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We show that the S1-rotating black rings can be superposed by the solution-generating technique. We
analyze the black diring solution for the simplest case of multiple rings. There exists an equilibrium black
diring where the conical singularities are cured by the suitable choice of physical parameters. Also there
are infinite numbers of black dirings with the same mass and angular momentum. These dirings can have
two different continuous limits of single black rings. Therefore, we can transform the fat black ring to the
thin ring with the same mass and angular momentum by way of the diring solutions.
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I. INTRODUCTION

One of the most important recent findings of the higher-
dimensional general relativity is a single-rotational black
ring solution by Emparan and Reall [1]. (See also [2].) This
solution is an axially symmetric and asymptotically flat
solution of the five-dimensional vacuum Einstein equa-
tions. The topology of the event horizon is S1 � S2. The
black ring rotates along the direction of S1. The balanced
black ring, which has no conical singularity, has a mini-
mum of angular momentum for a fixed mass parameter.
When the angular momentum is near this minimum, there
are two different black rings with the same angular mo-
mentum. They are called fat and thin black rings according
to their shapes. In addition, we have a single-rotational
spherical black hole [3] with the same asymptotic parame-
ters. This finding entails the discrete nonuniqueness of the
five-dimensional vacuum solutions. It has been shown that
the black rings can have dipole charges which are inde-
pendent of all conserved charges [4]. Therefore, the dipole
rings imply the infinite violation of uniqueness by a con-
tinuous parameter.

We recently found a black ring solution with S2 rotation
by using a solitonic solution-generating technique [5,6].
The seed solution of this ring is a simple Minkowski
spacetime. Because the effect of rotation cannot compen-
sate for the gravitational attractive force, the ring has a kind
of strut structure. We also have generated the black ring
with S1 rotation by the same solitonic solution-generating
technique [7]. The seed solution is not a Minkowski space-
time but an Euclidean C-metric solution. It has been shown
that these two solutions can be obtained by the inverse
scattering method [8–11]. Rotating dipole black ring solu-
tions have been systematically generated in five-
dimensional Einstein-Maxwell-dilaton gravity [12,13].
The relations between the seed and the solitonic solutions
can be understood easily through the analysis of their rod
structures [14,15]. Furthermore, the seed of the S1-rotating
black ring has been constructed by the help of the rod
structure analysis. Thus, the rod structure analysis is ex-

pected to be a useful guide to construct seed solutions for
new solutions.

In this paper we consider the multiplexed S1-rotating
black rings arranged in a concentric pattern. The seed
solution can be constructed by the help of rod structure
analysis as in the case of the S1-rotating black ring [7]. The
exact expressions of metric functions can be written down
by the solitonic transformation, but in rather complicated
forms. Here we analyze diring solutions as the first step in
the black ring multiplication. In the supersymmetric sys-
tem, the solution of multiple black rings do indeed exist
[16,17]. Also, the solution of concentric static extremal
black rings has been considered [18].

The simplest multiple black rings solution is a black
diring. This solution has two ringlike event horizons of
different radii with the same topology of S1 � S2. Both
horizons can rotate along the direction of S1. As similar as
the single black ring solutions, this solution has conical
singularities for general values of parameters. However,
these conical singularities can be cured by an appropriate
choice of the parameters as in the case of the S1-rotating
black ring. The black dirings can have the same mass and
angular momentum for infinite numbers of sets of parame-
ters. Therefore, the black dirings realize an infinite non-
uniqueness without dipole charges. There can exist one
Myers-Perry black hole, two S1-rotating black rings, and
infinite numbers of black dirings for the same mass and
angular momentum. Also, these single black rings are
continuous limits in the black dirings. Therefore, these
two different black rings are connected by the black dirings
with the same mass and angular momentum. When we
shrink the inner ring down to zero radius, we obtain a
solution describing a black hole sitting at the common
center of the outer ring.

The paper is organized as follows. In Sec. II we briefly
review the solution-generating technique used in the analy-
sis. The rod structure analysis is explained in Sec. III. In
Sec. IV, we give the seed solutions of black multiring and
diring solutions and analyze some features of diring solu-
tions, and we give a summary in Sec. V.
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II. BRIEF REVIEW OF SOLUTION-GENERATING
TECHNIQUE

First, we briefly explain the procedure to generate axi-
symmetric solutions in the five-dimensional general rela-
tivity. The spacetimes which we considered satisfy the
following conditions: (c1) five dimensions,
(c2) asymptotically flat spacetimes, (c3) the solutions of
vacuum Einstein equations, (c4) having three commuting
Killing vectors including time translational invariance, and
(c5) having a single nonzero angular momentum compo-
nent. Under the conditions (c1)–(c5), we can employ the
following Weyl-Papapetrou metric form
 

ds2 � �e2U0�dx0 �!d��2 � e2U1�2�d��2 � e2U2�d �2

� e2���U1��d�2 � dz2�; (1)

where U0, U1, U2, !, and � are functions of � and z. Then
we introduce new functions S :� 2U0 �U2 and T :� U2

so that the metric form (1) is rewritten into

 ds2 � e�T��eS�dx0 �!d��2 � eT�2U1�2�d��2

� e2���U1��T�d�2 � dz2�� � e2T�d �2: (2)

Using this metric form, the Einstein equations are reduced
to the following set of equations:

 �i� r2T � 0; �ii�
�
@��T �

3
4���@�T�

2 � �@zT�2�
@z�T �

3
2��@�T@zT�;

�iii� r2ES �
2

ES � �ES
rES 	 rES;

�iv�
� @��S � �

2�ES� �ES�
�@�ES@� �ES � @zES@z �ES�

@z�S �
�

2�ES� �ES�
�@�ES@z �ES � @�ES@z �ES�;

�v� �@��; @z�� � ��1e2S��@z!; @�!�;

�vi� � � �S � �T; �vii� U1 � �
S� T

2
;

where � is defined through the equation (v) and the
function ES is defined by ES :� eS � i�. The most non-
trivial task to obtain new metrics is to solve the
equation (iii) because of its nonlinearity. To overcome
this difficulty here we use the method similar to the
Neugebauer’s Bäcklund transformation [19] or the
Hoenselaers-Kinnersley-Xanthopoulos transformation
[20].

To write down the exact form of the metric functions, we
follow the procedure given by Castejon-Amenedo and
Manko [21]. In the five-dimensional spacetime we start
from the following form of a seed static metric:

 ds2 � e�T
�0�
��eS

�0�
�dx0�2 � e�S

�0�
�2�d��2

� e2��0��S�0� �d�2 � dz2�� � e2T�0� �d �2:

For this static seed solution, eS
�0�

, of the Ernst equation (iii),
a new Ernst potential can be written in the form

 E S � eS
�0� x�1� ab� � iy�b� a� � �1� ia��1� ib�
x�1� ab� � iy�b� a� � �1� ia��1� ib�

;

where x and y are the prolate spheroidal coordinates: � �

�
��������������
x2 � 1
p ��������������

1� y2
p

, z � �xy, with �> 0. The ranges of
these coordinates are 1 
 x and �1 
 y 
 1. The func-
tions a and b satisfy the following simple first-order dif-
ferential equations:

 �x� y�@xa � a��xy� 1�@xS
�0� � �1� y2�@yS

�0��;

�x� y�@ya � a���x2 � 1�@xS�0� � �xy� 1�@yS�0��;

�x� y�@xb � �b��xy� 1�@xS�0� � �1� y2�@yS�0��;

�x� y�@yb � �b���x2 � 1�@xS�0� � �xy� 1�@yS�0��:

(3)

For the typical seed

 S�0� � 1
2 ln�Rd � �z� d��; (4)

the following a and b satisfy the differential Eqs. (3),

 a � l�1
� e2�d;� ; b � �l��e

�2�d;�� ; (5)

where Rd �
�����������������������������
�2 � �z� d�2

p
and

 �d;c �
1
2 ln�e� ~Ud�e2Uc � e2 ~Ud��: (6)

Here the functions ~Ud and Uc are defined as ~Ud :� 1
2 �

ln�Rd � �z� d�� and Uc :� 1
2 ln�Rc � �z� c��. Because

of the linearity of the differential Eqs. (3) for S�0�, we can
easily obtain a and b which correspond to a general seed
function.

The metric functions for the five-dimensional metric (2)
are obtained by using the formulas shown by [21],

 eS � eS
�0� A
B
; (7)

 ! � 2�e�S
�0� C
A
� C1; (8)

 e2� � C2�x2 � 1��1Ae2�0 ; (9)

whereC1 andC2 are constants and A, B, and C are given by
 

A :� �x2 � 1��1� ab�2 � �1� y2��b� a�2;

B :� ��x� 1� � �x� 1�ab�2 � ��1� y�a� �1� y�b�2;

C :� �x2 � 1��1� ab���1� y�b� �1� y�a�

� �1� y2��b� a��x� 1� �x� 1�ab�:

In addition, the �0 in Eq. (9) is a � function corresponding
to the static metric,
 

ds2 � e�T
�0�
��e2U�BH�

0 �S�0� �dx0�2 � e�2U�BH�
0 �S�0��2�d��2

� e2��0�U�BH�
0 ��S�0� �d�2 � dz2�� � e2T�0� �d �2; (10)
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where U�BH�
0 � 1

2 ln�x�1
x�1�. Therefore, the function �0 obeys

the following equations:

 @��0 �
1
4���@�S

0�2 � �@zS0�2� �
3
4���@�T

0�2 � �@zT0�2�;

(11)

 @z�0 �
1
2��@�S

0@zS0� �
3
2��@�T

0@zT0�; (12)

where the first terms are contributions from equation (iv)
and the second terms come from equation (ii). Here the
functions S0 and T0 can be read out from Eq. (10) as

 S0 � 2U�BH�0 � S�0�; (13)

 T0 � T�0�: (14)

To integrate these equations we can use the following fact
that the partial differential equations

 @��0cd � ��@� ~Uc@� ~Ud � @z ~Uc@z ~Ud�; (15)

 @z�0cd � ��@� ~Uc@z ~Ud � @� ~Ud@z ~Uc�; (16)

have the following solution:

 �0cd �
1
2

~Uc �
1
2

~Ud �
1
4 lnYcd; (17)

where Ycd :� RcRd � �z� c��z� d� � �
2. The general

solution of �0 is given by the linear combination of the
functions �0cd. And then the function T is equal to T�0�, and
U1 is given by the Einstein equation (vii).

III. ROD STRUCTURE ANALYSIS

We give a brief explanation of the rod structure analysis
elaborated by Harmark [15]. See [15] for complete
explanations.

Here we denote the D-dimensional axially symmetric
stationary metric as

 ds2 � Gijdxidyj � e��d�2 � dz2�; (18)

where Gij and � are functions only of � and z and i; j �
0; 1; . . . ; D� 3. The D� 2 by D� 2 matrix field G sat-
isfies the following constraint:

 � �
��������������
j detGj

p
: (19)

The equations for the matrix field G can be derived from
the Einstein equation Rij � 0 as

 G�1rG � �G�1rG�2; (20)

where the differential operator r is the gradient in three-
dimensional unphysical flat space with metric

 d�2 � �2d!2 � dz2: (21)

Because of the constraint � �
��������������
j detGj

p
, at least one

eigenvalue of G��; z� goes to zero for �! 0. However, it
was shown that if more than one eigenvalue goes to zero as

�! 0, we have a curvature singularity there. Therefore,
we consider solutions which have only one eigenvalue go
to zero for �! 0, except at isolated values of z. Denoting
these isolated values of z as a1; a2; . . . ; aN , we can divide
the z axis into the N � 1 intervals
��1; a1�,�a1; a2�; . . . ; �aN;1�, which are called rods.
These rods correspond to the source added to Eq. (20) at
� � 0 to prevent the breakdown of the equation there.

The eigenvector for the zero eigenvalue of G�0; z�

 v � vi
@
@xi

; (22)

which satisfies

 Gij�0; z�v
i � 0; (23)

determines the direction of the rod. If the value of Gijv
ivj

�2 is

negative (positive) for �! 0, the rod is called timelike
(spacelike). Each rod corresponds to the region of the
translational or rotational invariance of its direction. The
timelike rod corresponds to a horizon. The spacelike rod
corresponds to a compact direction.

IV. S1-ROTATING BLACK MULTIRING

The n-multiplexed S1-rotating black ring can be ob-
tained in the following manner. First we prepare the seed
solution of multirings as in Fig. 1. To assure the asymptot-
ical flatness, we need two semi-infinite spacelike rods in
the different directions. There is a finite spacelike rod with
the direction vector @=@� around the z � 0. Between this
finite rod and the semi-infinite spacelike rod of the �
direction, we alternately arrange n spacelike rods in a  
direction and �n� 1� static finite timelike rods. The finite
spacelike rod of the � direction is changed to a finite
timelike rod with � rotation by the solitonic transforma-
tion [6,7]. In addition, the finite timelike rods of seed
solution can get the � components in their direction vec-
tors through the transformation.

In the following we investigate the simplest multiple
black rings, i.e., the black diring solution. The rod structure
of the seed and the diring solution are given in Fig. 2. The
rod structure of the diring is determined by 4 lengths of
finite rods and 2 angular velocities of timelike rods. We
have 5 physical parameters: �1, �2, �1, �2, and �, except
for the freedom of scaling. These parameters should satisfy
the condition �1<�1 <�2 < 1< �1 < �2 < � for the
diring solution. Note that when we set �2 � �, the inner
ring shrinks to an S3 sphere. When �1 � �2, these struc-
tures are exactly the same as the case of a single S1-rotating
black ring.

The seed functions of black diring are given by the
following functions:

 T�0� � ~U�� � ~U�1� �
~U�2� �

~U�1� �
~U�2�; (24)
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 S�0� � ~U�� � � ~U�1� �
~U�2�� �

~U�1� �
~U�2�: (25)

The corresponding auxiliary potentials of solitonic solu-
tions are obtained as
 

a �
	

2�1=2

e2U� � e2 ~U��

e ~U��

e
~U�1�

e2U� � e2 ~U�1�

e2U� � e2 ~U�2�

e
~U�2�

�
e2U� � e2 ~U�1�

e
~U�1�

e
~U�2�

e2U� � e2 ~U�2�
; (26)

 

b � 2�1=2

e ~U��

e2U�� � e2 ~U��

e2U�� � e2 ~U�1�

e
~U�1�

e
~U�2�

e2U�� � e2 ~U�2�

�
e

~U�1�

e2U�� � e2 ~U�1�

e2U�� � e2 ~U�2�

e
~U�2�

; (27)

where 	 and 
 are integration constants. The functions S0

and T0 in Eqs. (11) and (12) are obtained as
 

S0 � 2U�BH�0 � S�0�

� 2� ~U� � ~U��� � ~U�� � � ~U�1� �
~U�2��

� ~U�1� �
~U�2�; (28)

 T0 � T�0� � ~U�� � ~U�1� �
~U�2� �

~U�1� �
~U�2�; (29)

therefore, the function �0 becomes the following sum of the
functions �0cd,

 �0 � �0�;� � �
0
��;�� � �

0
��;�� � �

0
�1�;�1�

� �0�2�;�2�

� �0�1�;�1� � �
0
�2�;�2� � 2�0�;�� � �0�;�� � �

0
�;�1�

� �0�;�2�
� �0�;�1� � �

0
�;�2� � �

0
��;�� � �

0
��;�1�

� �0��;�2�
� �0��;�1� � �

0
��;�2� � �

0
��;�1�

� �0��;�2�
� 2�0��;�1�

� 2�0��;�2�
� 2�0�1�;�2�

� �0�1�;�1�
� �0�1�;�2�

� �0�2�;��1�
� �0�2�;�2�

� 2�0�1�;�2�:

Using these functions we can write down the metric func-
tions of a black diring. The constants C1 and C2 of Eq. (8)
and (9) are fixed as

 C1 �
2�1=2	
1� 	


; C2 �
1���

2
p
�1� 	
�2

;

to assure that the spacetime does not have global rotation
and that the periods of � and  become 2� at infinity,
respectively.

To make the metric component g�� be regular, we have
to set the integration constants 	 and 
 as

 

FIG. 2. Schematic pictures of rod structures of black diring and its seed. The left panel shows the rod structure of seed metric of
S1-rotating black diring. The right panel shows the rod structure of S1-rotating black diring. The finite spacelike rod ��1�;�2�� in the
left panel is altered to the finite timelike rod by the solution-generating transformation.

 

FIG. 1. Schematic pictures of rod structures of multiring and its seed. The left panel shows the rod structure of seed metric of
S1-rotating black multiring. The right panel shows the rod structure of S1-rotating black multiring. The finite spacelike rod ��1�;�2��
in the left panel is altered to the finite timelike rod by the solution-generating transformation. All static timelike rods may be
transformed to stationary ones by the solitonic transformation. To denote the rotation of the event horizons, we put the finite timelike
rods between the lines of x0 and �.
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 	 � �

���������������������������������������������������
2��1 � 1��1� �2�

��� 1���2 � 1��1� �1�

s
;


 � �

���������������������������������������������������
��� 1���2 � 1��1� �1�

2��1 � 1��1� �2�

s
:

(30)

These conditions also assure the nonexistence of closed
timelike curves around the event horizons.

To cure the conical singularities, we have to set the
periods of angular coordinates appropriately. The periods
of the coordinates � and  are defined as

 �� � 2�lim
�!0

�������������
�2g��
g��

vuut and � � 2�lim
�!0

�������������
�2g��
g  

vuut :

(31)

We already set the periods of � and the one of  outside
the ring to be 2�. In addition, the periods of  can be
obtained from
 

� �
2�

1� 	


����������������������������������
��� 1���� �2�

��� 1���� �1�

s �
�� �2

�� �1

�

�

�
1�

�� 1

�� 1
	


�
; (32)

for �2�< z < �� and
 

� �
2�

1�	


��������������������������������������������������������������������������������������
���1���1�1���2�1���1��2���2��1�

���1���1�1���2�1���1��1���2��2�

s

�

�
���2

���1

��
1�
���1���1�1����2�1�

���1���1�1����2�1�
	


�
; (33)

for �2�< z < �1�. The parameters can be adjusted to
make both values of � equal to 2�.

The asymptotic form of ES near the infinity ~r � 1
becomes

 E S � ~r cos�
�

1�
�

~r2

P�	;
; ��

�1� 	
�2
� 	 	 	

�

� 2i�1=2

�
	

1� 	

�

2�cos2�

~r2

Q�	;
; ��

�1� 	
�3
� 	 	 	

�
;

where we introduced the new coordinates ~r and � through
the relations

 x �
~r2

2�
� �� ��1 � �2� � ��1 � �2�; y � cos2�;

(34)

and

 P � 4�1� 	2 � 	2
2�;

Q � 	�2	2 � �1 � �2 � �1 � �2 � �� 3� � 2	2
3

� 
�2�2	
� 1��	2 � 1� � ��1 � �2 � �1 � �2

� �� 1�	2�	
� 2��:

From the asymptotic behavior of the Ernst potential, we
can compute the mass parameterm2 and rotational parame-
ter m2a0 as

 m2 � �
P

�1� 	
�2
; m2a0 � 4�3=2 Q

�1� 	
�3
:

The angular velocities of event horizons are obtained
from the direction vectors of finite timelike rods. For the
finite timelike rod of inner ring ��1�< z < �2��, the
direction vector is calculated as
 

v � �1;�1; 0�;

�1 � �
2
�1� 	
�����

�
p
���� 1�	
� �� 1����2 � 1�	
� �2 � 1�

:

(35)

The outer ring ��1�< z < �2�� has a direction vector

 v � �1;�2; 0�; �2 �
�1� 	
���2
��1 � 1��1� �2� � 	��� 1���2 � 1��1� �1��

2
����
�
p
�2	
��1 � 1��1� �2� � ��� 1���2 � 1��	2�1� �1� � 2	
� 2��

: (36)

When �1 � �1, the inner ring becomes static because of
�1 � 0. In this case the rotation of the outer ring only can
cause the absence of the conical singularity. When �2 � 1,
both rings rotate along the same direction.

Analyzing the mass and angular momentum parameters,
we can show the infinite nonuniqueness of a black diring
which means that the diring solution has a continuous
parameter region to have the same mass and angular mo-
mentum. In addition, there can be two different single ring
limits, thin and fat black rings, of the black diring with the
same mass and angular momentum. Therefore, these two
single rings can be transformed into each other through the
black diring of the same mass and angular momentum.

To show this fact, we consider the black diring of �2 �
1. In Fig. 3, we plot the variable

 

a2
0

m2
�

16Q2

P3 (37)

as a function of �1 and �1. At first we numerically decide
the values of � and �2 for the balanced black diring for
which the right-hand sides of Eqs. (32) and (33) become
2� with respect to given �1 and �1. Next we obtain the

value of
a2

0

m2 by substituting the parameters which satisfy the
condition �1 < �2 < �. The bold line of Fig. 3 is the single
ring limit where �1 � �2. When �1 � �2, we can show
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that Eq. (37) of the equilibrium ring is reduced to the
following form:

 

a2
0

m2
�
�1� �1�

3

8�1
; (38)

which corresponds with the single S1-rotating black ring.
The Fig. 4 is a plot of Eq. (38), where 0:5<�1 < 1
corresponds to the fat ring and �1 < 0:5 the thin ring.

Along the bold line in Fig. 3, the value of
a2

0

m2 has the
same �1 dependence of Eq. (38). Apparently there is a
continuous path of diring between fat and thin black rings
which have the same mass and angular momentum.

V. SUMMARY AND DISCUSSION

In this paper we have shown that the S1-rotating black
ring can be superposed concentrically. The solution of
these multiple rings can be written down by the solitonic
transformation for the appropriately arranged seed solu-
tion. We have obtained the functions needed to write down
the metric of a black diring which is the simplest multiple
S1-rotating black ring. To regularize the metric function,
the integration constants 	 and 
 should be set appropri-
ately. For the equilibrium black diring we need the two
additional conditions of parameters. We have analyzed the
mass and angular momentum of black diring from the
asymptotic form of Ernst potential.

The most important feature of black dirings is that they
entail the infinite nonuniqueness of the vacuum neutral
solutions of five-dimensional general relativity. To show
this, we have numerically plotted the spin parameter of the
equilibrium black dirings as a function of the two indepen-
dent parameters. This plot shows that there are infinite
numbers of black dirings with the same mass and angular
momentum. In addition we have shown that the black
diring can be a pathway between the fat and thin
S1-rotating black rings.

The nonuniqueness we have shown is derived from the
existence of a one-parameter family of black dirings with
the same conserved parameters because we have fixed one
parameter in the analysis. The parameters set for which the
general black dirings have the same conserved parameters
would be a two-dimensional surface in the three-
dimensional parameter space. The physical features of a
black diring will be analyzed in detail.

The generalization of the solution to have two angular
momenta would be important. Recently, the generalization
of the single black ring solution to this direction has been
considered by the inverse scattering method [22] and by a
numerical study [23]. After this work was completed we
noticed Ref. [24], which considers a black saturn: a spheri-
cal black hole surrounded by a black ring. It would be
important to consider the relation between the black saturn
and the black diring solutions.
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