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Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5
and 3.5 post-Newtonian (PN) order (O��v=c�5� and O��v=c�7� beyond Newtonian order), we derive the
equations of motion for binary systems with spinning bodies, including spin-spin effects. In particular we
determine the effects of radiation-reaction coupled to spin-spin effects on the two-body equations of
motion, and on the evolution of the spins. We find that radiation damping causes a 3.5PN order, spin-spin
induced precession of the individual spins. This contrasts with the case of spin-orbit coupling, where we
earlier found no effect on the spins at 3.5PN order. Employing the equations of motion and of spin
precession, we verify that the loss of total energy and total angular momentum induced by spin-spin
effects precisely balances the radiative flux of those quantities calculated by Kidder et al.
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I. INTRODUCTION AND SUMMARY

The relativistic effects of spin may play an important
role in the inspiral of compact binary systems, particularly
involving black holes, and may have observable effects on
the gravitational-wave signal emitted. Spin-orbit and spin-
spin coupling leads to precessions of the spins of the bodies
and of the orbital plane, the latter effect resulting in mod-
ulations of the amplitude of the gravitational waveform
received at a detector. Furthermore, spin effects contribute
directly to the gravitational waveform, and to the overall
emission of energy and angular momentum from the
system.

In the post-Newtonian (PN) approximation to general
relativity, the effects of spin have been derived at various
levels of the PN approximation. Formally, spin-orbit and
spin-spin couplings begin to affect the equations of
motion at the first post-Newtonian order, since they behave
as S �L=mr4 � S1 � S2=mr4 � �mRV��mrv�=mr4 �
�mRV�2=mr4 � �m=r2��, where m, v, r and L denote
mass, orbital velocity, separation and orbital anglar mo-
mentum, respectively, R and V denote the body’s size and
rotational velocity, S denotes spin or rotational angular
momentum, and �� v2 � V2 �m=r�m=R denotes the
standard small ‘‘bookeeping parameter’’ of post-
Newtonian theory (we use units in which G � c � 1)
[1]. Spin evolution effects can also be seen to be 1PN-
order effects. Indeed, the 1PN effects of spin have been
derived by numerous authors from a variety of points of
view, ranging from formal developments of the GR equa-
tions of motion in multipole expansions [2,3], to post-
Newtonian calculations [4], to treatments of linearized
GR as a spin-two quantum theory [5,6]. For a review of
these various approaches, see [7]. The effects of spin on the

gravitational waveform and on the energy and angular
momentum flux were worked out by Kidder et al. [8,9].
Post-Newtonian corrections of the leading spin terms have
also been analyzed [10,11].

In Paper III of this series [12], we derived, from first
principles, the leading effects of spin-orbit coupling in the
equations of motion at radiation-reaction order, specifi-
cally at 3.5PN order, orO��7=2� beyond Newtonian gravity.
We also showed explicitly that radiation reaction had no
effect, via spin-orbit coupling, on the individual spins
themselves. In this paper, we extend this analysis to spin-
spin coupling. As before, the leading contributions occur at
3.5PN order.

We use the hydrodynamic equations of motion derived
through 3.5PN order in Papers I and II [13,14], and calcu-
late the equations of motion and spin evolution for two
spinning, finite-sized bodies. We restrict our attention to
contributions that involve the products of the two spins. To
this end, for each body A, we decompose velocities into a
center-of-mass part and an internal (rotational) part accord-
ing to v � vA 	 �v, and expand all gravitational potentials
about the center of mass of each body using a similar
decomposition, x � xA 	 �x, and retain only terms that
contain the product �m �x �v�1�m �x �v�2 � S1S2. We do not
keep terms proportional to the squares of individual spins;
these represent another class of spin effects that will be
studied elsewhere.

Adopting a specific definition of ‘‘proper spin’’ SA, as
defined in Paper III [see Eq. (2.15)], we find the two-body
equations of motion
 

a � �
m

r2 n	 aPN 	 aPN�SO 	 aPN�SS 	 . . .	 a2:5PN

	 a3:5PN 	 a3:5PN�SO 	 a3:5PN�SS 	 . . . ; (1.1)

where a � a1 � a2 is the relative acceleration. The 1PN
spin-spin terms are standard, and are given by
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aPN�SS � �
3

�r4 �n�S1 � S2� 	 S1�n � S2� 	 S2�n � S1� � 5n�n � S1��n � S2��; (1.2)

and the 3.5PN spin-spin contributions, derived in this paper, are given by
 

a3:5PN�SS �
1
r5fn��287 _r2 � 99v2 	 541

5
m
r � _r�S1 � S2� � �2646 _r2 � 714v2 	 1961

5
m
r � _r�n � S1��n � S2�

	 �1029 _r2 � 123v2 	 629
10

m
r ���n � S1��v � S2� 	 �n � S2��v � S1�� � 336 _r�v � S1��v � S2��

	 v��171
5 v

2 � 195 _r2 � 67mr ��S1 � S2� � �174v2 � 1386 _r2 � 1038
5

m
r ��n � S1��n � S2�

� 438 _r��n � S1��v � S2� 	 �n � S2��v � S1�� 	 96�v � S1��v � S2��

	 �27
10v

2 � 75
2 _r2 � 509

30
m
r ���v � S2�S1 	 �v � S1�S2� 	 �

15
2v

2 	 77
2 _r2 	 199

10
m
r � _r��n � S2�S1 	 �n � S1�S2�g; (1.3)

where x 
 x1 � x2, r 
 jxj, n 
 x=r, m 
 m1 	m2,
� 
 m1m2=m, v 
 v1 � v2, _r � dr=dt � n � v, and
~LN � x� v. The PN, PN spin-orbit, and 2.5PN contribu-
tions are standard (see Paper III Eqs. (1.2) and (1.5) for the
formulae), the 3.5PN terms were derived in Paper II,
Eq. (1.3), and the 3.5PN spin-orbit terms were derived in
Paper III, Eq. (1.6).

The equations of spin evolution are given by

 

_S 1 � � _S1�PN�S0 	 � _S1�PN�SS 	 � _S1�3:5PN�SS; (1.4)

where the PN spin-orbit terms are standard (see Paper III,
Eq. (1.3)). The PN spin-spin terms are also standard, given
by

 � _S1�PN�SS � �
1
r3�S2 � 3�n � S2�n� � S1: (1.5)

There is no 3.5PN spin-orbit contribution (Paper III), but
we find a 3.5PN spin-spin contribution, given by

 � _S1�3:5PN�SS �
�m

r5

�
2

3
�v � S2� 	 30 _r�n � S2�

�
�n� S1�;

(1.6)

with the equations for S2 obtained by interchanging the
spins.

As a check of these results, we verify explicitly that the
loss of total energy and total angular momentum (including
both orbital and spin) implied by these equations matches
the energy and angular momentum radiated in gravitational
waves, as calculated by Kidder et al. [8,9].

In Paper III, we found that spin-orbit contributions to
radiation reaction had no effect on the proper spin of each
body, i.e. � _S1�3:5PN�SO � 0, and we argued that this made
sense, given that a spinning, axisymmetric body should not
couple to gravitational radiation. Here, however, when the
coupling between the two spins is taken into account, there
is a nontrivial radiation-reaction effect on the spins.
Nevertheless, the effect is a pure precession; the magnitude
of the spins is unaffected. Furthermore, if either of the
spins is aligned with the orbital angular momentum (i.e.
perpendicular to v and n), the other spin is not affected by
radiation reaction.

These equations of motion do not impose any limitations
on the orbits. In particular, they can be used to evolve the

quasicircular inspiral orbits that are typical of those con-
sidered as sources of gravitational radiation detectable by
ground-based later-interferometric detectors of the LIGO-
VIRGO type, as well as highly eccentric orbits of extreme
mass ratio systems that are relevant for the proposed space-
based detector, LISA.

The remainder of the paper presents details. In Sec. II we
derive the equations of motion to PN order, including spin-
spin terms, and show that no spin-spin effects occur at
leading radiation-reaction, or 2.5PN order. This section
illustrates some basic features of the technique of obtaining
the spin effects from the hydrodynamical equations. In
Sec. III we move to 3.5PN order, where the spin-spin
radiation-reaction effects first appear. Section IV presents
concluding remarks.

II. POST-NEWTONIAN AND 2.5PN EQUATIONS OF
MOTION AND SPIN EVOLUTION

A. Foundations

As in Paper III [12], we analyze a binary system con-
sisting of balls of perfect fluid that are sufficiently small
compared to their separation that tidal interactions (and
their relativistic generalizations) can be ignored, but that
are sufficiently extended that they can support a finite
rotational angular momentum, or spin. At Newtonian or-
der, the result is essentially trivial: the equation of motion
for body 1 is d2x1=dt2 � �m2x=r3 	O�mR2=r4�, where
R is the characteristic size of the bodies. Spin plays no role
whatsoever, because the Newtonian interaction does not
depend on velocity. But at post-Newtonian order, there are
velocity-dependent accelerations of the schematic form
mv2=r2, and thus, taking into account the finite size of
the body and expanding about its center of mass, we expect
to find acceleration terms of the form �mVR��
�mVR�0=mr4 � S1S2=mr

4. However, the combination of
finite size and spin introduces an ambiguity in the defini-
tion of the center of mass of each body. This has given rise
to the concept of ‘‘spin supplementary condition’’ (SSC), a
statement about which center-of-mass definition is being
used; this concept is discussed in Paper III, Appendix A. It
turns out that this is an issue only for spin-orbit effects; the
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choice of SSC or of center of mass has no effect on spin-
spin effects at PN or at 3.5PN order.

We will define centers of mass and spins provisionally
using the ‘‘conserved’’, or baryonic density, given by

 �� 
 �
�������
�g
p

u0; (2.1)

where � is the mass energy density as measured by an
observer in a local inertial frame momentarily at rest with
respect to the fluid, g is the determinant of the metric, and
u0 is the time component of the fluid four-velocity.
Assuming that � is proportional to the baryon number
density, then conservation of baryon number leads to the
useful exact continuity equation

 @��=@t	r � ���v� � 0; (2.2)

where vi � ui=u0 is the ordinary (coordinate) velocity of
the fluid. (Greek indices range over spacetime values 0, 1,
2, 3, while Latin indices range over spatial values 1, 2, 3.
Henceforth, spatial vectorial quantities will be handled
using a Cartesian metric.) The baryonic mass, center of
mass and baryonic spin of each body in our system are
defined to be
 

mA 

Z
A
��d3x; (2.3a)

xA 
 m�1
A

Z
A
��xd3x; (2.3b)

SA 

Z
A
�� �x� �vd3x; (2.3c)

where �x � x� xA and �v � v� vA. We also define a two-
index spin quantity

 SijA 
 2
Z
A
�� �x�i �vj�d3x; SijA � �ijkSkA;

SiA �
1

2
�ijkSjkA ;

(2.4)

where �� around indices denotes antisymmetrization. With
these definitions, the baryonic massmA is constant, and the
velocity, acceleration and rate of change of spin of body A
are given by
 

vA � m�1
A

Z
A
��vd3x; (2.5a)

aA � m�1
A

Z
A
��ad3x; (2.5b)

dSA=dt �
Z
A
�� �x� ad3x: (2.5c)

Notice that, by virtue of the definition of center of mass, the
‘‘bar’’ can be dropped from the acceleration in Eq. (2.5c).

B. Baryonic equations of motion and spin evolution

We begin by working to 1PN and 2.5PN order, reproduc-
ing the standard 1PN formulae for spin-spin interactions,
and establishing some results that will be useful when we

go on to 3.5PN order. Since we are only interested in
radiation-reaction aspects of spin, we can ignore the 2PN
terms in the equations of motion; these produce only con-
servative PN corrections to the spin equations of motion
[10].

We use the hydrodynamic equations of motion derived
in Paper II, Eqs. 2.23, 2.24a, 2.24c, with all quantities
expressed in terms of the conserved density ��. They are
given by

 d2xi=dt2 � U;i 	 aiPN 	 a
i
2:5PN; (2.6)

where U is the Newtonian potential, and where
 

aiPN � v2U;i � 4vivjU;j � 4UU;i � 3vi _U	 4 _Vi

	 8vjV�i;j� 	 3
2�

;i
1 ��;i

2 	
1
2

�X;i; (2.7a)

ai2:5PN �
3

5
xj�I
�5�
ij
� 1

3�
ijI
�5�
kk
� 	 2vjI

�4�
ij
	 2U;jI

�3�
ij

	 4
3U

;iI
�3�
kk
� X;ijkI

�3�
jk; (2.7b)

where commas denote partial derivatives, overdots denote
partial time derivatives, and �n� above quantities denotes
the number of total time derivatives. The potentials used
here and elsewhere in the paper are given by the general
definitions

 ��f� 

Z ���t;x0�f�t;x0�

jx� x0j
d3x0;

X�f� 

Z
���t;x0�f�t;x0�jx� x0jd3x0;

(2.8)

with specific potentials given by

 U � ��1�; Vi � ��vi�; �1 � ��v2�;

�2 � ��U�; X � X�1�; Xi � X�vi�:
(2.9)

The multipole moment of the system I ij, as well as addi-
tional moments, J ij, J ijk, and Mijkl, that will be relevant
at 3.5PN order, are defined in Paper III, Appendix C (see
also Eq. (3.2)); note that there are no explicit spin-spin
terms in I ij, to the PN order considered.

We now multiply the equation of motion (2.6) by �� and
integrate over body 1, expressing the variables x and v as
x � xA 	 �x and v � vA 	 �v, where A � 1, 2, depending
on the body in which the point lies. To get the acceleration
of body 1, we divide the result bym1. We use Eqs. (2.3) and
(2.5) to simplify where possible. We expand the various
potentials in powers of �x=r, and keep only terms propor-
tional to the product of �v� �x for one body with �v� �x for
the other body.

In Paper III, we also kept internal terms proportional to
�v2 and used virial relations derived in Paper III,
Appendix E to simplify expressions dependent on the
internal structure of each body. While the use of those
virial theorems generated spin-orbit terms at PN order, it
turns out that they generate no spin-spin terms at this order.
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We will deal with the effect of virial theorems on 3.5PN spin-spin terms in Sec. III.
The Newtonian term gives aiN � �m2x

i
12=r

3, where, in this paragraph, to avoid confusion, we denote xi12 
 xi1 � x
i
2,

r 
 jx12j, and n � x12=r. The only PN terms in Eq. (2.7a) that can have a v in one body and a v in the other body and that
could therefore lead to a spin-spin effect are the terms �3vi _U and 8vjV�i;j�. Keeping only the relevant terms, the first of
these gives, for example,

 

�3
1

m1

Z
1
��vi _Ud3x � �3

1

m1

Z
1
���vi1 	 �vi�d3x

�
Z

2
��0�vj2 	 �v0j�

�
nj

r2 	 � �x� �x0�krk
�
xj12

r3

�
	

1

2
� �x� �x0�k� �x� �x0�lrkrl

�
xj12

r3

�
	 . . .

�
d3x0

�
3

4m1
Ski1 S

lj
2r

krl
�
xj12

r3

�
; (2.10)

where unprimed (primed) barred variables are in body
1(2). We also assume that each body is in stationary
equilibrium, with _IijA � �d=dt�

R
A �
� �xi �xjd3x � 0, so thatR

A �
� �xi �vjd3x � SijA=2.

In the combination of PN terms 4 _Vi 	 1
2

�X;i in Eq. (2.7a),
the time derivatives generate accelerations inside the po-
tentials. To the order needed for our purposes, we must
therefore substitute the Newtonian and 2.5PN continuum
terms for those accelerations and carry out the same pro-
cedures for the integrals as described above. However,
while this produces spin-orbit effects (Paper III), it pro-
duces no spin-spin terms.

The resulting 1PN spin-spin contribution to the equation
of motion for body 1 is
 

�ai1�PN�SS �
3

m1r4 �S
ij
1 S

kj
2 n

k 	 Sij2 S
kj
1 n

k 	 Skj1 S
kj
2 n

i

� 5Skj1 S
lj
2 n

inknl�: (2.11)

Substituting Eq. (2.4) and calculating the relative accelera-
tion gives
 

aPN�SS � �
3

�r4 �n�S1 � S2� 	 S1�n � S2� 	 S2�n � S1�

� 5n�n � S1��n � S2��; (2.12)

where the spins here are baryonic spins.
Turning to the 2.5PN terms, Eq. (2.7b), the integrations

lead to no explicit spin-spin terms, so that the 2.5PN
relative acceleration terms are given by
 

�ai�2:5PN �
3
5x
j�I
�5�
ij
� 1

3�
ijI
�5�
kk
� 	 2vjI

�4�
ij
� 1

3
m
r2niI

�3�
kk

� 3m
r2ninjnkI

�3�
jk: (2.13)

However, when we work at 3.5PN order, even though the
multipole moments themselves contain no explicit spin-
spin terms, time derivatives acting on them will produce
spin-spin contributions via the PN spin-spin terms in the
equations of motion.

We calculate the evolution of the spin in a similar
manner. Starting with dSi1=dt � �ijk

R
1 �
� �xjakd3x, we ex-

pand about the baryonic centers of mass, keeping only
terms that depend on a product of �x� �v for each body.
At 1PN order, the only term in Eq. (2.7a) that contributes is
8vjV�i;j�. The result, at 1PN order is

 � _S1�PN�SS � �
1
r3�S2 � 3�n � S2�n� � S1; (2.14)

where again these are baryonic spins. At 2.5PN order, there
is no spin-spin contribution.

C. The proper spin

In Paper III, we defined the proper spin of each body to
be
 

Si1 
 Si1�1	
1
2v

2
1 	 3m2

r � �
1
2�v1 � �v1 � S1��

i

� Si1I
�3�
jj
	 Sj1I

�3�
ij;

S2 
 �1
 2�: (2.15)

The post-Newtonian corrections in Eq. (2.15) arise from
transforming the baryonic spin from our coordinate frame
to a suitable inertial frame comoving with the spinning
body. The 2.5PN terms involving time derivatives of I ij

arise from the fact that the equations of motion at 2.5PN
order may be written in various gauges, such as Burke-
Thorne gauge [15] (in which the 2.5PN radiation-reaction
terms in the acceleration are given by ai2:5PN �
2
5 x

jd5I<ij>=dt5), or Damour-Deruelle gauge [16,17] (the
gauge used in this paper). Including the 2.5PN terms as in
(2.15) is equivalent to defining our spins in the Burke-
Thorne gauge. In any case, such quantities as angular
momentum and energy are well-defined only up to the
order at which they conserved, and one is free to add
2.5PN and 3.5PN order terms to them without affecting
their fundamental conserved properties; including the
2.5PN terms in (2.15) has the property that radiation-
reaction effects in the proper spin do not appear (if they
appear at all) until 3.5PN order. With this definition, the
proper spins SA also satisfy the standard spin-orbit pre-
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cession equations, Paper III, Eq. (1.3). Transforming from
our baryonic spin to the proper spin will generate some
spin-spin terms at 3.5PN order.

D. Conserved total energy and angular momentum

The Newtonian and PN spin-spin terms in the equation
of motion (2.12), and the PN spin-spin terms in the spin
precession Eq. (2.14), together imply conservation of the
total energy and angular momentum of the system, given to
Newtonian and PN spin-spin order by

 

E � ��12v
2 � m

r � �
1
r3��S1 � S2� � 3�n � S1��n � S2��;

(2.16a)

J � �~LN 	 S; (2.16b)

where S � S1 	 S2. Notice that there is no PN spin-spin
contribution to the total angular momentum. In Eq. (2.16)
we have converted the baryonic spins to the proper spins;
the PN corrections in Eq. (2.15) do not introduce new spin-
spin contributions to E or J to the required order, and the

2.5PN corrections can always be dropped as meaningless
terms that have no effect on the conserved quantities.

In Sec. III C we will use these expressions together with
the 3.5PN equations of motion to compare _E and _J with the
corresponding fluxes of radiation to infinity.

III. 3.5PN EQUATIONS OF MOTION AND SPIN
EVOLUTION

A. Equation of motion

To obtain the 3.5PN contributions to the equations of
motion including spin-spin coupling terms, we take the
3.5PN fluid expressions shown in Eq. (D4) of Paper III,
multiply by ��, and integrate over body 1. We follow the
same procedure as in Sec. II B, expanding potentials about
the baryonic centers of mass of the bodies, keeping only
spin-spin terms (terms involving products of �x� �v for one
body with that for the other body). Most terms in Eq. (D4)
of Paper III make only point-mass or spin-orbit contribu-
tions; the only terms that can possibly produce nontrivial
spin-spin terms in either the acceleration or the spin evo-
lution are:

 

�ai3:5PN � �8vkVk;jI
�3�
ij
	 16

3v
jV�i;j�I

�3�
kk
	 8�vjVk;i � vlX�i;l�jk�I

�3�
jk
� 16

45x
jvk�qjkJ

�5�
qi 	 2

45�2�v � x��qik � 2xivj�qjk

	 5xjvi�qjk 	 12xjvk�qij 	 4xkvj�qij�J
�5�
qk 	 2

9�4v
jvk�qij � v2�qik�J

�4�
qk

� 2
9�v

iU;j 	 2vjU;i 	 Vj;i 	 _X;ij��qjkJ
�3�
qk 	 1

15v
j��qjkJ

�5�
qik � �qikJ

�5�
qjk � �qijJ

�5�
qkk� � 1

6v
iM
�4�

kkjj
	 2

3v
jM
�4�

ijkk;

(3.1)

where, to the required order,

 

I ij � �xi12x
j
12;

J ij � ���m ~LiNx
j
12 �

1
2��3�ixj12 � �

ij� � x12�;

J ijk � �m�1� 3�� ~LiNx
j
12x

k
12

	 ��2�ixj12x
k
12 � � � x12�i�jx

k�
12�;

Mijkk � �m�1� 3��r2�vi12v
j
12 �

m
3rn

i
12n

j
12�

� 1
6�m

2r�ni12n
j
12 � 3�ij� � 2��x12 � ��

�ivj�12;

(3.2)

where �m � m1 �m2, � � �=m, �i � �m2=m1�Si1 	
�m1=m2�Si2, and �i � m�Si2=m2 � Si1=m1�. Spin-spin con-
tributions come from terms such as vjVk;id3I jk=dt3, with a
�v in body 1 and a �v in body 2 together with suitable �x’s.
They also come from terms involving the current moments
J qk, where a single spin generated by the prefactor (eg.
xivj�qjk, or viU;j�qjk) is multiplied by the spin of the other
body that appears in J qk. The terms involving d4J qk=dt4

d5J qpk=dt5 and d4Mpqkk=dt4 do not generate spin-spin

terms in the equation of motion (no free �x to go with a
velocity), but do generate terms in the spin evolution.

In addition, when the prefactor of d3J qk=dt3 is inte-
grated over body 1, it yields a prefactor given by��2=9��

�4H �ij�
1 � 3Kij

1 �, where

 H ij
A 


Z
A

Z
A
����0

�v0i�x� x0�j

jx� x0j3
d3xd3x0;

Kij
A 


Z
A

Z
A
����0

�v0 � �x� x0��x� x0�i�x� x0�j

jx� x0j5
d3xd3x0:

(3.3)

However, a virial theorem derived from the requirement
that I

:::ij
A � 0 gives, to the required PN order,

 2H �ij�
1 � 3

2K
ij
1 � �

3
2
m2

r3 S
k�i
1 n

j�k: (3.4)

(See Paper III, Appendix E, for a discussion of virial
relations.) This spin term, combined with those generated
directly by the potentials, and multiplied by the appropriate
spin term in d3J qk=dt3, gives a 3.5PN spin-spin term. This
is the only place where the virial theorems play a role in
spin-spin effects.
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In addition, the combination of 1PN terms 4 _Vi 	 1
2

�X;i in
Eq. (2.7a), will generate accelerations whose 2.5PN terms
will produce 3.5PN contributions; however these produce
no spin-spin terms. We must also re-express the 1PN spin-
spin terms of Eq. (2.11) in terms of the proper spin of
Eq. (2.15); the 2.5PN contributions there will generate
3.5PN spin-spin terms in the equation of motion. Finally,
in the 2.5PN accelerations of Eq. (2.13), we must include
the 1PN spin-spin terms in the equations of motion that are
generated by the many time derivatives; the explicit 1PN
corrections to those moments do not contain spin-spin
terms.

The result for the 3.5PN acceleration of body 1 is an
expression too lengthy to reproduce here. Calculating ai1 �
ai2 and converting all variables to relative coordinates using
x1 � �m2=m�x and x2 � ��m1=m�x, we obtain Eq. (1.3).

B. Spin evolution

We now want to calculate the evolution of the proper
spin S1 to 3.5PN order. A time derivative of Eq. (2.15)
gives

 

_Si1 � _Si1

�
1	 v2

1 	 3
m2

r

�
�

1

2
vi1�v1 � _S1� 	 Si1

�
2v1 � a1 � 3

m2 _r

r2

�
�

1

2
ai1�v1 � S1� �

1

2
vi1�a1 � S1�

� Si1I
�4�
jj
	 Sj1I

�4�
ij
� _Si1I

�3�
jj
	 _Sj1I

�3�
ij: (3.5)

We repeat the method of Sec. II B to determine the con-
tributions of 3.5PN fluid terms to the time derivative of the
baryonic spin S1, by calculating �ijk

R
1 �
� �xjak3:5PNd

3x.
Only the terms displayed in Eq. (3.1) will contribute
spin-spin terms. Notice that, as we have discussed, the
2.5PN contribution to _Si1 (actually a spin-orbit term) can-
cels the first two terms in the last line of Eq. (3.5). For a1,
which appears in the 1PN terms in Eq. (3.5), we must
substitute the 2.5PN equations of motion; however these
make no spin-spin contribution. For _Si1 in the final 2.5PN
terms in Eq. (3.5) we must substitute the 1PN spin-spin

precession equations; finally we must use Eq. (2.15) to
convert from S1 in the 1PN spin-spin terms back to the
proper spin S1; the 2.5PN terms there will generate 3.5PN
contributions to the spin evolution.

The result is the 1PN spin precession of Eq. (1.5), plus a
lengthy 3.5PN expression. However, using the fact that, to
lowest order _S1 � 0, together with the identities listed in
Appendix A, it is straightforward to show that our lengthy
3.5PN expression is almost, but not quite, a pure total time
derivative, given by

 

� _S1�3:5PN�SS �
�m

r5

�
2

3
�v � S2� 	 30 _r�n � S2�

�
�n� S1� 	

d
dt

�
�

15r3

�
�S1�S2�

�
�14���v2� �42� 3�� _r2	 �21	��

m
r

�

� 10n�n � �S1�S2��

�
3�1	��v2� 15�1	�� _r2� �2���

m
r

�
� 90� _rn�v � �S1�S2��

� 45�1	 2�� _rv�n � �S1�S2�� � 5�1� 8��v�v � �S1�S2��

	 3�n � S2��n� S1�

�
3�1	��v2� 15�1	�� _r2	 �56	��

m
r

�
	 27�1	�� _r�v � S2��n�S1�

� 9�2� 3�� _r�n � S2��v�S1� 	 3�1� 4���v � S2��v�S1�

��
; (3.6)

where � � m1=m2. The total time derivative can be elim-
inated by moving it to the left-hand side and absorbing it
into a redefined proper spin S1, which differs from the
original by meaningless 3.5PN correction terms. This is the
same philosophy by which we absorbed the 2.5PN terms
into the initial definition of proper spin in Eq. (2.15). In the
spin-orbit case of Paper III, all the 3.5PN terms could be so
absorbed. However, in the spin-spin case, we find that this
is not the case, and there is a residual contribution to the
spin evolution, given by the first line in Eq. (3.6). Because
there is no unique way to absorb total time derivatives into

_S1, the expression for this residual is not unique, although
its time average over an orbit is. Notice that the residual
term is orthogonal to the spin. In other words, the magni-
tude of the proper spin of body 1 is not affected by
radiation reaction to 3.5PN order, again not surprising for
a spinning axisymmetric body.

Redefining the proper spin, we obtain finally Eq. (1.6).
This represents a pure precession of the spin of body 1
about the radial direction n; however, if the companion
spin is perpendicular to the orbital plane, there is no
effect.
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C. Comparison with fluxes of energy and angular momentum

The fluxes of energy and angular momentum in gravitational waves from a binary with spin-spin interactions were
derived by Kidder et al. [8,9], and are given by

 

dE
dt
� _EN 	 _ESS;

dJ
dt
� _JN 	 _JSS; (3.7)

where we include only the lowest-order ‘‘Newtonian’’ and 1PN spin-spin contributions, given by
 

_EN � �
8

15

�2m4

r4 �12v2 � 11 _r2�; (3.8a)

_ESS � �
4

15

�m2

r6
��S1 � S2��141v2 � 165 _r2� 	 �n � S1��n � S2��807 _r2 � 504v2� 	 71�v � S1��v � S2�

� 171 _r�v � S1��n � S2� � 171 _r�v � S2��n � S1��; (3.8b)

_JN � �
8

5

�2m3

r3
~LN

�
2v2 � 3 _r2 	 2

m
r

�
; (3.8c)

_JSS � 2
5
�
r4f�n� S1�

m
r �6�n � S2� _r� 5�v � S2�� 	 �n� S2�

m
r �6�n � S1� _r� 5�v � S1��

	 �v� S1���n � S2��18v2 � 30 _r2 	 11mr � 	 6�v � S2� _r� 	 �v� S2���n � S1��18v2 � 30 _r2 	 11mr � 	 6�v � S1� _r�

	 1
r
~LN��S1 � S2��60 _r2 � 24v2 � 46mr � 	 5�n � S1��n � S2��24v2 � 84 _r2 	 36mr �

	 90 _r��n � S1��v � S2� 	 �v � S1��n � S2�� � 12�v � S1��v � S2��g: (3.8d)

Kidder [9] did not determine _JSS explicitly, but rather left it
in the form of

 

_J iSS � �
2

5
��ijk

�
I
�2�
hjli
�aN�I

�3�
hkli
�aPN�SS�

	 I
�2�
hjli
�aPN�SS�I

�3�
hkli
�aN�

	
16

9
J
�2�
hjli
S �aN�J

�3�
hkli
S �aN�

�
; (3.9)

where the mass and current multipole moments are given
by Eqs. (3.2), where the angular brackets around indices
denote the symmetric, trace-free part. The notation �aN� or
�aPN�SS� denotes which acceleration, Newtonian or spin-
spin, is to be used for the acceleration generated by the
time derivatives, and the subscript S denotes the spin part
of the current moment J . Following this procedure and
keeping only terms involving the product of S1 with S2, we
obtain Eq. (3.8d).

We now calculate the time derivative of the energy and
angular momentum expressions (2.16), and substitute the
equations of motion, PN spin-spin, 2.5PN point-mass and
3.5PN spin-spin terms, along with the 1PN and 3.5PN spin
precession equations. After recovering the fact that all 1PN
spin-spin contributions cancel, leaving E and J conserved
to that order, we find that the changes in E and J due to
2.5PN and 3.5PN spin-spin radiation reaction are obtained
from the following expressions,
 

_E � �v � �a2:5PN 	 a3:5PN�SS�;

_J � �x� �a2:5PN 	 a3:5PN�SS� 	 _S:
(3.10)

Initially, the results do not match the flux expressions
above. However, by making use of the identities listed in
Appendix A, we can show that the difference between the
expressions in all cases is a total time derivative. These can
thus be absorbed into meaningless 2.5PN and 3.5PN cor-
rections to the definition of total energy and angular mo-
mentum. Notice that the residual 3.5PN precession term
from _S given by the sum of � _S1�3:5PN and � _S2�3:5PN from
Eq. (1.6) exactly balances a corresponding effect in the
orbital part, so that the net _J matches the flux modulo a
total time derivative. Thus we have established a proper
energy and angular momentum balance between the radia-
tion flux and the evolution of the orbit, including spin-spin
effects.

IV. CONCLUSIONS

We have derived the equations of motion for binary
systems of spinning bodies from first principles, including
the effects of gravitational radiation reaction, and incorpo-
rating the contributions of spin-spin coupling at 3.5PN
order. We found that the spin-spin coupling combined
with radiation reaction leads to a small 3.5PN-order pre-
cession of the individual spins. The resulting equations of
motion are instantaneous, dynamical equations, and do not
rely on assumptions of energy balance, or orbital averag-
ing. They may be used to study the effects of spin-spin
interactions on the inspiral of compact binaries numeri-
cally. We have focussed attention on effects involving
products S1S2 of the spins; effects depending quadratically
on the individual spins can in principle also be calculated
with our approach. This will be the subject of future work.
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APPENDIX: EXTRACTING TOTAL TIME
DERIVATIVES

Using the Newtonian equations of motion plus the 1PN
spin-spin terms, it is straightforward to establish a number
of identities, which may be used to extract time derivatives
from 2.5PN and 3.5PN terms in the expressions (3.6) and
(3.10). For any non-negative integers s, p and q, we obtain

 

d
dt

�
v2s _rp

rq

�
�
v2s�2 _rp�1

rq	1

�
pv4 � �p	 q�v2 _r2 � 2s _r2 m

r
� pv2 m

r
� 3p

v2

�r3 ��S1 � S2� � 3�n � S1��n � S2��

� 6s
_r

�r3 � _r�S1 � S2� 	 �v � S1��n � S2� 	 �v � S2��n � S1� � 5 _r�n � S1��n � S2��

�
;

d
dt

�
v2s _rp

rq
~LN

�
�
v2s�2 _rp�1

rq	1

��
pv4 � �p	 q�v2 _r2 � 2s _r2 m

r
� pv2 m

r
� 3p

v2

�r3 ��S1 � S2� � 3�n � S1��n � S2��

� 6s
_r

�r3 � _r�S1 � S2� 	 �v � S1��n � S2� 	 �v � S2��n � S1� � 5 _r�n � S1��n � S2��

�
~LN

�
v2 _r

�r2 ��n� S1��n � S2� 	 �n� S2��n � S1��

�

(A1)

Another set of identities, to be used only in 3.5PN terms, requires only the Newtonian equations of motion:

 

d
dt

�
v2s _rp

rq
xixj

�
�
v2s�2 _rp�1

rq	1

��
pv4 � �p	 q�v2 _r2 � 2s _r2 m

r
� pv2 m

r

�
xixj 	 2v2 _rrx�ivj�

�
;

d
dt

�
v2s _rp

rq
vivj

�
�
v2s�2 _rp�1

rq	1

��
pv4 � �p	 q�v2 _r2 � 2s _r2 m

r
� pv2 m

r

�
vivj � 2m

v2 _r

r2 x
�ivj�

�
;

d
dt

�
v2s _rp

rq
xivj

�
�
v2s�2 _rp�1

rq	1

��
pv4 � �p	 q�v2 _r2 � 2s _r2 m

r
� pv2 m

r

�
xivj 	 v2 _rr

�
vivj �

m
r
ninj

��
:

(A2)
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