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Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the
horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general
coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-
momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly
equal to that of �1� 1�-dimensional blackbody radiation at the Hawking temperature. In this paper, we
attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically
symmetric dilatonic black holes with arbitrary coupling constant �, and that from the rotating Kaluza-
Klein (� �

���
3
p

) as well as the Kerr-Sen (� � 1) black holes via an anomalous point of view. Our results
support Robinson and Wilczek’s opinion. In addition, the properties of the obtained physical quantities
near the extreme limit are qualitatively discussed.
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I. INTRODUCTION

Since Stephen Hawking proved that a black hole can
emit any kind of particle from its event horizon with a
temperature proportional to its surface gravity, many deri-
vations of Hawking radiation have been proposed [1–4]
during the past 30 years. Among them, some tied Hawking
radiation to the contributions of the anomalies in different
symmetries. For example, Christensen and Fulling [5]
showed that the anomaly in the conformal symmetry could
give strong constraints on the trace of the energy-
momentum tensor, and Hawking radiation arose from the
contribution of the trace anomaly of the energy-momentum
tensor [6]. Imposing the �1� 1�-dimensional anomalous
trace equation everywhere in the whole space-time, a
freely falling observer would observe an outgoing flux,
which is in quantitative agreement with Hawking’s original
result. This seems to be a neat derivation of Hawking
radiation; however, their observation was based on several
assumptions: First, the background was in �1� 1� dimen-
sions. Second, the fields were massless. Finally, there were
no backscattering effects. Therefore, their derivation ap-
peared to be a rather special phenomenon.

Recently, Robinson and Wilczek [7] proposed a new
derivation of Hawking radiation from a Schwarzschild-
type black hole via the anomaly in general coordinate
symmetry at the horizon, namely, via the gravitational
anomaly. In their opinion, Hawking radiation is effectively
treated as the required flux of the energy-momentum tensor
to cancel the gravitational anomaly and to restore general
coordinate covariance at the quantum level. In fact, the
idea of this effective theory stems from the choice of
vacuum states. Normally, a static, spherically symmetric

black hole without a positive cosmological constant has a
global Killing vector, but it is only timelike in the region
outside the horizon of the black hole. Thus, if one asso-
ciates the positive energy with the occupation of modes of
a positive frequency, there would be a divergent energy-
momentum tensor due to a pileup of horizon-skimming
modes at the horizon since this time coordinate becomes
mathematically ill-defined at the horizon. Replacing the
coordinates �t; r� with the Kruskal extension �U;V�, the
final form of the space-time showed that U ! U�U0 is
an isometry along the past horizon V � 0, where � � @U is
a Killing vector.

As is well known, there are various different ways to
define the vacuum state in curved spaces. Unruh [8] intro-
duced a quantum vacuum state, the so-called Unruh state or
� vacuum, for the static space-time by defining positive
energy states as those that have positive frequency with
respect to � on the past horizon, and letting this vacuum
propagate outward and forward in time. The vacuum state
defined in this way differs from the one obtained by defin-
ing positive energy with respect to the global Killing vector
�, which is called the Boulware state, or � vacuum [9].
The � vacuum has divergences in its energy-momentum
tensor arising from horizon-skimming modes, despite ap-
pearing empty to static observers. This divergence renders
the Boulware state an unphysical candidate vacuum. On
the other hand, the Unruh state is well behaved at the
horizon with respect to the Kruskal coordinate U. In addi-
tion, Unruh found that the � vacuum is exactly a thermal
ensemble of the Boulware states at Hawking temperature
T � �=�2��. If elevating the choice of a state to the level
of a choice of the theory, one expects that the effective
theory should be formulated to exclude the offending
modes at the horizon, and describe a thermal flux, in exact
agreement with the earlier results of Hawking [1].

Since the effective field theory is formulated outside the
horizon to integrate out the horizon-skimming modes, it
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becomes chiral there, and suffers from the gravitational
anomaly because the numbers of the ingoing and outgoing
modes are no longer identical there. To demand general
coordinate covariance at the quantum level to hold in the
effective theory, one must introduce a compensating flux of
the energy-momentum tensor to cancel the gravitational
anomaly at the horizon of the black hole. As a result, the
energy-momentum tensor flux, which is required to cancel
the gravitational anomaly and to restore general coordinate
covariance at the quantum level, is exactly equal to that of
�1� 1�-dimensional blackbody radiation at the Hawking
temperature.

A key technique in the Robinson-Wilczek’s method is to
reduce the higher-dimensional theory to the two-
dimensional case, in which the gravitational anomaly ap-
pears as a chiral one. If each partial wave of the higher-
dimensional theory behaves, near the black hole horizon,
as a �1� 1�-dimensional blackbody source at the Hawking
temperature, one reproduces the standard calculation of
Hawking radiation. Obviously, because the derivation of
Hawking radiation via the anomalous point of view is only
dependent on the information of the horizon of the black
hole, it is more universal than that from the trace anomaly.
Following this method, a lot of work that generalizes to
various black hole cases has appeared [10–13] in recent
months.

In the case of a charged black hole [10], one should also
consider the conservation of an electric charge beyond the
energy conservation. In such a case, the two-dimensional
theory for each partial wave contains both gauge and
general coordinate symmetries, where the gauge symmetry
arises from the gauge potential with respect to the electric
field of the original charged black hole. Near the horizon,
when omitting the classically irrelevant ingoing modes, the
effective near-horizon quantum field becomes chiral and
contains the anomalies related to these two symmetries,
also known as gauge or gravitational anomalies. To de-
mand gauge invariance and general coordinate covariance
at the quantum level, two kinds of compensating fluxes
must be introduced to cancel the corresponding gauge and
gravitational anomalies at the horizon. The flux used to
cancel the gauge anomaly is called the charge current flux,
and the other one is the energy-momentum tensor flux
responsible for canceling the gravitational anomaly.

As far as the case of a rotating black hole is concerned,
one should take into account the conservation of angular
momentum. After reduction to �1� 1� dimensions, each
partial wave now contains a new U�1� gauge symmetry
besides the general coordinate symmetry. Although this
U�1� gauge symmetry originates from the isometry along
the ’ direction, it can be viewed as arising from the U�1�
gauge potential if written in terms of the angular velocity at
the horizon of the rotating black hole, in which the U�1�
gauge charge m is an azimuthal quantum number. This
means that the two-dimensional reduction of the rotating

black hole can be equivalently treated as that of a charged
particle in a two-dimensional charged field. As such, the
same procedure as that in the charged case can be applied
to obtain the fluxes required to cancel U�1� gauge and
gravitational anomalies at the horizon of the rotating black
hole [11–13]. In order to demand gauge invariance and
general coordinate covariance at the quantum level, the
fluxes derived in both cases via anomalies must be equal to
that of �1� 1�-dimensional blackbody radiation with the
Planck distribution, including chemical potentials for an
electric charge e or an azimuthal angular momentum m of
the scalar fields radiated from the black holes.

Since the dilatonic black holes [14–18] obtained from
the low-energy effective field theory have qualitatively
different properties from those in ordinary Einstein gravity,
it is necessary and helpful to study the thermal properties
of these black holes via the anomalous point of view. In this
paper, motivated by Robinson-Wilczek’s recent viewpoint,
we study Hawking radiation from the static, spherically
symmetric dilatonic black holes with an arbitrary coupling
constant, and that from the rotating Kaluza-Klein and Kerr-
Sen dilatonic black holes [19] via gauge and gravitational
anomalies. The result shows that, demanding gauge invari-
ance or general coordinate covariance at the quantum level,
one can find each partial wave of the scalar field to be in a
state with a net charge current or energy-momentum tensor
flux, whose values are exactly equal to that of �1�
1�-dimensional blackbody radiation at the Hawking tem-
perature with an appropriate chemical potential.

The paper is outlined as follows. We begin with our
studies in Sec. II by applying the Robinson-Wilczek
method of anomaly cancellation to study Hawking radia-
tion from the static, spherically symmetric dilatonic black
holes with an arbitrary coupling constant. Sections III and
IV are, respectively, devoted to investigating the cases of
the rotating Kaluza-Klein and Kerr-Sen dilatonic black
holes in four dimensions via gauge and gravitational
anomalies. Section V ends with some discussions. In addi-
tion, special properties of these dilatonic black holes in the
extreme limit are also qualitatively discussed.

II. HAWKING RADIATION FROM THE STATIC,
SPHERICALLY SYMMETRIC DILATONIC BLACK

HOLE

The action describing the dilaton field coupled to a U�1�
gauge field in �3� 1� dimensions is

 S �
1

16�

Z
d4x

�������
�g
p

�R� 2�r��2 � e�2��F2�; (1)

where � and F are the dilaton field and the U�1� gauge
field, respectively, with a coupling constant �. From the
action, the metric of the four-dimensional static, spheri-
cally symmetric dilatonic black hole (with an arbitrary
coupling constant �), the dilaton field, and the Maxwell
field had been obtained as [14–16]

QING-QUAN JIANG, SHUANG-QING WU, AND XU CAI PHYSICAL REVIEW D 75, 064029 (2007)

064029-2



 ds2 � �
�

R2 dt
2 �

R2

�
dr2 � R2�d�2 � sin2�d’2�;

� �
�

1� �2 ln
�
1�

r�
r

�
; F �

Q

r2 dt ^ dr;

(2)

where

 � � �r� r���r� r��; R � r
�
1�

r�
r

�
�2=�1��2�

;

in which the outer and inner horizons are, respectively,
given by

 r	 �
1� �2

1	 �2 �M	
�������������������������������������
M2 � �1� �2�Q2

q
�: (3)

For � � 0, r � r� is the curvature singularity. In the
extreme limit (namely, Qmax �

���������������
1� �2
p

M), the inner ho-
rizon and the outer horizon coincide with each other, a
naked singularity then appears at r � r�, and the area of
the black hole vanishes for � � 0; the solution no longer
represents a black hole.

After performing the conformal transformation ~g�	 �
e�2��g�	, the line element (2) for the black hole becomes

 d~s2 � �f�r�dt2 �
1

g�r�
dr2 � r2�d�2 � sin2�d’2�; (4)

where

 f�r� �
�

R2 e
�2��; g�r� �

�

R2 e
2��: (5)

Now we focus on investigating Hawking radiation from
the dilatonic black hole via gauge and gravitational anoma-
lies at the horizon. Near the black hole horizon, the effec-
tive radial potential for partial wave modes of the scalar
field vanishes exponentially fast if one introduces the
tortoise coordinate defined by r
 �

R
�R2=��dr and per-

forms the partial wave decomposition in terms of the
spherical harmonics. Thus, the physics near the horizon
of the originally four-dimensional black hole can be effec-
tively described by an infinite collection of �1�
1�-dimensional fields. In the effective two-dimensional
reduction, the partial wave is in the background of the
metric and the gauge potential,

 gtt � �f�r�; grr �
1

g�r�
; At � �

Q
r
: (6)

In addition, the background includes a dilaton field, but its
contribution can be dropped since the effect of the dilaton
field does not change the property of the Trt component of
the energy-momentum tensor in the static space-time, and
accordingly the compensating flux is independent of the
dilaton background [11].

In the following, we first study the flux of the electric
current and gauge anomaly at the horizon. In the two-
dimensional theory, the electric current is given by inte-
grating the four-dimensional current over a two-

dimensional sphere. We define the effective field theory
outside the horizon. In the region r� � 
 � r, there are no
anomalies, so the current satisfies the conservation equa-
tion @rJr�o� � 0. Near the horizon r� � r � r� � 
, when
excluding the near-horizon-skimming modes whose con-
tributions would give a divergent electric current at the
horizon, the effective theory becomes chiral and contains
the anomaly with respect to gauge symmetry, which origi-
nates from the electric field of the charged black hole, also
called the gauge anomaly. Thus, the current there obeys the
anomalous equation @rJr�H� � e2@rAt=�4��. What needs to
be said is that, in two dimensions, the anomalous current
actually satisfies r�J� � e2
�	@�A	=�4�

�������
�g
p

�. How-
ever, one only needs to investigate the electric current of
the component � � r, since the temporal component of
the electric current is irrelevant for the Hawking radiation
flux of the charge.

In the classical theory, the gauge symmetry of the action
is expressed by the covariant conservation of the charge
current under gauge transformations. However, in the
quantized version, the modes’ propagation along one light-
like direction makes the time coordinate ill-defined at the
horizon for an observer outside the horizon. To remove
these offending modes, the current exhibits an anomaly in
gauge symmetry. Under gauge transformations, if we inte-
grate the outgoing modes to obtain the effective action,
then it changes as ��W �

R
dtdr�r�J

�, where the cur-
rent is written as J� � J�

�o����r� � J
�
�H�H�r�, in which

���r� � ��r� r� � 
� and H�r� � 1����r� are the
scalar step and top hat functions, respectively. Thus the
variation of the effective action under gauge transforma-
tions is given by
 

��W �
Z
dtdr�

�
@r

�
e2

4�
AtH�r�

�

�

�
Jr�o� � J

r
�H� �

e2

4�
At

�
��r� r� � 
�

�
; (7)

where the ingoing modes are integrated out. To require the
full quantum theory gauge invariance, the quantum effect
of the omitted ingoing modes should be taken into account.
Since its contribution to the total current flux is
�e2AtH�r�=�4��, the first term in Eq. (7) is canceled by
its quantum effect [11]. To demand gauge invariance at the
quantum level to hold in the effective theory, the coeffi-
cient of the delta function should be nullified, which means
that

 co � cH �
e2

4�
At�r��; (8)

where we have used the currents in both regions: Jr
�o� � co

and Jr
�H� � cH � e2�At�r� � At�r���=�4��, in which co

and cH are the values of the current at infinity and the
horizon, respectively. In order to fix the current flux, we
impose a constraint that demands that the covariant current
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defined by ~Jr�H� � Jr
�H� � e

2At�r��=�4�� vanish at the ho-
rizon, which, in fact, corresponds to a regular requirement
of the physical quantities [11]. The electric current flux,
required to cancel the gauge anomaly and to demand gauge
invariance at the quantum level to hold in the effective
theory, then reads

 co � �
e2

2�
At�r��: (9)

In fact, the electric current flux is exactly equal to that of
�1� 1�-dimensional blackbody radiation with the Planck
distribution, including a chemical potential for an electric
charge e.

Next we will study the flux of the energy-momentum
tensor. To demand general coordinate covariance at the
quantum level, we expect that the flux is equal to that of
Hawking radiation. When we exclude the modes’ propa-
gation along the lightlike direction at the horizon, in the
region r� � 
 � r where the background contains a gauge
potential but has no anomaly, the energy-momentum tensor
satisfies the modified conservation equation @rTrt�o� �
co@rAt deduced from the 	 � t component of the equation
r�T

�
	 � 0, which is obeyed by the four-dimensional

energy-momentum tensor of the black hole. Near the hori-
zon, the offending modes have been integrated out; the
effective theory becomes chiral and contains gauge and
gravitational anomalies. Then the energy-momentum ten-
sor Trt satisfies [11]

 @rT
r
t�H� � Jr�H�@rAt � At@rJ

r
�H� � @rN

r
t ; (10)

where Nr
t � �f;rg;r � gf;rr�=�192��. It suffices for our

discussion to only investigate the component Trt since the
anomaly is timelike. In the above equation, the second term
comes from the gauge anomaly while the third one is from
the gravitational anomaly. In the effective theory, since the
energy-momentum tensor combines contributions from
both regions, that is, T�	 � T�	�H�H�r� � T

�
	�o����r�, the

effective action under a general coordinate transformation
changes as
 

��W �
Z
dtdr�t

�
co@rAt � @r

�
e2

4�
A2
t � N

r
t

�
H�r�

�

�
Trt�o� � T

r
t�H� �

e2

4�
A2
t � N

r
t

�
��r� r� � 
�

�
;

(11)

where �t is the general coordinate transformation parame-
ter, and we have not incorporated the quantum effect of the
ingoing modes. The first term is the classical effect of the
background electric field for constant current flow; the
second term is canceled by the quantum effect of the
ingoing modes whose contribution to the energy-
momentum tensor flux is ��Nr

t � e2A2
t =�4���. To demand

general coordinate symmetry of the effective action at the

quantum level, the energy-momentum tensor fluxes in both
regions satisfy

 ao � aH �
e2

4�
A2
t �r�� � Nr

t �r��; (12)

where
 

ao � Tr
�o�t � coAt�r�;

aH � Trt�H� �
Z r

r�
dr@r�coAt � e

2A2
t =�4�� � N

r
t �

are the values of the energy flow at infinity and the horizon,
respectively.

Taking the form of the covariant energy-momentum
tensor as

 

~T r
t � Trt �

1

192�
�gf;rr � 2f;rg;r�; (13)

and further imposing the vanishing condition on it, which,
in fact, corresponds to the regularity condition for the
energy-momentum tensor at the future horizon [11], one
will find that the flux of the energy-momentum tensor,
required to demand general coordinate covariance at the
quantum level, is given by

 ao �
e2

4�
A2
t �r�� �

�
12
T2
�; (14)

where

 T� �
1

4�

�����������
f;rg;r

q
jr�r� �

1

4�r�

�
1�

r�
r�

�
�1��2�=�1��2�

(15)

is the Hawking temperature of the black hole. The energy-
momentum tensor flux exactly agrees with that of Hawking
radiation from the black hole.

Finally, let us study the electric current and energy-
momentum tensor fluxes of Hawking radiation in the
case of fermions. For the charged black hole, the
Hawking distribution for fermions is given by N	e�!� �

1=�exp�!�eAt�r��T�
� � 1�, with which the electric current and

energy-momentum tensor fluxes have completely equiva-
lent forms to those obtained by the cancellation conditions
of gauge and gravitational anomalies and the regularity
requirement at the horizon [11,12]. So, Hawking radiation
can be derived from the anomalous point of view.

The spherically symmetric dilatonic black holes are
derived from low-energy string theory, and the background
has a dilaton field coupled to a gauge field. The solutions
have some interesting thermodynamical properties (espe-
cially in the extreme case [16,20]) which are not found in
the conventional black hole. The temperature of the spheri-
cally symmetric dilatonic black holes in the extreme limit
depends drastically on the dilaton coupling constant �.
When the charge of the black hole approaches the maxi-
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mum value Qmax �
���������������
1� �2
p

M, the temperature of the
black hole with �< 1 vanishes as it does in the
Reissner-Nordström black hole case. If �> 1, it diverges
in the extreme limit. When moving to the case � � 1, it
has the nonzero finite value 1=�8�M�. Besides, the energy-
momentum tensor flux for each value of the dilaton cou-
pling constant � coincides at Q � 0, since the black hole
solution with any � is identically the Schwarzschild space-
time for Q � 0 [19]; the difference becomes large as the
charge increases. When the charge of the black hole is
fixed, the charge current flux is eliminated from the anoma-
lous flux. The energy-momentum tensor flux in Eq. (14) is
then nonzero but finite at � � 1 near the extreme limit.
However, in the extreme case, it vanishes at �< 1, while
the black hole with �> 1 radiates a large amount of
energy. So, the static, spherically symmetric dilatonic
black holes with the coupling constant �> 1 evolve rap-
idly into a naked singularity near the extreme case. In that
case, we have to resort to the full quantum theory to
properly study such problems.

III. HAWKING RADIATION FROM THE
ROTATING KALUZA-KLEIN DILATONIC BLACK

HOLE

In the rotating case, the Kaluza-Klein black hole is an
exact solution to the action (1) with the coupling constant
� �

���
3
p

. It is derived by a dimensional reduction of the
boosted five-dimensional Kerr solution to four dimensions.
The metric is given by [17,19]

 

ds2 � �
�� a2sin2�

B�
dt2 � 2asin2�

Z

B
��������������
1� 	2
p dtd’

�

�
B�r2 � a2� � a2sin2�

Z
B

�
sin2�d’2

�
B�

�
dr2 � B�d�2; (16)

where

 � � r2 � 2�r� a2; � � r2 � a2cos2�;

Z �
2�r
�

; B �

�����������������������
1�

	2Z

1� 	2

s
:

(17)

The dilaton field is � � ��
���
3
p
=2� lnB, and the potential

corresponding to the gauge field is

 At �
	Z

2�1� 	2�B2 ; A’ � �
a	Zsin2�

2
��������������
1� 	2
p

B2
: (18)

The physical mass M, the charge Q, and the angular
momentum J are expressed, by the boost parameter 	,
mass parameter �, and specific angular momentum a, as

 M � �
�

1�
	2

2�1� 	2�

�
; Q �

�	

1� 	2 ;

J �
�a��������������

1� 	2
p ;

(19)

respectively. When Q � 0, the black hole is reduced to the
Kerr black hole. The J � 0 case corresponds to the non-
rotating black hole with the same coupling constant � ����

3
p

. The event horizon of the black hole is given by r� �

��
������������������
�2 � a2

p
, and the nonsingular inner horizon is lo-

cated at r� � ��
������������������
�2 � a2

p
. The condition that the black

hole has a regular horizon is �2 
 a2. It should be noticed
that the solution, in the extreme limit (jQj � 2M and J �
0), no longer represents a black hole because a naked
singularity appears [19]. This is quite different from the
Kerr-Newman (� � 0) black hole.

Now we study Hawking radiation from the rotating
Kaluza-Klein black hole via the anomalous point of view.
Near the horizon, performing the partial wave decomposi-
tion of the scalar field in terms of the spherical harmonics
’ �

P
l;m’lm�t; r�Ylm��;�� (strictly speaking, the angular

part of the separated scalar field equation can be trans-
formed into a form of the confluent Heun equation [21], but
near the horizon it approaches the spherical harmonic since
the near-horizon geometry has a topology of a 2-sphere)
and transforming to the tortoise coordinate defined by
dr
=dr � Bj��0�r2 � a2�=� � 1=f�r�, one can easily ob-
serve that the effective two-dimensional theory, decided by
the following metric and gauge field,

 ds2 � �f�r�dt2 � f�1�r�dr2;

At � �
Qre�1� 	2�

r2 � a2 �
am

��������������
1� 	2
p

r2 � a2 ;
(20)

is capable of describing the physics near the horizon of the
higher-dimensional black hole. Here, we still omit the
dilaton background due to the reduced static space-time.
In the gauge field background, e and m are the electric
charge and azimuthal angular quantum number of the
scalar field, respectively. The first term stems from the
electric field of the charged black hole, and the second
one is the induced gauge potential associated with the
black hole’s axisymmetry. So, the two-dimensional reduc-
tion includes general coordinate symmetry and two gauge
symmetries. When omitting the classically irrelevant in-
going modes near the horizon, the effective action becomes
anomalous with respect to these symmetries. In order to
relieve the conflict between a symmetry of the classical
action and the procedure of quantization, one must intro-
duce the corresponding fluxes to cancel these anomalies.

As before, the first thing we need to do is study the gauge
current flux and gauge anomalies. The effective field the-
ory is defined outside the horizon. Near the horizon r� �
r � r� � 
, when excluding the horizon-skimming
modes, the current ~J derived from the electric current in
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the original charged black hole becomes anomalous and
satisfies the anomalous equation [11] as @r~Jr�H� �
e@rAt=�4��. [In fact, the gauge potential corresponding
to an electric charge e in the two-dimensional reduction is
given by ~At �At=e, and the current should satisfy
@r~Jr�H� � e2@r ~At=�4��.] In the other region, there are no
anomalies and the gauge current satisfies the conservation
equation @r~Jr�o� � 0. Under gauge transformations, to de-
mand effective action gauge invariance at the quantum
level, the compensating flux of the current is then written
as

 do � �
e

2�
At�r��; (21)

where we have imposed the condition that the covariant
gauge current, which is expressed by Ĵr�H� � ~Jr�H� �
eAt�r��=�4��, vanishes at the future horizon [11,12].
This result is in agreement with the electric current flux
of Hawking radiation.

In addition to the energy and charge conservation, one
should also take into account the conservation of angular
momentum in the rotating Kaluza-Klein dilatonic black
hole. In two-dimensional theory, the axisymmetry of the
rotating black hole can now be interpreted as U�1� gauge
symmetry for the two-dimensional scalar field. There is an
induced U�1� gauge potential corresponding to this U�1�
gauge symmetry, whose gauge charge m is an azimuthal
angular-momentum quantum number. When the effective
field theory is defined outside the horizon, this U�1� gauge
current Ĵ, which is deduced from the �r; ’� component of
the four-dimensional energy-momentum tensor, is com-
posed of contributions from two regions. In the region
r� � 
 � r, there are no anomalies, and the gauge current
satisfies the conservation equation @rĴ

r
�o� � 0. But near the

horizon, it exhibits an anomaly with respect to U�1� gauge
symmetry since the offending modes are removed and the
effective theory becomes chiral here and satisfies the
anomalous equation @rĴ

r
�H� � m@rAt=�4��, where the

azimuthal quantum number m is treated as the U�1� gauge
charge. Under gauge transformations, the U�1� gauge cur-
rent flux, required to cancel the U�1� gauge anomaly, reads

 fo � �
m
2�

At�r��: (22)

This factually corresponds to the angular-momentum flux
of Hawking radiation.

We now investigate the flux of the energy-momentum
tensor. In classical theory, the symmetry of the action under
general coordinate transformations requires the covariant
conservation of the energy-momentum tensor. But as men-
tioned before, there is a divergent energy-momentum ten-
sor near the horizon due to a pileup of the horizon-
skimming modes. Suppose that the effective field theory
is formulated to exclude the offending modes; it no longer
has a divergent energy-momentum tensor near the horizon,

but contains an anomaly with respect to general coordinate
symmetry and takes the form of the nonconservation of the
energy-momentum tensor. Adopting this picture, one can
reformulate the effective field theory outside the horizon.
In the region r� � 
 � r, it contains all the same modes as
the fundamental theory does, so there is no anomaly. The
energy-momentum tensor, under an effective background
gauge field, satisfies the modified conservation equation
@rT

r
t�o� � J r

�o�@rAt. However, it becomes anomalous near
the horizon since the numbers of the outgoing modes and
ingoing modes are no longer matched with each other
when omitting the classically irrelevant ingoing modes.
The energy-momentum tensor near the horizon satisfies
the anomalous equation

 @rTrt�H� � J r
�H�@rAt �At@rJ r

�H� � @rN
r
t ; (23)

where the current is defined by J r � ~Jr=e � Ĵr=m and
Nr
t � �f2

;r � ff;rr�=�192��. Imposing the boundary condi-
tions that the covariant energy-momentum tensor, defined
by T̂rt � Trt � �ff;rr � 2f2

;r�=�192��, vanishes at the hori-
zon and that there are no ingoing modes at radial infinity,
the covariance of the effective theory at the quantum level,
under general coordinate transformations, requires a com-
pensating flux of the energy-momentum tensor,

 go �
1

4�
A2

t �r�� �
�
12
T2
�; (24)

where

 T� �
1

4�
@rfjr�r� �

��������������
1� 	2
p ������������������

�2 � a2
p

2��r2
� � a

2�
(25)

is the Hawking temperature of the black hole. In fact, the
energy-momentum tensor flux is exactly equal to that of
Hawking radiation.

As for the fermionic case, the Planck distribution (in-
cluding the chemical potentials for an azimuthal angular
quantum number m and an electric charge e), the electric
potential, and the angular velocity at the black hole horizon
are, respectively, given by

 N	e;	m�!� � 1=�exp�!� e�� �m��� � 1�;

�� �
Qr��1� 	2�

r2
� � a

2 ; �� �
a

��������������
1� 	2
p

r2
� � a

2 :

The electric current, angular-momentum, and energy-
momentum tensor fluxes of Hawking radiation have the
forms equivalent to those required to cancel gauge and
gravitational anomalies and to demand gauge invariance
and general coordinate covariance at the quantum level to
hold in the effective theory [11]. Thus, Hawking radiation
can be effectively described from the anomalous point of
view.

Now we study the properties of the derived physical
quantities in the extreme case. Obviously, the temperature

QING-QUAN JIANG, SHUANG-QING WU, AND XU CAI PHYSICAL REVIEW D 75, 064029 (2007)

064029-6



of the rotating dilatonic black hole vanishes in the extreme
limit � � a. In addition, when taking the limit Q!
Qmax � 2M, keeping the black hole extreme with J � 0
(whereas J ! 0 in the extreme), the value of the tempera-
ture is still zero, which is different from the nonrotating
dilatonic black holes, where the temperature diverges in
the limit Q! Qmax � 2M. Thus the temperature is dis-
continuous at Q � Qmax; this is due to the fact that there is
a naked singularity for the Klauza-Klein black hole when
reaching the extreme case. Moreover, the angular velocity
�, under the limit Q! Qmax, diverges at the horizon, but
the angular momentum J vanishes. This is because the
horizon shrinks to zero as the angular momentum de-
creases. The solution with Q! Qmax then represents a
rapidly spinning black hole [19].

Subsequently, we will vary the charge to see how the
angular-momentum and energy-momentum tensor fluxes
change in the maximally charged limit. As for the rotating
Kaluza-Klein dilatonic black hole, the temperature is zero
in the extreme case, and the thermal emission vanishes.
However, in the maximally charged limitQ! Qmax, while
the angular momentum itself is small, the angular velocity
of the black hole is very large and its superradiance effect
becomes important. The angular-momentum and energy-
momentum tensor fluxes increase rapidly until the black
hole approaches the maximally charged state, where the
horizon radius is smaller than the Planck scale. However, a
better understanding of physics at the Planck scale is a
prerequisite; this is especially necessary for studying black
holes at the maximally charged state, which have to rely on
the full quantum theory.

IV. HAWKING RADIATION FROM THE ROTATING
KERR-SEN DILATONIC BLACK HOLE

The Kerr-Sen black hole [18] is a solution to the low-
energy effective action in heterotic string theory. The
action containing a three-form (axion) fieldH and a dilaton
field � coupled to a U�1� gauge field F reads [18,19]

 S �
1

16�

Z
d4x

�������
�g
p

�
R� 2�r��2 � e�2�F2

�
1

12
e�4�H2

�
: (26)

From the uncharged Kerr solution, Sen [18] adopted the
solution generating technique to obtain a new rotating one,
which is given by

 ds2 �
�� a2sin2�

�
dt2 �

4�racosh2
sin2�
�

dtd’

�
�sin2�

�
d’2 �

�

�
dr2 ��d�2; (27)

where

 

� � r2 � a2cos2�� 2�rsinh2
;

� � r2 � 2�r� a2;

� � �r2 � a2��r2 � a2cos2�� � 2�ra2sin2�

� 4�r�r2 � a2�sinh2
� 4�2r2sinh4
:

(28)

The dilaton field, axion field, and gauge potential corre-
sponding to the gauge field are, respectively, given by
 

� �
1

2
ln

�

r2 � a2cos2�
; Bt’ � 2asin2�

�rsinh2

�

;

At �
�r sinh2
���

2
p

�
; A’ �

a�r sinh2
sin2����
2
p

�
: (29)

The mass M, the charge Q, and the angular momentum J
are given by the parameters �, 
, and a as

 M �
�
2
�1� cosh2
�; Q �

����
2
p sinh22
;

J � Ma:
(30)

The horizon radius is determined as r� � ��
������������������
�2 � a2

p
.

The condition for the solution to be a black hole is� 
 jaj,
which can be rewritten as

 jJj � M2 �Q2=2: (31)

In the extreme limit jQj �
���
2
p
M and J � 0, a naked

singularity appears, so the solution is no longer a black
hole [19].

Following the reduction procedure adopted above, the
physics near the horizon in a higher-dimensional black
hole can be effectively described by a two-dimensional
theory. In the present case, each partial wave in the near-
horizon limit behaves as an independent two-dimensional
scalar field in the background of the dilaton field whose
contributions are omitted due to the static background. The
two-dimensional metric and the gauge field are

 ds2 � �f�r�dt2 � f�1�r�dr2;

~At � �
Qre

�r2 � a2��1� sinh2
�

�
2�arcosh2


�r2 � a2�2�1� sinh2
�
;

(32)

where f�r� � �=�r2 � a2 � 2�rsinh2
�. Apparently, the
two-dimensional theory for each partial wave has two
gauge symmetries. If an effective field theory is formulated
outside the horizon to integrate out the horizon-skimming
modes, the electric current, angular-momentum, and
energy-momentum tensor become anomalous with respect
to gauge and general coordinate symmetries near the hori-
zon. To demand gauge invariance and general coordinate
covariance at the quantum level to hold in the effective
theory, one must introduce the compensating electric cur-
rent, angular-momentum, and energy-momentum tensor
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fluxes to cancel these anomalies at the horizon, and they
are precisely equal to those of Hawking radiation.

As usual, we will first study the electric current flux and
its gauge anomaly. The effective theory is still formulated
outside the horizon to integrate out the horizon-skimming
modes. Near the horizon, it becomes chiral and contains a
gauge anomaly. Under gauge transformations, the electric
current exhibits an anomaly with respect to gauge symme-
try, whose consistent form satisfies the anomalous equation
@rjr�H� � e@r ~At=�4��. In the other region where the ef-
fective theory contains all modes, the current satisfies the
conservation equation @rjr�o� � 0, in which j is derived
from the electric current in the four-dimensional space-
time. Under gauge transformations, to demand the effec-
tive action gauge invariance at the quantum level, the
electric current describes a flux given by

 ho � �
e

2�
~At�r��; (33)

where we have already imposed the condition that the
covariant form of the current vanishes at the horizon
[11,12]. This electric current flux, derived from gauge
anomaly cancellation and the regularity requirement at
the horizon, is exactly equal to that of Hawking radiation.

Similarly, we can derive the flux of the U�1� gauge
current. The gauge current ~j, deduced from the component
of the four-dimensional energy-momentum tensor Tr’, be-
comes anomalous with respect to U�1� gauge symmetry
when excluding the offending modes near the horizon. In
the two-dimensional theory, the U�1� gauge current near
the horizon satisfies the anomalous equation @r~j

r
�H� �

m@r ~At=�4��. However, it is conserved, @r~j
r
�o� � 0, in

the region r� � 
 � r. The U�1� gauge current flux, re-
quired to cancel the U�1� gauge anomaly, is then given by

 io � �
m
2�

~At�r��; (34)

where we have assumed the vanishing condition of the
covariant U�1� gauge current at the horizon. This
angular-momentum flux exactly corresponds to that of
Hawking radiation.

The above two gauge anomalies stem from the destruc-
tion of gauge symmetries associated with the electric field
and the axisymmetry of the rotating charged black hole.
Besides these, the gravitational anomaly in general coor-
dinate symmetry appears in the two-dimensional back-
ground when we omit the quantum effect of the ingoing
modes. This is formally reflected by the nonconservation
of the energy-momentum tensor. In the following, the
energy-momentum tensor flux, required to restore general
coordinate covariance at the quantum level, is derived from
the anomalous point of view. We expect that the value of
the energy-momentum tensor flux is equal to that of

Hawking radiation, similar to the cases of the two gauge
current fluxes. Near the horizon, the energy-momentum
tensor satisfies the anomalous equation (10) with the re-
placements Nr

t � �f
2
;r � ff;rr�=�192�� and At � ~At. In

the other region, there is no anomaly, but it contains a
gauge field, the energy-momentum tensor satisfies the
modified conservation equation @rTrt�o� � J r

�o�@r
~At. In

both regions, the current is defined by J r � jr=e �
~jr=m. Imposing the condition that the covariant energy-
momentum tensor vanishes at the horizon, the energy-
momentum tensor flux, required to demand the effective
action general coordinate covariance at the quantum level,
is expressed by

 ko �
1

4�
~A2
t �r�� �

�
12
T2
�; (35)

where T� is the Hawking temperature of the black hole,
whose obvious expression is given by

 T� �
1

4�
@rf�r�jr�r� �

������������������
�2 � a2

p
2��r2

� � a
2��1� sinh2
�

: (36)

This fits in with the energy-momentum tensor flux of
blackbody radiation at the Hawking temperature with
Planck distribution, including chemical potentials for an
electric charge e and an azimuthal quantum number m.

If we introduce the Planck distribution for fermions in
the Kerr-Sen black hole as that in the previous section and
replace the electric potential by �� � Qr�=��r

2
� � a

2��
�1� sinh2
�� and the angular velocity by �� �
2�r�cosh2
=��r2

� � a
2�2�1� sinh2
��, the electric cur-

rent, angular-momentum, and energy-momentum tensor
fluxes of Hawking radiation still have equivalent forms to
those derived from the anomaly cancellation condition and
the regularity requirement at the horizon.

In the extreme limit � � a, the temperature and the
angular velocity are no longer zero or divergent but ap-
proach finite values; however, they still discontinue at the
maximally charged limit Q � Qmax �

���
2
p
M, since there

exists a naked singularity for the extreme black hole. The
angular-momentum and energy-momentum tensor fluxes
of the Kerr-Sen black hole increase rapidly, but more
slowly than those of the Kaluza-Klein black hole, towards
the maximally charged limit. The final state is the presence
of a naked singularity and the surface of the black hole
vanishes, which means that we have to deal with a horizon
radius smaller than the Planck scale. This needs to be
investigated in the full quantum theory.

V. DISCUSSIONS AND CONCLUSIONS

In summary, we have applied the method of cancellation
of the anomaly to derive the Hawking radiation of various
dilatonic black holes. After reductions from the four-
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dimension theory, the effective �1� 1�-dimensional field
theory is formulated outside the horizon, which is largely
based upon the choice of the vacuum state, namely, the
Unruh vacuum rather than the Boulware state. Excluding
the offending modes at the horizon results in a breakdown
at the quantum level of gauge invariance and general
coordinate covariance. To demand these symmetries to
hold in the effective theory, the compensating fluxes can
be obtained by the anomaly cancellation and the regularity
requirement at the horizon. In all cases, we find that the
charge and energy-momentum tensor fluxes, required to
cancel the gauge and gravitational anomalies, are exactly
in agreement with those of �1� 1�-dimensional blackbody
radiation at the Hawking temperature with Planck distri-
bution, including appropriate chemical potentials.

It should be emphasized that, in the cases of rotating and
charged dilatonic black holes, the Robinson-Wilczek’s
proposal to derive Hawking radiation can also be verified
in the dragging coordinate system. In a rotating space-time,
the matter field in the ergosphere near the horizon must be
dragged by the gravitational field with an azimuthal angu-
lar momentum because there exists a frame dragging effect
of the coordinate. In the dragging coordinate system, the
matter field is corotating with the black hole, so the U�1�
gauge symmetry induced from the azimuthal symmetry no
longer needs to be incorporated in the two-dimensional
theory for each partial wave, and the corresponding gauge
anomaly is excluded from this effective theory. To demand
gauge invariance at the quantum level to hold in the
original underlying theory, the compensating flux of the
gauge current is only attributed to the contributions of the

gauge anomaly originated from the electric field of the
original charged black hole. The fluxes determined by the
anomaly cancellations and the regularity requirements at
the horizon still have completely equivalent forms to those
of blackbody radiation with the Planck distribution func-
tion in the dragging coordinate.

In addition, the derivation of Hawking radiation via
anomalies is based upon quantum field theory on the fixed
background space-time without considering the fluctuation
of space-time geometry. With the evaporation, the mass,
the charge, and the angular momentum of the realistic
black hole must diminish and the background geometry
must vary accordingly. Thus a bigger challenge is to in-
corporate the self-gravitation correction into the frame-
work. Finally, in the maximally charged limit, the area of
the charged dilatonic black hole vanishes, but the fluxes of
the angular-momentum and energy-momentum tensor are
still very large. To properly study Hawking radiation in
these cases, the backreaction of the quantum effects must
be taken into account, and one has to resort to the full
quantum theory.
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