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We calculate the gravitational self-force acting on a pointlike particle of mass �, set in a circular
geodesic orbit around a Schwarzschild black hole. Our calculation is done in the Lorenz gauge: For given
orbital radius, we first solve directly for the Lorenz-gauge metric perturbation using numerical evolution
in the time domain; we then compute the (finite) backreaction force from each of the multipole modes of
the perturbation; finally, we apply the ‘‘mode-sum’’ method to obtain the total, physical self-force. The
temporal component of the self-force (which is gauge invariant) describes the dissipation of orbital energy
through gravitational radiation. Our results for this component are consistent, to within the computational
accuracy, with the total flux of gravitational-wave energy radiated to infinity and through the event
horizon. The radial component of the self-force (which is gauge dependent) is calculated here for the first
time. It describes a conservative shift in the orbital parameters away from their geodesic values. We thus
obtain the O��� correction to the specific energy and angular momentum parameters (in the Lorenz
gauge), as well as the O��� shift in the orbital frequency (which is gauge invariant).
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I. INTRODUCTION AND SUMMARY

The problem of calculating the backreaction force, or
self-force (SF), experienced by a point particle as it moves
in curved spacetime is now understood well enough to
allow actual computations of this effect in systems com-
prising of a small object orbiting a large black hole. The
fundamental formulation of the problem and its solution
was set in works by DeWitt and Brehme [1] (electromag-
netic SF), Mino, Sasaki, and Tanaka [2] and Quinn and
Wald [3] (gravitational SF), and Quinn [4] (scalar field SF).
An alternative formulation was introduced by Detweiler
and Whiting [5], also clarifying the relation between the SF
picture (‘‘forced motion on a background geometry’’) and
the standard description based on the principle of equiva-
lence (‘‘geodesic motion in a perturbed geometry’’). A
number of authors later devised a practical calculation
method for the SF in black hole spacetimes—the
‘‘mode-sum scheme’’—which is based on multipole de-
composition of the retarded field, and relies on standard
methods of black hole perturbation theory [6–10]. This
method has since been implemented by various authors on
a case-by-case basis, so far mostly for calculations of the
scalar field SF. Work so far included the cases of a static
particle in Schwarzschild [11] or along the rotation axis of
a Kerr black hole [12]; radial plunge trajectories [13] and
circular orbits around a Schwarzschild black hole [14–17];
and ongoing work on eccentric orbits in Schwarzschild
[18,19]. The gravitational SF has been calculated so far
only for radial trajectories in Schwarzschild [20] and for
static (nongeodesic) particles in Schwarzschild [21]. The
case of an orbiting particle has been tackled only under the
post-Newtonian (PN) approximation [22]. A comprehen-
sive review of the subject, including a self-contained ac-
count of SF fundamentals, is provided by Poisson [23]. For
a snapshot of the current activity in the field, the reader
may refer to [24].

One of the main motivations for the work on self-forces
draws from the need to devise accurate theoretical wave-
forms for the gravitational radiation from extreme mass-
ratio inspirals (EMRIs)—of the prime targets for LISA,
the planned space-based gravitational wave detector [25].
This requires solving the SF problem in the gravitational
case, for generic inspiral orbits around a Kerr black hole.
The main challenge in extending the analysis from the
scalar-field toy model to the gravitational case has to do
with the gauge freedom in the latter case. The problem can
be summarized as follows. The gravitational perturbation
in the vicinity of the point particle is best described using
the Lorenz gauge (see Appendix A), which preserves the
local isotropic nature of the point singularity. On the other
hand, the field equations that govern the global evolution of
the metric perturbation are more tractable in gauges which
comply well with the global symmetry of the black hole
background—best known examples of which are the ‘‘ra-
diation’’ gauges [26] or the Regge-Wheeler gauge [27].
Now, in calculating the local SF we need, essentially, to
subtract a suitable local, divergent piece of the perturbation
from the full (retarded) perturbation field. In doing so, both
fields (local and global) must be given in the same gauge;
the ‘‘gauge problem’’ arises since the two fields are nor-
mally calculated in different gauges. Indeed, the only fully
worked-out example of the gravitational SF so far is the
case of radial orbits in Schwarzschild [20], where the
gauge problem is avoided simply because, in this particular
setup, the singular piece of the Regge-Wheeler perturba-
tion happens to coincide with that of the Lorenz-gauge
perturbation.

One approach to the problem has been to try and calcu-
late the local divergent piece in one of the ‘‘global’’
gauges—specifically the Regge-Wheeler gauge in the
Schwarzschild spacetime [28–30]. This has been imple-
mented so far only within a post-Newtonian approximation
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[22]. In the current work we take a complementary ap-
proach: We solve the perturbation equations, and obtain the
global retarded field, directly in the Lorenz gauge. The
calculation is therefore done entirely within the Lorenz
gauge, the ‘‘subtraction’’ procedure necessary for con-
structing the SF is implemented in a straightforward way,
and the gauge problem is avoided altogether. Other advan-
tages of working in the Lorenz gauge include the fact that
the field equations then take a fully hyperbolic form (mak-
ing them especially suitable for time-domain integration);
and the fact that the Lorenz-gauge metric perturbation is
better behaved near the particle compared with the pertur-
bation in other gauges [31] (which, again, makes it more
suitable for numerical implementation). The better regu-
larity of the Lorenz-gauge perturbation is manifested in the
behavior of individual multipole modes of the field [32]: It
is well known, for example, that the multipole modes of the
Regge-Wheeler perturbation from a point particle in
Schwarzschild generally show a discontinuity across the
particle. In contrast, the modes of the Lorenz-gauge per-
turbation are always continuous at the particle.

Our ‘‘all-Lorenz-gauge’’ approach is made possible (at
least is the Schwarzschild case) following a recent work by
Barack and Lousto [33] (hereafter BL), which provided a
practical formulation of the Lorenz-gauge perturbation
equations in the Schwarzschild geometry. Our calculation
is based on the BL formulation, and our numerical code
incorporates the code developed in BL (with a few im-
provements). In the current work we focus on circular
geodesic orbits, for simplicity. However, since our treat-
ment is based on a time-domain evolution, our code could
be amended to deal with generic orbits (in Schwarzschild)
in an almost straightforward manner. We shall discuss this
extension of the analysis in the concluding section, and
also comment there on the important extension to the Kerr
case.

Our calculation of the SF proceeds as follows. We first
write down the 10 (coupled) evolution equations for the 10
tensorial-harmonic components of the Lorenz-gauge met-
ric perturbation, in the form given in BL (with a slight
modification). The energy-momentum of the orbiting par-
ticle is represented by a suitable delta-function distribu-
tion, whose tensor-harmonic components serve as sources
for the evolution equations. For given orbital radius and
given multipole numbers l and m we solve the equations
numerically through time-domain evolution in 1� 1 di-
mensions (time� radius), using a 2nd-order convergent
finite-difference scheme on a staggered grid based on
characteristic coordinates. We integrate long enough to
allow any spurious initial radiation to dissipate efficiently
(this takes �3 orbital periods for strong-field orbits). We
then record the values of the metric perturbation and its
temporal and radial derivatives at the location of the par-
ticle. [Recall that individual multipole modes of the per-
turbation are continuous at the particle. Their first

derivatives have a finite jump discontinuity across the
particle (in the radial direction) and so we record both
values of the derivatives.] We repeat this calculation for
all multipole modes with 2 � l � lmax, where lmax is de-
termined experimentally so that our standard of accuracy
(of <10�3 fractional error in the final SF) is met. In
practice we found it sufficient to take lmax � 15 for the
radial component and lmax � 5–9 for the t component
(depending on the orbital radius). The modes l � 0, 1 are
calculated separately, using the method of Detweiler and
Poisson [34]. The values of the metric perturbation and its
derivatives at the particle are then used as input for the
mode-sum scheme. Within this scheme, each of the modes
is ‘‘regularized’’ using functions known analytically [8–
10], and the sum over modes yields the desired SF.

Our main results are summarized in Tables IV and V
(along with Fig. 8). The tables display the values of both
radial and temporal components of the SF as a function of
the orbital radius. The temporal component of the SF is
simply related, in our stationary circular-orbit setup, to the
rate of change of the orbital energy parameter, and hence to
the flux of energy carried in gravitational waves to null
infinity and down the event horizon. Our results demon-
strate this energy balance, which provides a reassuring
validity test for our code. The radial component of the
SF (which is itself gauge dependent) describes the con-
servative backreaction effect on the orbital parameters.
Based on our results we calculate the conservative shift
in the energy and angular momentum of the circular geo-
desic, as well as the shift in the orbital frequency—the
latter being gauge invariant. Our results for the shifts are
plotted in Figs. 9 and 10.

To check the validity and robustness of our code, and
assess the accuracy of our results, we performed the fol-
lowing tests. (i) Numerical convergence: For each of the
modes calculated, we repeated our computation with a
handful of different numerical resolutions, checking that
the answer converges quadratically to a limiting value with
decreasing step size. To determine the limiting value we
used a Richardson extrapolation (over step size), and re-
corded the estimated error from this extrapolation.
(ii) Effect of spurious initial waves: We compared the
values of the SF at two different (late) evolution times
(recall that in our stationary setup the physical SF does
not depend on time), in order to assess the effect of residual
spurious waves. (iii) Large l behavior: The behavior of the
SF modes at large multipole numbers l is known analyti-
cally with high precision [see Eqs. (20)–(22) below]. We
verified that our numerically calculated modes have the
right behavior at large l, through all three known leading
terms in the 1=l expansion. This agreement is necessary, in
fact, for a successful implementation of the mode-sum
scheme. (iv) Error from large-l tail: The mode-sum
scheme involves summation over all modes l. In practice
we computed all modes up to l � lmax, and used an ex-
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trapolation to estimate the contribution from the remaining
l > lmax tail. We assessed and recorded the error from this
extrapolation. (v) Comparison of one-sided forces: The
mode-sum scheme can be implemented in two essentially
independent ways, by using either the ‘‘external’’ or the
‘‘internal’’ values of the SF modes (i.e., values calculated
by taking one-sided derivatives of the metric perturbation
from outside or inside the orbit, respectively). Of course,
the final value of the SF should not depend on our choice.
We used our code to work out both values, and checked that
they are the same to a very good accuracy. We recorded the
(tiny) difference between the two values. Our total compu-
tation error was taken to be the combined error from the
extrapolation over step size [item (i) above], the deviation
from stationarity [item (ii) above], the extrapolation over l
[item (iv)], and the small discrepancy between external and
internal values. We made sure that this combined error is
kept under 0.1%. (vi) Comparison with energy flux: We
checked that the computed temporal component of the SF
balances the flux of energy to null infinity and down the
horizon. We found an excellent agreement.

The structure of this paper is as follows. In Sec. II we
review the formalism for constructing the metric perturba-
tion in the Lorenz gauge and for calculating the SF via the
mode-sum scheme (focusing on the case of circular orbits
in Schwarzschild). We also discuss the effect of the SF on
the geodesic parameters (energy, angular momentum, an-
gular velocity), and how these depend on the choice of
gauge. Section III describes our numerical method, includ-
ing a detailed description of the finite-difference scheme.
In Sec. IV we present a few validation tests for our code,
and explain how we estimated the computation error.
Section V gives the results: We tabulate both temporal
and radial components of the SF as a function of the orbital
radius, and calculate the shift in the orbital parameters due
to the conservative piece of the force. Finally, in Sec. VI we
discuss the extension of this work to more general orbits in
Schwarzschild, and to orbits in Kerr.

Throughout this work we use standard geometrized units
(with c � G � 1) and metric signature (����). The
Riemann tensor is defined as in Ref. [35].

II. REVIEW OF THEORY: SELF-FORCE IN
LORENZ GAUGE

A. Orbital setup and equation of motion

Consider a pointlike particle of mass �, in a circular
orbit around a Schwarzschild black hole with mass M�
�. Let the worldline of the particle be represented by x� �
x�p ���, with tangent four-velocity u� � dx�p =d�. At the
limit �! 0 (i.e., neglecting SF effects) the particle traces
a geodesic x�p � x�0 ���, with associated four-velocity u�0 �
dx�0 =d�. Without limiting the generality, we adopt a
Schwarzschild coordinate system t, r, �, ’ in which the
orbit is confined to the equatorial plane. Then

 x�0 ��� � 	t0���; r0 � const; �0 � �=2; ’0���
: (1)

This circular geodesic can be parametrized by the radius
r0, or, alternatively, by the angular velocity (with respect to
time t)

 �0 � d’0=dt �
������������
M=r3

0

q
; (2)

by the specific energy parameter

 E 0 � �u0t � �1� 2M=r0��1� 3M=r0�
�1=2; (3)

or by the specific angular momentum parameter

 L 0 � u0’ � �Mr0�
1=2�1� 3M=r0�

�1=2: (4)

The subscripts ‘‘0’’ here indicate that the above are values
associated with the geodesic x�0 (below we will consider
the correction to these values due the SF effect). As always
in our perturbative treatment, tensorial indices are
‘‘raised’’ and ‘‘lowered’’ using the background metric.

Now assume that � is finite (but still very small com-
pared to M). The equation of motion can be written as

 �
D2x�p
D�2 � �

Du�

D�
� F�; (5)

where the covariant derivatives are taken with respect to
the background (Schwarzschild) geometry, and
F�	�O��2�
 is the gravitational SF. Clearly, the symmetry
of the problem implies F� � 0. Also, assuming the four-
velocity is kept normalized along the worldline, i.e.,
u�u� � �1, we have D�u�u��=D� � 0, leading to
u�F� � 0, and the four components of the SF are not
independent. In the circular-orbit case we have the relation
utF

t � u’F
’ � 0, which we may write, through leading

order in �, as

 F’ � �E0=L0�F
t: (6)

Hence, we need only calculate two of the components of
the SF: the r component and (say) the t component. For
simplicity we shall refer to these as the ‘‘radial’’ and
‘‘temporal’’ components. Our goal would be to calculate
both components, as a function of the orbital radius r0.
Note that it is sufficient, for the sake of obtaining the
leading-order 	O��2�
 SF, to assume that the motion is
momentarily geodesic.

The SF affects the motion of the particle in two ways:
First,�ut and u’ are no longer conserved over time, so we
can speak of the ‘‘rate of change’’ of the energy and
angular momentum of the orbit. Second, at each given
time, the values of �ut and u’ are shifted with respect to
their corresponding geodesic values �u0t and u0’. In the
case of a circular orbit, the first, ‘‘dissipative’’ effect is due
entirely to Ft (and F’), while the second, ‘‘conservative’’
effect is due entirely to Fr. To see this, start by defining
E � �ut and L � u’. The t and ’ components of Eq. (5)
immediately give
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dE
d�
� ���1Ft and

dL
d�
� ��1F’; (7)

respectively, describing the dissipative effect of the SF. The
change of energy and angular momentum is precisely bal-
anced by the flux of energy and angular momentum carried
away by gravitational waves. For the conservative effect,
consider the r component of Eq. (5), along with the nor-
malization condition u�u� � �1. Solving these two equa-
tions simultaneously for ut and u’ (recalling
ur � dur=d� � 0), one obtains �ut�2 � r0�1�
r0Fr=��=�r0 � 3M� and �u’�2 � �M=r2

0 � F
r=��=�r0 �

3M�, or, through O���,

 E � E0

�
1�

�
r0

2�

�
Fr

�
; L � L0

�
1�

�
r2

0

2M�

�
Fr
�
:

(8)

Given the radial component of the SF, the last two equa-
tions give the conservative shift in the energy and angular
momentum parameters. It is also useful to look at the shift
in the orbital frequency � � d’p=dt � u’=ut. Based on
the above expressions for ut and u’ we obtain, through
O���,

 � � �0

�
1�

�
r0�r0 � 3M�

2M�

�
Fr

�
; (9)

which describes the shift in the ‘‘frequency at infinity’’ due
to the conservative piece of the SF.

B. Gauge dependence

It is important to understand how the above quantities
depend on the choice of gauge. Let h��	�O���
 be the
metric perturbation due to the particle, given in a specific
gauge. Consider an infinitesimal gauge transformation

 x� ! x0� � x� � ��: (10)

This will change the metric perturbation by an amount

 ��h�� � h0�� � h�� � ����;� � ��;��: (11)

It will also induce a change in the SF, given by [31]

 ��F� � F0� � F�

� �
�
	g�	�x0� � u0�u0	


D2�	

D�2

� R��	
�x0�u
�
0 �

	u
0

�
: (12)

Here g�	�x0� and R��	
�x0� are the background
(Schwarzschild) metric and Riemann tensors, respectively,
evaluated at the particle.

We now assume that the original gauge is ‘‘physically
reasonable.’’ In our case (a circular equatorial orbit in
Schwarzschild), this would mean that the perturbation
h�� in that gauge reflects the stationarity of the problem,

and also retains the symmetry of reflection through the
equatorial plane. The Lorenz gauge (see Appendix A for
definition) is an example of such a gauge. Restricting our
discussion to gauge transformations within the family of
‘‘physically reasonable’’ gauges, we should clearly re-
quire, in our case, d��=d� � 0, as well as �� � 0. From
Eq. (12) we then get ��Ft � ��F� � ��F’ � 0, along
with

 ��Fr � �3��L2
0=r

4
0��

r: (13)

Hence, ‘‘physically reasonable’’ gauge transformations
may affect the radial component of the SF (they do so if
they have �r � 0), but not the other components.

One immediate consequence of the above is that the
quantities dE=d� and dL=d� in Eq. (7) are invariant under
a gauge transformation (as should be expected on physical
grounds). However, the quantities E and L themselves are
not gauge invariant. To see this, use Eq. (13) in Eq. (8),
along with E0 ! E0 � �dE0=dr0��

r, and L0 !
L0 � �dL0=dr0��

r. [Note here that the coordinate location
r0 (and hence also E0 and L0) is obviously not gauge
invariant: Under the gauge transformation (10) we have
simply r0 ! r0 � �r.] Denoting ��E � E0 � E and
��L � L0 �L, and keeping only terms linear in �r, one
then obtains the following gauge transformation formulas
for E and L:

 ��E �
2M=r2

0�����������������������
1� 3M=r0

p �r; ��L �
2�����������������������

1� 3M=r0

p �r:

(14)

We can construct orbital parameters that are invariant
under the transformation (10). One example is the fre-
quency �, given in Eq. (9). Detweiler pointed out recently
[36] that the combination E ��L � S is also gauge
invariant (for circular orbits). For both � and S, it is a
straightforward exercise to show that, under the gauge
transformation (10),

 ��� � 0; ��S � ���E ��L� � 0: (15)

C. Metric perturbation in Lorenz gauge

In this work we calculate the SF in the Lorenz gauge.
This will require knowledge of the full (retarded) metric
perturbation h�� in the Lorenz gauge. We briefly review
here the construction of the Lorenz-gauge perturbation,
referring the reader to BL [33] for further details.

In the formulation by BL, the Lorenz-gauge metric
perturbation in Schwarzschild is constructed through [37]

 h�� �
�
2r

X1
l�0

Xl
m��l

hlm��; (16)

with
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hlmtt � � �h�1� � f �h�6��Ylm; hlmtr � f�1 �h�2�Ylm; hlmrr � f�2� �h�1� � f �h�6��Ylm; hlmt� � r� �h�4�YlmV1 �
�h�8�YlmV2�;

hlmt’ � r sin�� �h�4�YlmV2 �
�h�8�YlmV1�; hlmr� � rf�1� �h�5�YlmV1 �

�h�9�YlmV2�; hlmr’ � rf�1 sin�� �h�5�YlmV2 �
�h�9�YlmV1�;

hlm�� � r2� �h�3�Ylm � �h�7�YlmT1 �
�h�10�YlmT2�; hlm�’ � r2 sin�� �h�7�YlmT2 �

�h�10�YlmT1�;

hlm’’ � r2sin2�� �h�3�Ylm � �h�7�YlmT1 �
�h�10�YlmT2�:

(17)

Here f � 1� 2M=r, and YlmV1, YlmV2, YlmT1 , and YlmT2 are an-
gular functions constructed from the standard spherical
harmonics Ylm��; ’� through

 YlmV1 �
1

l�l� 1�
Ylm;� �for l > 0�;

YlmV2 �
1

l�l� 1�
sin�1�Ylm;’ �for l > 0�;

YlmT1 �
�l� 2�!

�l� 2�!
	sin��sin�1�Ylm;� �;� � sin�2�Ylm;’’


�for l > 1�;

YlmT2 �
2�l� 2�!

�l� 2�!
�sin�1�Ylm;’ �;� �for l > 1�:

(18)

The functions �h�i�lm [i � 1; . . . ; 10; the indices l, m were
omitted in Eq. (17) for brevity] depend on r and t only, and
form our basic set of perturbation fields. These time-radial
fields are obtained as solutions to the coupled set of hyper-
bolic [in a 2-dimensional (2D) sense], scalarlike equations

 � �h�i�lm �M�i�l
�j�

�h�j�lm � S�i�lm �i � 1; . . . ; 10�: (19)

Here ‘‘�’’ represents the 2D scalar-field operator, � �
@uv � V�r�, where v and u are the standard Eddington-
Finkelstein null coordinates, and the potential is V�r� �
1
4 f	2M=r

3 � l�l� 1�=r2
. The ‘‘coupling’’ terms
M�i�l
�j�

�h�j�lm involve first derivatives of the �h�j�lm’s at most
(no second derivatives), and S�i�lm are source terms. Both
M�i�l
�j�

�h�j�lm and S�i�lm are given explicitly in Appendix A for
our circular-orbit case. In addition to the evolution equa-
tions (19), the functions �h�i�lm also satisfy four elliptic
equations, which stem from the gauge conditions. These
‘‘constraint’’ equations are also given in Appendix A. The
set (19) incorporates ‘‘divergence dissipating’’ terms,
which guarantee that violations of the Lorenz-gauge con-
ditions are efficiently damped during the evolution [33].

BL demonstrated in [33] how Eqs. (19) can be evolved
numerically (for l � 2), in the time domain, with a delta-
function source term representing an orbiting point parti-
cle. They also demonstrated that the solutions preserve the
Lorenz-gauge condition throughout the late-time evolution
(initial violations of the gauge conditions are suppressed
over a time scale �M).

The perturbation modes l � 0 and l � 1 require a sepa-
rate treatment. For l � 0, the set (19) reduces to 4 equa-
tions (for �h�1;2;3;6�), which describe the spherically
symmetric, monopole mass perturbation. Section III D of
BL gives the solution for the Lorenz-gauge monopole

perturbation in analytic form (based on analysis by
Detweiler and Poisson [34]). For l � 1, m � 1, the set
(19) reduces to 6 equations (for �h�1–6�). These describe the
rotational dipole piece of the perturbation, which is (in
Newtonian terms) due to the motion of the black hole about
the center of mass of the black hole-particle system. The
Lorenz-gauge solution for this mode was obtained by
Detweiler and Poisson [34], using a procedure that reduces
the problem to the solution of 3 coupled ordinary differ-
ential equations (see also Ori [38] for a fully analytic weak-
field treatment). Finally, for l � 1, m � 0—the axisym-
metric dipole perturbation—the set (19) reduces to a single
equation (for �h�8�), describing the perturbation in the an-
gular momentum due to the particle. The analytic solution
for this mode was obtained long ago by Zerilli [39], and
identified in [34] as a Lorenz-gauge solution. BL later
obtained analytic Lorenz-gauge solutions for all axisym-
metric (m � 0) modes with odd l. These are given in
Sec. III C of BL.

In what follows we will prescribe the construction of the
gravitational SF directly in terms of the functions �h�i�lm.

D. Self-force via the mode-sum method

In the mode-sum scheme, the gravitational SF is calcu-
lated through [7–10]

 F� �
X1
l�0

		F�lfull�x0�
 � A�L� B
�
; (20)

where L � l� 1=2, and F�lfull are the modes of the ‘‘full’’
force, obtained from the modes of the full (retarded) metric
perturbation in a manner described below. The subscript
refers to the two possible values of F�lfull at x0, resulting
from taking one-sided radial derivatives of the metric
perturbation from either r! r�0 or r! r�0 (recall that
the modes of the Lorenz-gauge metric perturbation are
continuous, but their gradients generally have a finite
jump discontinuity across the particle). A� and B� are
the ‘‘regularization parameters,’’ which are known analyti-
cally. For circular equatorial geodesics in Schwarzschild
we have A� � B� � 0 for � � t, �, ’, and

 Ar � �
�2

r2
0

�
1�

3M
r0

�
; (21)

 Br �
�2E2

0

��L2
0 � r

2
0�

3=2
	Ê�w� � 2K̂�w�
; (22)

where K̂�w� �
R�=2

0 �1� wsin2x��1=2dx and Ê�w� �R�=2
0 �1� wsin2x�1=2dx are complete elliptic integrals of
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the first and second kind, respectively, and w � �r0=M�
2��1. The final SF F� can be calculated using either
external (� ) or internal (� ) values; the difference
	F�lfull�x0�
 � A�L is guaranteed to be direction indepen-
dent. One can also use the average value, �F�lfull �
f	F�lfull
� � 	F

�l
full
�g=2, in terms of which the mode-sum

formula takes the more compact form

 F� �
X1
l�0

	 �F�lfull�x0� � B
�
: (23)

Recall here we are interested in the r and t components
of the SF. For the r component, the contribution from the
individual full modes is / L at large L, and the sum over
	F�lfull�x0�
 diverges. However, the contribution from the
regularized modes 	Frlfull�x0�
 � A

r
L� B

r falls off as /
L�2 at large L, and their sum converges (and gives the
correct physical SF). The regularized modes admit the
large-l expansion
 

Frlreg � 	F
rl
full�x0�
 � A

r
L� B

r �
D2

L2 �
D4

L4 � � � � ; (24)

where D2; D4; . . . are coefficients that may depend on the
orbital parameters, but not on L. As for the t component: In
the special case of a circular orbit the temporal full-force
modes require no regularization (recall At � Bt � 0), and
their sum converges. In fact, in this case the mode sum can
be shown to converge exponentially at large l (this will be
demonstrated experimentally in Sec. IV below). For later
convenience we write

 Ftlreg � Ftlfull; (25)

and the mode-sum formula becomes, for either the r or the
t component,

 F� �
X1
l�0

F�lreg: (26)

E. Construction of the full-force modes

We now describe the construction of the full modes
	F�lfull�x0�
 out of the Lorenz-gauge perturbation fields
�h�i�lm.

First, following [7], define the ‘‘full-force field’’ as a
tensor field at arbitrary spacetime point x, for a given
(fixed) worldline point x0 (where the SF is to be calcu-
lated):

 F�full�x; x0� � �k���� �h��;�: (27)

Here �h�� � h�� �
1
2g��g

�
h�
 is the ‘‘trace-reversed’’
Lorenz-gauge metric perturbation at x, and
 

k�����x; x0� � g��u�u�=2� g��u�u� � u�u�u�u�=2

� u�g��u�=4� g��g��=4; (28)

where g�� is the background metric at x, and u� are the
values of the contravariant components of the four-velocity
at x0 (treated as fixed coefficients). Obviously, the full
force F�full diverges for x! x0 (like �distance�2).

Next, expand the metric perturbation in tensor harmon-
ics as in Eq. (16), and substitute in Eq. (27). Taking the
limits r! r0 and t! t0 (but maintaining the �, ’ depen-
dence), the full force takes the form
 

	F�full��;’; r0; t0�
 �
�2

r2
0

X1
l�0

Xl
m��l

ff�lm0 Y
lm

� f�lm1 sin2�Ylm� f�lm2 cos� sin�Ylm;�

� f�lm3 sin2�Ylm;��

� f�4�cos�Ylm� sin�Ylm;� �

� f�lm5 sin�Ylm;� � f
�lm
6 sin3�Ylm;�

� f�lm7 cos�sin2�Ylm;��g; (29)

where Ylm��;’� are the spherical harmonics, and the co-
efficients f�lmn are constructed from the perturbation fields
�h�i�lm and their first r and t derivatives, all evaluated at x0.
The labels �=� correspond to taking external/internal r
derivatives, respectively. The explicit expressions for the
f�lmn ’s are quite lengthy, and we give them separately, in
Appendix B.

The individual l modes in Eq. (29) are not quite yet the
full-force modes needed in the mode-sum formula (20): A
little complication arises because the mode-sum formula
requires the decomposition of the full force in scalar
harmonics. That is, to obtain the modes 	F�lfull�x0�
 for
use in Eq. (20) we are required to ignore the vectorial
nature of the full force, and expand each of its components
in scalar harmonics. To obtain this, we need only reexpand
all angular functions in Eq. (29) in spherical harmonics,
and rearrange the terms in the sum. The necessary expan-
sion formulas are given in Appendix C. We find that each
of the tensor-harmonic l modes in Eq. (29) couples to a
finite number of scalar harmonics (there is no coupling
between different m modes). For the r component, each
tensor-harmonic l generally couples to 5 scalar-harmonic
modes l0 with l� 2 � l0 � l� 2; for the t component, it
generally couples to the 7 modes l� 3 � l0 � l� 3. It
should be commented that this finite coupling is character-
istic of all (equatorial) orbits in Schwarzschild, not neces-
sarily circular (although in general both t and r
components would involve coupling to 7 scalar harmon-
ics). We also comment that, in our circular-orbit case, it is
not quite necessary to expand the t component in scalar
harmonics, since this component requires no regularization
and so the mode sum can be evaluated directly using the
tensor-harmonic expansion. In this work we nevertheless
choose to expand the t component too in spherical har-
monics, for two reasons: First, this would allow us to test
our general treatment of the coupling between modes,
since the computed value of the t component of the SF
could readily be verified by comparing with the flux of
radiated energy. Second, our code could then be more
easily adapted to deal with eccentric orbits, where scalar-
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harmonic decomposition of both r and t components is
necessary.

Hence, we now reexpand Eq. (29) in spherical harmon-
ics (using the relations given in Appendix C), then rear-
range the terms in the sum by collecting all terms with the
same scalar-harmonic multipole number l, and, finally, set
�! �0 and ’! ’0. The resulting ‘‘scalar harmonic’’ l
modes of the full force take the final form
 

	F�lfull�x0�
 �
�2

r2
0

Xl
m��l

Ylm��0; ’0� � fF
�l�3;m
��3� �F �l�2;m

��2�

�F �l�1;m
��1� �F �lm

�0� �F �l�1;m
��1�

�F �l�2;m
��2� �F �l�3;m

��3� g; (30)

where

 

F �lm
��3� � �lm��3�f

�lm
6 � �

lm
��3�f

�lm
7 ;

F �lm
��2� � �lm��2�f

�lm
1 � �

lm
��2�f

�lm
2 � �

lm
��2�f

�lm
3 ;

F �lm
��1� � lm

��1�f
�lm
4 � �

lm
��1�f

�lm
5 � �

lm
��1�f

�lm
6 � �

lm
��1�f

�lm
7 ;

F �lm
�0� � f�lm0 � �

�lm
�0� f

�lm
1 � �

lm
�0�f

�lm
2 � �

lm
�0�f

�lm
3 ;

F �lm
��1� � lm

��1�f
�lm
4 � �

lm
��1�f

�lm
5 � �

lm
��1�f

�lm
6 � �

lm
��1�f

�lm
7 ;

F �lm
��2� � �lm

��2�f
�lm
1 � �

lm
��2�f

�lm
2 � �

lm
��2�f

�lm
3 ;

F �lm
��3� � �lm

��3�f
�lm
6 � �

lm
��3�f

�lm
7 ; (31)

with the various coefficients �,�, �, �, , � , and � given in
Appendix C. Note fr6 � fr7 � 0, so that Eq. (30) sim-
plifies considerably for the r component. The spherical
harmonic Ylm��0; ’0� is given explicitly, for �0 � �=2, by

 Ylm��=2; ’0� � eim’0 �

�
��1��l�m�=2

�
�2l�1��l�m�1�!!�l�m�1�!!

4��l�m�!!�l�m�!!

�
1=2
; l�m even

0; l�m odd:
(32)

Hence, for given l, only m modes with even l�m con-
tribute to the sum in Eq. (30). A further simplification
arises since the individual m modes in the sum in
Eq. (30) are invariant under m! �m, which allows us
to fold them< 0 part of the sum over tom> 0. In practice,
therefore, one is required to compute only l=2� 1
m-modes for each even l-mode, and �l� 1�=2 m-modes
for each odd l-mode. Finally, note �lm��2� � �lm��2� �
�lm��2� � lm��1� � �lm��1� � �lm��1� � �lm��1� � �lm��3� � �lm��3� �
0 for l < 0, such that no functions f�lmn with l < 0 occur in
Eq. (30).

F. Summary of prescription for constructing the
Lorenz-gauge SF

Start by calculating the Lorenz-gauge perturbation fields
�h�i�lm (10 of which for each l � 2, m), by solving (numeri-
cally) the field equations (19). Obtain the modes l � 0, 1 of
�h�i�lm through the procedure described at the end of
Sec. II C. Construct the functions frn and ftn using the
formulas in Appendix B, and then construct the quantities
F through Eqs. (31). Use these in Eq. (30) to obtain the
scalar-harmonic l-modes of the full force, 	F�lfull�x0�
.
Incorporate the full-force modes in the mode-sum formula
(20) [or (23)] to obtain the SF.

III. NUMERICAL IMPLEMENTATION

In this section we summarize the numerical method used
to calculate the SF through the mode-sum formula (20).
The evolution of the Lorenz-gauge field equations (19) was
described in BL, but we will briefly review this method
here—mainly in order to supplement a few details of the
finite-difference scheme left out in BL. We then describe
the numerical construction of the regularized SF modes,

and the technique used to evaluate the infinite sum over l.
There are three main sources of numerical error in our
calculation: (i) error from the finite-grid discretization
(which, in the procedure described below, comes from
the error in a Richardson-type extrapolation to zero grid
size); (ii) error from estimation of the large-l tail of the
mode-sum series; and (iii) error from residual spurious
waves resulting from the imperfection of initial data. We
explain how all these errors are monitored and controlled
in our calculation.

A. Metric perturbation: finite-difference scheme for
l � 2

To solve Eqs. (19) for the various modes l � 2 we use
characteristic time-domain evolution on a fixed 2D stag-
gered double-null grid based on v, u coordinates. The
numerical domain is depicted in Fig. 2 of BL. The evolu-
tion starts with characteristic initial data on two initial
‘‘rays’’ v � v0 and u � u0, taken such that the vortex
v0, u0 corresponds to r � r0 with initial time t0 � 0. The
circular-orbit worldline then traces a straight vertical line
through the grid, connecting the ‘‘lower’’ and ‘‘upper’’
vertices (see Fig. 2 of BL). In this setup the worldline
cuts through grid points. This does not cause a problem,
since the Lorenz-gauge perturbation modes are continuous
at the worldline. For initial data we simply take �h�i�lm � 0
along v � v0 and u � u0, for all i. This sparks a burst of
spurious radiation at the initial vortex, which, however,
dies off efficiently over time and leaves very little trace
after 1–2 orbital periods of evolution (we demonstrate this
below).

Our finite-difference scheme (particularly the handling
of the delta-function source term) is based on the method
first introduced by Lousto and Price [40] and later imple-
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mented by a number of authors [13,20,41,42]. In this
method, the finite-difference equation is obtained by ap-
proximating the (2D) integral of both sides of the field
equation over a grid cell, at a suitable accuracy. This
automatically deals with the delta-function singularity on
the right-hand side of the equation. For the following
discussion, consider Fig. 1: Suppose that we have already
solved for all �h�i�lm’s at the grid points numbered 2, 3, and
4. Denote the values calculated at these points by �h�i�2 , �h�i�3 ,
and �h�i�4 , respectively, (we omit here the indices l;m for
brevity), and let the sides of the grid cell be �v � �u � h.
We are interested in obtaining �h�i�1 , the value of the �h�i�’s at
point 1.

Consider first the principal part of the field equa-
tions (19). For any of the ten i’s, it reads �h�i�;uv. This term
is integrated exactly over the grid cell, to give

 

ZZ
cell

�h�i�;uvdudv � �h�i�1 �
�h�i�2 �

�h�i�3 �
�h�i�4 : (33)

Since the �h�i�’s are continuous at the worldline, the above
integral holds even for grid cells crossed by the particle.
The remaining part of the left-hand side of the field equa-
tions (19) includes three types of terms, of the form
V1�r� �h

�i�, V2�r� �h
�i�
;r , and V3�r� �h

�i�
;v , where the V�r�’s are

known radial functions. As for terms of the first two types,
we can approximate their integrals over the grid cell as

 

ZZ
cell
V1�r� �h

�i�dudv �
1

2
h2V1�rc�� �h

�i�
2 �

�h�i�3 �

�

�
O�h3� �particle�;
O�h4� �no particle�;

(34)

 

ZZ
cell
V2�r� �h

�i�
;r dudv � hf�1�rc�V2�rc�� �h

�i�
3 �

�h�i�2 �

�

�
O�h3� �particle�;
O�h4� �no particle�;

(35)

where rc is the value of r at point C in the middle of the cell
(see Fig. 1). The case indicated as ‘‘particle’’ refers to grid
cells crossed by the worldline. ‘‘No particle’’ refers to grid
cells not crossed by the worldline. The difference in the
error terms arises because the �h�i�’s generally have discon-
tinued r derivatives across the worldline. We can accom-
modate a local error term of O�h3� along the worldline, as
the worldline is crossed only once in each evolution time
step, and so such an error accumulates over time to give a
global error of only O�h2�.

Terms of the form V3�r� �h
�i�
;v require a more careful treat-

ment. For these we will need information from outside the
grid cell of Fig. 1. Consider Fig. 2, showing an extended
area around the central point C, now including also points
5–9. We assume all functions �h�i�2 - �h�i�9 have been calculated
before, and we need to obtain �h�i�1 . The figure shows two
special cases: In ‘‘case A’’ the worldline crosses the point
C; in ‘‘case B’’ it crosses ‘‘just to the right’’ of point C,
through points 3 and 6. The integral over the term V3�r� �h

�i�
;v

can be approximated, in the various cases, through

 

ZZ
cell
V3�r� �h

�i�
;v dudv �

1

2
hV3�rc� �

8>><
>>:

2 �h�i�3 �
�h�i�4 �

1
2

�h�i�5 �
1
2

�h�i�6 �O�h
3� �Case A�;

�h�i�3 �
�h�i�2 � 3 �h�i�4 � 2 �h�i�6 � 2 �h�i�8 �

�h�i�9 �O�h
3� �Case B�;

3 �h�i�3 � 3 �h�i�4 �
�h�i�5 �

�h�i�6 �O�h
4� �no particle�;

(36)

where ‘‘no particle’’ refers to the most common case, in
which the particle passes through neither point C nor
point 3. There are, of course, alternative schemes which
approximate this integral at the same order of accuracy. We
have chosen the particular scheme in (36) as we found it
experimentally stable.

Finally, we need to integrate the source term S�i�lm on the
right-hand side of the field equations [the explicit form of
the source term is given in Eq. (A11) of Appendix A].
Thanks to the delta function in S�i� we can work out the
integral over the grid cell exactly. We find

 

ZZ
cell
S�i�lmdudv � 8�E0�

�i�f�1�rc� � h

� sinc�m�0h=2�e�im�0tc

�

�
Ylm���=2; 0�; for i � 1–7;
Y�;���=2; 0�; for i � 8–10;

(37)
where tc is the value of t at point C, an asterisk denotes
complex conjugation, the coefficients ��i� are those given
in Eqs. (A12), and sinc�x� � �sinx�=x for any x � 0, with
sinc�0� � 1.

 

FIG. 1. A numerical grid cell, of dimensions h� h (see de-
scription in the text). Our 2D grid is based on characteristic
(Eddington-Finkelstein) coordinates v and u. These are related
to the Schwarzschild coordinates through v � t� r� and u �
t� r�, where r� � r� 2M ln	r=�2M� � 1
.
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Integrating the field equations (19) using the above
Eqs. (33)–(37), we can solve for the �h�i�’s at point 1 given
the values calculated in previous steps of the evolution. In
this scheme we have to keep two v � const data vectors at
each (advanced) time step. The local finite-differentiating
error at each grid point scales as �h4, except for points
belonging to Cases A or B (Fig. 2), for which the local error
scales as �h3. Since the total number of steps scales as
�h�2, and the number of steps belonging to Cases A or B
scales as h�1, we expect the error accumulated over the
entire evolution to scale as �h2.

B. Metric perturbation: Monopole and dipole modes

The monopole and dipole modes are dealt with sepa-
rately. For l � 0 we use the analytic solution for the �h�i�’s
from Sec. III D of BL. For the mode l � 1, m � 0 we use
the analytic solution from Sec. III C therein. For the mode
l � m � 1 we follow the method of Detweiler and Poisson
[34], which involves solving (numerically) a coupled set of
3 ordinary differential equations, with boundary conditions
at infinity and along the horizon, and with matching con-
ditions across the particle.

One may attempt to compute the modes l�0, 1 also
using the evolution Eqs. (19) (which reduce to four equa-
tions for l�0, six equations for l�m�1, and one equa-
tion for l � 1, m�0). In practice, however, the system
(19), in its present form, does not seem to evolve stably for
these modes: For l<2, some of the potential functions in
these equations turn negative for some r values outside the
black hole, apparently rendering the evolution unstable.
This is not a serious problem in our present analysis, as we
simply derive these two modes using other methods. The
problem will have to be address when extending the analy-
sis to noncircular orbits, for which analytic (or semiana-
lytic) solutions are not yet at hand. One may then either
attempt to derive analytic (or semianalytic) l�0, 1 solu-
tions for eccentric orbits; or, alternatively, attempt to find a
reformulation of the evolution equations suitable for l�0,
1.

C. Taking derivatives of the metric perturbation

The construction formulas for the r and t components of
the SF require the derivatives �h�i�;r and �h�i�;t , both evaluated at
the particle. For the t derivatives we can simply make the
substitution @t ! �im�0, since in the circular-orbit case
the fields �h�i� are stationary and depend upon t only through
	eim’0�t�
� / e�im�0t. The r derivatives are taken numeri-
cally, using the finite-difference formula

 

�h �i�;r j � �
3 �h�i�0 � 4 �h�i�1 �

�h�i�2

2hf�r0�
�O�h2�; (38)

where the various quantities refer to the diagram in Fig. 3:
�h�i�0 is the value calculated on the worldline, at a given time,
and �h1 and �h2 are the values at points 1 and 2,
respectively. Recall f�r0� � 1� 2M=r0. The subscripts
�=� refer to one-sided derivatives taken from r�0 or r�0 .
This scheme allows for discontinued r derivatives, which
we expect some of the �h�i�’s to have. The scheme gives the
local derivative with an error that scales as�h2 —the same
as the accumulated error in the �h�i�. Hence, we expect the
total finite-differentiation error in the SF to scale as �h2.

Once we have at hand the various �h�i�’s and their deriva-
tives at the particle, we can construct the various scalar-
harmonic modes of the full force, 	Ftlfull�x0�
 and
	Frlfull�x0�
, using Eq. (30). [Recall that to obtain a single
scalar-harmonic mode of the full force we need to calculate
all tensor-harmonic modes of the perturbation with multi-
pole numbers between l� 2 and l� 2 (l� 3 to l� 3 for
the t component).] We then construct the regularized
modes F�lreg through Eqs. (24) and (25). We use this proce-
dure to calculate all modes up to l � 15 for the radial
component, and up to l � 4–9 (depending on r0) for the
temporal component. (For the two radii r0 � 6M and r0 �
100M we obtain all modes of the radial component up to
l � 25; we use the extra mode information in testing the
validity of our numerical procedure—see below.)

Of course, the stationarity of our problem allows us to
choose any point along the orbit for calculating the force.
We need to make sure, though, that this point is taken late
enough in the evolution, where the effect of initial spurious

 

FIG. 2. Finite-difference scheme for terms in the field equa-
tions involving single v derivatives (diagrams to go with the
description in the text). The dashed line represents the worldline,
with two cases shown.

 

FIG. 3. Diagram to explain how r derivatives are taken at the
worldline (see description in the text). The dashed line represents
the particle’s trajectory on the numerical grid. The SF is calcu-
lated at the point labeled ‘‘0.’’
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waves is negligible. To monitor any residual effect from the
initial waves we repeat the calculation at two different
evolution times. We will give more details on this proce-
dure in Sec. IV B below.

D. Extrapolation to zero step size

Obtaining F�lreg with good accuracy requires calculating
	F�lfull�x0�
 with an even better accuracy, which, in turn,
requires evolving the field equations with a sufficiently fine
grid. This can become very demanding computationally,
especially for large l. To reduce computational cost we use
a Richardson extrapolation to h! 0. The idea is to ex-
trapolate the value of F�lreg (using a rational function) to the
limit of vanishing step size, using a sequence of values
obtained with progressively decreasing step sizes.
Specifically, we employ the Bulirsch-Stoer method [43],
which utilizes the sequence

 hi �
1

ni
; (39)

where i � 1; 2; 3; . . . and

 ni � f2; 4; 6; 8; 12; � � �g �ni � 2ni�2�: (40)

Namely, we repeat the calculation of F�lreg for all step sizes
h1; h2; . . . ; himax

, and then extrapolate the resulting series of
values to i! 1 (h! 0). To control the error in this
procedure we introduce the estimator

 ��l	imax
 � 2

��������
F�lreg	imax
 � F

�l
reg	imax � 1


F�lreg	imax
 � F�lreg	imax � 1


��������; (41)

where F�lreg	imax
 is the value extrapolated from the se-
quence of imax values of F�lreg obtained with h1; . . . ; himax

.
We repeat our calculation with increasing values of imax,
until ��l	imax
 is smaller than a prescribed threshold,
��l

thresh.
What value should ��l

thresh be set to? This requires some
consideration. Since the contribution to the mode sum from
individual l modes decreases with l (at large l), it makes
sense to relax the threshold for large l modes. This is
certainly true for the t component, for which the mode
sum converges exponentially at large l. Accordingly, for
the t component we set the tight threshold �tl

thresh � 10�4

for each of the modes l � 3, but for l > 3 we set �tl
thresh �

10�4 � j�
Pl�1
l0�0 F

tl0
reg�=F

t;l�1
reg j. This is slightly larger than

10�4 for l � 4, but grows exponentially at large l.
Experimentally, it yields �tl

thresh � 1 for l � 5–9 (depend-
ing on r0: higher l for smaller r0). In fact, for the t
component we use �tl

thresh also as an indicator to tell us
when it is appropriate to terminate the sum over modes: We
sum up to the first l mode for which �tl

thresh > 1. This
guarantees an overall truncation error less than a few
�10�4 in the t component of the SF. As for the r compo-
nent: Here the mode sum converges only as �l�2, and
determining �rl

thresh requires more caution. As we describe

below, we estimate the contribution from the truncated l >
15 tail by extrapolating the numerical data from l � 15;
assigning an l-dependent threshold could make it difficult
to control the error from such an estimation. For the r
component we therefore conservatively set a fixed thresh-
old of �rl

thresh � 10�2 for each individual lmode computed.
For both r and t components, we estimate the overall

(fractional) discretization error in the SF as

 ��
discr �

Plmax
l�0 j�

�l	ithresh
F
�l
reg	ithresh
j

j
Plmax
l�0 F

�l
reg	ithresh
j

; (42)

where ithresh (depending on l and r0) is the smallest imax for
which ��l	imax
< ��l

thresh. Note that we take here the frac-
tional total error as the sum of fractional errors from the
individual l-modes, rather than their root-mean-square
value. This makes sense because the individual errors are
not randomly distributed but rather reflect a systematic
extrapolation error. In practice, to reach the above thresh-
olds, we needed ithresh values of up to 8 for the r compo-
nent, and up to 9 for the t component (depending on l and
r0: larger ithresh is generally required for larger l and
smaller r0).

For each value of r0 and lwe started the above procedure
with imax � 4 for the r component and imax � 3 for the t
component; namely, we used at least 4(3) terms for the
Richardson extrapolation. For some of the low-lmodes this
already yielded ��l	imax
 smaller than ��l

thresh (this is partly
because the low-l modes have large l � 0, 1 tensorial-
harmonic components, which are available analytically).
Since the total error ��

discr is dominated by errors from
these low-l modes, we generally find ��

discr values much
smaller than the above set thresholds. The actual values
obtained for ��

discr will be stated in the Results section.

E. Estimation of contribution from large-l tail

The mode-sum formula requires summation over all
regularized modes F�lreg from l � 0 to l � 1. In practice,
of course, we calculate only a finite number of modes, 0 �
l � lmax. It is then necessary to estimate the contribution
from the remaining, truncated part of the series. This is
straightforward in the case of the t component, where the
mode sum converges exponentially, and thus the contribu-
tion from the truncated tail drops exponentially with lmax.
We find experimentally that it is sufficient to take lmax �
4–9 (depending on r0; larger lmax is needed for smaller r0)
for the contribution from the truncated tail to drop below
our standard discretization error (� 10�4).

The situation is different with the r component, where
the mode sum converges as / l�2, and the contribution
from the truncated high-l tail scales as 1=lmax. For compu-
tationally realistic values of lmax (here we take lmax � 15)
this contribution cannot be neglected. To evaluate it we
apply the following strategy. Let
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 Fr � Frl�lmax
� Frl>lmax

; (43)

where

 Frl�lmax
�
Xlmax

l�0

Frlreg and Frl>lmax
�

X1
l�lmax�1

Frlreg: (44)

The part Frl�lmax
is computed numerically. To evaluate

Frl>lmax
we extrapolate the last few modes in Frl�lmax

using
the fitting formula

 Frlreg ’
XN
n�1

Dr
2n

L2n (45)

(for some N � 1), where, recall, L � l� 1=2, and Dr
2n are

l-independent coefficients, which serve here as fitting pa-
rameters. In practice we have used the last 6 modes of
Frl�lmax

(i.e., 10 � l � 15) for the fitting, but have checked
that fitting using a different number of modes does not
change the result significantly (we demonstrate this be-
low). Given the coefficients Dr

2n, the large-l tail is esti-
mated as

 Frl>lmax
’
XN
n�1

Dr
2n

X1
l�lmax�1

L�2n

�
XN
n�1

Dr
2n

�2n� 1�!
��2n� 1; lmax � 3=2�; (46)

where ��n; x� is the polygamma function of order n,
defined as

 ��n; x� �
dn�1	log��x�


dxn�1 ; (47)

in which ��x� is the standard gamma function.

To determine how many terms it is necessary to include
in the fitting formula (45) requires some experimentation.
The data in Table I demonstrates the effect of varying N: It
shows the values obtained for Frl>lmax

(both external and
internal values) using N in the range 1–4. We display data
for the two sample radii r0 � 6M and r0 � 100M. We find
that taking N � 3 or N � 4 gives the same value of Frl>lmax

as taking N � 2, with a fractional difference of merely &

10�4 at most. Since Frl>lmax
itself contributes at most �2%

of the total force (see Tables VI and VII in Appendix D),
we conclude that it is sufficient to take N � 2. Taking only
N � 1 would produce a fitting error similar in magnitude
to ��

discr; so, taking N � 2 effectively eliminates the large-l
fitting as a source of error in our calculation. We find
similar numbers for other values of r0, and so we take N �
2 in all cases.

As a further robustness test for the above scheme, we
check how the estimation of Frl>lmax

would change by using
higher multipole modes for the fitting. For this, we calcu-
lated numerically all modes up to l � 25 for r0 �
6M; 100M. Results from this experiment are shown in
Table II. Once again we take Frl>lmax

as the sum of all
modes l > 15, but this time we obtain the fitting parameters
D2n based on all sixteen modes 10 � l � 25. Again, we
check how the results depend on N. We find that the
relative difference in the value of Frl>lmax

with respect to
our reference case [N � 2 and fitting based on 10 � l �
15] is & 10�4 in all cases, as long as we take N � 2. This
reassures us that it is sufficient to base the fitting on 10 �
l � 15, as we do in the rest of this analysis.

Results from the above fitting procedure (with N � 2
and 10 � l � 15) are illustrated in Fig. 4 for r0 � 6M. As

TABLE I. Data demonstrating how sensitive the estimation of the large-l contribution is to the number of terms N included in the
fitting formula (45). We display here results for the strong-field case (r0 � 6M) and for the weak-field case (r0 � 100M), and in both
cases use the six numerically computed modes 10 � l � 15 to fit for the part of the mode sum with l > 15. 	Frl>15
� and 	Frl>15
� are
the estimated contributions from l > 15, obtained using internal and external data, respectively. For convenience, the values of
	Frl>15
 are given multiplied by 104�M=��2 for r0 � 6M, and by 108�M=��2 for r0 � 100M. Values in square brackets indicate the
fractional fitting error in 	Frl>15
. The values in the 3rd and 5th columns show the relative differences in 	Frl>15
 with respect to the
reference case N � 2, which we adopt in the rest of this work. Note that the differences indicated are relative to the large-l contribution
	Frl>15
 only; the differences relative to the total SF are at least 2 orders of magnitude smaller.

	Frl>15
� Relative difference 	Frl>15
� Relative difference
N (fit using 10 � l � 15) w.r.t. N � 2 (fit using 10 � l � 15) w.r.t. N � 2

r0 � 6M
1 �5:117 158 [2� 10�3] �1:4� 10�2 �5:117 176 [2� 10�3] �1:4� 10�2

2 �5:046 144 [3� 10�5] 0 �5:046 189 [3� 10�5] 0
3 �5:046 984 [6� 10�5] �1:7� 10�4 �5:046 812 [2� 10�4] �1:2� 10�4

4 �5:046 316 [4� 10�4] �3:4� 10�5 �5:046 133 [9� 10�4] �1:1� 10�5

r0 � 100M
1 �5:904 165 [1� 10�3] �7:5� 10�3 �5:904 159 [1� 10�3] �7:5� 10�3

2 �5:859 951 [2� 10�5] 0 �5:859 925 [2� 10�5] 0
3 �5:860 397 [8� 10�6] �7:6� 10�5 �5:860 450 [6� 10�6] �9:0� 10�5

4 �5:860 430 [7� 10�5] �8:2� 10�5 �5:860 380 [5� 10�5] �7:8� 10�5
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an indicative measure of the calculation error in Frl>lmax
we

take the standard (fractional) fitting error [43], which we
denote �tail. At least in the examples shown in Tables I and
II, this has roughly the same magnitude as the error from
changing the fitting method, so �tail provides a realistic
estimate of the total (fractional) error in determining the
tail contribution Frl>lmax

. The relative error from determin-
ing the large-l tail, expressed as a fraction of the total SF, is

 �tail;rel � �tail �

��������
Frl>lmax

Frl�lmax

��������: (48)

In practice we find (see Appendix D) Frl>lmax
=Frl�lmax

�

10�2–10�4 for r0 in the range 6M–150M. The relative

fitting error �tail;rel is a mere �7� 10�5 at r0 � 6M,
dropping down to �2� 10�7 at r0 � 150M.

IV. CODE VALIDATION

A few validation tests for our metric perturbation code
were presented in BL. These included (i) a demonstration
that the numerical solutions for the various �h�i�lm’s con-
verge quadratically as h! 0; (ii) a demonstration that
these solutions satisfy the Lorenz-gauge conditions;
(iii) a confirmation that the flux of energy radiated to null
infinity in the various modes, as calculated from our
Lorenz-gauge solutions, compares well with the flux ob-
tained using other methods/gauges. Here we present some
more validation tests, focusing on the new ingredient of the

TABLE II. Data demonstrating how sensitive the estimation of the high-l contribution is to the number of modes used for the high-l
fitting. The structure of this table is the same as that of Table I. Again we show data for r0 � 6M and r0 � 100M, and 	Frl>15

describes the contribution from l > 15; however, we now use all 16 modes 10 � l � 25 for fitting. The values in the 3rd and 5th
columns show the relative differences with respect to the reference case, i.e., N � 2 and fitting using 10 � l � 15—the case displayed
in Table I. This demonstrates that, taking N � 2, it is sufficient to base our large-l fitting on data from 10 � l � 15.

	Frl>15
� Relative difference 	Frl>15
� Relative difference
N (fit using 10 � l � 25) w.r.t. reference case (fit using 10 � l � 25) w.r.t. reference case

r0 � 6M
1 �5:106 648 [1� 10�3] �1:2� 10�2 �5:106 701 [1� 10�3] �1:2� 10�2

2 �5:046 340 [2� 10�5] �3:9� 10�5 �5:046 533 [3� 10�5] �6:8� 10�5

3 �5:046 634 [3� 10�5] �9:7� 10�5 �5:046 985 [4� 10�5] �1:6� 10�4

4 �5:046 500 [1� 10�4] �7:1� 10�5 �5:047 089 [1� 10�4] �1:8� 10�4

5 �5:046 769 [4� 10�4] �1:2� 10�4 �5:047 224 [5� 10�4] �2:1� 10�4

r0 � 100M
1 �5:897 633 [8� 10�4] �6:4� 10�3 �5:897 625 [8� 10�4] �6:4� 10�3

2 �5:860 129 [1� 10�5] �3:0� 10�5 �5:860 106 [1� 10�5] �3:1� 10�5

3 �5:860 367 [7� 10�6] �7:1� 10�5 �5:860 349 [8� 10�6] �7:2� 10�5

4 �5:860 371 [2� 10�5] �7:2� 10�5 �5:860 304 [2� 10�5] �6:5� 10�5

5 �5:860 407 [9� 10�5] �7:8� 10�5 �5:860 308 [1� 10�4] �6:5� 10�5
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FIG. 4. Analytic fitting for the large-l tail of the SF, exemplified here for r0 � 6M. We used the fitting formula (45) with N � 2, and
based on the modes 10 � l � 15. Circles (‘‘�’’) represent actual data obtained for Frlreg (calculated from r�0 ), for the various modes
3 � l � 25. The dashed line is the analytic fit. Left/right panels show the same data on linear/log scales. The large-l tail of the mode-
sum series shows the l�2 falloff expected from theory (cf. Fig. 7).
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analysis, i.e., the calculation of the SF. We will demon-
strate (i) quadratic numerical convergence of the computed
SF; (ii) that the SF does not depend on our choice of initial
data; (iii) that the full-force modes have large-l behavior as
predicted in theory [Eq. (20)]; (iv) that the two one-sided
values obtained for the final SF (from r�0 and from r�0 )
agree; and (v) that the total flux of energy to infinity and
through the horizon is consistent with the value obtained
for the temporal component of the SF.

A. Numerical convergence

The scheme introduced in Sec. III should yield the final
SF with a numerical error scaling as �h2 (where h is the
step size in both u and v). To check this, we performed the
following test, for a selection of r0 values in the range
6M–150M and l values in the range 0–15. For given r0 and
l we calculated the regularized mode Frlreg through the
scheme described in Sec. III (including the extrapolation
to h! 0). We recorded the values of the force calculated
with the different resolutions hi [see Eq. (39)]. Denoting
these by Frlreg	hi
, we then plotted the difference Frlreg	hi
 �
Frlreg (where the second term is the extrapolated force) as a
function of hi. Figure 5 shows the two modes l � 2, 15 at
r0 � 6M. In each case we plot both one-sided values of the
difference Frlreg	hi
 � F

rl
reg. In all cases we find that this

difference decreases approximately like h2 at small h,
demonstrating quadratic numerical convergence. Similar
convergence is observed for the t component.

B. Dependence on initial conditions

As explained above, we start the evolution of each of the
modes �h�i�lm with null values along the initial surfaces, v �

v0 and u � u0. This creates a ‘‘spark’’ of spurious radia-
tion which propagates through the grid, but dies off at late
time. During the early transient period the numerical solu-
tion is not stationary; as the spurious waves die off, the
numerical solution approaches its physical, stationary
value. This behavior is demonstrated in the plots in
Fig. 6. The SF has to be calculated at late enough time,
to assure that the error due to residual initial waves is
negligible. This sets a lower limit on the required evolution
time Tevo, which in practice depends on r0: Waves from an
initial spark at r0 � 100M dissipate more efficiently
(faster) than waves from an initial spark at r0 � 6M, since
the former experience less scattering off spacetime
curvature.

In our analysis we determined Tevo experimentally, for
each value of r0 considered. To assess the effect of residual
waves, we compared the values obtained for the final SF at
two different evolution times, Tevo and 0:8� Tevo. We
regard this difference as indicative of the error from non-
stationarity in our calculation. The errors calculated for the
various values of r0 are shown in Tables IVand Vof Sec. V
below. The fractional error is smaller than 10�4 in all cases,
hence smaller than our standard discretization error.
Table III lists the evolution times Tevo�r0� used in our
analysis.

C. Large l behavior of the full-force modes

The fact that our numerically derived full modes
	F�lfull�x0�
 exhibit the right behavior at large l, through
three leading terms in the 1=L expansion [O�L� toO�1=L�]
provides a very strong quantitative check on our code. The
plots in Fig. 7 demonstrate that the regularized modes
F�lreg � 	F�lfull�x0�
 � A�L� B

� fall off faster than 1=l at
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FIG. 5. Numerical convergence of the calculated SF, demonstrated here for the r component, for r0 � 6M. The left and right panels
show l � 2 and l � 15, respectively. Plotted is the difference Frlreg	hi
 � Frlreg between the value of the regularized mode computed with
step size hi, and the value extrapolated to h! 0. Each panel displays both one-sided values of the force: ‘‘left’’ and ‘‘right’’ stand for
r�0 and r�0 values, respectively. The reference lines (dotted) have slopes / h2. This demonstrates the quadratic convergence of the
numerical calculation.
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large l: The r component falls off as �L�2, and the t
component falls off exponentially. For the r component
this indicates that the ‘‘singular’’ (large l) part of the
calculated full modes is correctly described by the analytic
regularization function ArL� B

r, through O�1=L�. Of
course, this agreement is necessary for a successful imple-
mentation of the mode-sum formula: If the modes

	Frlfull�x0�
 were inconsistent with the regularization func-
tion, the sum over modes would diverge. Note also that the
procedure for evaluating the large l tail (Sec. III E) relies on
the computed modes having the correct behavior at large l.

D. Agreement between one-sided values of the SF

In this analysis we applied the standard version of the
mode-sum formula, Eq. (20), rather than the ‘‘averaged’’
version, Eq. (23). For the r component we carried out two
independent calculations of the SF, once using the internal
values 	Frlfull�x0�
�, and again using the external values
	Frlfull�x0�
�. (The two one-sided values of the t component
coincide automatically, as the full modes of this component
are continuous at the worldline.) This allows for an im-
portant consistency check: The external and internal values
of the final SF must agree. Any difference between the two
values is due to numerical error. Denoting the computa-
tional difference between external and internal values of
the final SF by �, we find experimentally

 �=F
r � 10�5–10�9 (49)

(depending on r0). This is well under the numerical error
from discretization. The experimental values of �, for the
different orbital radii considered, can be found in Table IV
of Sec. V.

E. Energy balance

Equation (7) relates the temporal component of the SF to
the momentary rate of change of the (specific) orbital
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FIG. 6. Time evolution of the metric perturbation. We plot the absolute values of the various functions �h�i�lm, evaluated at the location
of the particle, as a function of t, for l � 2 and m � 1, 2. Top two figures are for r0 � 6M; lower two figures are for r0 � 100M. The
time t is indicated along the horizontal axis in units of the orbital period, Torb. The initial transient phase is due to the imperfection of
the initial conditions; these spurious waves dissipate rapidly, clearing the stage for the physical, stationary solution. The SF is
calculated at late time, when the effect of the initial spurious waves is negligible.

TABLE III. Evolution times taken in our analysis. These were
chosen (experimentally) long enough to guarantee that any
residual effect from the initial spurious waves is negligible.
Tevo is the numerical evolution time, and Torb � 2�=�0 is the
orbital period.

r0=M Tevo=Torb (r component) Tevo=Torb (t component)

6–10 3 3
11–12 2.5 2.8
13–14 2 2.8
15 1.5 2.5
20 1 2
30 0.8 1.8
40 0.6 1.7
50 0.5 1.5
60 0.45 1.5
70 0.4 1.2
80 0.3 1.0
90 0.25 1.0
100 0.2 0.8
120 0.15 0.8
150 0.12 0.6

LEOR BARACK AND NORICHIKA SAGO PHYSICAL REVIEW D 75, 064021 (2007)

064021-14



energy parameter E. In terms of time t, this relation be-
comes _E � ���ut0�

�1Ft, where an overdot denotes d=dt,
and ut0 � �1� 3M=r0�

�1=2. If we assume that �=M is
small enough that radiation reaction is negligible over an
orbital period Torb (‘‘adiabatic approximation’’), then, for a
circular orbit, _E also represents the average rate of change
of E over Torb. This must be balanced by the flux of
gravitational-wave energy radiated to infinity and through
the horizon, averaged over Torb. If we denote the former by
_E1 and the latter by _EEH (both taken positive), we have the

energy-balance formula

 

_E total � _E1 � _EEH � �� _E � Ft=u
t
0: (50)

Both asymptotic fluxes _E1 and _EEH can be constructed
from the perturbation fields �h�i�lm, evaluated at the corre-
sponding asymptotic domains. Validity of Eq. (50) then
provides a strong qualitative test of our calculation.

We can readily express the asymptotic fluxes _E1 and
_EEH in terms of the �h�i�lm’s, with the help of the Weyl

scalars,  0 � �C����l
�m�l�m� and  4 � �C����n

��

m��n�m��. Here C���� is the Weyl tensor corresponding
to the perturbation h��, and l�, n�, and m� are the
Kinnersley null vectors, given by l� � �f�1; 1; 0; 0� n��
1
2�1;�f;0;0�, and m�� 1��

2
p
r
�0;0;1; i

sin��. Decomposing the

perturbation as in Eq. (16), we obtain the asymptotic
relations

 

 4�r! 1� �
X1
l�2

Xl
m��l

1

4l�l� 1�	r
� ��h�7� � i ��h�10�

�	D2Ylm � i�sin���1D1Ylm
;

 0�r! 2M� �
X1
l�2

Xl
m��l

1

4�2M�3f2

�
�h�1� � �h�2� �

�h�4� � �h�5� � i� �h�8� � �h�9��
l�l� 1�

�
4M

l�l� 1�
	 _�h�4� � _�h�5� � i� _�h�8� � _�h�9��


�
4M

l�l� 1�	
	 _�h�7� � i _�h�10�

� 4M� ��h�7� � i ��h�10�
�


�
�D2Ylm � i�sin���1D1Ylm�: (51)

The first relation is valid at leading order in 1=r, and the
second at leading order in f. In obtaining these relations we
have made the replacements f@r ! �@t (for  4 at null
infinity) and f@r ! @t (for  0 at the horizon). For circular
orbits, the asymptotic fluxes are given in terms of the Weyl
scalars as [44,45]

 

_E1 �
Z
d ~�

r2

4�m2�2
0

j 4�r! 1�j
2; (52)

 

_E EH �
Z
d ~�

M4f4

��1� 16M2m2�2
0�
j 0�r! 2M�j2; (53)

where the integration is carried out over 2-spheres r �
const! 1 and r � 2M, respectively. Now proceed as
follows: (i) Substitute Eqs. (51) in Eqs. (52). (ii) For _EEH

apply the asymptotic gauge conditions �h�2� �
�h�1�, �h�4� � �h�5�, and �h�8� � �h�9� [see Eqs. (A13)–(A16) in
Appendix A]. (iii) Replace d=dt! �im�0. (iv) Integrate
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over the spheres using the formulas (A4) of BL. This yields
the final relations

 

_E1 �
X1
l�2

Xl
m��l

�2m2�2
0

64�	l�l� 1�
j �h�7�1 � i �h�10�

1 j
2; (54)

 

_EEH �
X1
l�2

Xl
m��l

�2	l�l� 1�

256�M2�1� 16M2m2�2
0�

�

�������� �h�1�EH �
1� 4iMm�0

l�l� 1�
	 �h�5�EH � i �h�9�EH

� 2iMm�0	
�1� �h�7�EH � i �h�10�

EH �


��������
2
; (55)

where 	 � �l� 1��l� 2�, �h�i�1 are the fields �h�i�lm evaluated
at null infinity (u� v! 1), and �h�i�EH are these fields

evaluated at the event horizon (v� u! 1).
Equation (54) for _E1 agrees with Eq. (57) of BL, which
was derived directly from the Issacson effective energy-
momentum tensor.

To test our calculation of Ft, we used our evolution code
to obtain the energy fluxes at infinity and through the
horizon, based on Eqs. (54) and (55), and then checked
consistency with the balance Eq. (50). To extract _E1 we
evaluated the numerical solutions �h�7;10� at v � 5200M,
9000M, 15 000M and u � 800M, 3000M, 5000M, for
orbital radii in the ranges 6M � r0 < 20M, 20M � r0 �
100M, and r0 > 100M, respectively. To derive _EEH we
evaluated �h�1;5;7;9;10� at u � 5200M, 6500M, 7500M and
v � 800M, 1500M, 2500M for the above corresponding
values of r0. These values were selected experimentally
such that the fractional error in the total flux (from the finite

TABLE IV. Final results for the radial component of the SF. The second column lists the values obtained for the various orbital radii
r0, taken as the average between internal and external values: �	Fr
� � 	Fr
��=2. Values in square brackets in the second column are
estimates of the fractional numerical error in Fr from the finite-grid discretization (see the text for details). The third and fourth
columns display estimates of the magnitude of error from two other sources: The third column shows the magnitude of the difference
	Fr
� � 	F

r
�, which is entirely due to numerical error; the values in square brackets give the fractional error 2�	Fr
� �
	Fr
��=�	F

r
� � 	F
r
��. The fourth column shows the estimated error from residual nonstationarity of the late-time numerical

evolution, which is mainly due to leftover spurious waves arising from the imperfect initial data; values in square brackets again
describe the fractional error. Both sources of error contribute negligibly to the overall error in the SF, which is therefore dominated by
the discretization error.

r0=M Fr � �M=��2 Error from disagreement 	Fr
� $ 	Fr
� Error from nonstationarity

6.0 2:446 61� 10�2 [9� 10�4] 1:20� 10�7 [5� 10�6] 1:83� 10�8 [7� 10�7]
6.2 2:396 51� 10�2 [9� 10�4] 5:01� 10�9 [2� 10�7] 5:92� 10�8 [2� 10�6]
6.4 2:339 54� 10�2 [8� 10�4] 8:54� 10�8 [4� 10�6] 3:91� 10�8 [2� 10�6]
6.6 2:278 29� 10�2 [7� 10�4] 1:56� 10�7 [7� 10�6] 4:24� 10�8 [2� 10�6]
6.8 2:214 62� 10�2 [7� 10�4] 2:11� 10�7 [1� 10�5] 3:21� 10�8 [1� 10�6]
7.0 2:149 89� 10�2 [6� 10�4] 2:42� 10�7 [1� 10�5] 2:64� 10�8 [1� 10�6]
7.2 2:085 04� 10�2 [6� 10�4] 2:75� 10�7 [1� 10�5] 2:24� 10�8 [1� 10�6]
7.4 2:020 78� 10�2 [6� 10�4] 3:02� 10�7 [1� 10�5] 1:93� 10�8 [1� 10�6]
7.6 1:957 61� 10�2 [5� 10�4] 3:18� 10�7 [2� 10�5] 1:59� 10�8 [8� 10�7]
7.8 1:895 86� 10�2 [5� 10�4] 3:28� 10�7 [2� 10�5] 1:32� 10�8 [7� 10�7]
8.0 1:835 77� 10�2 [5� 10�4] 3:34� 10�7 [2� 10�5] 1:13� 10�8 [6� 10�7]
9.0 1:563 69� 10�2 [4� 10�4] 3:23� 10�7 [2� 10�5] 5:70� 10�9 [4� 10�7]
10.0 1:338 95� 10�2 [8� 10�5] 1:00� 10�9 [7� 10�8] 2:89� 10�9 [2� 10�7]
11.0 1:155 18� 10�2 [6� 10�5] 1:55� 10�9 [1� 10�7] 1:49� 10�11 [1� 10�9]
12.0 1:004 63� 10�2 [5� 10�5] 9:79� 10�10 [1� 10�7] 7:84� 10�12 [8� 10�10]
13.0 8:804 89� 10�3 [4� 10�5] 3:38� 10�9 [4� 10�7] 1:96� 10�9 [2� 10�7]
14.0 7:773 07� 10�3 [1� 10�5] 1:50� 10�9 [2� 10�7] 1:62� 10�9 [2� 10�7]
15.0 6:908 15� 10�3 [3� 10�5] 1:17� 10�9 [2� 10�7] 1:25� 10�9 [2� 10�7]
20.0 4:157 06� 10�3 [1� 10�5] 1:76� 10�10 [4� 10�8] 7:11� 10�10 [2� 10�7]
30.0 1:969 82� 10�3 [5� 10�6] 8:39� 10�11 [4� 10�8] 2:86� 10�10 [1� 10�7]
40.0 1:142 88� 10�3 [2� 10�6] 1:65� 10�11 [1� 10�8] 8:78� 10�11 [8� 10�8]
50.0 7:449 49� 10�4 [1� 10�6] 3:03� 10�12 [4� 10�9] 4:98� 10�11 [7� 10�8]
60.0 5:236 13� 10�4 [2� 10�5] 4:86� 10�10 [9� 10�7] 1:57� 10�11 [3� 10�8]
70.0 3:880 10� 10�4 [1� 10�5] 2:47� 10�10 [6� 10�7] 1:79� 10�12 [5� 10�9]
80.0 2:989 79� 10�4 [8� 10�6] 1:36� 10�10 [5� 10�7] 1:39� 10�11 [5� 10�8]
90.0 2:374 06� 10�4 [7� 10�6] 8:01� 10�11 [3� 10�7] 1:58� 10�11 [7� 10�8]
100.0 1:930 63� 10�4 [5� 10�6] 4:90� 10�11 [3� 10�7] 1:53� 10�11 [8� 10�8]
120.0 1:348 68� 10�4 [4� 10�6] 2:17� 10�11 [2� 10�7] 1:22� 10�12 [9� 10�9]
150.0 8:682 74� 10�5 [2� 10�6] 7:62� 10�12 [9� 10�8] 1:48� 10�11 [2� 10�7]
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extraction distance and from the spurious initial waves) is
less than 10�4 for each of the l modes. We then used these
values in Eqs. (54) and (55), summing from l � 2 to l �
lmax, where lmax was determined experimentally, requiring
that the fractional truncation error in the total flux (from
omitting the modes l > lmax) is <10�4. This required lmax

values between 9 (for r0 � 6M) and 4 (for r0 � 150M).
Following the above procedure, we obtained _E1 and

_EEH for a list of orbital radii between 6M and 150M. The
ratio _EEH= _E1 turns out very small for all radii, decreasing
monotonically with r0 from 3:3� 10�3 at r0 � 6M to
2:4� 10�9 at r0 � 150M (these values are consistent
with Martel’s [42]). The values obtained for the total
energy flux, _Etotal � _E1 � _EEH, are listed in Table V of
Sec. V below. We find that the fractional difference
jut0 _Etotal=Ft � 1j is less than �5� 10�4 in all cases, pro-
viding a strong quantitative check of our results.

V. RESULTS

A. Temporal component

We calculated the t component of the SF for 29 values of
the orbital radius, in the range from r0�6M to r0�150M,
using the procedure described in Sec. III. The results are
displayed in Table V. The computation error in Ft is
estimated at & 10�4 for all radii considered. The table
also shows, for each of the radii considered, how the
work done by the temporal component of the local SF is
balanced by the total flux of radiated energy.

B. Radial component

We calculated the radial component of the SF for 29
values of the orbital radius, in the range from r0 � 6M to
t0 � 150M. Tables VI and VII in Appendix D present
results for the internal and external values of the SF,

TABLE V. The temporal component of the SF, as a function of the orbital radius r0. Values in the first square brackets in the second
column are estimates of the fractional numerical error in Ft from the finite-grid discretization, �t

discr [see Eq. (42)]. Values in the
second square brackets in the second column are estimates of the fractional error from residual nonstationarity of the late-time
numerical evolution (which is mainly due to leftover spurious waves arising from the imperfect initial data). The third and fourth
columns compare between the work done by the temporal SF and the total flux of energy radiated in gravitational waves, the latter
extracted from the numerical solutions using the procedure described in Sec. IV E. The last column displays the relative difference
j _Etotal=�Ft=u

t
0� � 1j, showing that the balance Eq. (50) is satisfied within the numerical accuracy, and providing a strong quantitative

check of our results.

r0=M �M=��2Ft �M=��2Ft=ut0 �M=��2 _Etotal Rel. Diff.

6.0 �1:994 76� 10�3 [7� 10�5] [6� 10�6] 9:403 38� 10�4 9:401 90� 10�4 1:6� 10�4

6.2 �1:60515� 10�3 [8� 10�5] [1� 10�5] 7:811 83� 10�4 7:810 64� 10�4 1:5� 10�4

6.4 �1:305 50� 10�3 [7� 10�5] [1� 10�5] 6:541 80� 10�4 6:541 01� 10�4 1:2� 10�4

6.6 �1:071 97� 10�3 [7� 10�5] [1� 10�5] 5:517 94� 10�4 5:517 23� 10�4 1:3� 10�4

6.8 �8:878 44� 10�4 [6� 10�5] [1� 10�5] 4:684 97� 10�4 4:684 11� 10�4 1:8� 10�4

7.0 �7:411 01� 10�4 [7� 10�5] [1� 10�5] 4:001 57� 10�4 4:001 17� 10�4 1:0� 10�4

7.2 �6:230 65� 10�4 [7� 10�5] [1� 10�5] 3:436 87� 10�4 3:436 27� 10�4 1:7� 10�4

7.4 �5:272 71� 10�4 [6� 10�5] [1� 10�5] 2:966 92� 10�4 2:966 45� 10�4 1:6� 10�4

7.6 �4:489 05� 10�4 [6� 10�5] [1� 10�5] 2:573 36� 10�4 2:572 88� 10�4 1:9� 10�4

7.8 �3:843 24� 10�4 [5� 10�5] [1� 10�5] 2:241 84� 10�4 2:241 48� 10�4 1:6� 10�4

8.0 �3:307 40� 10�4 [5� 10�5] [1� 10�5] 1:961 05� 10�4 1:960 66� 10�4 2:0� 10�4

9.0 �1:668 10� 10�4 [5� 10�5] [1� 10�5] 1:059 33� 10�4 1:059 08� 10�4 2:4� 10�4

10.0 �9:190 67� 10�5 [3� 10�5] [9� 10�6] 6:151 58� 10�5 6:150 47� 10�5 1:8� 10�4

11.0 �5:416 05� 10�5 [3� 10�5] [2� 10�5] 3:779 04� 10�5 3:778 56� 10�5 1:3� 10�4

12.0 �3:365 87� 10�5 [2� 10�5] [2� 10�5] 2:429 11� 10�5 2:428 57� 10�5 2:2� 10�4

13.0 �2:183 88� 10�5 [2� 10�5] [2� 10�5] 1:620 71� 10�5 1:620 22� 10�5 3:1� 10�4

14.0 �1:468 51� 10�5 [1� 10�4] [2� 10�5] 1:115 74� 10�5 1:115 64� 10�5 8:5� 10�5

15.0 �1:017 72� 10�5 [1� 10�4] [2� 10�5] 7:889 04� 10�6 7:885 97� 10�6 3:9� 10�4

20.0 �2:255 49� 10�6 [6� 10�5] [6� 10�6] 1:871 51� 10�6 1:871 11� 10�6 2:2� 10�4

30.0 �2:808 13� 10�7 [4� 10�5] [4� 10�5] 2:486 43� 10�7 2:486 00� 10�7 1:7� 10�4

40.0 �6:512 19� 10�8 [3� 10�5] [3� 10�6] 5:950 07� 10�8 5:948 97� 10�8 1:8� 10�4

50.0 �2:108 49� 10�8 [2� 10�5] [4� 10�5] 1:962 49� 10�8 1:962 03� 10�8 2:3� 10�4

60.0 �8:413 06� 10�9 [9� 10�5] [3� 10�5] 7:926 70� 10�9 7:924 24� 10�9 3:1� 10�4

70.0 �3:874 11� 10�9 [8� 10�5] [4� 10�5] 3:681 89� 10�9 3:680 86� 10�9 2:8� 10�4

80.0 �1:980 69� 10�9 [7� 10�5] [8� 10�5] 1:894 62� 10�9 1:893 60� 10�9 5:4� 10�4

90.0 �1:096 54� 10�9 [6� 10�5] [6� 10�5] 1:054 15� 10�9 1:053 65� 10�9 4:8� 10�4

100.0 �6:463 05� 10�10 [6� 10�5] [4� 10�5] 6:238 06� 10�10 6:236 28� 10�10 2:9� 10�4

120.0 �2:590 96� 10�10 [5� 10�5] [3� 10�5] 2:515 73� 10�10 2:514 96� 10�10 3:1� 10�4

150.0 �8:471 72� 10�11 [4� 10�5] [6� 10�5] 8:274 75� 10�11 8:272 79� 10�11 2:4� 10�4
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respectively (recall the two one-sided values are expected
to agree with each other, within numerical error). In each
table we indicate separately the two contributions 	Frl�15

and 	Frl>15
, where the former is the part calculated
directly using our evolution code, and the latter is the
extrapolated contribution from l > 15, calculated as ex-
plained in Sec. III E above. The large-l tail contributes at
most 2% of the total SF (depending on r0). The relative
fractional error in 	Frl>15
 [i.e., �tail;rel, calculated through
Eq. (48)] is at most comparable to (and mostly much
smaller than) the fractional discretization error in
	Frl�15
, which itself is at most �10�3.

In Table IV we present our final results for the radial
component: the SF as a function of the orbital radius r0. As
the ‘‘final’’ result we quote the average between the two
(nearly identical) one-sided values. The third column dis-
plays the magnitude of the difference between the two one-
sided values, which is entirely due to computational error.
The relative magnitude of this error (given in square brack-
ets in the third column) is in all cases much smaller than the
fractional discretization error in Fr. The latter error, given
in square brackets in the second column, is taken as the
average between the two one-sided discretization errors
�r

discr estimated from Eq. (42).
The last column of Table IV displays the estimated error

from residual nonstationarity of the numerical solutions
(from residual spurious initial waves). Displayed is the
difference in the values Fr obtained at different evolution
times (as explained in more detail in Sec. IV B above). The
values in square brackets in the last column show the
fractional error from nonstationarity relative to the total
SF. This error is in all cases much smaller than the discre-
tization error.

Thus, the dominant source of error in our analysis is
associated with the finite-grid discretization of the field
equations. We estimate our final results for Fr to be correct
to within at least �0:1% for all orbital radii considered.
The results for 10M & r0 & 20M are likely to be correct to
within �0:01%, and the results for r0 * 20M to within
mere �0:001%.

We plot Fr�r0� in Fig. 8. The radial SF is ‘‘repulsive’’
(i.e., acting outward, away from the central black hole) for
all r0. At large orbital radii the numerical data can be fitted
analytically as
 

Fr�r0�M�’
�2

r2
0

�
a0�a1

M
r0
�a2

�
M
r0

�
2
�a3

�
M
r0

�
3
�
; (56)

with

 a0 � 1:999 991; a1 � �6:9969;

a2 � 6:29; a3 � �24:6:
(57)

This formula reproduces the numerical data within the
numerical accuracy [ & 10�3] for all r0 � 8M. The
leading-order term, Fr ’ a0�2=r2

0 ’ 2�2=r2
0 is consistent

with the ‘‘Keplerian’’ SF describing the backreaction effect
from the motion of the black hole about the system’s center
of mass (we discuss this below, when considering the SF
correction to the orbital frequency). Near the innermost
stable circular orbit (ISCO), r0 � 6M, we fit the numerical
data analytically as
 

Fr�r0 * 6M� ’
�2

r2
0

�1� 2M=r0��b0 � b1x0

� b2x
2
0 � b3x

3
0�; (58)

where x0 � 1� 6M=r0 and the ‘‘best-fit’’ parameters
(based on data in 6M � r0 � 8M) are given by

 b0 � 1:321 20; b1 � 1:2391;

b2 � �1:297; b3 � 1:07:
(59)

This reproduces the numerical data within the numerical
accuracy for all r0 � 8M [46].

C. Conservative shift in the orbital parameters

Given Fr, we can calculate the shift in the orbital energy
and angular momentum parameters using Eq. (8). The
relative shifts �E � �E � E0�=E0 and �L � �L�
L0�=L0 are plotted in Fig. 9. Recall that this effect is
gauge dependent; the values computed here for �E and
�L are the Lorenz-gauge values.

The shift in the orbital frequency �0 can be derived
from Eq. (9). At large r0 we obtain, using Eq. (56),
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FIG. 8. The radial component of the SF. The data in the upper
panel correspond to the second column in Table IV. The inset
shows an expansion of the ISCO area. The solid line is a plot of
the large-r0 analytic fit given in Eq. (56). The dashed line
represents the complementary near-ISCO fit (58). The lower
panel shows the relative difference between the numerical data
and values obtained using the analytic-fit formulas. Using the
large-r0 fit for r0 � 8M and the near-ISCO fit for 6M � r0 �
8M, one recovers all numerical data to within the numerical
accuracy.
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�
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�
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�
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r0

�
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��
; (60)

where c1 � 3a0 � a1, c2 � 3a1 � a2, and c3 � 3a2 � a3,
with the coefficients an given in Eq. (57). The term pro-
portional to a0�’ 2� is precisely the ‘‘Newtonian’’ SF [see,
e.g., Eq. (2) of [36]], which dominates the SF effect at
r0 � M. This piece of the force is simply the O��� dif-
ference between the standard Keplerian frequency �2 �
�M���=R3 (expressed in terms of the separation R) and
�2

0 � M=r3
0, with the separation R related to the ‘‘center-

of-mass’’ distance r0 through M�R� r0� � �r0. The rest
of the terms in Eq. (60) are general relativistic (3PN)
corrections. We define ���2�GR � ��

2 ��2
0�=�2

0 �
2�=M, and in Fig. 10 plot ���2�GR as a function of r0.

It is natural to ask how our result for � compares, at
large r0, with results from PN literature. We must first note
that, although �0 is gauge invariant, r0 itself is not, and so
the functional form of ��r0� in Eq. (60) is gauge depen-
dent. This makes it difficult to compare with the standard
(nonperturbative) PN result [47], which is given in a par-
ticular coordinate gauge (the ‘‘harmonic’’ gauge) that, in a
perturbative context, does not coincide with the Lorenz
gauge employed here. Another calculation of the conser-
vative PN SF was carried out recently by Nakano [48],
within perturbation theory, using a modified version of the
Regge-Wheelar gauge. The results from this calculation,
too, cannot be directly compared to ours, because of the
different gauges used.

One may attempt to circumvent the gauge ambiguity
problem by writing down an expression (in a PN form) for
one gauge-invariant quantity in terms of a second gauge-
invariant quantity—such an expression would be ‘‘truly’’

gauge invariant and would allow direct comparison be-
tween calculations done in different gauges. For circular
orbits, both � and S � E ��L are gauge invariant (see
Sec. II B), and we may attempt an expression of the form
S���. Introducing the new gauge-invariant variable x �
�M��1=3, we obtain, at 3PN,

 S � 1� 3
2x

2 � 9
8x

4 � 27
16x

6 �O��2�; (61)

with a vanishing O��� term. Hence, S�x� is not useful for
comparing the conservative SF effect in the case of a
circular orbit. Comparison of our results with results
from PN literature is not at all straightforward, and we
leave it for future work.
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VI. CONCLUDING REMARKS AND FUTURE
APPLICATIONS

This work marks a minor milestone in a long-term
program aimed to develop the theoretical and practical
tools for computing EMRI orbits (and, eventually, their
gravitational waveforms). We compute here for the first
time the gravitational SF in an example of a particle orbit-
ing a black hole, demonstrating the applicability of our
approach, whose main elements are (i) direct solution for
the metric perturbation, in the Lorenz gauge; (ii) numerical
evolution in the time domain; and (iii) use of the mode-sum
scheme to derive the local SF. In the case of a strictly
circular orbit, the analysis of the local SF provides us with
little new physics: The radiative effect is well known from
energy-balance analysis, and the conservative force does
not have a strict gauge-invariant significance. Calculation
of gauge-invariant conservative effects (like the shift in the
ISCO frequency, or the correction to the rate of perihelion
precession) requires analysis of (at least slightly) noncir-
cular orbits. In follow-up work we intend to extend our
analysis to eccentric orbits (see below), which would gain
us access to this more interesting physics.

Self-force calculations bring about major issues of com-
putational cost and computational efficiency. All compu-
tations in this work were carried out on a standard desktop
computer (3 GHz dual-processor, with 4 Gb of RAM).
Calculation of the SF at a single strong-field point, with
fractional accuracy & 10�3, took �2 hours of CPU time.
This is practical enough for studying the simple one-
parameter family of circular orbits, but may not be prac-
tical for studying more general orbits. There are a few
obvious ways by which one may improve the efficiency
of the numerical algorithm: (1) Our evolution code cur-
rently utilizes a uniform grid. This is very inefficient, since
the resolution requirement near the worldline is much
higher than anywhere else on the 2-dimensional grid. Our
problem naturally calls for a mesh-refinement treatment.
This is a standard technique in numerical relativity, but its
application would require a major modification of our
code. (2) We may try to improve the rate of decay of the
initial spurious waves, by using the stationary numerical
solutions obtained with low resolution as initial conditions
for the evolution at higher resolution. This will allow to
evolve for shorter periods, hence saving computation time.
It should be straightforward to implement such a proce-
dure. (3) In the present analysis we conservatively set the
same accuracy threshold for each individual l mode of the
force. Since the contribution of the individual modes to the
total SF vary over a few orders of magnitude, this proce-
dure is not very economic. It would be better to use an
algorithm which incorporates a threshold on the total force.
This, too, could be implemented rather easily.

Since our code is based on time-domain evolution (with
no frequency decomposition), it is readily extensible to
deal with any orbit in Schwarzschild spacetime. The finite-

difference algorithm would change slightly (it would re-
semble the algorithm used for radial plunge trajectories
[13,20]), but the stability features and resolution require-
ments of the code would not change. Work to extend our
analysis to eccentric orbits is now in progress.

It is more challenging to apply our approach for orbits in
Kerr spacetime. In this case we may no longer rely on a
spherical-harmonic decomposition of the field equations,
and—insisting on a time-domain analysis in the Lorenz
gauge—we would have to apply time evolution in 2� 1D.
The challenge here is two-fold: First, the solutions to the
2� 1D field equations are no longer continuous along the
worldline (as in the 1� 1D case), but rather diverge there
logarithmically. Second, a stable numerical scheme for
evolution of Lorenz-gauge perturbations in 2� 1D is yet
to be developed. A numerical scheme for dealing with the
first of the above difficulties had been outlined in Sec. Vof
BL, and was recently implemented for a scalar-field toy
model [49].
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APPENDIX A: FIELD EQUATIONS AND GAUGE
CONDITIONS FOR THE PERTURBATION

FUNCTIONS �h�i�lm�r; t�

We give here explicit expressions for the various terms
appearing in our basic set of mode-decomposed field equa-
tions (19). We use the notation f � 1� 2M=r, f0 �
2M=r2, f0 � 1� 2M=r0, and 	 � �l� 2��l� 1�. @r is
taken with fixed t, and @v is taken with fixed u (v and u
are the standard Eddington-Finkelstein coordinates). For
brevity we occasionally omit the indices l, m.

The terms M�i�
�j�

�h�j� in Eqs. (19) are given by

 

M�1�
�j�

�h�j� �
1

2
f2f0 �h�3�;r �

f

2r2 �1� 4M=r�� �h�1� � �h�5�

� f �h�3�� �
f2

2r2 �1� 6M=r� �h�6�; (A1)

 

M�2�
�j�

�h�j� �
1

2
f2f0 �h�3�;r � f0� �h

�2�
;v � �h�1�;v � �

f2

2r2 �
�h�2� � �h�4��

�
ff0

2r
� �h�1� � �h�5� � f �h�3� � 2f �h�6��; (A2)

 

M�3�
�j�

�h�j� � �
f

2r2 	
�h�1� � �h�5� � �1� 4M=r�� �h�3� � �h�6��
;

(A3)
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M�4�
�j�

�h�j� �
1

2
f0� �h�4�;v � �h�5�;v � �

1

2
l�l� 1��f=r2� �h�2�

�
1

4
f0f=r	3 �h�4� � 2 �h�5� � �h�7� � l�l� 1� �h�6�
;

(A4)

 

M�5�
�j�

�h�j� �
f

r2

�
�1� 4:5M=r� �h�5� �

1

2
l�l� 1�� �h�1� � f �h�3��

�
1

2
�1� 3M=r��l�l� 1� �h�6� � �h�7��

�
; (A5)

 M �6�
�j�

�h�j� ��
f

2r2 	
�h�1�� �h�5� ��1�4M=r�� �h�3�� �h�6��
;

(A6)

 M �7�
�j�

�h�j� � �
f

2r2 �
�h�7� � 	 �h�5��; (A7)

 

M�8�
�j�

�h�j� �
1

2
f0� �h�8�;v � �h�9�;v � �

1

4
f0f=r�3 �h�8�

� 2 �h�9� � �h�10��; (A8)

 M �9�
�j�

�h�j� �
f

r2 �1� 4:5M=r� �h�9� �
f

2r2 �1� 3M=r� �h�10�;

(A9)

 M �10�
�j�

�h�j� � �
f

2r2 �
�h�10� � 	 �h�9��: (A10)

For a circular equatorial geodesic orbit with r � r0 [hence
with t-frequency �0 � �M=r

3
0�

1=2 and specific energy
E0 � �1� 2M=r0��1� 3M=r0�

�1=2], the source terms
S�i�lm in Eqs. (19) read

 S�i�lm�r; t� � 4�E0��i���r� r0� �

�
Ylm���=2;�0t�; i � 1–7 �even parity modes�;
Ylm�;� ��=2;�0t�; i � 8–10 �odd parity modes�:

(A11)

The coefficients ��i� are given by

 ��1� � f2
0=r0; ��3� � f0=r0;

��2� � ��5� � ��9� � 0; ��4� � 2if0m�0;

��6� � r0�2
0; ��7� � r0�2

0	l�l� 1� � 2m2
;

��8� � 2f0�0; ��10� � 2imr0�2
0:

(A12)

The four Lorenz-gauge conditions �h��
;� � 0 translate,

upon decomposing in tensor harmonics, to four constraints
on the time-radial functions �h�i�. These read

 � �h�1�;t � f�� �h�3�;t � �h�2�;r � �h�2�=r� �h�4�=r� � 0; (A13)

 

�h�2�;t � f �h�1�;r � f2 �h�3�;r � �f=r�� �h�1� � �h�5�

� f �h�3� � 2f �h�6�� � 0; (A14)

 

�h �4�;t � f� �h
�5�
;r � 2 �h�5�=r� l�l� 1� �h�6�=r� �h�7�=r� � 0;

(A15)

 

�h �8�;t � f� �h
�9�
;r � 2 �h�9�=r� �h�10�=r� � 0: (A16)

APPENDIX B: FORMULAS FOR THE
COEFFICIENTS frn AND ftn

We give here formulas for constructing the various co-
efficients f�n appearing in Eq. (29), using the Lorenz-
gauge metric perturbation fields �h�i�lm�r; t� and their de-
rivatives. For brevity we omit the superscripts l, m from
both the f�lmn ’s and the �h�i�lm’s. We use here the notation
~L0 � L0=r0, where, recall, L0 is given in Eq. (4). Also

recall E0 is given in Eq. (3), f0 � �1� 2M=r0�, and 	 �
�l� 2��l� 1�. r derivatives are taken with fixed t, and t
derivatives are taken with fixed r. All functions �h�i�lm and
their derivatives in the expressions below are evaluated at
r � r0 and t � t0. Subscripts ‘‘’’ refer to taking r deriva-
tives from r! r0 (we omit these subscripts whenever
f�n� � f�n�).

For the r component we have
 

fr0 � E2
0�M=r0�f

�2
0

�h�1� �
1

4
E2

0f
�2
0 �r0f0

�h�1�;r � �h�1��

�
1

4
~L2

0f0�r0
�h�3�;r � �h�3�� �

1

4
f0�r0

�h�6�;r � �h�6��

�
imE0

~L0r0

2l�l� 1�
�h�4�;r �

m2 ~L2
0f0

4l�l� 1�	
�r0

�h�7�;r � �h�7��; (B1)

 fr1 �
1

4
~L2

0��2 �h�1� � 2f0
�h�3� � f0

�h�6� � r0f0
�h�6�;r �;

(B2)

 fr2 �
~L2

0

4l�l� 1�
	�2 �h�5� � �f0=	��r0

�h�7�;r � �h�7��
; (B3)

 fr3 � �
~L2

0f0

4l�l� 1�	
�r0

�h�7�;r � �h�7��; (B4)

 fr4 �
im ~L2

0

2l�l� 1�
	� �h�9� � �f0=	��r0

�h�10�
;r � �h�10��
; (B5)

 fr5 �
~L0E0r0

2f0l�l� 1�
� �h�9�;t � f0

�h�8�;r �; (B6)

 fr6 � fr7 � 0: (B7)
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For the t component we have

 ft0 � �
1

4
E2

0
~L2

0f
�3
0 r0

�h�1�;t �
1

4
imE0

~L0�2f0 � E2
0�f
�3
0

�h�1� �
1

2
E2

0
~L2

0f
�3
0 �M=r0� �h

�2� �
1

4
f�2

0 r0
~L2

0�E
2
0 � f0� �h

�3�
;t

�
1

4
im ~L3

0E0f�1
0

�h�3� �
imE3

0
~L0f

�3
0 r0

2l�l� 1�
�h�4�;t �

m2 ~L4
0f
�1
0

2l�l� 1�
�h�4� �

im ~L0E
3
0f
�3
0 �M=r0�

2l�l� 1�
�h�5� �

1

4
~L2

0f�1
0 r0

�h�6�;t

�
1

4
imE0

~Lf�1
0

�h�6� �
m2 ~L2

0�E
2
0 � f0�f�2

0 r0

4l�l� 1�	
�h�7�;t �

imE0
~L3

0�m2 � 4�f�1
0

4l�l� 1�	
�h�7�; (B8)

 

ft1 � �
1

2
~L4

0f
�1
0

�h�2� �
imE0

~L3
0f�1

0

2l�l� 1�
�h�5�

�
1

4
~L2

0�~E
2
0 � f0�f

�2
0 r0

�h�6�;t �
1

4
imE0

~L3
0f
�1
0

�h�6�

�
imE0

~L3
0f
�1
0

l�l� 1�	
�h�7�; (B9)

 ft2 � �
~L4

0f
�1
0

2l�l� 1�
�h�4� �

~L2
0�E

2
0 � f0�f

�2
0 r0

4l�l� 1�	
�h�7�;t

�
5imE0

~L3
0f�1

0

4l�l� 1�	
�h�7�; (B10)

 ft3 �
~L2

0�E
2
0 � f0�r0f

�2
0

4l�l� 1�	
�h�7�;t �

imE0
~L3

0f
�1
0

4l�l� 1�	
�h�7�; (B11)

 

ft4 � �
im ~L4

0f
�1
0

2l�l� 1�
�h�8� �

im ~L2
0�E

2
0 � f0�f

�2
0 r0

2l�l� 1�	
�h�10�
;t

�
m2 ~L3

0E0f
�1
0

l�l� 1�	
�h�10� (B12)

 ft5 �
E3

0
~L0f�3

0 r0

2l�l� 1�
�h�8�;t �

E3
0

~L0�M=r0�f�3
0

2l�l� 1�
�h�9�

�
�m2 � 1�E0

~L3
0f�1

0

2l�l� 1�	
�h�10�; (B13)

 ft6 �
E0

~L3
0f
�1
0

2l�l� 1�
� �h�9� � 	�1 �h�10��; (B14)

 ft7 �
E0

~L3f�1
0

2l�l� 1�	
�h�10�: (B15)

APPENDIX C: FORMULAS FOR THE COUPLING
COEFFICIENTS

We give here formulas for reexpanding all angular func-
tions in Eq. (29) in spherical harmonics Ylm��; ’�. The
following identities hold for all l,m and any �, ’. We have

 

sin2�Ylm � �lm��2�Y
l�2;m � �lm�0�Y

lm � �lm��2�Y
l�2;m;

cos� sin�Ylm;� � �lm��2�Y
l�2;m � �lm�0�Y

lm � �lm��2�Y
l�2;m;

sin2�Ylm;�� � �lm
��2�Y

l�2;m � �lm
�0�Y

lm � �lm
��2�Y

l�2;m;

sin�Ylm;� � �lm
��1�Y

l�1;m � �lm
��1�Y

l�1;m;

cos�Ylm � sin�Ylm;� � lm
��1�Y

l�1;m � lm
��1�Y

l�1;m;

sin3�Ylm;� � �lm
��3�Y

l�3;m � �lm
��1�Y

l�1;m � �lm
��1�Y

l�1;m � �lm
��3�Y

l�3;m;

cos�sin2�Ylm;�� � �lm
��3�Y

l�3;m � �lm� Y
l�1;m � �lm

��1�Y
l�1;m � �lm

��3�Y
l�3;m:

(C1)

The coefficients are all constructed from

 Clm �
�

l2 �m2

�2l� 1��2l� 1�

�
1=2
; (C2)

using

 

�lm
��2� � � Cl�1;mCl�2;m; �lm

�0� � 1� C2
lm � C

2
l�1;m;

�lm
��2� � �ClmCl�1;m; (C3)

 

�lm��2� � lCl�1;mCl�2;m; �lm�0� � lC2
l�1;m � �l� 1�C2

lm;

�lm��2� � ��l� 1�ClmCl�1;m; (C4)
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 �lm��2� � l2Cl�1;mCl�2;m;

�lm
�0� � m2 � l�l� 1� � l2C2

l�1;m � �l� 1�2C2
lm;

�lm��2� � �l� 1�2ClmCl�1;m;

(C5)

 �lm��1� � lCl�1;m; �lm��1� � ��l� 1�Clm; (C6)

 lm
��1� � �1� l�Cl�1;m; lm

��1� � �l� 2�Clm; (C7)

 

�lm
��3� � �lCl�1;mCl�2;mCl�3;m;

�lm
��1� � Cl�1;m	l�1� C

2
l�1;m � C

2
l�2;m� � �l� 1�C2

l;m
;

�lm��1� � �Cl;m	�l� 1��1� C2
l�1;m � C

2
l;m� � lC

2
l�1;m
;

�lm��3� � �l� 1�Cl;mCl�1;mCl�2;m; (C8)

 

�lm��3� � l2Cl�1;mCl�2;mCl�3;m;

�lm��1� � Cl�1;m	m2 � l�l� 1� � l2C2
l�1;m

� �l� 1�2C2
l;m � l

2C2
l�2;m
;

�lm
��1� � Cl;m	m2 � l�l� 1� � l2C2

l�1;m � �l� 1�2C2
l;m

� �l� 1�2C2
l�1;m
;

�lm
��3� � �l� 1�2Cl;mCl�1;mCl�2;m: (C9)

APPENDIX D: DETAILS OF NUMERICAL
RESULTS FOR Fr

In this appendix we tabulate data obtained for the radial
component Fr, braking it up into low-l and high-l (ex-
trapolated) contributions, and displaying separately inter-
nal and external values. These data are used in Sec. V for
error analysis.

TABLE VI. Results for the radial component of the SF, broken up into the contribution from l � 15 (computed directly using our
numerical evolution code), and the contribution from the l > 15 tail (estimated as described in Sec. III E). Presented here are internal
values of the SF (i.e., those obtained through taking one-sided derivatives of the perturbation from r! r�0 ). The external values (which
should be the same within numerical error) are given in Table VII below. The values in square brackets in the second column represent
the fractional discretization error �r

discr, as estimated using Eq. (42). �tail;rel is the relative fractional error in Frl>15 (i.e., error expressed
at a fraction of the total SF), which is estimated using Eq. (48). In our analysis we made sure that the error from estimating the
contribution from the large-l tail is kept smaller than the discretization error.

r0=M 	Frl�15
� � �M=��
2 	Frl>15
� � �M=��

2 jFrl>15=F
r
l�15j �tail;rel

6.0 2:497 07� 10�2 [5� 10�4] �5:046 14� 10�4 2:0� 10�2 7� 10�7

6.2 2:440 97� 10�2 [5� 10�4] �4:445 91� 10�4 1:8� 10�2 8� 10�7

6.4 2:378 94� 10�2 [4� 10�4] �3:939 50� 10�4 1:7� 10�2 8� 10�7

6.6 2:313 39� 10�2 [4� 10�4] �3:508 80� 10�4 1:5� 10�2 9� 10�7

6.8 2:246 03� 10�2 [3� 10�4] �3:139 87� 10�4 1:4� 10�2 9� 10�7

7.0 2:178 12� 10�2 [3� 10�4] �2:821 79� 10�4 1:3� 10�2 9� 10�7

7.2 2:110 51� 10�2 [2� 10�4] �2:545 92� 10�4 1:2� 10�2 9� 10�7

7.4 2:043 85� 10�2 [2� 10�4] �2:305 39� 10�4 1:1� 10�2 8� 10�7

7.6 1:978 57� 10�2 [2� 10�4] �2:094 60� 10�4 1:1� 10�2 8� 10�7

7.8 1:914 96� 10�2 [2� 10�4] �1:909 04� 10�4 1:0� 10�2 8� 10�7

8.0 1:853 23� 10�2 [2� 10�4] �1:745 00� 10�4 9:4� 10�3 8� 10�7

9.0 1:57527� 10�2 [1� 10�4] �1:156 33� 10�4 7:3� 10�3 6� 10�7

10.0 1:347 01� 10�2 [2� 10�5] �8:063 27� 10�5 6:0� 10�3 5� 10�7

11.0 1:161 03� 10�2 [1� 10�5] �5:848 61� 10�5 5:0� 10�3 4� 10�7

12.0 1:009 00� 10�2 [9� 10�6] �4:377 83� 10�5 4:3� 10�3 3� 10�7

13.0 8:838 52� 10�3 [7� 10�6] �3:362 46� 10�5 3:8� 10�3 2� 10�7

14.0 7:799 45� 10�3 [8� 10�7] �2:638 66� 10�5 3:4� 10�3 2� 10�7

15.0 6:929 24� 10�3 [4� 10�6] �2:108 75� 10�5 3:0� 10�3 2� 10�7

20.0 4:165 44� 10�3 [1� 10�6] �8:387 46� 10�6 2:0� 10�3 1� 10�7

30.0 1:972 16� 10�3 [5� 10�7] �2:346 90� 10�6 1:2� 10�3 4� 10�8

40.0 1:143 85� 10�3 [2� 10�7] �9:626 17� 10�7 8:4� 10�4 2� 10�8

50.0 7:454 33� 10�4 [6� 10�8] �4:846 66� 10�7 6:5� 10�4 2� 10�8

60.0 5:238 91� 10�4 [2� 10�6] �2:773 74� 10�7 5:3� 10�4 1� 10�8

70.0 3:881 83� 10�4 [1� 10�6] �1:732 93� 10�7 4:5� 10�4 9� 10�9

80.0 2:990 94� 10�4 [9� 10�7] �1:154 05� 10�7 3:9� 10�4 7� 10�9

90.0 2:374 87� 10�4 [6� 10�7] �8:068 02� 10�8 3:4� 10�4 5� 10�9

100.0 1:931 21� 10�4 [5� 10�7] �5:859 95� 10�8 3:0� 10�4 5� 10�9

120.0 1:349 02� 10�4 [3� 10�7] �3:372 48� 10�8 2:5� 10�4 4� 10�9

150.0 8:684 46� 10�5 [2� 10�7] �1:717 21� 10�8 2:0� 10�4 2� 10�9
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TABLE VII. Same as Table VI, here for the external values of the SF.
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