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The equations describing nonradial adiabatic oscillations of differentially rotating relativistic stars are
derived in relativistic slow rotation approximation. The differentially rotating configuration is described
by a perturbative version of the relativistic j-constant rotation law. Focusing on the oscillation properties
of the stellar fluid, the adiabatic nonradial perturbations are studied in the Cowling approximation with a
system of five partial differential equations. In these equations, differential rotation introduces new
coupling terms between the perturbative quantities with respect to the uniformly rotating stars. In
particular, we investigate the axisymmetric and barotropic oscillations and compare their spectral
properties with those obtained in nonlinear hydrodynamical studies. The perturbative description of the
differentially rotating background and the oscillation spectrum agree within a few percent with those of
the nonlinear studies.
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I. INTRODUCTION

Differential rotation can appear in many phases of the
stellar evolution of a neutron star, such as in protoneutron
stars [1,2], in the massive remnant of binary neutron star
mergers [3,4], or as a result of stellar oscillations (r-modes)
that may drive the star into differential rotation via non-
linear effects [5–8]. The differentially rotating phase can
last at most some seconds depending on the dissipative
mechanism that drives the star to uniform rotation, such as
magnetic braking [9,10] and turbulent motion [11,12].

However, this very short period can appear during the
most violent phases of a neutron star’s life, as in the case of
a core collapse or binary merging. This is exactly the time
when we expect to get the strongest emission in gravita-
tional waves. Since the ground based detectors reached
sensitivities which allow the detection of gravitational
wave signals from oscillating or unstable neutron stars
the exact frequencies of the emitted waves are urgently
needed. The study of linear pulsations and stability of
differentially rotating stellar models started more than
three decades ago both in Newtonian and relativistic grav-
ity [13–16]. The spectrum of differentially rotating stars in
Newtonian theory has been studied in the frequency do-
main by [17].

Recently, the effects of differential rotation on the dy-
namical and secular instabilities of the r and f-modes
gained more attention. In Newtonian theory, the r-mode
spectrum has been studied in [18–20], while the f-mode
and the secular stability limits have been investigated in
[21]. In stars that rotate with a high degree of differential
rotation (�c=�s � 10), an m � 2 dynamical instability
can appear even for considerably low rotation rates
(T=jWj �O�10�2�) as suggested in [22,23]. Note that T
is the rotational kinetic energy, W the gravitational poten-
tial energy, and �c and �s the angular velocity at the
center and at the equatorial surface, respectively. In addi-

tion, anm � 1 dynamical instability has been identified for
high degrees of differential rotation and soft equations of
state [24,25]. More recently, the discovery of m � 1 and
m � 2 dynamical instability even for stiff equations of
state has been reported. Studies based on linear analysis
[27,28] suggest that low T=jWj instabilities might be trig-
gered when the corotation points of the unstable modes fall
within the differentially rotating structure of the star. It is
then evident that differentially rotating compact stars got a
renewed interest and there are several recent fully general
relativistic studies related to the issue. For example, slowly
and differentially rotating magnetized neutron stars have
been studied in [29,30], the collapse and black hole for-
mation of magnetized and differentially rotating neutron
stars in [31], and the frequencies for nonlinear axisymmet-
ric pulsations of differentially rotating stars in the Cowling
and conformal flatness approximations in [32,33].

As a further contribution to the direction of understand-
ing stellar differential rotation we present here the equa-
tions describing a slowly and differentially rotating
relativistic star. In our study we use a perturbative analysis
and keep terms up to first order with respect to stellar
rotation. In this first perturbative approach, we neglect all
the spacetime perturbations, i.e. we use the so-called
Cowling approximation since we want to focus on the
behavior of the stellar fluid. The slow rotation approxima-
tion has been extensively used in the study of stellar
perturbations both in Newtonian and in the general rela-
tivistic approach [34–37]. Here we study the spectrum of
axisymmetric perturbations in order to test the accuracy of
our approximation technique against published results by
nonlinear numerical codes [32,33]. The next steps will be
to estimate the oscillation spectrum of the nonaxisymmet-
ric perturbations and furthermore to proceed in studying
the low T=jWj dynamical instability.

The structure of the paper is as follows. In Sec. II we
construct the differentially rotating stellar models, and test
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their accuracy against the equilibrium configurations ob-
tained with nonlinear codes. In Sec. III, we derive the
perturbation equations in the general case of nonbarotropic
and nonaxisymmetric perturbations, which are numerically
solved in Sec. IV for the axisymmetric and barotropic case.
In Sec. V, conclusions are drawn and the future applica-
tions are proposed. The appendix is organized in four
sections. Section A is dedicated to the analytical expres-
sions of the harmonic components of the j-constant rota-
tion law, while all the coefficients of the perturbed
conservation equations are given in Sec. B. The operators
that couple perturbations with different harmonic indices
are introduced in Sec. C. Finally, in Sec. D we discuss the
j-constant rotation law in isotropic coordinates.

Throughout the paper we use geometrical units c �
G � 1. We use a prime ( 0 ) to denote derivatives with
respect to the radial coordinate r and the overdot (_) for
derivatives with respect to the time coordinate t.

II. EQUILIBRIUM CONFIGURATION

The axially symmetric spacetime of a slowly and differ-
entially rotating star can be described by the following line
element:

 

ds2 � �e2�dt2 � e2�dr2 � 2!r2sin2�dt d�

� r2�d�2 � sin2�d�2�; (1)

where �, � are scalar fields that depend on the radial
coordinate r. The metric function !, which describes the
dragging of the reference frames due to the stellar rotation,
is a function of both r and � coordinates. In this paper, we
assume that the stellar interior is described by the perfect
fluid energy-momentum tensor:

 T�� � ��� p�u�u� � pg��; (2)

where � and p denote the total energy density and the
pressure, respectively, and u� is the fluid velocity

 u� � �e��; 0; 0;�e���; (3)

where � � ��r; �� is the angular velocity of the star as
measured by an observer at infinity.

By providing an equation of state (EoS) p � p���, a
rotating equilibrium configuration can be determined by
solving the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions together with the following equation for the metric
function !:

 

!00 �
�

4���� p�re2� �
4

r

�
!0 �

�
16���� p�

�
l�l� 1� � 2

r2

�
e2�! � �16���� p�e2��: (4)

A. Rotation law

In general the differential profile of the angular velocity
� in not known. Still approximate analytic differential
rotating laws have been adopted and used both for
Newtonian and general relativistic configurations (see
[38] and reference therein). Among these laws, the
j-constant rotation law [39,40] guarantees Rayleigh’s
stability against axisymmetric perturbations for inviscid
fluids, and seems to describe quite well not only typically
differentially rotating stars but even the remnant rotational
configurations that arise from the merging of hypermassive
binary systems [4].

The relativistic j-constant rotation law can be perturba-
tively expanded as in [41]:

 ��r; �� �
A2�c � e

�2�!�r; ��r2sin2�

A2 � e�2�r2sin2�
; (5)

where �c denotes the angular velocity at the rotation axis,
while A is the parameter that describes the degree of
differential rotation of the star. For high values of A (e.g.
A� 500 km), the j-constant rotation law (5) tends to a
uniformly rotating configuration, where �! �c.

In the slow rotation approximation, rotation is treated as
a perturbation of a spherically symmetric background
spacetime. Therefore, the tensor harmonic expansion en-
ables us to separate the angular dependence of any pertur-
bative fields from the temporal and radial parts. In this way
the metric function ! and the angular velocity � of the
fluid can then be written as follows:

 !�r; �� � �
X
l

!l�r�
1

sin�
@Pl
@�

; (6)

 ��r; �� � �
X
l

�l�r�
1

sin�
@Pl
@�

; (7)

where Pl�cos�� are the Legendre’s polynomials. The �l
and !l components in Eqs. (6) and (7) are then determined
via the orthogonality relations of the form,

 fl�r� � �
1

4�
2l� 1

l�l� 1�

Z
S2
d ~�f�r; �� sin�

@Pl
@�

; (8)

where f � f�r; �� is a scalar field. In Eq. (8), d ~� denotes
the volume element of the 2-sphere S2. It is worth mention-
ing that for a uniformly rotating star, the only nonvanishing
components of Eqs. (6) and (7) are the ones for l � 1 [42].
In this case, ! depends only on the radial coordinate r and
� is of course constant. For differentially rotating stars,
which are described by the j-constant rotation law, the
components �l can be determined by direct substitution
of Eq. (5) in (8). Then the resulting expression can be split
in two parts:

 �l � INl � IRl ; (9)

where INl is the ‘‘nearly Newtonian’’ part and IRl is the
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‘‘relativistic’’ correction. The definition of these two terms
is given by the following expressions:

 I N
l � �

2l� 1

l�l� 1�

�c

4�

Z
S2
d ~�

A2 sin�

A2 � e�2�r2sin2�

@Pl
@�

;

(10)

 I R
l � �

2l� 1

l�l� 1�

e�2�r2

4�

Z
S2
d ~�

sin3�!�r; ��

A2 � e�2�r2sin2�

@Pl
@�

:

(11)

The parity of the j-constant rotation law implies that the
nonvanishing components in (10) and (11) are the ones
with odd l. The integral INl for l � 1 and l � 3 has been
already calculated in [41], and is analytically written in
Appendix A. Moreover, the integration of the relativistic
term IRl requires an additional expansion of the metric
variable !. Therefore, by inserting Eq. (6) into (11) one
gets

 I R
l �

2l� 1

l�l� 1�

e�2�r2

4�

X
l0
!l0 �r�J l

l0 ; (12)

where J l0
l are given by the following integral relation

 J l0
l �

Z
S2
d ~�

sin2�

A2 � e�2�r2sin2�

@Pl
@�

@Pl0

@�
: (13)

The detailed forms of J 1
1, J 3

1, and J 3
3 are shown in

Appendix A. Our choice to retain only the l � 1 and l �
3 terms for the expression (13) will be justified later in
Sec. IV, where we show that the frequencies of the non-
radial oscillations that we calculate using this approach are
in very good agreement with the ones derived using the full
nonlinear evolution of the fluid background [32,33].

B. Frame dragging in differential rotation

The various components !l of the series expansion (6)
which provides ! will be determined from the solution of
Eq. (4) for the frame dragging. In practice, one substitutes
Eqs. (6) and (7) into Eq. (4), and collects the terms of the
series with the same index l. However, the term IRl de-
scribing the relativistic correction, Eq. (12), introduces a
coupling between the different harmonics, which is due to
the presence of the metric function! in Eq. (5). As a result
the terms !l will be determined as solutions of a system of
coupled ordinary differential equations. In order to sim-
plify the presentation of this system of differential equa-
tions we will write it schematically as:

 L �!� � S���; (14)

where L�	� represents the linear differential operator of the
left-hand side of Eq. (4), while S�	� denotes the linear
operator of the source. When Eq. (14) is expanded into
vector harmonics, it reduces to the following set of equa-
tions

 L �!l� � S�INl � �
2l� 1

l�l� 1�

e�2�r2

4�

X
l0
S�!l0J

l0
l �; (15)

which applies to any value of l. The first two nonvanishing
terms !1 and !3 obey the following coupled system of
equations:

 L �!1� �
3

8�
r2e�2�S�!1J

1
1�

� S�IN1 � �
3

8�
r2e�2�S�!3J

3
1�; (16)

 L �!3� �
7

48�
r2e�2�S�!3J

3
3�

� S�IN3 � �
7

48�
r2e�2�S�!1J

1
3�; (17)

which together with a set of appropriate boundary condi-
tions at the stellar center and at infinity form a boundary
value problem. Actually, the demand for regularity of the
solutions at the stellar center and their decaying asymptotic
behavior suggest the following approximate relations [43]:

 !l � r
l�1; for r! 0; (18)

 !l � r
�l�2; for r! 1: (19)

The numerical method used for the solution of the above
system of equations is described in the next paragraphs.

C. Stellar models

In order to test the accuracy of the perturbative treatment
of stellar differential rotation, which has been introduced in
this paper, we will compare our results with those derived
from the numerical solution of the nonlinear Einstein
equations. Thus we will study a set of stellar models, the
so-called B-models, which have been already adopted in
[32,33]. These models describe barotropic and differen-
tially rotating stars, where the rotating pattern is described
by the j-constant rotation law. For simplicity, a relativistic
barotropic EoS of the form

 p � K	�; (20)

 � � 	�
p

�� 1
; (21)

has been adopted, where 	 is the rest mass density and K
and � the polytropic parameters.

For a given EoS, an equilibrium configuration depends
on three parameters: the central density 	c, the stellar spin
at the rotation axis �c, and the parameter A describing the
degree of differential rotation. For the B-models the poly-
tropic parameters get the values K � 217:858 km2 and
� � 2 while the central rest mass density is fixed to the
value 	c � 5:87
 10�4 km�2. The solution of the TOV
equations provide a stellar model with mass M � 1:40M�
and radius R � 14:151 km. The angular velocity at the
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rotation axis, �c, for some of the B1–B9 models is listed in
Table I. In order to compare our results with those of
nonlinear studies special care has been taken for the inter-
pretation of the parameter A, due to the different coordinate
systems that are commonly used in nonlinear studies and
our perturbative approximation. This issue is explained in
detail in Appendix D, where we show that A should be set
to the value of the isotropic stellar radius.

As we mentioned earlier the two components !1 and!3

of the metric function ! will be the solutions of the
boundary value problem described by the two differential
equations (16) and (17) together with the boundary con-
ditions (18) and (19). By discretizing Eqs. (16) and (17)
using a second order scheme one can construct a tridiag-
onal linear system. This system can be solved using a
standard LU decomposition where the boundary condi-
tions (18) and (19) are appropriately implemented. The
presence of coupling terms on the right-hand side of the
equations calls for an iterative treatment. As a first step a
trial solution !tr

l of (16) and (17) can be determined by
neglecting the coupling source terms, i.e. J 3

1 � J 1
3 � 0.

This trial solution is then substituted only into the source
terms and the system of Eqs. (16) and (17) is solved. This
procedure is repeated until the solution converges. In prac-
tice, only three or four iterations are needed.

In Figs. 1–4, we show the behavior of the angular
velocity � and the metric function ! for the slowly rotat-
ing model B1, see Table I. In Fig. 1 the small contribution
of the ‘‘relativistic corrections’’ I lR in the estimation the
star’s angular velocity is noticeable. The two components
of the metric function, i.e. !1 and !3 are plotted in Fig. 2,
together with initial trial solutions !tr

l . It is worth noticing
an imperceptible correction to the initial trial solution for
l � 1, and the small value of !3 with respect to !1, which
suggests that terms of the perturbative series (6) and (7)
with higher l will not affect the results. The dependence of
�1 and �3 on the differential rotation parameter A is
illustrated in Fig. 3. There one can notice that for increas-
ing values of A the �1 reaches its uniform rotation value
�c, while �3 decreases proportionally as expected.

In order to estimate the accuracy of our approximate
solutions for � and!, we have done a comparison with the

profiles derived by the nonlinear numerical code RNS [44].
The results from RNS and the perturbative solutions for the
B1-model are compared in Fig. 4 on the equatorial plane.
The maximum deviation between the two estimations is

TABLE I. Properties of the background models used in the
paper. The quantities Tc and �c are, respectively, the period and
the angular velocity at the rotational axis, while �e represents
the angular velocity at the equator. All stellar models have mass
M � 1:40M� and radius R � 14:151 km.

Model Tc (ms) �c�
10�2� km�1 �e�
10�2� km�1

B1 1.719 1.218 0.435
B2 1.204 1.740 0.621
B3 0.970 2.160 0.771
B6 0.657 3.189 1.139
B9 0.496 4.219 1.507
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FIG. 1. The harmonic components �1 (upper panel) and �3

(lower panel) of the angular velocity � of the B1 stellar model
are plotted, where �c � 1:2210�2 km�1 and A � 12 km. The
dashed lines display the contribution of the ‘‘nearly Newtonian
term’’ given by Eq. (10).
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Eq. (16), which have been determined without the coupling
terms J 1

3 and J 3
1. The solid lines are instead the final solutions.
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around r � 6 km where the relative error is about 5.5%.
The accuracy could be further improved by taking into
account the l � 5 contributions. However, the nonradial
perturbation equations would become considerably more
complicated due to the presence of extra coupling terms.

As we show in the next section the approximation used
here allows the estimation of the nonradial oscillations
frequencies with an error smaller than 10% even for very
rapidly rotating models, see Table II.

III. PERTURBATION EQUATIONS

In this section, we derive the perturbation equations
which describe the nonradial oscillations of a slowly and
differentially rotating star. The rotation, as described in the
previous section, is treated perturbatively up to the first
order in � [45]. In this work we focus on the spectral
properties of the fluid modes, therefore, we neglect all
metric perturbations, and we use the so-called ‘‘Cowling
approximation.’’ For slowly rotating stars, this method
enables us to determine the frequencies of nonradial pul-
sations with an accuracy of better than 15% with respect to
the nonapproximated approach. In addition, the accuracy
improves for modes with higher harmonic index l and
mode order n [46].

We will consider adiabatic oscillations, where the pres-
sure and density perturbations are related by the following
expression:

 
p �
�1p
p� �


�� p0�r
�
�1

�
� 1

�
; (22)

where �r is the radial component of the fluid displacement
vector �� and � and �1 represent the adiabatic index of the
background and perturbed configurations, respectively.
The adiabatic index � is defined by the following relation:

 � �
p� �
�

dp
d�
; (23)

and sound speed by

 c2
s �

�1

�

dp
d�
: (24)

In the Cowling approximation, the displacement vector ��

is related to the 4-velocity perturbation by

 
u� � g��u
� @�

�

@x�
: (25)

The r component of this equation provides an evolution
equation for �r:

 �@t ��@���
r � e�2���
ur: (26)

The three scalar quantities describing the perturbations
of the total energy density, pressure, and the r component
of the Lagrangian displacement can be expanded in spheri-
cal harmonics,

 
� � 
�lmYlm; (27)

 
p � 
plmYlm; (28)
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FIG. 4. The profiles of � and ! derived from the perturbative
treatment and the nonlinear RNS code compared in this figure.
The solid lines represent the perturbative solutions and dashed
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 �r �
�
�0
�
1�

�1

�

��
�1
�lmYlm: (29)

The perturbation equations can be considerably simplified
if one uses a new functionH, which is related to the energy
density and pressure perturbations by the following rela-
tions

 
plm � Hlm�p� ��; (30)

 
�lm �
�p� ��2

p�1
�Hlm � �lm�: (31)

For barotropic fluids, H becomes the perturbation of the
relativistic enthalpy [47]. Velocity perturbations are also
expanded into vector harmonic expansion and have the
form:

 
ur � �e�
X
lm

u1;lmYlm; (32)

 
u� � �e�
X
lm

�
u2;lm

@Ylm
@�
� u3;lm

@Ylm
@�

1

sin�

�
; (33)

 
u� � �e�
X
lm

�
u2;lm

@Ylm
@�
� u3;lm sin�

@Ylm
@�

�
; (34)

 


ut � ���r; ��
u�

� �e�
X
l0m0

X
lm

�
u2;lm

@Ylm
@�
� u3;lm sin�

@Ylm
@�

�
�l0m0 �r�



1

sin�
@Pl0

@�
; (35)

notice that in the last expression Eq. (7) has been used.
Because of the parity of the tensor harmonics, the non-

radial perturbations can be divided in two classes, the axial
(odd-parity) and polar (even-parity) perturbations. The
polar sector can be described by four perturbation func-
tions: the perturbation of the relativistic enthalpy H�r; t�,
the two velocity perturbations u1�t; r�, u2�t; r�, and the r
component of the displacement vector, �r�r; t�. On the
other hand, in the Cowling approximation, axial perturba-
tions will be described only by the velocity perturbation
function u3�t; r�. Using the perturbed energy-momentum
conservation equations 
�T��

;�� � 0 one can derive a
system of coupled differential equations for Hlm and the
ui;lm which together with Eq. (26) form a complete linear
system of evolution equations for the five unknown per-
turbation functions. The four components of the perturbed
energy-momentum conservation equations get the form:

 �t A�t�lmYlm � �B
�t�
1;lm � B

�t�
2;lmsin2�

@Ylm
@�

� 0; (36)

 

�r A�r�lmYlm � �B
�r�
1;lm � B

�r�
2;lmsin2�

@Ylm
@�

� �C�r�1;lm � C
�r�
2;lmsin2� sin�

@Ylm
@�
� 0; (37)

 

�� �a1;lm � a2;lm cos�� a3;lmsin2�� a���4;lm cos�sin2�



@Ylm
@�
� �b1;lm � b2;lm cos�� b3;lmsin2�

� b���4;lm cos�sin2�
1

sin�
@Ylm
@�

� 0; (38)

 

�� �b1;lm� b2;lm cos�� b3;lmsin2�� b���4;lm cos�sin2�



@Ylm
@�
� �a1;lm� a2;lm cos�� a3;lmsin2�

� a���4;lm cos�sin2�
1

sin�
@Ylm
@�

� �c���1;lm� c
���
2;lmsin2� sin�Ylm � 0; (39)

where all the coefficients Alm, Blm, Clm, ai;lm, bi;lm, and
ci;lm are analytically written in Appendix B. Notice that in
Eqs. (26) and (36)–(39), the background variables! and �
are expanded up to the harmonic index l � 3. The angular
dependence of the above system of equations is removed
by performing angular integrations. As a result, we obtain
the following system of coupled evolution equations for
Hlm, u1;lm u2;lm, u3;lm, and �rlm:

 A�t�lm � im�B�t�1;lm �L�2
1 B�t�2;lm � 0; (40)

 A�r�lm� im�B�r�1;lm�L�2
1 B�r�2;lm��L

�1
1 C�r�1;lm�L�3

1 C�r�2;lm�0;

(41)

 

�a1;lm � im�b2;lm � 2L�1
4 b3;lm �L�2

2 b���4;lm �L�2
3 b���4;lm

� c���1;lm �L�2
1 c���2;lm �L�1

3 a2;lm �L�2
4 a3;lm

�L�3
2 a���4;lm �m

2L�1
4 a���4;lm � 0; (42)

 

�b1;lm � im�a2;lm � 2L�1
4 a3;lm �L�2

3 a���4;lm �L�2
2 a���4;lm

�L�1
3 b2;lm �L�2

4 b3;lm �L�3
2 b���4;lm

�m2L�1
4 b���4;lm �L�1

2 c���1;lm �L�3
3 c���2;lm � 0; (43)

 

_�lm � im��10 � 6�30��lm � e2��2�
�
1�

�1

�

�
�0u1;lm

�
15

2
�30L

�2
1 �lm; (44)

where � � l�l� 1�. The operators L�ji couple perturba-
tions with different harmonic indices l and they are defined
in Appendix C. The final equations can be written in a more
compact form as
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 Plm� im�Plm� ~Al�1;m� ~Pl�2;m��Al�1;m� ~Al�3;m� 0;

(45)

 Alm� im�Alm� ~Pl�1;m� ~Al�2;m��Pl�1;m� ~Pl�3;m� 0;

(46)

where Plm and Alm represent polar and axial perturbation
functions, respectively. The tilded quantities denote the
extra coupling terms introduced by the differentially rotat-
ing background. It is worth noticing that apart from the l�
1 couplings existing in the case of uniform rotation we
have extra couplings l� 2 and l� 3 introduced by the
differential rotation.

According to the classification of [48] the above system
of infinite coupled equations consists of two decoupled
subsystems among which there is no energy exchange.
The first one is the so-called ‘‘axial-led’’ system and con-
sists of the polar radial l � 0 perturbations that couple with
the axial nonradial l � 1, the polar nonradial l � 2, and so
on. The second system is the so-called ‘‘polar-led’’ and
consists of the polar dipole l � 1 perturbations that couple
with the axial nonradial l � 2, the polar nonradial l � 3,
and so on. Since the two subsystems are decoupled in order
to excite both we have to give independent appropriate
initial data for time evolutions. In our study, for both polar
and axial functions with l � 2 we assumed a generic
Gaussian pulse as an initial perturbation. The boundary
conditions on the stellar surface are set by the vanishing of
the Langrangian perturbation of the pressure �P � 0.

IV. NUMERICAL RESULTS

The perturbation equations derived in the previous sec-
tions have been studied numerically in order to compare
the accuracy of the present approach against published
results by nonlinear evolution codes [32]. More specifi-
cally we study the spectral properties of axisymmetric
(m � 0) nonradial oscillations of a slowly and differen-
tially rotating star, where the fluid is described by a baro-
tropic EoS (�1 � �). An extensive study of
nonaxisymmetric perturbations of differentially rotating
relativistic stars for a wide range of EoS will be the subject
of a follow-up paper [49]. In the Cowling approximation,
for barotropic and axisymmetric (m � 0) perturbations the
system of evolution equations (40)–(44) simplifies consid-
erably and reduces to the following four coupled equations:

 

_Hl �

���
2

r
� �0 � 2�0

�
c2
s � �0

�
u1;l � c2

su01;l

�
e2�����

� c2
s�

e2�

r2 u2;l; (47)

 

_u1;l � H0l �
��

2
�

1

r
� �0

�
�$1 � 6$3� �!01 � 6!03

�
L�1

1

�
15

2

�
2
�
1

r
� �0

�
$3 �!03

�
L�3

1

�
u3;l; (48)

 

_u2;l � Hl �
1

�
f2�$1 � 6$3�L

�1
3

� 15��3 � 2!3�L
�3
2 gu3;l; (49)

 

_u3;l��
1

�
f2�$1�6$3�L

�1
3 �30$3L

�3
2 gu2;l

�
r
�
e�2�

�
��2�2r�0��$1�6$3��r�$01�6$03�L

�1
2

�
15

2
��2�2r�0�$3�r$

0
3L

�3
3

�
u1;l; (50)

where u3;l has been redefined as follows:

 u3;l � u3;l �
1

�
r2e�2�

�
�$1 � 6$3�L

�1
2

�
15

2
$3L

�3
3

�
Hl: (51)

Equation (44) of the variable �r becomes trivial for baro-
tropic pulsations, where �1 � �. In fact �r is no longer an
independent dynamical variable as one can argue from
Eqs. (22) and (29).

The polar axisymmetric eigenfrequencies are symmetric
with respect to the reversal of rotation direction, suggesting
that the rotational corrections appear at second order in �
[50]. Therefore, for first order slow rotation approximation
the axisymmetric modes have the same frequencies as the
nonrotating case. However, in Eqs. (47)–(50) some O��2�
coupling terms implicitly show up, such as the last term of
Eqs. (48) and (49). In fact in accordance with Eq. (50), the
axial velocity u3;l is a dynamical variable at O��� pertur-
bative order, while for a nonrotating star it is stationary and
its profile can be chosen on the initial time slice. It is
evident that this stationary initial condition cannot change
the mode frequencies of polar perturbations. Here we use
Eqs. (47)–(50) without discarding the u3;l terms in
Eqs. (48) and (49), in order to investigate the O��2�
corrections of the axial velocity on the polar mode fre-
quencies. However, a complete second order slow rotation
approximation is needed for a proper analysis that will take
into account all coupling terms.

The system of four coupled equations (47)–(50) has
been evolved using second order accurate differencing
methods both in time and in space based on the two step
Lax-Wendroff algorithm. As a result, the numerical code
achieved second order convergence. As initial conditions,
for the enthalpy and the three velocity perturbations we set
a Gaussian pulse, which excites several nonradial modes.
The frequencies of these nonradial modes are then esti-
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mated by carrying out a fast fourier transformation (FFT)
of the resulting time series.

In general, the system of perturbation equations has an
infinite series of coupling terms, which depend on l.
However, we got converging numerical results by keeping
a finite number of equations, i.e. up to an l � lmax. In fact,
starting from a simple configuration, where only a particu-
lar l is considered, one can gradually add up extra coupling
equations until the results show convergence. An example
is shown in Table III, where we tabulated the frequencies of
the fundamental quasiradial mode (F) and the first over-
tone H1 for several simulations assuming different lmax.
The initial perturbed configuration is described by spheri-
cal oscillations, i.e. lmax � 0. By gradually introducing the
dipole lmax � 1 and quadrupole lmax � 2 oscillations, the
quasiradial mode frequencies have been improved. No
further changes have been observed, when lmax � 3 (or
higher) perturbations have been taken into account.
Actually, in this case, convergence has been achieved al-
ready for lmax � 2. Since this behavior is shared also by the
other nonradial modes, we restricted our study up to lmax �
2.

The accuracy of our description has been tested against
published results from a nonlinear code [32] (SAF from
now on) for a sequence of stellar models. The frequencies
of the first two quasiradial (F and H1) and two l � 2
nonradial modes (2f and 2p1) for some of the B-models
are listed in Table II. Although these stellar models de-
scribe very fast rotating stars (see Table I), the perturbative
results show a good agreement (within the limits of the
slow rotation approximation) with those obtained with
nonlinear simulations in SAF. In fact, a difference of the
order of 7% appears only after the B6 model. Errors of this
order are expected for very fast rotating stars since our
results, which are based on the slow rotation approxima-
tion (first order in �), cannot describe the flattening of the
star due to the centrifugal force.

An important aspect to emphasize is that our results do
not show any splitting of the fundamental quasiradial
mode, as observed in SAF. This result supports the argu-
ment in [33], that this effect (splitting) could be an artifact
of the Cowling approximation in the nonlinear regime.

Moreover, we do not observe any significant change in
the frequency of the 2p1-mode in contrast to the results in
SAF where an overall change of the order of 30% has been
observed.

The degree of differential rotation affects the mode
frequencies due to the presence of extra coupling terms
in the perturbation equations (40)–(44). This effect can
then be studied for several B-stellar models by varying the
parameter A, from a highly differentially rotating configu-
ration with A � 12 km to a uniformly rotating star with a
very large A, e.g. A � 500 km. As shown in Fig. 5, the
frequency of the nonradial fundamental 2f mode increases
as the parameter A increases for the whole sequence of B-
models. In particular, the 2f frequency already converges
to its value for uniform rotation when A � 100 km. In this
case, the angular velocity at the equator �e is typically
about 2.5% smaller than �c on the rotational axis. It is
worth noticing that the effect of A on the mode frequencies
is considerably larger for a fast rotating stellar model. As
shown in Table IV, the same behavior has been observed
also for the other quasiradial and nonradial modes. Among
these modes, the F-mode is the most sensitive to the
differential rotation, as it can change up to 25% for the
fastest rotating model B9. Instead, the 2f and 2p1 modes
can change up to 10% and 3%, respectively.

TABLE II. Frequencies of the first two quasiradial (F and H1)
and nonradial (2f and 2p1) modes, for differentially rotating B-
models with A � 12 and lmax � 2. The relative difference be-
tween the perturbative and nonlinear results [32] is shown in
parenthesis.

Model F (kHz) H1 (kHz) 2f (kHz) 2p1 (kHz)

B0 2.706 (0%) 4.547 (0%) 1.846 (0%) 4.100 (0%)
B1 2.712 (2%) 4.555 (2%) 1.895 (< 1%) 4.117 (1%)
B3 2.735 (4%) 4.578 (4%) 1.915 (1%) 4.124 (2%)
B6 2.797 (6%) 4.624 (4%) 1.944 (1%) 4.134 (7%)
B9 2.885 (8%) 4.686 (6%) 1.974 (8%) 4.147 (14%)

TABLE IV. Frequencies, in kHz, of the quasiradial F mode,
and 2f and 2p1 nonradial modes for B-stellar models with
different rotational parameter A.

Modes A [km] B0 B1 B3 B6 B9

F 12 2.706 2.702 2.735 2.797 2.885
50 2.706 2.738 2.849 3.058 3.352
75 2.706 2.764 2.954 3.294 3.747

100 2.706 2.771 2.960 3.313 3.777
2f 12 1.846 1.895 1.915 1.944 1.974

50 1.846 1.928 1.987 2.058 2.117
75 1.846 1.947 2.038 2.111 2.169

100 1.846 1.954 2.040 2.118 2.170
2p1 12 4.100 4.117 4.124 4.134 4.147

50 4.100 4.124 4.143 4.163 4.196
75 4.100 4.130 4.155 4.175 4.209

100 4.100 4.134 4.157 4.176 4.210

TABLE III. Oscillation frequencies of the quasiradial F and
H1 modes for the B1 stellar model. With lmax we denote the
maximum harmonic index that has been used in the estimation. It
is apparent that there is a fast convergence towards the exact
value for relative small values of lmax.

lmax F (kHz) H1 (kHz)

0 2.687 4.551
1 2.710 4.571
2 2.712 4.575
3 2.712 4.575
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V. CONCLUSIONS AND DISCUSSION

In this article we derived the general equations describ-
ing the perturbations of slowly and differentially rotating
neutron stars in the Cowling approximation. The equations
have been derived for spherical stars (slow rotation) on
which the differential rotation has been described via the
j-constant law.

As a first step and test, results have been derived for
axisymmetric, barotropic oscillations. In the system of
perturbation equations some terms of second order
O��2� have been maintained and their effects on the
axisymmetric eigenfrequencies have been studied. The
comparison of the derived results with those produced by
the full nonlinear code [32] suggests that this perturbative
approach can provide quite accurate estimates of the os-
cillation frequencies within the limits of the slow rotation
approximation. A point to be stressed is that since we keep
only terms first order in rotation O��� the background
stellar model is still spherical, and the compactness of
the star M=R remains the same along the sequence of
stellar models. This seems to be one of the most important
reasons for the deviations observed between our results and
those of SAF for the faster rotating members of the B-
model sequence. It is expected that the inclusion of second
order terms in rotation, which will take into account the
flattening of the star, will improve the agreement between
the perturbative results with the nonlinear ones for the very
fast rotating models.

An advantage of this perturbative approach is the nu-
merical simplicity and the ability for an easier physical
interpretation of the derived results. In a follow-up paper

we study the nonaxisymmetric oscillations of differentially
rotating relativistic stars for various EoS with special em-
phasis to the hot EoS.
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APPENDIX A: HARMONIC COMPONENTS OF
THE J-CONSTANT ROTATION LAW

In this appendix we present the explicit expression for
the terms INl and I l

0

l described in Eqs. (10) and (13). Since
the series expansions (6) and (7) for ! and � have been
truncated for l > 3, and that terms with even l vanish due to
the rotation law parity, we show the expressions for har-
monic indices l � 1 and l � 3. The two nearly
‘‘Newtonian terms’’ INl are:

 I N
1 �

3

2

A2

2 �c

2641�
A2


�����������������
A2�2

p ln

0@
�����������������������������������������������
A2�2

p
�

q
�����������������������������������������������
A2�2

p
�

q
1A
375;

(A1)

 

IN3 �
7

12

A2

2 �c

2641� 7:5
A2

2 �
6A2


������������������
A2 � 2

p �
1�

5

4

A2

2

�


 ln

0
@

�������������������������������������������������
A2 � 2

p
� 

q
�������������������������������������������������
A2 � 2

p
� 

q
1
A
375: (A2)

The four terms that contribute in the estimation of the
‘‘relativistic corrections’’ IRl are:

 J 1
1 �

4

3

�

4

2
6422 � 3A2 �

3A4


������������������
A2 � 2

p


 ln

0
@

�������������������������������������������������
A2 � 2

p
� 

q
�������������������������������������������������
A2 � 2

p
� 

q
1
A
3
75; (A3)

 

FIG. 5. The frequency of the 2f mode as a function of the
parameter A is plotted for various B-models. For A � 500 km
the star practically rotates uniformly. The shifting of the mode
frequency between the maximum and minimum values of A
varies from 3% to 10% depending on the model.
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 J 3
1 � J 1

3

� �2�
A2

6

26422 � 15A2 �
3A2�42 � 5A2�
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J 3
3 �

3

7

�

8

2
64�525A6 � 490A42 � 56A24 � 166

�
A4


������������������
A2 � 2
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p
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q
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where we have set  � re��.

APPENDIX B: COEFFICIENTS OF THE
PERTURBED CONSERVATION EQUATIONS

In this appendix we present the coefficients of the per-
turbation equations (36)–(39),
 

A�t�lm � � _Hlm � c2
sl�l� 1�

e2�

r2 u2;lm �

���
2

r
� �0 � 2�0

�


 c2
s � �

0

�
u1;lm � c

2
su
0
1;lm

�
e2�����; (B1)

 B�t�1;lm � ���1 � 6�3 � c2
s�$1 � 6$3�Hlm; (B2)

 B�t�2;lm � �
15
2 �c

2
s$3 ��3�Hlm; (B3)

 A�r�lm � � _u1;lm �H0lm � �
0c�2
s

�
�lm �

�
1�

�1

�

�
Hlm

�
;

(B4)
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2
�
1

r
� �0

�
$1�!

0
1

�
� 6

�
2
�

1

r
� �0

�
$3�!

0
3

��

 u2;lm� ��1� 6�3�u1;lm; (B5)

 B�r�2;lm �
15

2
�3u1;lm �

15

2

�
2$3

�
1

r
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�
�!03

�
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2
�
1

r
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�
$1 �!

0
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�

� 6
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2
�
1

r
� �0

�
$3 �!03

��
u3;lm; (B7)

 C�r�2;lm � �
15

2

�
2$3

�
1

r
� �0

�
�!03

�
u3;lm; (B8)

 a1;lm � � _u2;lm �Hlm � im��1 � 6�3�u2;lm; (B9)

 a2;lm � 2�$1 � 6$3�u3;lm; (B10)

 a3;lm �
15
2 im�3u2;lm; (B11)

 a���4;lm � �15��3 � 2!3�u3;lm; (B12)

 a���4;lm � �30$3u3;lm; (B13)

 b1;lm � � _u3;lm � im��1 � 6�3�u3;lm; (B14)

 b2;lm � �2�$1 � 6$3u2;lm; (B15)

 b3;lm �
15
2 im�3u3;lm; (B16)

 b���4;lm � 15��3 � 2!3�u2;lm; (B17)

 b���4;lm � 30$3u2;lm; (B18)
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where we have used the definitions

 $1�r� � �1�r� �!1�r�; $3�r� � �3�r� �!3�r�:

APPENDIX C: ANGULAR INTEGRATION

Here, we define the linear operators L�ji with i, j 2 N,
which come out from the angular integration of Eqs. (36)–
(39). This procedure relies on the orthogonality properties
of the spherical harmonics, on the following angular inte-
grals:

 

Z
S2
d ~�

�@Y�l0m0
@�

@Ylm
@�
�

1

sin2�

@Y�l0m0
@�

@Ylm
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�
� l�l� 1�
ll0
mm0 ; (C1)
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@Y�l0m0
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�
cos�
sin�

� 
ll0
mm0 ; (C2)

and the two relations:

 cos�Ylm � Ql�1mYl�1m �QlmYl�1m; (C3)

 sin�@�Ylm � Ql�1mlYl�1m �Qlm�l� 1�Yl�1m; (C4)

where Qlm is defined as follows:

 Qlm �

����������������������������������
�l�m��l�m�
�2l� 1��2l� 1�

s
: (C5)

The operators L�1
j which introduce couplings of a pertur-

bation term/expression with harmonic index l with the
term/expression having harmonic indices l� 1 are given
by the following relations:
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X
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Notice that the operator L�1
4 can be defined in terms of the

L�1
1 and L�1

2 operators as follows:

 L�1
4 � �1

2�L
�1
1 �L�1

2 �:

In a similar way the operators L�2
j that introduce cou-

plings of a perturbation expression with harmonic index l
with term/expression with harmonic indices l� 2 are:

 L�2
1 A �

X
l0m0

Al0m0
Z
S2
d ~�Y�lmsin2�Yl0m0

� �Ql�1mQlmAl�2m � �1�Q
2
lm

�Q2
l�1m�Alm �QlmQl�1mAl�2m; (C11)

 

L�2
2 A �

X
l0m0

Al0m0
Z
S2
d ~�@�Y�lm sin� cos�Yl0m0

� ��l� 1�Ql�1mQlmAl�2m

� �lQ2
l�1m � �l� 1�Q2

lmAlm

� lQl�1mQl�2mAl�2m; (C12)

 

L�2
3 A �

X
l0m0

Al0m0
Z
S2
d ~�Y�lm sin� cos�@�Yl0m0

� �l� 2�Ql�1mQlmAl�2m

� �lQ2
l�1m � �l� 1�Q2

lmAlm

� �l� 3�Ql�1mQl�2mAl�2m; (C13)

 

L�2
4 A �

X
l0m0

Al0m0
Z
S2
d ~�

�
@�Y�lm@�Yl0m0

�
1

sin2�
@�Y�lm@�Yl0m0

�
sin2�

� ��l� 2��l� 1�Ql�1mQlmAl�2m � �l�l� 1�

� �l� 1��l� 2�Q2
lm � l�l� 3�Q2

l�1mAlm

� l�l� 3�Ql�1mQl�2mAl�2m: (C14)

Finally, the operators L�3
j that introduce couplings of a

perturbation expression with harmonic index l with terms/
expressions with harmonic indices l� 3 are:
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��l�2��1�Q2
lm�Q

2
l�1m�Al�1m; (C15)
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L�3
2 A�

X
l0m0

Al0m0
Z
S2
d ~�@�Y

�
lm cos�sin2�@�Yl0m0

� ��l� 3��l� 1�Ql�2mQl�1mQlmAl�3m

�Qlm�l�l� 1�Q2
l�1m� �l� 1��l� 1�Q2

lm

� l�l� 1�Q2
l�1mAl�1m�Ql�1m��l� 1�


 �l� 2�Q2
lm� l�l� 2�Q2

l�1m� l�l� 1�Q2
l�2m


Al�1m� l�l� 4�Ql�1mQl�2mQl�3mAl�3m;

(C16)

 

L�3
3 A�

X
l0m0

Al0m0
Z
S2
d ~�@�Y

�
lmsin3�Yl0m0

� �l� 1�Ql�2mQl�1mQlmAl�3m�Qlm��l� 1�

� lQ2
l�1m� �l� 1��Q2

l�1m�Q
2
lm�Al�1m

�Ql�1m�l� �l� 1�Q2
lm� l�Q

2
l�1m

�Q2
l�2m�Al�1m� lQl�1mQl�2mQl�3mAl�3m:

(C17)

APPENDIX D: ROTATION LAW IN ISOTROPIC
COORDINATES

In this appendix, we describe the j-constant rotation law
in isotropic coordinates, and the appropriate transforma-
tion in Schwarzshild coordinates. In isotropic coordinates
the axially symmetric spacetime for a slowly rotating body
can be described by the following metric:

 ds2 � �e2�dt2 � e2��dr̂2 � r̂2�d�2 � sin2�d�2�

� 2e2�!r̂2sin2�dtd�; (D1)

where � and � are functions of the isotropic coordinate r̂.
Equation (D1) has been derived by the slow rotating metric
(1) in the Schwarschild coordinate via the following rela-
tions:

 

dr̂
dr
�
r̂
r

�
1�

2M
r

�
��1=2�

; (D2)

 e� �
r
r̂
; (D3)

where M � M�r� is the mass function in Schwarzshild
coordinates. At the stellar surface the metric functions
must smoothly join the Schwarzshild solution; this leads
to the following matching conditions in isotropic coordi-
nates

 e� �
�
1�

M
2r̂

��
1�

M
2r̂

�
�1
; (D4)

 e� �
�
1�

M
2r̂

�
2
: (D5)

The stellar radius R̂, in isotropic coordinates, is given in
terms of the stellar mass M and the radius R in
Schwarzshild coordinates by the following relation:

 R̂ � 1
2�R�M�

�����������������������
R2 � 2MR

p
�: (D6)

Finally, the relativistic j-constant rotation law can be de-
termined via the relation:

 utu� � Â2��c ���; (D7)

which leads to the following expression of the angular
velocity profile:

 ��r̂; �� �
Â2�c � e2�����r̂2sin2�!�r̂; ��

Â2 � e2�����r̂2sin2�
; (D8)

where Â is a parameter that describes the degree of differ-
ential rotation in isotropic coordinates. By defining a new
function

 x̂ � e���
r̂

Â
sin�; (D9)

we can rewrite Eq. (D8) in a more compact form i.e.

 

��r̂; ��
�c

�
1� x̂2!�r̂; ��=�c

1� x̂2 : (D10)

It is worth noticing that Eq. (5) can be written in the same
form of Eq. (D10) if the function x̂ is replaced by

 x � e��
r
A

sin�: (D11)

Equations (5) and (D8) are obviously related by the coor-
dinate transformation between isotropic and Schwarzshild
coordinates. A typical choice for Â is to set its value equal
to the stellar radius R̂, which, as we show later, corresponds
to �e ��c=3. This relation between the angular velocity
at the equator and the rotation axis seems to be in good
agreement with the rotation patterns estimated in the rem-
nants of hypermassive binary mergers [4]. The matching
conditions (D4) and (D5) lead to the following expression
for x̂e at the equator:

 x̂ e �
�
1�

M

2R̂

�
3
�
1�

M

2R̂

�
�1 R̂

Â
: (D12)

A coordinate transformation leads to the following expres-
sion for xe in Schwarzshild coordinates:

 xe �
�
1�

2M
R

�
�1=2 R

Â
: (D13)

From Eqs. (D10)–(D13), it is worth noticing that the ratio
�e=�c depends practically on the compactness of the star.
In order to set up an equilibrium configuration in
Schwarzshild coordinates, which has the same value of
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�e=�c as the one used in nonlinear calculations in iso-
tropic coordinates, the natural choice is A � Â as it comes
out from the Eqs. (D11) and (D13). For example, for a
polytropic stellar model with mass M � 1:4M� and radius

R � 14:151 km, Eq. (D6) gives R̂ � 12 km and leads to
x̂e � 1:4. By neglecting the corrections given by the metric
function ! in Eqs. (5) and (D8), the choice A � R̂ leads to
xe � x̂e and �e � 0:33�c in both coordinate systems.

[1] H. Dimmelmeier, J. A. Font, and E. Müller, Astron.
Astrophys. 393, 523 (2002).

[2] C. D. Ott, A. Burrows, E. Livne, and R. Walder,
Astrophys. J. 600, 834 (2004).

[3] F. A. Rasio and S. L. Shapiro, Astrophys. J. 432, 242
(1994).

[4] M. Shibata and K. Uryu, Phys. Rev. D 61, 064001 (2000).
[5] L. Rezzolla, F. K. Lamb, and S. L. Shapiro, Astrophys. J.

531, L139 (2000).
[6] Y. Levin and G. Ushomirsky, Mon. Not. R. Astron. Soc.

324, 917 (2001).
[7] N. Stergioulas and J. A. Font, Phys. Rev. Lett. 86, 1148

(2001).
[8] P. M. Sá, Phys. Rev. D 69, 084001 (2004).
[9] S. L. Shapiro, Astrophys. J. 544, 397 (2000).

[10] J. N. Cook, S. L. Shapiro, and B. C. Stephens, Astrophys.
J. 599, 1272 (2003).

[11] D. J. Hegyi, Astrophys. J. 217, 244 (1977).
[12] Y. T. Liu and S. L. Shapiro, Phys. Rev. D 69, 044009

(2004).
[13] B. F. Schutz, Jr., Astrophys. J. Suppl. Ser. 24, 319 (1972).
[14] B. F. Schutz, Jr., Astrophys. J. Suppl. Ser. 24, 343 (1972).
[15] F. H. Seguin, Astrophys. J. 179, 289 (1973).
[16] F. H. Seguin, Astrophys. J. 197, 745 (1975).
[17] C. J. Hansen, J. P. Cox, and H. M. van Horn, Astrophys. J.

217, 151 (1977).
[18] S. Karino, S. Yoshida, and Y. Eriguchi, Phys. Rev. D 64,

024003 (2001).
[19] M. A. Abramowicz, L. Rezzolla, and S. Yoshida, Classical

Quantum Gravity 19, 191 (2002).
[20] L. Rezzolla and S. Yoshida, Classical Quantum Gravity

18, L87 (2001).
[21] S. Yoshida, L. Rezzolla, S. Karino, and Y. Eriguchi,

Astrophys. J. 568, L41 (2002).
[22] M. Shibata, S. Karino, and Y. Eriguchi, Mon. Not. R.

Astron. Soc. 334, L27 (2002).
[23] M. Shibata and Y.-I. Sekiguchi, Phys. Rev. D 71, 024014

(2005).
[24] J. M. Centrella, K. C. B. New, L. L. Lowe, and J. D. Brown,

Astrophys. J. 550, L193 (2001).
[25] M. Saijo, T. W. Baumgarte, and S. L. Shapiro, Astrophys.

J. 595, 352 (2003).
[26] S. Ou and J. E. Tohline, Astrophys. J. 651, 1068 (2006).

[27] A. L. Watts, N. Andersson, and D. I. Jones, Astrophys. J.
618, L37 (2005).

[28] M. Saijo and S. Yoshida, Mon. Not. R. Astron. Soc. 368,
1429 (2006).

[29] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D
74, 044030 (2006).

[30] M. D. Duez, Y. T. Liu, S. L. Shapiro, and M. Shibata, Phys.
Rev. D 73, 104015 (2006).

[31] B. C. Stephens, M. D. Duez, Y. T. Liu, S. L. Shapiro, and
M. Shibata, gr-qc/0610103.

[32] N. Stergioulas, T. A. Apostolatos, and J. A. Font, Mon.
Not. R. Astron. Soc. 352, 1089 (2004).

[33] H. Dimmelmeier, N. Stergioulas, and J. A. Font, Mon.
Not. R. Astron. Soc. 368, 1609 (2006).

[34] Y. Kojima, Phys. Rev. D 46, 4289 (1992).
[35] K. H. Lockitch and J. L. Friedman, Astrophys. J. 521, 764

(1999).
[36] J. Ruoff and K. D. Kokkotas, Mon. Not. R. Astron. Soc.

328, 678 (2001).
[37] A. Stavridis and K. D. Kokkotas, Int. J. Mod. Phys. D 14,

543 (2005).
[38] N. Stergioulas, Living Rev. Relativity 6, 3 (2003).
[39] H. Komatsu, Y. Eriguchi, and I. Hachisu, Mon. Not. R.

Astron. Soc. 237, 355 (1989).
[40] H. Komatsu, Y. Eriguchi, and I. Hachisu, Mon. Not. R.

Astron. Soc. 239, 153 (1989).
[41] A. Passamonti, M. Bruni, L. Gualtieri, A. Nagar, and C. F.

Sopuerta, Phys. Rev. D 73, 084010 (2006).
[42] J. B. Hartle, Astrophys. J. 150, 1005 (1967).
[43] J. B. Hartle, Astrophys. J. 161, 111 (1970).
[44] N. Stergioulas and J. L. Friedman, Astrophys. J. 444, 306

(1995).
[45] J. Ruoff, A. Stavridis, and K. D. Kokkotas, Mon. Not. R.

Astron. Soc. 332, 676 (2002).
[46] S. Yoshida and Y. Kojima, Mon. Not. R. Astron. Soc. 289,

117 (1997).
[47] J. R. Ipser and R. H. Price, Phys. Rev. D 43, 1768 (1991).
[48] K. H. Lockitch, N. Andersson, and J. L. Friedman, Phys.

Rev. D 63, 024019 (2000).
[49] A. Passamonti, A. Stavridis, and K. D. Kokkotas (unpub-

lished).
[50] J. B. Hartle, K. S. Thorne, and S. M. Chitre, Astrophys. J.

176, 177 (1972).

NONRADIAL OSCILLATIONS OF SLOWLY AND . . . PHYSICAL REVIEW D 75, 064019 (2007)

064019-13


