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The brane cosmology scenario is based on the idea that the Universe is a 3-brane embedded in a five-
dimensional bulk. In this work, a general class of braneworld wormholes is explored with R � 0, where R
is the four dimensional Ricci scalar, and specific solutions are further analyzed. A fundamental ingredient
of traversable wormholes is the violation of the null energy condition (NEC). However, it is the effective
total stress-energy tensor that violates the latter, and in this work, the stress-energy tensor confined on the
brane, threading the wormhole, is imposed to satisfy the NEC. It is also shown that in addition to the local
high-energy bulk effects, nonlocal corrections from the Weyl curvature in the bulk may induce a NEC
violating signature on the brane. Thus, braneworld gravity seems to provide a natural scenario for the
existence of traversable wormholes.
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I. INTRODUCTION

An important and intriguing challenge in wormhole
physics is the quest to find a realistic matter source that
will support these exotic spacetimes. Traversable worm-
holes are supported by a null energy condition violating
stress-energy tensor, denoted as exotic matter [1]. Several
candidates have been proposed in the literature, such as
scalar fields [2]; wormhole solutions in semiclassical grav-
ity (see Ref. [3] and references therein); solutions in Brans-
Dicke theory [4]; solutions in higher dimensions, for in-
stance in Einstein-Gauss-Bonnet theory [5], wormholes on
the brane [6–8], etc. (see Ref. [9] for more details and
references). More recently, it has been argued that travers-
able wormholes may be supported by several equations of
state responsible for the late time accelerated expansion of
the Universe, namely, phantom energy [10], the general-
ized Chaplygin gas [11], and the van der Waals quintes-
sence fluid [12]. Despite the fact that, in a cosmological
context, these equations of state represent homogeneous
fluids, inhomogeneities may arise through gravitational
instabilities. Therefore, it seems that traversable worm-
holes may possibly originate from density fluctuations in
the cosmological background. In fact, it has been shown
recently that quantum fluctuations may self sustain phan-
tom wormholes with an equation of state varying with the
radial coordinate [3].

Moving on to braneworld cosmology, the latter is an
interesting scenario based on the idea that the Universe is a
3-brane embedded in a five-dimensional bulk. In the con-
text of braneworld wormholes, a class of static and spheri-
cally symmetric solutions, with R � 0, where R is the four
dimensional Ricci scalar, was considered in Ref. [7]. The
authors also consider a vacuum brane, so that the worm-
hole is supported by bulk Weyl effects. In this work, we

generalize to nonvacuum branes with nonexotic matter,
and with R � 0. In fact, in addition to wormholes, several
static and spherically symmetric spacetimes on the brane
have been analyzed to some extent in the literature, for
instance, stars on the brane [13,14], black holes [15,16] and
constraints from solar system experiments were also found
[16]. In this work, in addition to analyzing the wormhole
case of R � 0, we impose that the stress-energy tensor
confined on the brane, threading the wormhole satisfies
the NEC. We also show that the local high-energy bulk
effects and nonlocal corrections from the Weyl curvature in
the bulk could leave a NEC violating signature on the
brane. This argument is supported by the fact that negative
energy densities are induced by gravitational waves or
black strings in the bulk [17]. Thus, it seems that brane-
world gravity provides a natural scenario for the existence
of traversable wormholes.

In this work, we shall follow the formalism outlined in
Ref. [18]. The five-dimensional Einstein equation in the
bulk takes the form

 

�5�GAB � ��5
�5�gAB � k

2
5
�5�TAB: (1)

If the bulk is empty, i.e., �5�TAB � 0, the induced field
equations on the brane [18], are given by

 G�� � ��g�� � k2T�� �
6k2

�
S�� � E��; (2)

with

 k2 �
�k2

5

6
; � �

1

2
��5 � k2��; (3)

where k2 and k2
5 are the gravitational coupling constants, �

and �5 the cosmological constants on the brane and in the
bulk, respectively; � is the tension on the brane.
T�� is the stress-energy tensor confined on the brane, so

TABnB � 0, where nA is the unit normal to the brane. The
first correction term relative to Einstein’s general relativity
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is the inclusion of a quadratic term S�� in the stress-energy
tensor, arising from the extrinsic curvature terms in the
projected Einstein tensor, and is given by

 S�� �
1
12TT�� �

1
4T��T

�
� �

1
8g���T��T

�� � 1
3T

2�; (4)

with T � T��.
The second correction term, E��, is the projection of the

5-dimensional Weyl tensor, �5�CABCD, onto the brane, and is
defined as E�� � �A��C� �5�CABCDn

BnD, and encompasses
nonlocal bulk effects. The only general known property of
this nonlocal term is that it is traceless, i.e., E�� � 0.

Taking into account, the traceless property of the pro-
jected 5-dimensional Weyl tensor, then Eq. (2) implies

 R � 4�� k2T �
3k2

2�

�
T��T

�� �
1

3
T2

�
: (5)

This paper is outlined in the following manner: In
Sec. II, we outline the effective field equations governing
braneworld wormholes, and provide two general strategies
for finding specific solutions. In Sec. III, we further explore
specific solutions, and finally, in Sec. IV, we conclude.

II. EFFECTIVE FIELD EQUATION ON THE BRANE

Consider a static and spherically symmetric wormhole
metric given in the following form

 ds2 � �e2��r�dt2 �
dr2

1� b�r�=r
� r2�d�2 � sin2�d�2�;

(6)

where ��r� and b�r� are arbitrary functions of the radial
coordinate, r, denoted as the redshift function, and the
form function, respectively [1]. The radial coordinate has
a range that increases from a minimum value at r0, corre-
sponding to the wormhole throat, and extends to infinity.

To be a wormhole solution, several properties need to be
imposed [1], namely: The throat is located at r � r0 and
b�r0� � r0. A flaring out condition of the throat is imposed,
i.e., �b� b0r�=b2 > 0, which reduces to b0�r0�< 1 at the
throat. The condition 1� b=r � 0 is also imposed. To be
traversable, one must demand that there are no horizons
present, which are identified as the surfaces with e2� ! 0,
so that ��r� must be finite everywhere.

Note that the field equation on the brane can take the
form

 G�� � 8	Teff
��; (7)

with the total effective stress-energy tensor, Teff
��, being

given by

 Teff
�� � T�� �

1

8	
E�� �

6

�
S��; (8)

with k2 � 8	. We have considered, for simplicity, that the
cosmological constant on the brane is zero. Note that the

quadratic term, i.e., S�� 	 �T���2, is the high-energy cor-
rection term. From the following approximations
jS��=�j=jT��j 	 jT��j=�	 
=�, one readily verifies
that S�� is dominant for 

 �, and negligible in the
regime 
� �, where � > �1 Tev�4 [18].

In general relativity, the flaring out condition implies
that the wormhole should be threaded with matter violating
the null energy condition (NEC). Note that the NEC is
given by T��k�k� � 0, where k� is any null vector. Now,
an important feature of wormholes on the brane, governed
by the induced field equations on the brane, Eq. (2), is that
it is the total effective stress-energy tensor that should
violate the NEC. In particular, the stress-energy tensor
confined on the brane, T��, could perfectly satisfy the
NEC. Therefore, the NEC violation arises from a combi-
nation of the local bulk effects, through the quadratic term
in the stress-energy tensor, S��, and the nonlocal effects
from the bulk, E��.

The analysis is simplified working in an orthonormal
reference frame, so that the Einstein tensor components,
for the metric (6), are given by the following relationships

 Gt̂ t̂ �
b0

r2 ; (9)

 Gr̂ r̂ � 2�1� b
r�

�0

r �
b
r3; (10)

 

G�̂ �̂ � G�̂ �̂ �

�
1�

b
r

��
�00 � ��0�2 �

�0

r
�

b0r� b

2r2�r� b�

�
b0r� b

2r�r� b�
�0
�
; (11)

where the prime denotes a derivative with respect to the
radial coordinate, r.

We shall consider an isotropic fluid confined on the
brane, where the stress-energy tensor components, in the
orthonormal reference frame, are given by T�̂ �̂ �
diag�
; p; p; p�, where 
�r� is the energy density, p�r� is
the isotropic pressure. Taking into account the static and
spherically symmetric nature of the problem, the projected
Weyl tensor has the form E�̂ �̂ � diag���r�; �r�r�; �t�r�;
�t�r��. The quadratic correction term components, S�̂ �̂,
which are the local effects of the bulk arising from the
brane extrinsic curvature, included for self-completeness,
are provided by

 St̂ t̂ �
1
12


2; (12)

 Sr̂ r̂ � S�̂ �̂ � S�̂ �̂ �
1

12
�
� 2p�: (13)

Thus, the effective stress-energy tensor components,
Eq. (8), take the following form

 
eff � 

�
1�



2�

�
�

�
8	

; (14)
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 peff
r � p

�
1�



�

�
�

2

2�
�
�r
8	

; (15)

 peff
t � p

�
1�



�

�
�

2

2�
�
�t
8	

: (16)

It is interesting that the nonlocal bulk effects can contribute
with an effective anisotropic fluid, even in the presence of
an isotropic fluid on the brane.

In the analysis outlined below, the Ricci scalar will play
an important role, and is given by

 R � �2
�
1�

b
r

��
�00 � ��0�2 �

b0

r�r� b�

�
b0r� 3b� 4r

2r�r� b�
�0
�
: (17)

Evaluated at the throat, r0, this reduces to

 Rjr0
�

2b00
r2

0

�
�b00 � 1��00

r0
: (18)

The Ricci scalar, from Eq. (5), may also be given in terms
of the energy density and the isotropic pressure confined on
the brane, and assumes the form

 R � k2�
� 3p� �
3k2

2�

�

2 � 3p2 �

1

3
�
� 3p�2

�
: (19)

The imposition of the flaring out condition implies that
the effective total stress-energy tensor violates the NEC,
i.e., Teff

��k
�k� < 0. Now, considering a radial null vector,

k�̂ � �1; 1; 0; 0�, the latter inequality takes the form 
eff �
peff
r < 0. From the following relationship

 
eff � peff
r � 
� p�

1

8	
��� �r� �

1

�

�
� p�; (20)

the NEC violation, 
eff � peff
r < 0, provides the following

generic restriction

 8	�
� p��1� 

��< �� �r; (21)

in order to obtain wormhole solutions. In particular, con-
sidering the low energy regime, 
� �, one may neglect
the quadratic term components, and the inequality (21)
reduces to 8	�
� p�< �� �r. If the Weyl components
are zero, then one recovers the usual general relativistic
NEC violation. For high energies, 

 �, the quadratic
term dominates, and the inequality (21) takes the form
8	
�
� p�=� < �� �r. Thus, in addition to nonlocal
corrections from the Weyl curvature in the bulk (as in
Ref. [7]), local high-energy bulk effects imprints a NEC
violating signature on the brane. It is also possible to
consider a zero Weyl curvature term, and generalize the
stress-energy tensor to incorporate an anisotropic pressure
contribution on the brane. This latter consideration would
generalize standard general relativistic wormholes with the
inclusion of a high-energy contribution. It seems that bra-
neworld gravity provides a natural scenario for the exis-
tence of traversable wormholes. In summary, by choosing
T��, this fixes S��. Therefore, one needs to find E�� which
produces a wormhole violating the NEC at all energies.
However, the question of what 5-dimensional geometry
produces this E�� is much more difficult to answer, and
shall not be explored here.

Now, one may adopt several strategies to find solutions
of wormholes on the brane. For instance, specifying the
functions b�r� and ��r�, the Ricci scalar R is determined
through Eq. (17). Then considering an equation of state
such that p � p�
�, the Ricci scalar through Eq. (19)
would be given as a function of 
. Thus, from Eqs. (17)
and (19), one would then completely determine 
 � 
�r�,
and consequently p � p�
�. Finally, through the effective
field equations induced on the brane, Eqs. (14)–(16), the
projected 5-dimensional Weyl tensor components are
determined.

One may also consider an analogous strategy as the one
obtained in Ref. [14]. If one specifies the source, then R�r�
is determined through Eq. (19). Now, integrating Eq. (17)
provides the following relationship for the form function

 b�r� � e���r;r0�

�
r0 �

Z r

r0

�re�� �r;r0��2�00 �r� 2��0�2 �r� 4�0 � R� �r� �r�
2��0 �r

d �r
�
; (22)

where ��r; r0� is defined as

 ��r; r0� �
Z r

r0

2�00 �r� 2��0�2 �r� 3�0

2��0 �r
d �r: (23)

As the bulk is considered empty, �5�TAB � 0, the brane
stress-energy tensor satisfies the usual conservation equa-
tion, T�̂ �̂;�̂ � 0, which reflects that the interaction between
the bulk and the brane is purely gravitational, i.e., there is
no exchange of stress-energy between the two [18]. The
conservation equation then provides the following relation-
ship

 p0 � ��
� p��0: (24)

Integrating, the pressure provides

 p�r� � e���r�
�
�
Z r

r0

�0��r�
��r�e���r�d �r� C
�
; (25)

where C is an integrating constant. The latter may be
defined, for instance, evaluating the pressure at the throat,
so that C � p�r0�e��r0�.

The algorithm runs as follows: providing � and one of
the following functions 
 and p, one determines the second
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through Eq. (24). In particular, providing 
 and �, and
specifying p�r0�, then p is determined through Eq. (25),
which yields the full stress-energy tensor T��. The Ricci
scalar R is known through Eq. (19), which in turn is used to
find the form function, Eq. (22), thus fixing the intrinsic
geometry on the brane. Finally, the components of the
anisotropic contribution of the projected Weyl tensor are
computed through Eqs. (14)–(16).

III. SPECIFIC SOLUTIONS

A. Dust

The specific case of dust shall be explored in some detail
as an illustrative example. For instance, consider dust with
a positive energy density threading the wormhole. The
effective stress-energy tensor components reduce to

 
eff�r� � 

�
1�



2�

�
�

1

8	
��r�; (26)

 peff
r �r� �

1

2�

2 �

1

8	
�r�r�; (27)

 peff
t �r� �

1

2�

2 �

1

8	
�t�r�; (28)

The NEC violation provides the following restriction

 8	
�1� 

��< �� �r; (29)

and the Ricci scalar reduces to

 R � 8	
�1� 

��: (30)

Now, specifying the functions b�r� and ��r�, then the Ricci
scalar as a function of the r-coordinate is determined and
one deduces the energy density, which is given by

 
 �
�
2

�
1�

�������������������
1�

R
2	�

s �
: (31)

For this particular case, note that the generic NEC viola-
tion, inequality (29), evaluated at the throat, and taking into
account Eq. (18), takes the following form
 

��� �r�jr0
>�

2b00
r2

0

�
�b00 � 1��00

r0

� 8	�
�

1�

��������������������������������������������������
1�

b00
	�r2

0

�
�b00 � 1��00

2	�r0

s �
;

(32)

in terms of the metric coefficients.
Considering a constant redshift function, for simplicity,

we have R � 2b0=r2, and Eq. (31) takes the form

 
 �
�
2

�
1�

��������������������
1�

b0

	�r2

s �
: (33)

One may impose the negative sign, and assuming that

b0=r2 ! 0 at spatial infinity, to allow 
! 0. However,
we shall also analyze the positive sign, which provides
interesting results. If we impose that 
 � 0, and consider-
ing the negative sign, it is a simple matter to prove that
b0 � 0. The condition b0 <	�r2 is also imposed. The
projected Weyl tensor components provide the following
relationships

 ��r� � �
2b0

r2 � 6	�
�

1�

��������������������
1�

b0

	�r2

s �
; (34)

 �r�r� �
b� b0r

r3 � 2	�
�
1�

��������������������
1�

b0

	�r2

s �
; (35)

 �t�r� � �
b0r� b

2r3 � 2	�
�
1�

��������������������
1�

b0

	�r2

s �
: (36)

Note that the traceless nature of the Weyl term is obeyed,
E�� � ��� �r � 2�t � 0, as expected.

One may now consider specific cases for the form
function. For instance, consider the ‘‘spatial
Schwarzschild’’ solution, with b�r� � r0. The negative
sign in Eq. (33) provides the vacuum 
 � 0, where E�̂ �̂ �
diag�0; �r;��r;��r� with �r � r0=r

3. This is a case
analyzed in Ref. [7]. Now, considering the positive sign,
so that 
 � �, and the projected Weyl tensor components
reduce to

 ��r� � 12	�; �r�r� � 4	�� r0

r3; (37)

 �t�r� � 4	�� r0

r3: (38)

Note that this corresponds to a nonasymptotically flat
solution, which, in this context, does not have a correspon-
dence in general relativity.

B. Linear equation of state

As we are imposing an isotropic pressure NEC non-
violating distribution of matter on the brane, one may
generalize the latter dust solution. As an example, consider
the following linear equation of state, p � !
. In addition
to this, we shall assume that the energy conditions are
satisfied. In particular, the weak energy condition (WEC),
which states that for a diagonal stress-energy tensor, we
have 
 � 0 and 
� p � 0. The strong energy condition
(SEC) states that 
� p � 0 and 
� 3p � 0. The latter
conditions then impose the following inequalities: 1�
! � 0 and 1� 3! � 0.

Now, Eq. (19) provides the following relationship

 R � 8	�
� 8	
�
2�

2; (39)

where

 � � 1� 3!; (40)
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 � � 2
3�1� 3!�: (41)

From the imposition of the SEC, considered above, we
verify that � � 0. Specifying the functions b�r� and ��r�,
and using Eq. (17), where the Ricci scalar as a function of
the r-coordinate is considered, R � R�r�, the energy den-
sity 
�r� is finally given by

 
 �
�

3�

�
��

����������������������
�2 �

3�R
4	�

s �
: (42)

Note that a generic restriction is imposed, i.e., �2 � 3�R
4	� .

Now, as the energy density is positive, 
 � 0, one needs to
analyze two cases: (i) For the positive sign, if � � 0, then
the imposition of the above generic condition suffices; if
�  0, then one needs to impose 3�R

4	�  0. (ii) For the
negative sign, the case of �< 0 is ruled out; if � � 0,
then the additional restriction 3�R

4	� � 0 is imposed. Finally,
the components of E�� are provided by Eqs. (14)–(16).

In this context, one may also write down a total effective
equation of state, !eff � peff

r =
eff , using the linear equa-
tion of state outlined above. Thus, !eff is given by

 !eff �
!�1� 


�� �


2�� k

2�r=


1� 

2�� k

2�=

; (43)

and in order to violate the NEC, one needs to impose
!eff <�1 at the throat, consequently mimicking a travers-
able wormhole supported by phantom energy [10].

C. Asymptotically flat spacetime

In this section, we shall consider the second strategy
following the analysis of Eq. (22). For simplicity, a con-
stant redshift function, �0 � 0, is imposed, so that Eq. (22)
reduces to

 b�r� � r0 �
1

2

Z r

r0

R� �r� �r2d �r (44)

Consider once again, the dust solution with a specific
choice for the energy density, given by the following
relationship

 
 �
�
2

�
1�

��������������������
1�

2r2
0

	�r4

s �
: (45)

We shall only consider the negative sign, to allow 
! 0 at
spatial infinity. Note that the wormhole throat radius obeys
the inequality r2

0 > 2=�	��. Now, from Eq. (19), the Ricci
scalar is given by

 R�r� �
22

r2
0

�
r0

r

�
4
: (46)

Substituting this function into Eq. (44), we deduce the
following form function

 b�r� � r0 � 2r0�1�
r0

r �; (47)

with 0< 2 < 1, so that one obtains an asymptotically flat
wormhole solution with b0�r� � 2r2

0=r
2, and at the throat

we have b�r0� � r0 and b0�r0� � 2 < 1.
The projected Weyl tensor components are provided by

Eqs. (34)–(36), by substituting the functions b�r� and b0�r�,
and are given by the following relationships

 ��r� � �
22r2

0

r4 � 6	�
�
1�

��������������������
1�

2r2
0

	�r4

s �
; (48)

 �r�r� �
r0

r3

�
1� 2

�
1�

2r0

r

��
� 2	�

�
1�

��������������������
1�

2r2
0

	�r4

s �
;

(49)

 �t�r� � �
r0�1� 

2�

2r3 � 2	�
�
1�

��������������������
1�

2r2
0

	�r4

s �
; (50)

which tend to zero as r! 1.

IV. CONCLUSION

In this work, we have adopted the viewpoint of a brane-
world observer, by considering a general class of worm-
holes with R � 0, where R is the four dimensional Ricci
scalar. In addition, two strategies were outlined in order to
construct general solutions and specific cases were further
explored. First, the specific case of dust, with a positive
energy density was considered, and several general physi-
cal properties and characteristics were analyzed. Second, a
linear equation of state of the stress-energy tensor compo-
nents on the brane were analyzed, and finally, an asymp-
totically flat wormhole spacetime was found. Now, a
fundamental ingredient of traversable wormholes is the
violation of the null energy condition (NEC). However,
in the context of braneworlds, it is the effective total stress-
energy tensor that violates the NEC. Therefore, we have
imposed that the stress-energy tensor confined on the
brane, threading the wormhole, satisfied the NEC, and it
was shown that in addition to the nonlocal corrections of
the Weyl curvature in the bulk (as considered in Ref. [7]),
local high-energy bulk effects, could leave a NEC violating
signature on the brane, thus providing a natural scenario for
the existence of traversable wormholes. The question of
what 5-dimensional geometry produces this NEC imprint
is much more difficult, and was not explored here. It is also
important to emphasize another advantage of the analysis
outlined in this paper, in generalizing the work of Ref. [7],
namely, it is possible to consider a zero Weyl curvature
term, and generalize the stress-energy tensor to incorporate
an anisotropic pressure contribution on the brane. This
latter consideration would also extend and generalize stan-
dard general relativistic wormholes with the inclusion of a
high-energy contribution.

However, a few remarks are in order, namely, one may
basically consider two strategies of obtaining solutions on
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the brane. First, the bulk spacetime may be given, by
solving the full 5-dimensional equations, and the geometry
of the embedded brane is then deduced. Second, due to the
complexity of the 5-dimensional equations, one may fol-
low the strategy outlined in this paper, by considering the
intrinsic geometry on the brane, which encompasses the
imprint from the bulk, and consequently evolve the metric
off the brane. In principle, the second procedure may
provide a well-determined set of equations, with the brane
setting the boundary data. However, determining the bulk
geometry proves to be an extremely difficult endeavor.
Nevertheless, the behavior of the bulk should be analyzed,

and found to be nonsingular to inspire any physical mean-
ing in the models considered. Work along these lines is in
progress.
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