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Zamolodchikov’s c-theorem type argument (and also string theory effective action constructions) imply
that the RG flow in 2d sigma model should be a gradient one to all loop orders. However, the monotonicity
of the flow of the target-space metric is not obvious since the metric on the space of metric-dilaton
couplings is indefinite. To leading (one-loop) order when the RG flow is simply the Ricci flow the
monotonicity was proved by Perelman [G. Perelman, math.dg/0211159.] by constructing an ‘‘entropy’’
functional which is essentially the metric-dilaton action extremized with respect to the dilaton with a
condition that the target-space volume is fixed. We discuss how to generalize the Perelman’s construction
to all loop orders (i.e. all orders in �0). The resulting entropy is equal to minus the central charge at the
fixed points, in agreement with the general claim of the c-theorem.
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I. INTRODUCTION

2d sigma models containing infinite number of cou-
plings parametrized by target-space metric tensor G���x�
have many interesting connections to various problems in
physics and mathematics. In particular, they play an im-
portant role in string theory, describing string propagation
in curved space. In order to define the quantum stress
tensor of the sigma model, i.e. its renormalization on a
curved 2d space, one is led to the introduction an extra
scalar coupling function ��x� or the dilaton. The corre-
sponding metric and dilaton RG ‘‘beta-functions’’ �i are
then proportional to string effective equations of motion
(for reviews see, e.g., [1,2]). Assuming that the c-theorem
claim [3] should apply to the sigma model (with compact
euclidean target space) one should the existence of a (local,
covariant) functional of the metric such that (i) its gradient
is proportional to �i (with certain diffeomorphism terms
added), (ii) it decreases along the RG flow and (iii) it is
equal to the central charge at fixed points. While the
gradient property of the flow is relatively easy to establish,
its monotonicity is much less obvious. In particular, the
direct generalization of Zamoldchikov’s proof of the c-
theorem [4] leads to the ‘‘central charge’’ action which
vanishes at any fixed point, instead of decreasing along the
flow.

One may expect that the statement of the c-theorem
should apply provided one considers only the G�� metric
flow (the flow of the dilaton plays, in a sense, a secondary
role). However, the technical details of the
Zamolodchikov-type construction [3,4] of the ‘‘central
charge’’ functional do not directly apply if one ignores
the dependence on the dilaton. This suggests that one needs
an alternative way of constructing the corresponding RG
entropy. The idea of such construction was suggested by
Perelman [5] (see also a review and generalizations in [6])

on the example of the Ricci flow which is the 1-loop
approximation to the full sigma model RG flow. He, in
turn, was inspired by the structure of the leading terms in
the metric-dilaton effective action which first appeared in
the string-theory context [7,8].

Below we shall present a generalization of the
Perelman’s construction to all orders in sigma model
loop expansion, i.e. suggest how to prove the c-theorem
for the sigma model. We shall first review (in Sec. II) the
basic facts about the structure of sigma model ‘‘beta-
functions’’ and the associated ‘‘central charge’’ action. In
Sec. III we shall define a modification of such action which
is equal to minus the Perelman’s ‘‘�-entropy’’ and interpret
the latter as a Lagrange multiplier for the fixed volume
condition. We shall argue that this entropy should grow
along the metric RG flow and is equal to minus the central
charge at the fixed points.

II. REVIEW OF SIGMA MODEL RESULTS: WEYL
ANOMALY COEFFICIENTS AND ‘‘CENTRAL

CHARGE’’ ACTION

Let us start with a review of some known facts about
renormalization of sigma model on curved 2d space. One
reason to consider quantum sigma model on a curved space
is to be able to define its stress tensor and its correlators
which enter the standard proof of the c-theorem. Another is
that to be able to define global quantities that may provide
one with a ‘‘c-function’’ one needs to consider a 2-space of
a topology of a sphere (to regularize, in particular, the IR
divergences). The same problem also naturally arises in the
context of the Polyakov’s approach to critical string theory
when one considers propagation of a string in D-
dimensional curved target space with metric G�� [2,7,9].
The corresponding action I � 1

4��0
R
d2z

���
g
p
gab@ax��

@ax
�G���x� is classically invariant under Weyl rescalings

of the 2d metric gab, implying the decoupling of the
conformal factor of this metric. Consistency of the critical
string theory (where conformal factor of the 2d metric is
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not a dynamical field) then translates into the requirement
of the cancellation of the Weyl anomaly. The renormaliz-
ability of the above sigma model on curved 2d background
requires introduction of one extra ‘‘hidden’’ scalar (dilaton)
coupling which has the same dimension as the metric term
[7]

 I �
1

4��0
Z
d2z

���
g
p
�gab@ax�@bx�G���x� � �0R�2���x��;

(2.1)

where R�2� is the curvature of gab.
The two couplings run with renormalization scale ac-

cording to the corresponding beta-functions1

 

d’i

dt
� ��i; ’i � �G��;��: (2.2)

The operator form of the Weyl anomaly relation for the
trace of the 2d stress tensor is then

 2��0Taa � �@ax�@ax� ��G���x�� � �0R�2�� ����x��; (2.3)

where the ��i are the Weyl-anomaly coefficients that differ
from �i by certain diffeomorfism terms [10,11]

 

��G
�� � �G�� �r�M� �r�M�;

��� � �� �M�@��;
(2.4)

 M� � �0@���W��G�: (2.5)

W� is a specific covariant vector constructed out of curva-
ture and its covariant derivatives only (it is determined
from the matrix that governs mixing under renormalization
of dimension 2 operators).

In dimensional regularization with minimal subtraction
one finds to 2-loop order [7,10,12–14]2

 �G�� � �0R�� �
1
2�
02R���	R���	 �O��03R3� (2.6)

 �� � �
�G���!�G�

� c0 �
1
2�
0r2�� 1

16�
02R����R

���� �O��03R3�;

(2.7)

where in critical bosonic string c0 �
1
6 �D� 26� (D being

the total number of coordinates x� and �26 stands for the
measure or ghost contribution [17]). Here ! is a scalar
function of the curvature and its covariant derivatives.

�G� is a differential operator (scalar anomalous dimen-
sion) which in the minimal subtraction scheme has the
following general form [10,13,18]

 
 � ���
2 r��r�� �

X1
n�3

��1...�n
n r��1...r�n�

; (2.8)

 ���
2 � 1

2�
0G�� � p1�

03R���
R
���
 � . . . ; (2.9)

 ����
3 � q1�

04D�R�
��


R
��
� � . . . ;

�����
4 � s1�

04R����R���
� � . . . :

(2.10)

In the minimal subtraction scheme M� gets a nonzero
contribution only starting with 3 loops

 W� � t1�03@��R��
�R��
�� � . . . : (2.11)

The 3-loop coefficients here are p1 �
3
16 , t1 �

1
32 [19] and

the 4-loop coefficients q1; s1; . . . were found in [15,20].
In general, the Weyl anomaly coefficients ��G�� and ���

satisfy D differential identities which can be derived from
the condition of nonrenormalization of the trace of the
energy-momentum tensor of the sigma model [10,21]

 @� ��� � ����r��� V
��
� � ��G�� � 0; (2.12)

where the differential operator V��� depends only on G��.

To lowest order V��� ��G�� �
1
2r

�� ��G�� �
1
2G��G�� ��G��� �

O��02�. Equation (2.12) implies that once the metric con-
formal invariance equation is imposed, ��G�� � 0, then
��� � const, and thus ��� � 0 gives just one algebraic

equation.
The existence of the identity (2.12) implying D condi-

tions between 1
2 D�D� 1� � 1 functions ��G�� and ���

would have a natural explanation if ��G and ��� could be
obtained by variation from a covariant action functional
S�G;�� [3,14,17]

 

�S
�’i

� �ij ��j; ��i � �ij
�S
�’j

; (2.13)

where �ij is a nondegenerate covariant operator. Indeed,
the diffeomorphism invariance of S implies the identity

 r�
�S
�G��

�
1

2

�S
��
r�� � 0 (2.14)

which would then relate ��G and ���.
Indeed, such action functional is easy to find to leading

order in �0

 S �
Z
dDx

����
G
p

e�2��c0 � �0�
1
4R� @��@

��� �O��02��:

(2.15)

Then

 

��G
�� � �0�R�� � 2r�r��� �O��02�; (2.16)

 

��� � c0 � �0�
1
2r

2��r��r��� �O��02� (2.17)

follow from this action if � in (2.13) is

1In our present notation (opposite to that of [1]) the RG
evolution toward the IR corresponds to t � � ln�! �1 (�
is a momentum renormalization scale).

2The 3-loop �03 and 4-loop �04 corrections to beta-functions
were computed, respectively, in [15,16].
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 �ij �
1����

G
p

e�2�

4G��G�� G��

G��
1
4�D� 2�

� �
�O��0�; (2.18)

 

�ij �
����
G
p

e�2�
1
4

�
G��G�� � 1

2G
��G��

�
1
2G

��

1
2G

�� �2

0
B@

1
CA

�O��0�: (2.19)

The Lagrangian in (2.15) can be written as (up to a total
derivative)

 

~�� 	 ��� � 1
4G

�� ��G��

� c0 �
1
4�
0�R� 4r2�� 4@��@

��� �O��02�:

(2.20)

This combination [10] may be interpreted as a ‘‘general-
ized central charge’’ function: it appears as the leading
term in the expectation value of the trace of the stress
tensor (2�hTaa i � ~��R�2� � . . . ) and is equal to the central
charge at the conformal point where ��G � 0 (then ~�� �
��� � const).

Reference [4] put forward an argument (based on the
idea of the proof of the c-theorem in [3]) that the ‘‘central
charge’’ action3

 S �
Z
dDx

����
G
p

e�2� ~���G;��

�
Z
dDx

����
G
p

e�2���� � 1
4G

���G��� (2.21)

should have its equations of motion equivalent to ��G � 0,
��� � 0 to all orders in �0 (provided one chooses an

appropriate scheme, i.e. modulo a local redefinition of
G�� and �). This was indeed confirmed by the explicit
sigma model computations up to and including the 4-loop
(�04) order [15,19,20].

This action has a remarkable structure. In particular, it
can be rewritten as

 S � �
1

2

�
�� 


�
��
� �G 


�
�G��

�Z
dDx

����
G
p

e�2�:

(2.22)

Then assuming that G�� and � depend on the renormal-
ization point and using (2.2) one finds [4]

 S �
1

2

dV
dt
; V 	

Z
dDx

����
G
p

e�2�; (2.23)

i.e. that the ‘‘central charge’’ action evaluated on the RG

running couplings is simply the RG ‘‘time’’ derivative of
the generalized volume.

More generally, based on detailed study of renormaliza-
tion of the sigma model Ref. [22,23] have constructed an
action that reproduces the Weyl anomaly coefficients, i.e.
satisfies (2.13), to any order in �0 in an arbitrary (covariant)
renormalization scheme. This action has the following
structure

 S1 �
Z
dDx

����
G
p

e�2��Ji ��i � �ij ��i ��j�; (2.24)

where J� � 1� . . . , J��G � �
1
4G

�� � . . . , etc. are func-
tions of ’i � ��;G��� determined in terms of the renor-
malization group quantities. The matrix �ij is, in principle,
arbitrary [Eq. (2.13) is satisfied for any �ij] but for a
specific choice of it one can show [22] that (2.24) becomes
[cf. (2.22)]

 S1 � �
1

2

�
�� 


�
��
� �G 


�
�G��

�Z
dDx

����
G
p

e�2�J��G�;

(2.25)

where in the minimal subtraction scheme

 J� � 1� 1
4�
02R����R���� �O��03�: (2.26)

As was pointed out in Sec. 6 of [1], if one further redefines
the dilaton by � 1

2 lnJ� the action (2.25) reduces to the
simpler-looking action (2.21) or (2.22).4 Thus, there should
always exist a scheme in which the gradient of (2.21)
reproduces ��i to all �0 orders.5 References [20,22] found
explicitly the renormalization scheme in which the action
(2.24) of [22] reduces to the action (2.21) of [4] at orders
�03 and �04 respectively.

Let us note that the representation (2.23) is closely
related to the interpretation of the action whose extrema
are equivalent to the vanishing of the sigma model Weyl
anomaly coefficients as the string low-energy effective
action for the graviton and dilaton modes. The effective
action can be reconstructed from the string S-matrix. Its
relation to the sigma model is explained by the observation
[7] that the generating functional for the string scattering
amplitudes can be interpreted as a partition function Z �R
�dx�eiI on the 2-sphere with the string action being the

sigma model with couplings which are the string space-
time fields. The realization that a renormalization of the
sigma model corresponds to a subtraction of massless poles
in the string scattering amplitudes and that a subtraction of
the Mobius volume infinities can be done by differentiating

3In the second equality below we used the reparametrization
invariance of the action and the fact that ��i differ from �i by
diffeomorphism terms. Note also that when acting on a
diffeomorphism-invariant functional one has ��i 
 �

�’i �
�i 
 �

�’i ; this relation will be used below.

4One needs to note that under a coupling redefinition �i 

�
�’i � �0i 
 �

�’0i .5A possible drawback of this general argument is that the
corresponding scheme choice is somewhat implicit. In the di-
mensional regularization with minimal subtraction the two ac-
tions begin to differ starting with �03 order, i.e. to relate them at
3- and higher loop orders one needs a certain field redefinition.
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over the logarithm of the 2d cutoff led to the expression for
the tree-level closed string effective action S in terms of the
‘‘RG time’’ derivative of the renormalised sigma model
partition function Z [24]:

 S �
@Z
@t
� �i 


@Z
@’i

: (2.27)

Here we used the RG equation for Z: dZdt �
@Z
@t � �

i 
 @Z@’i �

0. Finally, there exists a scheme choice in which the
renormalized value of Z is simply proportional to the
generalized volume V in (2.23) [1,24]. This explains the
equivalence between the sigma model RG -motivated
‘‘central charge’’ action (2.21) and (2.23) and the string
partition function-motivated effective action (2.27).

III. MONOTONICITY OF RG FLOW FOR G��
COUPLING

The existence of the action (2.21) and (2.25) whose
derivative is proportional (2.13) to the Weyl-anomaly co-
efficients implies, in particular, that the RG flow of the
metricG�� and the dilaton� couplings of the sigma model
(2.1) [with a specific choice (2.4) and (2.5) of the diffeo-
morphism terms] is a ‘‘gradient flow.’’ This flow is not,
however, monotonic. Indeed, the ‘‘central charge’’ action
(2.21) vanishes at the fixed points; also, dS

dt � ��ij
��i ��j

does not have a definite sign since the ‘‘metric’’ �ij in
(2.13) and (2.18) is not sign-definite.

At the same time, one may expect (in view of the
Zamolodchikov’s theorem [3] for unitary 2d theories
with finite number of couplings)6 that if one restricts
attention just to the RG flow of the metric G�� (and
considers the case of compact Euclidean signature space)
there should exists an action functional S�G� whose gra-
dient is proportional to �G and which decreases along the
G�� flow toward the IR.

A natural guess is that S�G� should be closely related to
the functional S�G;��, e.g., it could be found by solving
for the dilaton, i.e. by extremizing S�G;�� in �. The
‘‘secondary’’ role of the dilaton coupling is suggested by
the existence of the identity (2.12) that expresses its beta-
function in terms of the metric beta-function.

The idea of finding S�G� by eliminating � from S�G;��
does not, however, work directly. At the leading order in �0

the combination ~�� in (2.20) has a remarkable property
that its variation over� with the measure factor in (2.21) is
zero. The variation of (2.21) over � gives simply

 

�S
��
� �2

����
G
p

e�2� ~�� � 0; (3.1)

i.e. ~�� � 0, and then the action S vanishes even before
imposing ��G � 0. The same property of ~�� is true at least
to order �04 and should be true in general in an appropriate
scheme.7

To get a nontrivial functional S�G� Perelman [5] sug-
gested to minimize S�G;�� in � while restricting � to
satisfy the unit volume condition8:

 V �
Z
dDx

����
G
p

e�2� � 1: (3.2)

Imposing this condition may be in a sense interpreted as
extremizing S over the constant part of ~�� or the central
charge parameter c0 in (2.20). Indeed, adding the constraint
(3.2) to the action (2.21) with the Lagrange multiplier � we
get the following functional

 Ŝ �
Z
dDx

����
G
p

e�2� ~�� � �
�Z

dDx
����
G
p

e�2� � 1
�
;

(3.3)

i.e. Ŝ � S�c0 ! c0 � �� � �.
Let us mention in passing another relation between

actions with unit volume condition and without it.
Starting with S�G;�� one may formally split the dilaton
into constant and nonconstant parts as follows: ��x� �
�0 � ~��x�,

R
dDx

����
G
p

e�2 ~� � 1, so that V 	R
dDx

����
G
p

e�2� � e�2�0 . Then S�G;�� � e�2�0S�G; ~�� �
VS�G; ~�� and Ŝ in (3.3) in which the dilaton is constrained
by the volume condition can be written as [cf. (2.23)]

 Ŝ�G;�� � S�G; ~�� �

R
dDx

����
G
p

e�2� ~���G;��R
dDx

����
G
p

e�2�

�
1

2

d
dt

lnV: (3.4)

We shall not use this representation here.
Extremizing Ŝ with respect to � we then get [assuming

that (3.1) is true to all orders in �0]

 

~�� � � � 0; (3.5)

so that after solving for �, i.e. imposing (3.5), we get

 Ŝ � ~�� � ��: (3.6)

6The proof of the Zamolodchikov’s theorem does not directly
apply to the case of sigma models. If one tries to repeat the
construction of [3] of the ‘‘central charge function’’ (whose
gradient is the beta function) based on correlators of stress tensor
[4] one needs to introduce the running dilaton coupling and then
the metric on the space of couplings is indefinite (and also the
value of the central charge function at the fixed point is zero).

7The relation (3.1) is valid, in particular, if there is a scheme in
which the dependence of ~�� on � in (2.20) is not modified by �0

corrections to all orders; this is actually true to �03 order but may
seem to be in conflict with the �0-dependence of the operator 

in (2.7) and (2.8). But the corresponding terms can be further
redefined away (or integrated by parts) at the level of the action.

8For an earlier closely related suggestion in specific D � 2
case see [25].
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Thus � has an interpretation of minus the effective central
charge.

To leading order in �0 the action Ŝ (3.3) and (3.5) can be
written as follows [see (2.20)]
 

Ŝ � ���
Z
dDx

����
G
p

���� c0 � �
0��r2 � 1

4R���

�O��02�; (3.7)

 ���r2 � 1
4R� �O��

0��� � �0�1�c0 � ���; (3.8)

where

 � 	 e��;
Z
dDx

����
G
p

�2 � 1: (3.9)

The existence of a solution of this equation with � 	
e�� > 0 requires that c0 � � is the minimal eigenvalue
of the operator9 �r2 � 1

4R which always exists on a
compact space [5] (see also [25]). The corresponding
eigenfunction will have no zeros and can be chosen posi-
tive which is what is required for the identification of it
with e�� (or the inverse of the effective ‘‘string coupling
constant’’ gs � e�). Thus extremizing Ŝ in � translates
(for c0 � 0) into choosing � as a minimal eigenvalue of the
above Laplacian.

To leading order in �0 when the RG flow defined by
(2.16) and (2.17) is simply the Ricci flow the Perelman’s
definition of the functional whose gradient is ��G (i.e. �G

with an appropriate diffeomorphism term) and which
grows monotonically with the RG flow toward IR (t!
1) is simply the minimal eigenvalue � of (3.8) (for c0 �
0). Thus, in view of (3.6),

 S �G� 	 Ŝ�G;��G�� � ���G�: (3.10)

Let us extend this definition to all orders in �0. First, the
variation of S�G� overG�� is the same as theG�� variation
of Ŝ�G;�� or S�G;�� with � independent of G��: the
variation over � vanishes as a consequence of (3.5). Then
(2.13) implies that �S

�G��
is proportional to ��G��. In addition,

we may ignore the variation of
����
G
p

since its coefficient
vanishes on the equation for �. Then

 

��G
�� � ���;�	

�S
�G�	

; ���;�	 �
4G��G�	����
G
p

e�2�
�O��02�:

(3.11)

Thus S is a gradient function for the metric RG flow.
To study the monotonicity property of S we note that

 

d
dt

S � ��G�� 

�S
�G��

� � ��G�� 

�S
�G��

� � ��G�� 
 ���;�	 
 ��G�	: (3.12)

Here ���;�	 is the inverse of ���;�	 in (3.11): on the
equation of motion for � one need not worry about the
contribution of the variation of

����
G
p

term in the action and
thus there is no extra term proportional to � 1

2G��G�	

[cf. (2.19)]

 ���;�	 � 1
4

����
G
p

e�2�G��G�	 �O��02�: (3.13)

The positivity of ���;�	 at leading order in �0 implies that
S monotonically decreases toward the IR (t!1) as re-
quired of an effective central charge [3], while � grows like
an entropy [5].10 The positivity of ���;�	 is obvious in
perturbation theory in �0, i.e. in sigma model loop expan-
sion.11 It may be possible to prove it rigorously to all orders
using the general properties of renormalization of the
sigma model on a curved background as discussed in
[22,23].

Since the dependence on the dilaton of the beta-
functions in (2.6) and (2.7) is simple (linear) the same
simplicity should apply to the effective action. Starting
with the action in the special scheme (2.21) we shall
assume that to all orders in �0 it can be put into the form
similar to the leading-order action (3.7) (here we set c0 �
0)

 Ŝ � ���
Z
dDx

����
G
p

���� �0���; � � e��;

(3.14)

where

 � � �r2 �U�G�; (3.15)

 

U � 1
4R�

1
16�

0R����R
���� � 1

16�
02�R����R

����R��
��

� 4
3R����R

����R��
�
�� �O��

03�: (3.16)

For R3 terms we used the result of [19,26]. We have
assumed that there should exist a scheme choice in which
all higher-derivative terms which may be present in the
anomalous dimension operator 
 in (2.7) can be integrated
by parts in the action (2.21) so that � remains a canonical
second-derivative scalar Laplacian as it was at the leading
order in �0 in (3.7). This is indeed what happens to order
�04 as was explicitly verified in [15,19].

The potential function U�G� is a smooth generalization
of the leading-order term 1

4R. Then for compact euclidean-
signature space the operator � is again positive and its
spectrum should be bounded from below. Then the eigen-
function � corresponding to its lowest eigenvalue �=�0

9Let us note in passing that the conformal scalar operator in D
dimensions is�r2 � D�2

4�D�1�R so that�r2 � 1
4R is conformal in

the limit D! 1.

10To leading order in �0 the relation between Perelman’s
entropy and the central charge was already pointed out in [6].
The same is true also in the presence of the B�� coupling [6].
Using the monotonicity of � one is then able to prove the
absence of periodic RG trajectories [5,6].

11To become negative ���;�	 should go through zero but that
would require �0R� 1, invalidating perturbation theory
expansion.
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can again be chosen positive, i.e. there should exist a
nonsingular solution for�.12 Combined with the positivity
of the metric in (3.13), � will then provide the general-
ization of the Perelman’s entropy to all orders in �0,
implying the irreversibility of the exact RG flow of the
sigma model.

As we have seen above in (3.6), � has also a meaning of
minus the effective central charge ~��, which, at the fixed
point ��G � 0, is equal to the usual central charge. This is
in agreement with the general claim of the c-theorem. The
construction of the sigma model ‘‘c-function’’ a la Ref. [3]
(i.e. in terms of 2-point functions of stress-tensor compo-
nents) did lead [4] to ~��, but as we explained above
following Perelman’s idea, to show that the RG flow of
G�� is monotonic one is also to solve for the dilaton and
restrict its constant part by the volume condition (3.2). This
then confirms the validity of the c-theorem for the G�� RG
flow of the 2d sigma model (at least to order �04).

To make this proof of the c-theorem rigorous (i.e. to
extend it beyond �04 order) one is to justify our main
assumption that the exact action (2.21) can be put into
the form (3.14). This may be possible to achieve using
the identities like (2.12) following from the renormaliza-

tion properties of composite operators of the sigma model
[22,23].13
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