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A common feature of all quantum gravity (QG) phenomenology approaches is to consider a
modification of the mass-shell condition of the relativistic particle to take into account quantum
gravitational effects. The framework for such approaches is therefore usually set up in the cotangent
bundle (phase space). However it was recently proposed that this phenomenology could be associated with
an energy dependent geometry that has been coined ‘‘rainbow metric’’. We show here that the latter
actually corresponds to a Finsler geometry, the natural generalization of Riemannian geometry. We
provide in this way a new and rigorous framework to study the geometrical structure possibly arising in
the semiclassical regime of QG. We further investigate the symmetries in this new context and discuss
their role in alternative scenarios like Lorentz violation in emergent spacetimes or deformed special
relativity-like models.
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I. INTRODUCTION

The quest for a quantum theory of gravity (QG) has
nowadays a long standing record that stretches for several
decades in the past. While this research has led to great
achievements in theoretical physics the final answer still
remains hidden to us. In particular the lack of observational
and experimental tests has been a constant problem in the
development of QG models. Fortunately in the last decades
the improved sensitivity of our experiments and observa-
tions has lead to unexpected opportunities to test sub-
Planckian consequences of several QG scenarios. Among
these opportunities let us remember deviations from
Newton’s law at very short distances [1,2], Planck-scale
fuzziness of spacetime [3], possible production in TeV-
scale QG scenarios of mini-black holes at colliders [4] or in
cosmic rays [5], QG induced violations of discrete sym-
metries of the standard model [6,7] as well as spacetime
symmetries [8]. This broad field of research goes under the
general name of quantum gravity phenomenology.

It should not come as a surprise that a preeminent role in
this field of research has been played by possible tests of
QG scenarios proposing departures from Lorentz invari-
ance (LI) at energies approaching the Planck scale (for an
extensive review see e.g. [9]). While LI is deeply rooted
both in quantum field theory as well as in general relativity,
still it is strictly linked to the idea that spacetime would
have the same continuous structure at any energy scale:
large boosts naturally uncover the structure of spacetime at
arbitrary small scales and it is unclear how this could be
conciliated with the existence of a fundamental scale for
the quantum gravitational phenomena, i.e. the Planck
scale.

Departures from standard Lorentz invariance have
nowadays been proposed within several QG scenarios. A

succinct list includes: arguments based on string field
theory tensor VEVs [10], cosmologically varying moduli
scenarios [11], spacetime foam models [12], semiclassical
spin-network calculations in Loop QG [13,14], as well as
noncommutative geometry studies [15–18] and some
brane-world scenarios [19]. Albeit none of the above cited
calculations can be considered at the moment a conclusive
evidence that departures from Lorentz invariance are ge-
neric in QG models, they can indeed be considered a robust
hint that Lorentz violations could be a theoretical possi-
bility in most of the scenarios we are envisaging for QG.
Moreover they generally agree in predicting departures
from LI in the form of modified dispersion relations
(MDR) for elementary particles of the form

 E2 � m2 � p2 �D�p;�;M�

� m2 � p2 �
X1
n�1

�n��;M�p
n; (1)

where p �
������������
jj ~pjj2

p
, �n are dimensional coefficients, � is

some particle physics mass scale, and M is the scale
associated to the new physics responsible for the correction
to the dispersion relation (which is typically taken to be the
Planck mass: MP � 1019 GeV).

While it is not the scope of the present paper to explain
how constraints can be cast on such MDR (see e.g. [20]) it
is interesting to note that these are generally requiring to
choose a well defined dynamical framework. While the
most stringent constraints have been so far obtained con-
sidering the MDR as a by-product of an effective field
theory with Planck suppressed Lorentz violating operators
[20], there is an alternative point of view that tries to
preserve the relativity principle and extend it to the case
in which there are two (the speed of light and the Planck
energy) invariant scales in place of a single one (the speed
of light). This proposal goes under the name of doubly or
deformed special relativity (DSR) [21]. Unfortunately
while on the one hand we have precise formulations of
DSR in momentum space, on the other hand the imple-
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mentation of DSR in spacetime is a more subtle subject and
it is a theme of intense debate at present time [21–25]. This
is a crucial point as it is clear that no DSR proposal could
be really competitive with Lorentz violation scenarios,
lacking a concrete understanding of the spacetime symme-
tries associated with this deformed Lorentz symmetry and
their possible geometrical interpretation.

In this direction, a very well studied scenario for the
spacetime realization of DSR is noncommutative geometry
(see e.g. [21,26]). While some promising results linking
DSR to some special form of spacetime noncommutativity
have been found in 2� 1 dimensions [27], we are still
lacking a consistent physical picture in 3� 1 dimensions.
Moreover attempts to develop a quantum field theory
associated with different forms of noncommutativity, a
much needed step in order to be able to effectively cast
phenomenological constraints, led to highly nontrivial
quantum field theories (possibly with problematic features
as the IR/UV-mixing [28–30]).

Our investigation here will be based on different as-
sumptions: we shall not presume any manifold noncom-
mutativity but show instead that MDRs of the sort shown in
(1) can be interpreted as due to a different form of depar-
ture from standard spacetime structure: its pseudo-
Riemaniann geometry. In doing this we shall not assume
neither that such departures from the standard spacetime
structure are due to UV Lorentz violations or to DSR.

Attempts to reconstruct a spacetime structure starting
from a MDR have been already made in the existent
literature (see e.g. [25]). Interestingly the key feature of
the corresponding spacetime is to be described by an
energy dependent metric, called a rainbow metric [31].
This is a natural concept from the QG point of view and
arose in different contexts like spacetime foam [32], the
Renormalization Group (RG) applied to gravity [33] or as a
consequence of averaging over QG fluctuations [34].
Perhaps even more intriguing is the fact that we have
concrete realization of rainbow geometries in the so called
analogue models of gravity where phonons at high energy
show exactly MDR like (1) as a consequence of the energy
dependence of the effective geometry induced by the con-
densed matter background structure (see e.g. [35]).

However the rainbow metric idea proposed in [31] still
lacks a rigorous formulation since it involves a metric
defined on the tangent bundle, while depending on a quan-
tity associated to the cotangent bundle (i.e. the energy).1

Henceforth the aim of the present paper will consist in
defining the geometry associated to a MDR in a mathe-
matically rigorous way.

In searching for a geometrical structure leading to dis-
persion relations of the form (1) it is clear that we will be
forced to abandon the safe harbor of Riemannian geometry
as they certainly cannot accommodate any energy depen-
dence.2 In this sense it can be illuminating to look again at
the situations appearing in analogue models. In fact there it
can be showed that departures from exact LI at low ener-
gies can be naturally described via the considerations of the
so called Finsler geometries [37,38]. Finsler structures are
the most studied generalizations of Riemannian geometry
and are defined starting from norms on the tangent bundle
instead than from inner products [39].

In what follows we shall further investigate this possi-
bility and show that indeed any MDR of the kind (1) can be
seen as describing the propagation of a particle on a Finsler
geometry. In this sense we prove that any rainbow metric is
indeed a Finsler metric. While we cannot show that this
definitely hints towards a deformed symmetry scenarios
(with respect to a Lorentz violation one) we hope that this
will help further developments by providing a well posed
and consistent framework within which one can hope to set
up a proper quantum field theory (as needed to cast
constraints).

The plan of the paper will be the following: after a first
section devoted to Finsler geometries, we shall deal di-
rectly with the way one can reconstruct a Finsler structure
from a MDR. We shall then consider the symmetries
associated to this new structures making a distinction
between those relevant only on the manifold and those
defined on the whole (co)tangent bundle. Finally we shall
discuss the relevance of our results highlighting some
possible developments of our investigation.

II. FINSLER GEOMETRY

Let us start with a brief review of the basic notions
relevant for Finsler geometries. (Further material can be
found, for example, in [39,40].) Finsler geometry is a
generalization of Riemannian geometry: instead of defin-
ing an inner product structure over the tangent bundle, we
define a norm F. This norm will be a real function F�x; v�
of a spacetime point x and of a tangent vector v 2 TxM,
such that it satisfies the usual norm properties namely

(i) F�x; v� � 0 if v � 0,
(ii) F�x; �v� � j�jF�x; v�, � 2 R.

From the norm squared F2�x; v�we can define the so called
Finsler metric

 g���x; v� �
1

2

@2F2

@v�@v�
(2)

1Note that the aforementioned examples of effective rainbow
metrics do not have this problem since the energy scale is either
associated to an external quantity (momentum exchange be-
tween the string and the topological defect) in the case of the
string Liouville theory, or the theory is defined only in the
cotangent space in the RG approach [33].

2Remarkably the same intuition has been used 35 years ago to
bypass the GZK cutoff [36]. Unfortunately the authors have only
considered a very restricted set of modified dispersion relations
(i.e. homogeneous of degree two in momentum) which was
erroneously supposed to lead to new physics at high energy.
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which we require to be continuous and nondegenerate.
Using Euler’s theorem3 on homogeneous functions, it can
be shown that (2) is equivalent to

 F�x; v� �
������������������������������
g���x; v�v

�v�
q

: (3)

This shows that g���x; v� is a homogeneous function of
degree zero of the vector v. Also, since by definition g�� is
nondegenerate, it admits an inverse g�� such that
g���x; v�g���x; v� � ���.

Given the above definition a few comments are in order.
First of all it is clear that Riemannian geometry can now be
seen as the special case of Finsler geometry in which F is
given by an inner product (i.e. when g�� does not depend
on v). It is also important to stress that the Finsler metric
defined in (2) is defined in the Euclidean signature, that is
when g�� is positive definite. The extension to the pseudo-
Finslerian case, although not always obvious, can be done
in many situations (see e.g. the appendix of [38]).

Finally, since the Finsler metric is homogenous of de-
gree zero, it cannot be defined on the zero section of the
tangent bundle. Finsler geometry is therefore usually de-
fined over the slit-tangent bundle, which is simply the
tangent bundle minus the zero section [39]

 

�TM �
[
x2M

�TxM n f0g�: (4)

This is only a mathematical subtlety, since smooth curves
are defined to have nonvanishing tangent vector, and we
will never encounter explicitly this problem in our
discussion.

We have given in the definition of a Finsler norm the
condition of homogeneity, F��v� � j�jF�v�, according to
the usual postulates regarding norms over vector spaces.
However there are situations in which it is good to have an
asymmetry with respect to the inversion v! �v. In this
case, we restrict the homogeneity condition to the so called
positive homogeneity condition: F��v� � �F�v�, � > 0.
Notice that this provides an extension of the usual defini-
tion of norms over vector spaces.

While in Riemannian geometry the inverse metric was
directly inducing a scalar product between forms, to do the
same thing in Finsler geometry one must use some caution.
The duality between vectors and forms which is used in
Riemannian geometry is given by the formula

 !��v� � g���x�v�: (5)

Because of the fact that the metric tensor is represented by
a nondegenerate matrix, we can invert this relation to
express a vector in terms of its dual form

 v��!� � g���x�!�: (6)

Therefore, given the scalar product between vectors we
can naturally induce a scalar product between forms ex-
ploiting this duality. More precisely, we put

 h!1; !2iforms � hv�!1�; v�!2�ivectors: (7)

We have to extend this formalism to the case of Finsler
metrics since we want to deal with the four momentum of a
particle, which is more easily treated as a form.

We define the dual form to a vector by the equation

 !� � g���x; v�v�: (8)

In terms of the norm this relation can be written as

 !�v�� �
1

2

@F2�x; v�
@v�

: (9)

It is important to note that, if g is a nondegenerate Finsler
metric, then the map just defined between forms and
vectors is invertible. We can exploit this inverse mapping
to define the norm of a form given the norm of a vector

 G�x;!� � F�x; v�!��: (10)

The tensor obtained from this norm plays the same role
of the inverse metric tensor in Riemannian geometry, and it
is simply given by

 h���x;!� �
1

2

@2G2�x;!�
@!�@!�

: (11)

We can connect this tensor to the inverse metric
g���x; v� just using the definition of G

 h���x;!� � g���x; v�!��: (12)

The above derivation concludes our formal definition of
the Finsler geometries and shows that these geometrical
structures define a proper working framework which can
be used indifferently either in the tangent bundle or in the
cotangent bundle. However, in order to complete our treat-
ment of Finsler geometries, a brief discussion about the
treatment of curvature in these spaces is due.

The theory of curvature of Finsler spaces is more in-
volved than the case of Riemannian geometry.
Nevertheless it is worth to give some key ideas for under-
standing the possibilities given by this kind of structure to
describe new gravitational physics. If one considers the
case of a position dependent Finsler norm F�x; _x�, and
looks at the geodesic equation, one obtains

 �x � � �����x; _x� _x� _x� � 0; (13)

where the Christoffel’s symbols �����x; _x� contain deriva-
tives of the metric only in the coordinates, while keeping
an explicit dependence on the velocity (See the appendix
for an explicit derivation of �����x; _x� and further discus-
sion). Without going into mathematical details, we can
hence say that not only the metric structure of the theory
is velocity dependent, but also curvature effects, like tidal

3If Z�v� is a homogenous function of degree r, then vi @Zdvi �
rZ�v�.
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forces, can have modifications due to the nonlinear nature
of the connection.

We define the Finsler metric to be ‘‘flat’’ when there
exists a global coordinate system in which the connection
coefficients vanish. Given that the connection �����x; _x�
contain derivatives of the metric only with respect to the
coordinates, the above definition is equivalent to the state-
ment that the flat Finsler metric is globally independent on
the coordinates. Note however, that such metric will still be
velocity dependent so it will not be the trivial Minkowski
one.

The above discussion shows that the concept of Finsler
structure allows to treat rigorously the idea of velocity/
momentum dependent metric. Consequently, we can fit
into this scheme the idea that there is a microscopic struc-
ture of spacetime which cannot be described by ordinary
(pseudo-)Riemannian geometry. Notice, however, that the
extension we are considering is still metric, i.e. we are not
introducing nonmetric structures as in metric-affine theo-
ries of gravity [41–43].

III. MODIFIED DISPERSION RELATIONS AND
FINSLER NORMS

A particle moving in a Finsler manifold is described by
the action

 I � m
Z b

a
F�x; _x�d�; (14)

where the norm F�x; _x� can in principle also depend on
several parameters like, for example, the mass of the
particle and the Planck scale.

Action (14) is simply the straightforward generalization
to Finsler geometry of the standard action for the free
relativistic particle

 I � m
Z b

a

������������������������
g���x� _x� _x�

q
d�; (15)

and as such allows to recover Eq. (13) as the Euler-
Lagrange equation and to define the canonical momentum

 p� � m
@F
@ _x�

� m
g���x; _x� _x�

F
; (16)

which satisfies the generalized mass-shell condition
 

h���x; p�p�p� � m2g���x; _x�
g���x; _x� _x�g���x; _x� _x�

g�	�x; _x� _x� _x	

� m2: (17)

It is important to note that, due to the homogeneity of the
norm in its vector argument, the action (14) is reparamet-
rization invariant. If instead we have a positively homoge-
nous norm, the action will then be only invariant under
time ‘‘Orientation Preserving’’ (OP) reparametrizations.
This more general set of actions will be called OP repar-
ametrization invariant.

We now want to show that for any MDR of the form (1)
it is possible to introduce a (OP) reparametrization invari-
ant action whose Lagrangian can be identified with a
(positively homogenous) Finsler norm. Also, given that
we are interested in modifications of special relativity,
we shall consider from now on the case of a flat Finsler
norm F�x; _x� � F� _x�. Let us stress that we will always
assume through all the paper that coordinates and momenta
satisfy the canonical Poisson bracket fx�; p�g � ���.

Let us start noticing that the assumed reparametrization
invariance of the action implies that the Hamiltonian H �
_x�p� �L is identically zero. Consequently in order to
implement a given mass-shell condition M�p� � m2 (like
for example (1)) we have to introduce a Lagrange multi-
plier � so that the action becomes

 I �
Z
� _x�p� � ��M�p� �m2��d�: (18)

Note that the reparametrization invariance of this action
implies that M�p� �M��p� should hold.

To find out what is the connection between the action
(18) and a Finsler geometry we have to pass to the
Lagrangian formalism. To do this we use one of the
Hamilton’s equations

 _x � � �
@M
@p�

: (19)

In the case in which this relation is invertible we can
express p as a function of _x and �, hence obtaining an
action of the form

 I �
Z

L� _x; ��d�: (20)

We can eliminate � from this action just using the equation
of motion obtained from varying the action with respect to
this parameter so that L� _x; �� ! L� _x; �� _x��.

So, in the end, we derive a Lagrangian which is a
function only of _x and that is homogeneous of degree
one, consequently it can be identified with a Finsler norm

 L � _x; �� _x�� � mF� _x�: (21)

Note however that if M�p� � M��p� the action is only
OP reparametrization invariant and the Lagrangian is a
positively homogeneous Finsler norm.

To make this discussion clearer, let us consider the
simple example of a MDR for a particle moving in two
dimensions

 M �p0; p1� � p2
0 � p

2
1 �

�
M
p3

1; (22)

where � is a dimensionless quantity. The corresponding
action is given by4

4In the following we will use the notation x � �t; x�.
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 I �
Z
� _tp0 � _xp1 � ��M�m2��d�: (23)

Clearly this action is only OP reparametrization invariant,
since the mass-shell condition is not invariant under time
inversion.

Let us consider the Legendre transform to the
Lagrangian formalism. We obtain

 

_x � �fx;Mg � �
�
�2p1 �

3�
M
p2

1

�
; (24)

 

_t � 2�p0: (25)

Performing the Legendre transformation, we find that the
Lagrangian describing the motion of the particle is given
by

 L �
1

4

_t2 � _x2

�
�

1

8

�
M

_x3

�2 � �m
2 �O��2�: (26)

The equation of motion obtained varying � in the above
Lagrangian is rather difficult to solve but we can find an
approximate solution for � by requiring that �p1 � M so
that for any momenta well below the Planck scale we can
safely keep only the order � corrections. This procedure
gives the following (approximate) solution

 �� _x� �

���������������
_t2 � _x2
p

2m
�

�
2M

_x3

_t2 � _x2 : (27)

Using this relation we obtain the particle Lagrangian

 L � _x; �� _x�� � m
���������������
_t2 � _x2

p
�
�m2

2M

_x3

_t2 � _x2 ; (28)

which allows us to identify the Finsler norm

 Fm� _x� �
���������������
_t2 � _x2

p
�
�m
2M

_x3

_t2 � _x2 : (29)

One can easily check that, as expected, this line element is
a positively homogeneous Finsler norm. When � � 0 we
recover the Lagrangian for the relativistic particle.

In the case of more general mass-shell functions M�p�,
these passages can be more involved due to algebraic
complications, but the final result must be the same: if
the action describing the propagation of a particle is
(OP) reparametrization invariant then, whatever is the
mass-shell condition,5 the trajectories followed by this
particle are the geodesics of a particular, possibly particle

dependent, (positively homogenous) Finsler metric, given
by the procedure just described.

A final comment concerns the fact that even assuming a
universal coefficient � in (22) still the MDR corresponds to
a Finsler norm which is mass dependent: particles with
different masses see different Finsler structures. This is
consistent with the fact that Finsler norms have no scale
embedded in them (by homogeneity), while in general
modified dispersion relations can contain several energy
scales at which different physical effects are turned on.

If on the contrary the mass-shell condition involves a
single universal metric g���p� homogeneous of degree
zero in momentum

 M �p� � g���p�p�p�; (30)

then different particles with different masses propagate
over the same Finsler structure which is given by the
Legendre transform of such a metric in tangent space. It
has to be noticed however that in this case the homogeneity
of the metric plus its uniqueness6 imply that there is no
interesting phenomenology associated to the MDR. If in-
stead one allows for a particle dependence of the metric in
(30)—but still preserving homogeneity in momentum—
then one would recover (in the limit p	 m) dispersion
relations of the kind E2 � p2 �m2

i � 
ip
2 for which a

rich new phenomenology and consequently constraints are
expected (as for example [44]).

IV. SYMMETRIES

The effect of modifying the special relativistic disper-
sion relation is twofold: on one side we have a modification
in the relation between energy, momentum and mass. On
the other, we have a modification of the symmetry group of
the system, and correspondingly a modification in the
associated Noether charges.

In order to give a physical meaning to our mathematical
formalism we have to give precise definitions of physical
observables, and, in particular, of conserved charges. For
particles moving along geodesics of pseudo-Riemannian
manifolds we can use Killing vector fields to generate
conserved quantities

 Q � ���x� _x�g���x�; (31)

where � is a Killing vector field for the metric g and x��� is
an affine parametrization of the geodesic. For example, the
energy of a particle can be defined as the projection of the
speed along the direction of the Killing vector field asso-
ciated to time translations.

It is clear that we need to provide a definition of Killing
vector field of a Finsler metric. This can be done [40]
(although we shall not give here the mathematical deriva-
tion for sake of conciseness) just by applying the definition
of Lie derivative to the Finsler metric tensor, taking into

5The massless case should be treated with care, since the
relation between the multiplier � and the mass might not have
a smooth limit for m! 0. In general one cannot expect then, to
be able to remove the multiplier from the action (at least in the
way we did in the massive case). However, this is a problem as
well in the case of the massless particle in special relativity,
where one cannot eliminate � from the action since this parame-
ter is undetermined by the equations of motion. On the other
hand, determining the trajectories of the massless particle with a
modified dispersion relation can be done in the same way as in
special relativity. 6These are precisely the assumptions of [36].
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account that there is a contribution to the derivative coming
from the dependence of the metric on the tangent vector on
which it is evaluated.

As we have discussed in the previous section, the natural
way of describing the motion of particles with modified
dispersion relation is Finsler geometry, which can be for-
mulated in an elegant way in the (co)tangent bundle.
Therefore, when considering the issue of symmetries, we
have to consider all the transformations on the (co)tangent
bundle which leave invariant the Finsler metric. As a
consequence, the diffeomorphisms of the manifold are
only a special case for these symmetries.

For Killing vector fields which generate these manifold
diffeomorphisms, we have the Killing equations
 

g���x; _x�@��
� � g���x; _x�@��

�

� 2C����x; _x�
@��

@x�
_x� �

@g��
@x�

�� � 0; (32)

where we have defined the Cartan tensor

 C��� �
1

2

@g���x; _x�

@ _x�
: (33)

This equation is obtained exactly as the Killing equation in
Riemannian geometry, just considering the Lie derivative
of the metric tensor. Using Eq. (32), it is now easy to show
that if � is a Killing vector field, the associated Noether
charge can be written as

 Q � ���x� _x�g���x; _x�: (34)

In this way we can provide a consistent definition of energy
and momentum relating them to the Noether charges.

In particular, for the specific case of flat Finsler geome-
tries (i.e. a metric tensor depending only on the velocity
and not on the position), we see that spacetime translations
are symmetries of the system and hence one can apply
Eq. (34) to this special case. Therefore the conserved
quantities associated to spacetime translations are

 E � g0�� _x� _x�; P i � gi�� _x� _x�: (35)

On shell, using an affine parameter for the geodesic and
modulo a mass rescaling, these quantities coincide with the
canonical momenta appearing in the action (18), or, equiv-
alently, in the action (14) given that

 p� � m
@F
@ _x
�
m
F
g��� _x� _x�; (36)

and that, in the case of an affine parametrization, F is
constant along a geodesic. Hence, taking into account
normalizations, the energy momentum covector obtained
using Noether’s theorem obeys the mass-shell condition
appearing in (18). Therefore the momenta appearing in the
MDR are really the physical momenta associated to space-
time translations, so that p� $ @�.

This discussion shows how we can treat the case of
diffeomorphisms of the manifold with the same language

used in Riemannian geometry. However, as we have
stressed, these are only a subset of the transformations of
the full tangent bundle. To show that there are other trans-
formations which are relevant, we now pass to the discus-
sion of the Lorentz group and its action for the case of a
modified dispersion relation. Since using Killing vector
fields can be difficult, we will describe the symmetries of
a MDR using the Hamiltonian formalism. The infinitesi-
mal generators G of the symmetry group obey the equation

 fG;M�p�g � 0:

By construction the translation generators given by p�
leave invariant the MDR

 fp�;M�p�g � 0:

This is consistent with the fact that the system described by
the action (14) is invariant under translations. On the other
hand the usual Lorentz generators J�� � x�p� � x�p� are
not commuting anymore with the MDR

 fJ��;M�p�g � 0:

In particular, there could be a situation in which while the
generators of rotations are conserved, the generators of
boosts do not commute with the MDR.

With respect to the fate of the Lorentz group, one could
adopt two different points of view. The first one consists in
considering the MDR as a manifestation of a symmetry
breaking mechanism which destroys the original Lorentz
symmetry, reducing it to a smaller group. This could be
related to the fact that the underlying theory, as in the case
of analogue models [35], might not have the Lorentz group
as fundamental symmetry group, this latter appearing only
as an approximate symmetry in the low-energy regime,
leading to our geometric description of spacetime in terms
of a pseudo-Riemannian manifold.

The alternative point of view is to look for a deformed
action of the Lorentz group, i.e. a representation of the
Lorentz group acting on the whole phase space i.e. mixing
configuration and momentum space. In this case it is there-
fore necessary to deform the Lorentz generators, for ex-
ample, adding extra terms

 J�� ! J �� � J�� � �iC
i
���x; p;M�; (37)

where Ci���x; p;M� are functions on phase space to be
determined by the equations
 

fJ ��;M�p�g � 0;

fJ ��;J ��g � 
��J �� � 
��J �� � 
��J ��

� 
��J ��: (38)

Here the 
�� are the components of the Minkowski
metric, which are the structure constants of the Lorentz
group, while our physical metric tensor is given by the
Finsler metric tensor obtained from the norm. The action of
the deformed Lorentz infinitesimal generators on phase
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space coordinates is given by

 fx	;J ��g � fx	; J��g � �i
@
@p	

Ci���x; p;M�

� x��
	
� � x��

	
� � �i

@
@p	

Ci���x; p;M�; (39)

 

fp	;J ��g � fp	;J��g ��i
@

@x	
Ci���x;p;M�

� �p��
	
� �p��

	
���i

@

@x	
Ci���x;p;M�: (40)

This should be compared with the special relativistic coun-
terpart. In the case of Minkowski spacetime, the Lorentz
group acts on the position and on momenta separately.
They do not mix. In the general Finsler case we expect a
mixing, because the functions Ci�� can be very compli-
cated and not just of the form xp. This means that in certain
cases we can expect to find a representation of the Lorentz
group acting on the phase space in such a complicated way.
Making the Legendre transformation we can translate this
statement by saying that a symmetry transformation for a
Finsler line element can be a map acting on the tangent
bundle. This map, in general, is not the lift to the tangent
bundle of a symmetry acting only on the manifold as in
Riemannian geometry. This is expected in Finsler geome-
try since, in some sense, it is the geometry of the tangent
bundle [45].

It should be noted that the deformation of the Lorentz
group implies in general non canonical commutation rela-
tions between boost and momenta, affecting therefore the
definition of the Poincaré group. One should check with
care the consequences of this fact in the context of particle
physics, in which the role of the Poincaré group is crucial
in determining the vacuum state and the classification of
particles.

On the other hand, one could try to complete this de-
formed Lorentz group with deformed momenta in such a
way to recover the usual Poincaré group. To establish
which of these groups is the physical one, the deformed
Poincaré group or the remnant from the breaking of the
Lorentz group, we would have to do, as usual, quantum
field theory tests by looking at processes which are able to
discriminate between the two scenarios.

It is important to recall that, while the action of the
symmetry group is unique in phase space, given a specific
MDR, the realization in the tangent bundle of this group is
particle dependent, due to the explicit mass dependence of
the Finsler metric. Therefore we cannot give in the tangent
bundle a unique, absolute, spacetime representation of the
deformed Lorentz group.

V. CONCLUSION

To summarize, we have showed that the notion of Finsler
metric is the geometric structure encoding the notion of
rainbow metric. More precisely we showed how a metric in

the cotangent space constructed from a MDR is related to a
(positively homogenous) Finsler norm in tangent space, the
key point of the analysis being the time (OP) reparametri-
zation invariance.

The Finsler metric arising from the MDR is then particle
dependent: each particle of different mass will see a differ-
ent Finsler metric. We could have expected this from the
intuition behind the rainbow metric: in the cotangent space,
the metric is dependent on the momentum of the particle,
so that in the tangent space, the metric should depend both
on velocity and mass. A metric depending on velocity is a
Finsler metric, a rainbow metric is then naturally a mass
dependent Finsler metric. Note that as a direct conse-
quence, in the case of many particles we obtain a multi
Finsler metric structure. This is similar to the construction
that appears in the Coleman-Glashow analysis [44].

The discussion made in this paper shows that there could
be a regime in which the standard geometrical description
breaks down in a serious way. Not only we have to pass
from Riemannian geometry to Finsler geometry, but we
have that each particle sees a different geometrical struc-
ture depending on its mass, making the notion of ‘‘the
spacetime geometry’’ or even of ‘‘tangent bundle geome-
try’’ completely meaningless.

This should be compared with the case of analogue
models for gravity. There, the concept of a Lorentzian
spacetime geometry is a low-energy, emergent one, while
the true underlying spacetime theory is completely differ-
ent. The fact that the notion of spacetime geometry is
shaking as it stands is just a manifestation of something
deep: the MDR are a consequence of the fact that we are
probing the microstructure of spacetime, which of course
could be nongeometric.

However, there could be other ways in which a geomet-
ric description could be preserved. In fact there are good
reasons to think that behind the standard model there is a
unified field theory (GUT) of gauge interactions. In these
theories, fermions are organized in multiplets within which
they share the same features. Originally they are massless,
acquiring a mass only via a Higgs mechanism at suitable
energies. If we postulate, as it seems reasonable, that all
fermions are massless when we start probing quantum
gravity effects, then it makes sense to speak about a
geometry (at least in the tangent bundle), since they all
have the same MDR in this limit.

Clearly the low-energy regime brings into the game the
details of the pattern of the various symmetry breakings,
leading to deviations from a single geometrical picture.
Nevertheless, it is also true that at low energies quantum
gravity effects are presumably subdominant, so that the
Lorentzian spacetime geometry becomes, to a very good
degree of approximation, the appropriate description for
the stage of the standard model dynamics.

Alternatively one can remove the mass dependence from
(29) by just substituting �m=M by a new dimensionless
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coefficient �0 and assuming it to be universal (i.e. particle
independent). In this case compatibility with observations
would however require �0 � 1 hinting that it would have
to be a small ratio of some particle physics mass/energy
scale, �, and, presumably, the Planck one: �0 � �=M. Let
us notice however that in our example (22) the above cited
rescaling would lead to a dispersion relation with a LIV
term ��=m�p3

1=M. This implies that, at least for the case of
electrons with a cubic term in the MDR, this new energy
scale would have to be smaller than the electron mass in
order to be compatible with current constraints (if EFT can
be applied then the best constraints for the dimensionless
coefficient of the p3=M term range nowadays between
10�2 and 10�7, see e.g. [20]). It is tantalizing that such
line of reasoning seems to suggest that M should be
identified with some sort of IR fundamental scale for
gravitational physics complementary to the UV one repre-
sented by the Planck mass.

The study of symmetries associated to the Finsler metric
showed that there are two possibilities. We can have bro-
ken Lorentz symmetries if we consider that a symmetry
transformation should be (as usual) a transformation that
lives separately in the manifold and in the (co)tangent
space. If we relax this, that is allow for symmetry trans-
formation mixing (co)tangent space and manifold, then the
Lorentz symmetries are still present. They are then called
deformed. This construction arises, for example, in de-
formed special relativity (e.g. in the bicrossproduct basis
or DSR1 [46]). From the geometrical perspective this is a
change of paradigm: the fundamental object is not the
manifold anymore but the full tangent bundle. This point
of view is consistent with the DSR intuition: when trying to
implement some universal momentum scale, we are led to
unify the notion of spacetime with momentum just as in
special relativity one unifies space and time by introducing
a universal speed. Once again this picture is still consistent
with the rainbow metric since to have full information
about a system in this framework, we need to know both
its position and momentum.

In this sense the Finsler structure seems to be the natural
framework for a geometric interpretation of DSR. The fact
that DSR structures involve usually nontrivial symplectic
forms does not contradict this. Indeed it is always possible
to make a Darboux transformation to obtain a trivial sym-
plectic form [47] and perform there our analysis.
Alternatively brute force calculations can also be made
as in [48]. Note en passant that the Darboux transformation
implies in general that the new configuration coordinates
should be function of both the old configuration and mo-
mentum variables, so that on the geometric point of view
we are really living on the full tangent bundle.

In conclusion, this new geometric point of view provides
a new angle of attack to deal with some of the problems
met in the context of Lorentz violations or deformed
symmetries as in DSR. For example it might provide new

insights for the construction of Effective Field Theory in
these contexts: something necessary to make meaningful
experimental predictions. The proposed framework pro-
vides also a concrete mathematical set up to describe the
QG corrections to the notion of uniformly accelerated
observer, horizons . . . These are exciting questions that
we leave for further studies.
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APPENDIX: GEODESIC EQUATION

Let us consider in detail the geodesic equation for
Finsler manifolds. We start from the action (14), with the
most general case of position dependent Finsler norm. The
Euler-Lagrange equations of motion reduce to

 

d
d�

�
1

F

�
g�� _x� �

1

2

@g�	
@ _x�

_x� _x	
��
�

1

2

1

F

@g�	
@x�

_x� _x	 � 0:

(A1)

If we introduce the Cartan tensor

 C��� �
1

4

@3

@ _x�@ _x�@ _x�
F2 �

1

2

@
@ _x�

g��; (A2)

we see that, due to the zero degree of homogeneity of the
metric tensor, as a consequence of Euler’s theorem on
homogeneous functions

 z
df
dz
� nf�z� , f�az� � anf�z�; (A3)

applied to the n � 0 case we obtain

 C����x; _x� _x� � C����x; _x� _x� � C����x; _x� _x� � 0: (A4)

The Cartan tensor is a useful tensorial quantity which can
describe the non-Riemannian curvature of the Finsler met-
ric tensor, being nonvanishing even in what we call the flat
case. As a consequence of (A4), we obtain that the geode-
sic equation, in the affine parametrization, becomes

 �x � � �����x; _x� _x� _x� � 0; (A5)

where these generalization of the Christoffel’s coefficients
to the case of Finsler structures are given by the usual
expression
 

�����x; _x� �
1

2
g���x; _x�
�@�g���x; _x� � @�g���x; _x�

� @�g���x; _x��: (A6)

We note that these coefficients depend on the velocity as
well, and in a nonlinear way. This means that to treat the
theory of curvature in Finsler space we have to use the
language of nonlinear connections, for which we refer to
the literature [39,40,45].
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