phases. The second contribution is
given by the term proportional to H�’u;’d�. This one
originates from the gapped modes. An explicit form of
the function H�’u; ’d� in the case of the CSL, planar,
and polar phases is given by

 H�’d; ’u� �
60

17�4

Z 1

�1
d�

Z 1
0
dx�x�F11

’u’d��; x��;

(32)

and, in the case of the A phase, it reads

 

0.001 0.01 0.1 1 10
τ [s]

20

22

24

26

28
lo

g 1
0

[g
cm

−1
s−1

]

T=0.1 MeV
T=0.2 MeV
T=0.4 MeV
T=0.8 MeV

FIG. 2 (color online). The bulk viscosity for the normal phase
of two-flavor quark matter as a function of the period of the
density oscillations.
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H�’d; ’u� �
60

17�4

Z 1

�1
d�

Z 1
0
dx�x� � 
F

11
’u’d��; x��

� F22
’u’d��; x���: (33)

In the derivation we integrated by parts so that the results
are given in terms of the function Frr’u’d��; x�. The reduc-
tion factors can be easily calculated numerically for each
phase. The results are shown in Fig. 3 for the case ’u �
’d � ’. In the limit of large ’ analytical expressions for
the suppression functions for all four spin-one color-
superconducting phases are given in Appendix A.

For many applications, it is of interest to know the
temperature dependence of the rates. Therefore, in Fig. 4,
we also show the temperature dependence of the suppres-
sion factor H�T�. In the calculation we used the following
temperature dependence of the gap parameter,

 ��T� � �0

���������������������
1�

�
T
Tc

�
2

s
; (34)

with�0 being the value of the gap parameter at T � 0, and
Tc being the value of the critical temperature. Note that the
ratio Tc=�0 depends on the choice of the phase [44]. The
approximate values of this ratio are 0.8 (CSL), 0.66 (pla-
nar), 0.49 (polar), and 0.81 (A phase).

With the expression for 	 at hand, we are now in the
position to calculate the bulk viscosity of the spin-one
color-superconducting phases. Before we do this, it might
be appropriate to mention that the coefficient functions B
and C do not change much due to superconductivity.
Corrections to B are of order ��i=�i�

2 and, thus, are
strongly suppressed. The function C, on the other hand,
gets corrections of order �2

i =�i which are negligible only
if �2

i � m2
i . We assume that this is indeed the case.

Notably, the spin-one gap corrections to C should be
comparable to the corrections due to a nonzero temperature
that we neglected in our calculations.

It should be emphasized that the bulk viscosity in the
color-superconducting phases has the same general struc-

ture as in the normal phase, see Eq. (28), but the quantities
�max and !0 should be redefined to take into account the
rate suppression factors:

 � sp1
max �

�max

hsp1
; (35)

 !sp1
0 � hsp1!0; (36)

where �max and !0 are given in Eqs. (26) and (27), respec-
tively, and

 hsp1 �
1
3�

2
3H�T=Tc�: (37)

We see that the effect of the suppression of 	 due to Cooper
pairing manifests itself in a nontrivial way in the expres-
sion for the bulk viscosity, i.e.,

 �sp1 �
�maxhsp1

h2
sp1 � �!=!0�

2 : (38)

From the analysis of this representation, we find that the
suppression of the rates tends to decrease the viscosity at
high frequencies (!> hsp1!0) and to increase it at low
frequencies (!< hsp1!0). One should note, though, that
the relevant range of low frequencies would shrink a lot if
the suppression happened to be strong.

The representation in Eq. (38) shows that the effect of
color superconductivity cannot be very large. Even if the
suppression of the weak rates due to gapped modes is
maximal, i.e., H�T=Tc� � 0, the results for �max and !0

could not change by more than a factor of 3 compared to
the normal phase of matter. Of course, this is the conse-
quence of having ungapped quasiparticle modes in the
energy spectra.

The numerical results for the bulk viscosity in the nor-
mal phase and spin-one color-superconducting phases with
different values of the critical temperature are shown in
Fig. 5. For each of the three choices of Tc, we show a
shaded area (color online: blue, green and red for Tc �
0:25, 1, and 4 MeV, respectively), that is bounded by the
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FIG. 3 (color online). The reduction factor as a function of
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values of the bulk viscosity in the CSL phase (solid bound-
ary) and in the A phase (dotted boundary). In the calcu-
lation, we used the set of parameters given in Eq. (25).

For comparison, in Fig. 6 we also show the results for the
bulk viscosity in a toy model in which all quasiparticles
modes are gapped. In this case, the effect is indeed very
dramatic. The largest deviations from the result of the
normal phase correspond to the CSL phase (thin solid
lines), and the smallest to the A phase (dotted lines). The
viscosity in the planar phase (long-dashed lines) is numeri-
cally close to that in the CSL phase, and the viscosity in the
polar phase (short-dashed lines) is typically somewhere in
between.

At this point it is natural to ask ourselves if there exists
the possibility that all quasiparticles in a spin-one color
superconductor are gapped. The answer is affirmative. This
is the case, e.g., in the version of the CSL phase proposed
in Ref. [58], when the quarks are massive. In our notation,

the three quasiparticle gaps are given by

 �i;1 � �i;2 ’ �i; �i;3 ’
mi�i���

2
p
�i

; �i � u; d�:

(39)

The qualitative change in the low-energy spectrum comes
from a different choice of the gap matrix in the CSL phase.
(For a discussion of the specific differences, see Sec. VII in
Ref. [47].) In fact, it is likely that the ansatz that produces
the fully gapped phase is energetically favored [59]. The
most important effect of the additional nonzero gap is the
appearance of another suppression factor multiplying the
first term in the expression for 	, see Eq. (31). Therefore,
the modified expression for the CSL phase reads

 	�’d; ’u� � 	�0�
�

1

3
H
�
md’d���

2
p
�d

;
mu’u���

2
p
�u

�
�

2

3
H�’d; ’u�

�
:

(40)

Note that the additional suppression factor is given in terms
of the same function H�’d; ’u� which was calculated
numerically for the transverse CSL phase, see Figs. 3 and
4. If the up and down quark masses are rather small, the
effect from the additional suppression cannot be easily
seen before the temperature becomes much lower than
the critical value, i.e., T � Tc. The situation changes
dramatically, however, if the relevant constituent values
of the quark masses happen to be considerably larger than
the current masses of quarks. As suggested by the analysis
in Ref. [58], this is indeed possible. Then, the bulk vis-
cosity could be affected almost as much as in the toy model
in Fig. 6.

V. DISCUSSION

In this paper we have calculated the bulk viscosity for
the normal phase as well as for four spin-one color-
superconducting phases of two-flavor dense quark matter.
The main contributions come from the Urca processes
shown diagrammatically in Fig. 1. Note that the results
for the normal phase are also relevant for the 2SC phase.
Indeed, after taking into account that there are two (blue)
ungapped modes of quasiparticles in the low-energy spec-
trum of the 2SC phase, the low-temperature bulk viscosity
is approximately given by the same expression (28), pro-
vided the following redefinitions are made: �2SC

max � 3�max

and !2SC
0 � !0=3, where the normal-phase quantities are

given in Eqs. (26) and (27), respectively. The redefinitions
account for the decrease of the weak rates by a factor of 3 at
T � �0 where �0 is the value of the 2SC gap.

The microscopic calculations of the bulk viscosity in the
spin-one color-superconducting phases suggests that qua-
siparticles with different types of gapless nodes (e.g.,
points or lines at the Fermi sphere) could potentially play
a very important role. In the case of the transverse phases,
however, the presence of a single ungapped quasiparticle
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FIG. 5 (color online). The bulk viscosity as a function of the
temperature for spin-one color-superconducting quark matter.
The oscillation frequency is ! � 103s�1.
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mode washes out essentially all information about spin-one
Cooper pairing, see Fig. 5. The presence of nonzero quark
masses may provide a gap for such a mode and the situ-
ation changes. In this paper, we briefly discussed such a
possibility in connection with the CSL phase of Ref. [58].
The results are shown in Fig. 6.

In agreement with the general expectation, we find that
the bulk viscosity often tends to decrease when there is
Cooper pairing of quarks whose main effect is to suppress
the rates of the weak processes. In some cases (e.g., at
sufficiently low frequencies and/or at temperatures close to
the critical value) the behavior may reverse because of the
nontrivial dependence of the bulk viscosity on the suppres-
sion factor, see Eq. (38). Such an increase of the viscosity
in the color-superconducting CSL phase is seen, for ex-
ample, in a range of temperatures below Tc in Figs. 5 and 6
in the case when Tc � 4 MeV.
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APPENDIX: ASYMPTOTIC FORM OF THE
SUPPRESSION FUNCTION H�’;’� AT ’! 1

In this appendix, we calculate the asymptotic form of the
suppression function H�’;’� at ’! 1. This is relevant
for the bulk viscosity of spin-one color superconductors in
the low-temperature regime.

Let us start from the CSL and planar phases whose gap
functions have no nodes in momentum space. To this end,
it is useful to compute the asymptotic behavior of the
following integral:
 

J�’;’� �
X

e1;e2��

Z 1
0

Z 1
0

Z 1
0
dxudxddx�x�

� �e�e1

�����������
x2
d�’

2
p

� 1��1�ee2

�����������
x2
u�’2

p
� 1��1

� �ex��e1

�����������
x2
u�’2

p
�e2

�����������
x2
d�’

2
p

� 1��1: (A1)

By neglecting the terms of order O�e�2’�, we arrive at the
following leading-order asymptotic behavior:

 J�’;’� ’ 4’e�’
Z 1

0

Z 1
0

Z 1
0

dyudyddx�x�
ey

2
u � ex��y

2
d


 5:047’e�’: (A2)

Note that in the derivation we changed the integration
variables, xi � yi

�������
2’
p

for i � u; d, and calculated the
remaining integral numerically.

By making use of the result for J�’;’�, we derive the
large ’ asymptotic behavior for the suppression function
H�’;’� in the CSL phase:

 HCSL�’;’� �
240

17�4 J�
���
2
p
’;

���
2
p
’� ’ 1:034’e�

��
2
p
’:

(A3)

Similarly, after taking into account the angular dependence
of the gap in the planar phase, we derive

 

Hplanar�’;’� �
120

17�4

Z 1

�1
d�J�

����������������
1��2

p
’;

����������������
1��2

p
’�

’ 0:917
����
’
p

e�’: (A4)

The derivation in the polar and A phases is slightly more
complicated because the corresponding gap functions have
zeros for some directions in momentum space. By approx-
imating the angular integrals in the same way as in
Ref. [47] (see Appendix E there), we arrive at the following
asymptotic behaviors:

 Hpolar�’;’� ’ �
’2; (A5)

 HA�’;’� ’ 1
’: (A6)

In connection to these last two results, we should mention
that while the parametric dependence on ’ is easy to
extract analytically, it is much harder to determine the
overall coefficients in their power-law asymptotic behav-
ior. In our derivation, therefore, we combined the analyti-
cal derivation with the numerical calculations.
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