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We prove that the AdS/CFT calculation of 1-point functions can be drastically simplified by using
variational arguments. We give a simple proof, valid for any theory that can be derived from a Lagrangian,
that the large radius divergencies in 1-point functions can always be renormalized away (at least in the
semiclassical approximation). The renormalized 1-point functions then follow by a simple variational
problem involving only finite quantities. Several examples, a massive scalar, gravity, and renormalization
flows, are discussed. Our results are general and can thus be used for dualities beyond AdS/CFT.
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I. INTRODUCTION AND MOTIVATION

In the AdS/CFT correspondence [1–3], the key object to
be calculated is the generating functional W�J� of con-
nected diagrams associated to an operator O. According to
the proposal put forward in [1–3], for each operator O
there exists a dual bulk field � with action I��� such that

 e�W�J� �
Z

AdS
D�e�I���: (1)

The integral in the right hand side depends on the source J
through boundary conditions. For a generic asymptotic
expansion,1

 

��x; �� ! ��0’0�x� � ��1’1�x� � ��2’2�x� � � � � ;

�! 0; (2)

where �0 <�1 <�2 . . . . The leading coefficient ’0�x� is
identified with the source (see [4,5] for other cases),

 J�x� � ’0�x�; (3)

and the path integral in (1) is computed with ’0�x� fixed.
The calculation of the integral in (1) is as difficult, if not

more, as the CFT calculation of W�J�. What makes AdS/
CFT useful is the fact that the correspondence is strong/
weak. This means that the semiclassical approximation of
(1),

 W�J� ’ I���’0��jon-shell; (4)

((3) is understood) gives strongly coupled results forW�J�.
Now, the approximation (4) is valid provided the action

I��� is stationary under variations with ’0�x� fixed, that is,
the variation of the action must satisfy,

 �I��� �
Z
M
E�L����

Z
@M
A�’0; (5)

where A is some coefficient, and E�L� are the Euler-
Lagrange equations. If the action I��� fails to satisfy (5),
then the semiclassical approximation is not valid and, of
course, (4) is not valid either.2

The importance of the variational problem in AdS/CFT
calculations was stressed in [6], where ambiguities in the
holographic description of Dirac spinors [7] were fixed.
Even for the simple example of massive scalars, problems
with the Ward identities [8] were solved by a proper
analysis of the variational problem [4,9,10]. Since then,
the analysis of boundary terms in AdS/CFT, specially for
scalar fields, has received much attention [10–14]. More
recently, this problem has revived in the context of multi
trace deformations, e.g., [15–21].

Besides being stationary, the action I���, and, in par-
ticular, the coefficient A in Eq. (5), must be finite, other-
wise the equality (4) would not be very useful. Since the
background has infinite volume (normally AdS space, but
other backgrounds are also relevant for realistic dualities)
divergencies do arise and they need to be renormalized.
This is done by standard technics. One first introduces a
regulator and then subtracts divergent terms. As first no-
ticed in [8,9], it is necessary to first formulate a proper
Dirichlet problem at fixed value of the regulator, and take
the limit at the very end. A general procedure, termed
Holographic Renormalization, was put forward in [10],
and a Hamiltonian approach was developed in [22]. In
particular, in [22], general formulas for Asymptotically
locally AdS spacetimes have been displayed.
Dimensional regularization is also available with equiva-
lent results [23–25]. A Hamilton-Jacobi method, exploit-
ing the gravitational Hamiltonian constraint, is also
available [26].
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1�i are typically rational numbers, and �0 is associated to the

conformal dimension of the dual operator. � is the radial
coordinate �! 0 defining the boundary. There may be logarith-
mic terms at some order which are relevant for the structure of
the solution and for the anomalies. At this point, we only need
the existence of some series.

2It sometimes argued that the AdS/CFT prescription [2,3] is
incomplete because boundary terms can be added to the action
without affecting the equations of motion. This point of view is
incorrect. The action functional I��� is uniquely defined, up to
trivial scheme dependent terms, once the source ’0 is identified.
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The goal of this paper is to show that variational argu-
ments can provide simplifications in explicit calculations.
Variational approaches have been considered previously in
the literature (see [27] and references therein), including
the issue of global charges. Our goal here is to put forward
a novel and simple approach to deal with ‘‘renormalization
problem’’. We prove that the infinities can always be
renormalized away, for any theory, at least in the semiclas-
sical approximation (4). In particular, we prove that all
divergencies appearing in the variation of the action can be
subtracted without interfering with the finite parts. This
means that the calculation of 1-point functions hOiJ (in the
presence of sources) can be done via a simple finite varia-
tional problem and divergencies can be ignored
completely.3

Furthermore, our procedure does not make use of the
AdS structure explicitly. Thus, in principle, it could be
useful in more realistic gauge theory/gravity correspond-
ences (see [29] for a recent discussion) where explicit
calculations have been hampered by technical difficulties
associated with the renormalization problem. Particular
applications of the method described here have appeared
in [30,31].

II. THE VARIATIONAL PROBLEM AND 1-POINT
FUNCTIONS

In this section we prove the main result of the paper,
namely, that 1-point functions (with nonzero sources) can
be computed in AdS/CFT without calculating the divergent
terms.

Consider the general action (see Sec. IV for a more
general action)

 I��� �
Z
�
d�

Z
M
ddxL��;�0; @i�� �

Z
���

ddxB (6)

with associated the Euler-Lagrange equations

 

�
@L
@�0

�
0

� @i

�
@L
@i�

�
�
@L
@�

: (7)

The action is defined on a manifold with asymptotic topol-
ogy <	M. � denotes collectively the set of fields under
consideration. � is a radial coordinate and the boundary is
located at �! 0. We follow closely the notations intro-
duced in [10]. The parameter � is a cutoff that regularizes
the eventual IR divergencies at �! 0. The primes denote
derivatives with respect to �, which we have separated
from the other derivatives only for illustrative purposes.

The holographic calculation of field theory correlators
dual to an action I has three different faces. The dictionary
problem establishes the relationship between bulk fields

and dual operators. This is where most of the AdS/CFT
physics resides. The renormalization and Dirichlet prob-
lems, namely, to find B to make the bulk action finite and
well-defined for the given boundary conditions. Finally, the
fluctuation problem involves imposing boundary condi-
tions in the deep interior and find nonlocal relations among
the boundary data. In this paper we shall only deal with the
second issue, namely, the renormalization problem. We
refer to the large literature for the other problems.

As usual, we formulate the holographic renormalization
problem as follows: We seek a boundary term B such that
the on-shell variation of the action (6) satisfies

 �I��� � lim
�!0

Z
���

ddx
�
@L
@�0

��� �B
�

(8)

 �
Z
ddxA�’0; (9)

where A is a finite coefficient, and ’0 is the source for the
given problem. If (8) can be written in the form (9), then,
according to [2,3], the problem is solved and the vev of the
dual operator is

 hOi � A: (10)

It is clear from the transition from (8) to (9) that the
boundary term B is playing two roles. On the one hand it
must ensure that the Dirichlet problem is well defined,
namely, �I 


R
A�’0. On the other, we demand A in (9)

to be finite, and hence B must remove the divergencies
coming from the bulk. We show here that these two prob-
lems can in fact be analyzed separately.

A. The renormalization problem

Let us first deal with renormalization problem. We prove
here that all divergencies in @L

@�0 �� can be written as total
variations, and hence be canceled byB. This result does not
depend on the explicit form of the series (2). To fix the
ideas, we expand both � and �� in the form (see foot-
note 1),

 � � ���’0 � �’1 � �2’2 � � � ��

�� � ����’0 � ��’1 � �
2�’2 � � � ��

(11)

and insert them in @L
@�0 ��. We find an expansion of the

form,

 

@L
@�0

�� �
X1

n��K

�nCn�’i; �’j�: (12)

Here, ’i are the coefficients appearing in the series (11). K
is some positive number and represent the fact that, ge-
nerically, (12) contains divergent pieces. There may be
log’s and other types of functions of �. As it will be clear
in a moment, this will not be relevant for the analysis that
follows.

3Of course divergencies contain important information and in
some cases it is preferably to keep them, e.g., [28]. But, as far as
the semiclassical 1-point function is concerned, we shall see that
they can be ignored completely.
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We are now going to prove the following general result.
All coefficients Cn�’;�’�, except the zero mode C0, can
be written as a total variation. This means, there exists local
functions Dn�’i� such that,

 Cn�’i; �’j� � �Dn�’i�; 8 n � 0: (13)

To this end, consider the following equality,

 �
@L
@�0

��
�
0

�

�
@L
@�0

�
0

���
@L
@�0

��0

�

�
@L
@�
� @i

�
@L
@i�

��
���

@L
@�0

��0

�
@L
@�

���
�
@L
@i�

�
��@i�� �

@L
@�0

��0

� @i

�
@L
@i�

��
�

� �L: (14)

In the second line we have used the Eqs. (7), and in the last
line we have used that L � L��;�0; @i��. We have also
discarded a total derivative term which, under the integral
sign,

R
ddx, will not contribute.

Taking the radial derivative of (12) at both sides and
comparing with (14) we conclude that (13) is in fact true,
and that the functions Dn are the Taylor coefficients of the
Lagrangian L. Since divergencies are contained in
�-dependent contributions, 1=�n, log�, etc, we conclude
that they can always be subtracted by choosing B appro-
priately. See Secs. III A and III D for explicit examples.

Note also that neither the form of the series (11) nor (12)
are really relevant. The only important point is to distin-
guish between the �-dependent parts of @L

@�0 ��, and its
zero mode. According to the above result, all �- dependent
parts are total variations, while no information can be
extracted on the zero mode. This is a completely general
result4 valid also for higher order theories (see Sec. IV).

Summarizing, when computing the on-shell variation of
the action (6) one can simply ignore all divergent terms and
keep only the zero mode (in the � expansion). The above
result is general enough to ensure the existence of B to
subtract all divergencies and this is all one needs at this
point. The 1-point functions are finite and only depend on
the zero modes of @L

@�0 �� and B. We now turn into their
analysis.

B. The variational problem

Having discarded all divergencies by a choice of B, the
problem (9) is turned into a restricted and much simpler
problem, namely, to find B0 such that,

 �I �
Z
ddx

�
@L
@�0

��jzero mode � �B0

�
;�

Z
ddxA�’0;

(15)

where B0 is now the zero mode part of B. The finite
coefficient A equals to the dual vev hOi � A. This problem
does not have a universal solution and, in fact, B0 may not
even exist at all unless certain integrability condition is
fulfilled.

It is worth noting that Amay contain purely local pieces,
that cannot be eliminated unless they are integrable, as in
the case of gravity (see Sec. III C).

We would like to end this paragraph remarking that this
procedure to deal with the finite part of the on-shell varia-
tion of the action has already appeared in the literature in
various examples, e.g., [11–14,20,30,31]. General formu-
lae for asymptotically locally AdS spacetimes are also
known [27].

III. EXAMPLES

We display in this section some examples and applica-
tions of the variational approach to the holographic calcu-
lation of correlators. We consider here a toy model, a
massive scalar field, and gravity.

A. Toy model and comparison with holographic
renormalization

Let us illustrate the ideas presented so far with a simple
example. Consider the action for a toy model in 0� 1
dimensions,

 I � 1
2

Z
d�
�

2
��02 � 2�

�2�2 � 3
2�3�2

�
� B: (16)

This system has the same features of a scalar field on AdS4

with dual conformal dimension � � 3, � playing the role
of the Laplacian. Setting � � �1=2’���, the equation of
motion become �’00 � �’ � 0, which has the asymptotic
series,

 ’ � ’0 � ��’1 �  log�� � � � � (17)

with ’0 and ’1 arbitrary while  � ��’0. The exact
solution exists in terms of Bessel functions. The on-shell
variation of the action becomes,

 �I � 2
��0��j��� � �B; (18)

4The formula (14) may also be relevant for an off-shell
formulation of the action, and the finiteness of conserved
charges. It is known that when turning on nonstandard modes
of some fields, divergencies in the charges are canceled after
properly incorporating the back reaction into the boundary
conditions [32,33]. Presumably, these cancelations can be under-
stood as special cases of (14). We thank M. Henneaux for a
discussion on this point.
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 � ��’0’1 � ’0�’1 � 2�’1 �  ��’0 � �B0�

�

�
1
�’0�’0 � �’0� � 3 �’0� log�� �B���

�
:

(19)

The first square brackets corresponds to the variation prob-
lem and contain only finite ‘‘zero mode’’ terms. The sec-
ond bracket contains the divergencies, and represents the
‘‘finiteness’’ problem. We have separated B in two pieces
B��� � B0 stressing its double role.

We already know the divergencies can be subtracted by
B���. But let us check this explicitly in this example. The
second bracket contains  �’0 which is not an exact varia-
tion. However, using the equation  � ��’0 it can be

written as ��
’2

0

2� � 2�’2
0 log�� B����. This is then removed

by choosing B��� � �
’2

0

2� � 2�’2
0 log�. A less trivial ex-

ample, gravity in four dimensions, is discussed in
Sec. III D.

Having discarded the divergencies, we end up with the
finite problem, which is the relevant one for the 1-point
function. The finite pieces in (19) are almost in the form
(9), except for the term ’0�’1. Since the asymptotic
equations do not fix ’1 in terms of ’0 we cannot express
the variation �’1 in terms of �’0. At this point B0 enters
into the game. We choose B0 � �’1’0 and find,

 �I � 2�’1 �  ��’0 ) hOi � 2�’1 �  �: (20)

Two comments are in order. First, the choices made for
B��� and B0 are unique, up to terms local in the source ’0,
which of course cannot be fixed and lead to contact terms.
Second, the result (20) is in complete agreement with the
method described in [10]. As a final point we note that

 B��� � B0 � �
1

2�2 �2 �
2� log�
�

�2 �O��� (21)

The right hand side of this equation is exactly the counter-
term action C��� that one would have computed following
[10].

B. Single massive scalar field

Scalars fields on the AdS background have been the
prototype of system to study and test the AdS/CFT corre-
spondence. We would like to show in this section that
variational methods provides strong simplifications in the
calculations.

We consider the well-known case of a single scalar and
reproduce some well-known results. The action we con-
sider is

 I �
Z
dd�1x

���̂
g

p �
1
2ĝ
��@��@��� 1

2m
2�2�

�
: (22)

This example has been extensively analyzed in the litera-
ture. Early calculations [3,8] did not provide the correct

normalization for the vev. This problem was fixed in
[4,9,10].

The field mass becomes related to the conformal dimen-
sion � of the dual operator by [3] m2 � ��d���. We
follow [10] and consider in this paragraph operators with
dimensions

 � � d
2� N; N � 0; 1; 2; . . . : (23)

For these masses the asymptotic solution has the Frobenius
form with,

 ���; x� � ��d���=2’��; x� (24)

 

’��; x� � ’0 � �’1 � � � � � �N�1’N�1

� �N�’N �  log�� � � � � : (25)

The coefficients ’1; . . . ; ’N�1 and  are determined in
terms of ’0 by using the asymptotic equations [10]. ’N
is on the hand undetermined, and is fixed by imposing
boundary conditions at �! 1.

Our goal here is to provide a simple proof of the well-
known result,

 hOi � �2�� d�’N � local terms; (26)

using the variational method.
To compute the vev of the dual operator, we vary on-

shell the action and plug the series. As shown in Sec. II A
we do not need to worry about divergent terms since they
can always be renormalized away. The variation of the
action is

 �I �
Z
ddx

2

��d=2��1
�0�� � 2

Z
ddx

1

�N�1 ’
0�’; (27)

where we have used (23) and (24), and discarded a term
��’2�. Note that this equation shows clearly why it is
necessary to solve the asymptotic equations to order N.
Now we insert the series (25) and find

 �I � 2
Z
ddx

1

�N�1

�X
n

�n�n�1’n� � �k�1 
�X
m

�m�’m

� 2
X
n;m

Z
ddx��N�m�nn’n�’m �

X
m

Z
ddx�m �’m:

(28)

In the first line we have already discarded log terms (which
remain after computing the derivative in ’0) since they
cannot contribute to the finite vev; they can be either zero,
or divergent in which case they are canceled by a counter-
term B���.

At this point comes the main simplification of our
method. The sum in (28) contains �-dependent terms,
and a zero mode term. As explained in Sec. II A we only
need to keep the zero mode. Thus we set m � k� n and
find
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�I � 2
X
n

Z
ddxn’n�’k�n �  �’0

� 2
Z
ddx�’1�’N�1 � 2’2�’N�2 � � � �

� �N � 1�’N�1�’1 � �N’N �  ��’0�: (29)

The first N � 1 terms are purely local because
’1; . . . ; ’N�1 are fixed by the asymptotic equations as
functions of ’0. They can thus be written in the form
X�’0 where X is a local function of ’0. The last term,
on the other hand, contains ’N which is nontrivial.
Reinserting N in terms of d and � gives the vev (26), as
promised.

C. Coulomb branch flow

In this paragraph we consider another known example
[10], namely, gravity coupled to a scalar through the action
 

I �
1

4

Z
d5x

���̂
g

p
�R̂� 2�� �

1

2

Z
d4x

���
h
p
K

�
1

2

Z
d5x

���̂
g

p
�ĝ��@��@��� 2V���� � B� B0;

(30)

where V is defined by:

 V��� � �2�2 �
4

3
���
6
p �3: (31)

Since m2 � �4, the operator dual to � is a scalar operator
O whose conformal dimension is � � 2.

The boundary terms B��� and B0 must be chosen such
that

 �I �
Z
d4x

�����
g0
p

�
1

2
hTiji�g0ij � hOi��0

�
: (32)

The bulk metric and the scalar take the form [10],
 

ds2 �
d�2

4�2 �
1

�
gijdxidxj

gij � g0ij � �g1ij � �2�g2ij � log�h1ij � �log��2h2ij�

� . . . (33)

 

� � �� ~�0 � log��0� � �2� ~�1 � log��1 � �log��2 �

� . . . : (34)

The equations of motion yield,

 g1ij � �
1

2
R0ij �

1

12
R0g0ij h1ij � hij �

2

3
�0

~�0g0ij

(35)

 h2ij �
1

3
�2

0g0ij Trg2 �
1

4
Tr�g2

1� �
2

3
��2

0 � 2 ~�2
0�

(36)

 

�1 � �
1

4

�
�0�0 �

1

3
R0�0

�
�

4���
6
p

�
�2

0 �
1

2
�0

~�0

�

~�1 � �
1

4

�
�0�0 �

1

3
R0��0 � ~�0� � 8��1 �  �

�

�
1���
6
p ~�2

0

 �
1���
6
p �2

0; (37)

where hij is the value of the log coefficient for the pure
gravitational case. Dropping all total variations and diver-
gencies the on-shell variation of the action reads:
 

�I � �
Z
d4x

���
g
p 1

��k
ij � kgij��gij � 2

Z
d4x

���
g
p 1

��0��

� �B� �B0; (38)

where kij � g0ij. Plugging the series (35) and (37) in (38)
and choosing properly the boundary terms B and B0, is
straightforward to find:

 hTiji � tij �
�

2
3�

2
0 �

1
3

~�2
0 ��0

~�0

�
gij0 ;

hOi � �2 ~�0;

(39)

where tij is the purely gravitational tensor [10]. These
results, of course, agree with those found in [10].

D. Gravity and integrability conditions: Einstein
equations

In this section we will consider the case of Gravitation
with negative cosmological constant in d � 4. The explicit
formula for the energy-momentum tensor is known [10],
and it has also been considered from the variational point
of view in [30]. Our goal in this paragraph is to use this
system to test the integrability condition (14). The bulk
metric takes the form [10],
 

ds2 �
d�2

4�2 �
1

�
gijdxidxj

gij � g�0�ij � �g�1�ij � �2�g�2�ij � log�hij� � . . . : (40)

The values of g�1�ij, hij, Trg�2�ij and Divg�2� are local
functions of g�0�ij. In particular,

 g�1�ij �
1
12R�0�g�0�ij �

1
2R�0�ij: (41)

This value is universal and valid for any gravitational
action that accepts an AdS background [23].

In this paragraph we only want to address the divergen-
cies in the variation of the action (for the finite part see
[30]). After subtracting total variations, there remains two
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divergent terms,

 �Idiv � �
Z ��������

g�0�
p

�
1
��g

ij
�1� � Tr�g1�g

ij
�0��

� 1
2 log�hij

�
�g�0�ij:

According to the general discussion in Sec. II A, these
terms can be written as total variations. In fact, it is known
[10] that hij can be written as a total ‘‘divergency’’,

 hij �
�

�g�0�ij

Z
A; (42)

where A is the anomaly. This shows that the log diver-
gency can in fact be written as a total variation. On the
other hand, from (41) it is direct to see that �gij

�1� �

Tr�g�1��g
ij
�0�� is proportional to the Einstein tensor, and

thus, the 1=� divergency can also be written as a total
variation ��

���
g
p
R�. These counterterms were first derived in

[34] by demanding finiteness of the energy-momentum
tensor.

IV. HIGHER ORDER THEORIES:L � L�q; q0; q00; . . .�

We have shown in this paper that for any Lagrangian
L��;�0� the divergencies appearing in the variation of the
action can be canceled by a boundary term. We would like
to show in this paragraph that the same conclusions follow
with higher order theories with Lagrangians of the form
L��;�0�00; . . .�. This means that our results are applicable
to string theories with higher 	0 corrections.

Let us work out here the details for a fourth order theory
with L��;�0; �00�. The variation of the action yields,

 �I �
Z �� @L

@�00

�
00

�

�
@L
@�0

�
0

�
@L
@�

�
��

�

�
@L
@�0

���
@L
@�00

��0 �
�
L
�00

�
0

��
|����������������������������{z����������������������������}

�
���

: (43)

The first parenthesis gives the Euler-Lagrange equations
while the second is a boundary term. We shall prove now
that the �-dependent parts of this boundary term can be
written as a total variation, and hence subtracted from the
action. Let us denote the piece enclosed by the underbrace
as B. We proceed exactly as in the second order case.
Computing the radial derivative of B and using the equa-
tions of motion we find,
 

B0 �
�
@L
@�0

�
0

���
@L
@�0

��0 �
@L
@�00

��00 �
�
@L
@�00

�
00

��

�
@L
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As in the second order theory, this shows that all divergen-
cies present in B can be renormalized away. The zero mode
of B is not restricted by the equation. For higher order
theories the boundary data has a bigger structure (more
initial conditions) and hence the AdS/CFT dictionary may
need extra revision.
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