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We study the effect of cosmological expansion on orbits—galactic, planetary, or atomic—subject to an
inverse-square force law. We obtain the laws of motion for gravitational or electrical interactions from
general relativity—in particular, we find the gravitational field of a mass distribution in an expanding
universe by applying perturbation theory to the Robertson-Walker metric. Cosmological expansion
induces an ( �a=a�~r force where a�t� is the cosmological scale factor. In a locally Newtonian framework,
we show that the � �a=a�~r term represents the effect of a continuous distribution of cosmological material in
Hubble flow, and that the total force on an object, due to the cosmological material plus the matter
perturbation, can be represented as the negative gradient of a gravitational potential whose source is the
material actually present. We also consider the effect on local dynamics of the cosmological constant. We
calculate the perihelion precession of elliptical orbits due to the cosmological constant induced force, and
work out generalizations to the rotation curve and virial relation applicable to clusters of galaxies.
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I. INTRODUCTION

If the Universe has expanded by a factor of 1000 since
the first atoms were formed, and by 30 some percent since
the formation of the solar system, it seems reasonable that
there must be some effect, even if small, of this expansion
on the orbits of atoms and planets. On the other hand,
spacetime is locally flat, and first-order deviations from
flatness are accounted for by Newtonian gravitational the-
ory, leaving no room for stray cosmological effects on local
systems. So, do atomic or planetary orbits respond at least
a bit to the universal expansion or do they not? Our purpose
in this article is to answer this question both within matter-
only cosmological models and in the currently accepted
benchmark model including a cosmological-constant de-
rived dark energy component.

Many authors have studied the effects of cosmological
expansion on local dynamics with various and often con-
flicting conclusions. Most of the early work weighs against
any cosmological effect on planetary orbits. A seminal
contribution was made by McVittie [1], who found an
exact solution to Einstein’s equation that he interpreted
as representing a point mass embedded in a Robertson-
Walker expanding universe. McVittie, and later Järnefelt
[2,3] found that planetary orbits in such a model do not
participate in the cosmic expansion. Recent work on prob-
lems and progress in the interpretation of McVittie’s solu-
tion is summarized by Nolan [4], who considers the
influence of the cosmic expansion on planetary orbits in
the McVittie universe still to be an open question. In
another influential study, Einstein and Straus [5] (see also
Schücking [6]) showed that a truncated Schwarzschild
solution could be embedded in a background expanding

universe with smoothly matched boundary conditions. In
this picture, orbits around the central mass are completely
unaffected by the expansion. However, this approach has
been criticized on various counts, summarized by Carrera
and Giulini [7]. More recently, Dicke and Peebles argued
on general grounds that there are no local effects [8]. Their
work was criticized by Noerdlinger and Petrosian [9] and
by Carrera and Giulini [7] on the grounds that they ne-
glected the ‘‘friction’’ term in their equation that would
have produced a positive effect. Anderson [10] obtained an
equation of motion including such a friction term, but
found that there are no expansion-induced effects on cir-
cular orbits, at least in the leading order of approximation.
On the other side, many authors find small but nonvanish-
ing effects on local orbits due to cosmological expansion
[7,9,11–17]. We will discuss many of these results in the
course of this work.

We base our approach on relativistic cosmology, and
show that locally this reduces to a Newtonian framework.
For local systems this is an appropriate approximation, as
has been discussed by McCrea and Milne [18,19] and
particularly by Dicke and Peebles [8] and Callan, Dicke,
and Peebles [20] for the present application. We restrict our
attention to a spatially flat universe, which is in accord with
recent observations. In any case, a flat space approximation
will be adequate for space scales much less than the radius
of curvature. We consider models involving matter and
dark energy only, and neglect radiation as of negligible
import in the present epoch.

II. EQUATIONS OF MOTION INCLUDING
COSMOLOGICAL EFFECTS

In this section we derive the equation for nonrelativistic
motion of a point particle in the electric or gravitational*Electronic address: gadkins@fandm.edu
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field of a spherically symmetric static source. The equation
has the same form for either case:

 

�~r � �
�

r2 r̂�
�a
a
~r; (1)

where ~r is the position of the point particle in physical
coordinates, � represents the strength of the interaction,
and a�t� is the cosmological scale factor. We use units in
which the speed of light has the value c � 1.

The provenance of (1) is quite different for the two
cases. For electric attraction, it comes from the curved
space generalization of the Lorentz force law

 

�x � � ���� _x� _x� �
q
m
F�� _x�; (2)

where ���� are the Christoffel coefficients, F�� is the
electromagnetic field tensor, x� is the particle coordinate
in comoving coordinates (so ~r � a�t� ~x), and the dot de-
notes a derivative with respect to proper time. On the other
hand, for gravitational attraction, the equation of motion is
the geodesic equation

 �x � � ���� _x� _x� � 0 (3)

with no separate force term—the effect of the source is
contained in ����. Since the electric case is more straight-
forward, we will consider it first.

The Robertson-Walker metric for a flat expanding
spacetime has the form

 g�� �
1 0
0 �a2�t��ij

� �
; (4)

where a�t� satisfies the cosmological Einstein equations

 

3 _a2

a2
� 8�G ��; �

_a2

a2 � 2
�a
a
� 8�G �p; (5)

in terms of the total cosmological proper density �� and
pressure �p. The corresponding Christoffel coefficients

 ���� �
1
2g
���g��;� � g��;� � g��;�� (6)

are �0
ij � a _a�ij, �i0j � �ij0 � � _a=a��ij, with all others

vanishing. The field tensor is

 F�� �
0 ~Ei
� ~Ei ��ijk ~Bk

 !
; (7)

where ~Ei and ~Bi are related to the electric and magnetic
fields. The field tensor satisfies Maxwell’s equations

 F��;� � 4�j�; (8)

 F��;� � F��;� � F��;� � 0: (9)

For a spherically symmetric static source, Maxwell’s equa-
tions require ~Bi � 0 and

 

~E i �
C

a�t�x2 r̂i (10)

outside the source, where x �
���������������������������
x2

1 � x
2
2 � x

2
3

q
, r̂ � ~x=x,

and C is some constant. Now the spatial components of
the Lorentz force law (2) lead to

 �x i � 2
_a
a

_xi _x0 �
q
m

C

a3x2 r̂i _x0: (11)

For nonrelativistic motion this is

 �x i � 2
_a
a

_xi �
q
m

C

a3x2 r̂i; (12)

and in terms of the physical coordinates ~r � a�t� ~x it takes
the form

 �r i �
�a
a
ri �

Qq
m

r̂i
r2 (13)

since we can now identify C with the source charge Q. We
now turn to the gravitational case.

We derive the equation of motion for a test mass in a
gravitational field in two steps. First, we use the Einstein
equation to find the metric for an expanding universe
containing a localized nonrelativistic distribution of matter
in addition to the uniformly distributed cosmological ma-
terial. We restrict ourselves to small distortions from the
cosmological background. After obtaining the metric we
use the geodesic equation in the weak-field limit to obtain
the equation of motion.

A massive object such as the sun inserted into a back-
ground expanding universe perturbs the usual Robertson-
Walker metric. Exact solutions describing inhomogeneous
cosmologies have been extensively studied (reviewed, for
example, in the book of Krasiński [21]), but for our pur-
poses a perturbative approach will be adequate physically
and more straightforward to interpret. Accordingly, we will
consider perturbations to the Robertson-Walker metric
[22–25]. For the weak-field case with only nonrelativistic
motion of localized source material it is sufficient to con-
sider the scalar perturbation

 g�� �
1� 2 �t; ~x� 0

0 ��1� 2	�t; ~x��a2�t��ij

� �
(14)

and a stress-energy tensor of the form

 T�� �
X
a

�� ��a � �pa�U�U� � �pag��� � �u�u�; (15)

where ��a and �pa are the proper density and pressure of the
ath component of cosmological material (matter: m, dark
energy: �) and ��t; ~x� is the proper density of the matter
perturbation. To emphasize, ��m � � represents all of the
matter actually present, so � itself is the actual (total)
matter minus the cosmological matter. The four-velocity
U� has only a time component and is normalized:
U�U� � 1; while u� � U� for nonrelativistic motion of
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the perturbing matter. The perturbative nature of this ansatz
is signaled by the small size of  and 	. The global
behavior of the metric is governed by the cosmological
parameters ��a and �pa, so that even in regions where the
perturbation � is larger than the cosmological density �� the
effect of the perturbation is just to change the metric by a
small amount:  , 		 1.

Einstein’s equation has the form

 G�� � �8�GT��; (16)

whereG�� � R�� � �1=2�g��R is the Einstein tensor. The
spatial off-diagonal components of T�� are small—of
O�v2� where v	 1 is a typical nonrelativistic speed of
the matter in the perturbation �. With the neglect of such

small contributions, the Einstein equation implies @i@j �
@i@j	 for all i and j. This and the vanishing of  and 	 at
large distances leads to the requirement  � 	. The form
of the time-space off-diagonal elements of G (G0i �

2@i�@0 �
_a
a  �) suggests that the substitution  ! 
=a

would be helpful, so in fact the metric that we use has the
form

 g�� �
1� 2
�t;~r�

a�t� 0

0 ��1� 2
�t; ~r�
a�t� �a

2�t��ij

0@ 1A: (17)

The Einstein tensor for this metric, through first order in
the weak field 
, is [26]

 G�� �
� 3 _a2

a2 �1�
2

a � �

2
a3r

2
� 6 _a
a2 @0
 � 2

a @0@i


� 2
a @0@i
 � _a2 � 2a �a�1� 3


a � � 4 _a@0
� 2a@2
0
��ij

 !
: (18)

We are constrained to work to zeroth order in the flow
velocity v of the perturbing mass distribution since our
metric is not sufficiently complex to respond to the flow
except through the time dependence of 
�t; ~x�. The metric
perturbation 
 can be obtained from the time-time com-
ponent of the Einstein equation, which is

 

3 _a2

a2

�
1�

2

a

�
�

2

a3r
2
x
�

6 _a

a2 @0
 � 8�G� ��U2
0 � �u

2
0�:

(19)

Here �� � ��m � ��� represent the total cosmological en-
ergy density. We neglect the term involving the time de-
rivative of 
 since @0
 is of the order of the flow velocity.
Also we neglect _a2
 compared to r2

x
. Now using u2
0 �

U2
0 � g00 � 1� 2


a and the cosmological equation (5), the
equation for 
 reduces to

 r2
x
 � 4�Ga3��t; ~x�: (20)

The ‘‘potential’’ 
 has the usual solution

 
�t; ~x� � �Ga3
Z d3x0��t; ~x0�
j ~x� ~x0j

� �G
Z dM0

j ~x� ~x0j
(21)

since � is the proper mass density

 ��t; ~x� �
dM

d3r
: (22)

Our next task is to obtain the equation of motion for a
point test mass moving in the gravitational field created by
the mass distribution � in an expanding universe. The
equation of motion is the geodesic equation

 �x � � ���� _x� _a� � 0; (23)

where the Christoffel coefficients are calculated from the
metric of (17). They are

 

�0
00 �

1

a

�
�

_a
a

� @0


�
;

�0
0i � �0

i0 �
@i

a
;

�0
ij � a

�
_a� 3

_a
a

� @0


�
�ij;

�i00 �
@i


a3 ;

�i0j � �ij0 �
1

a

�
_a�

_a
a

� @0


�
�ij;

�ijk � �
1

a
��ik@j
� �ij@k
� �jk@i
�:

(24)

Then the equation of motion, in the nonrelativistic and
weak-source approximations _x0 � 1, j _~xj 	 1, 
=a	 1,
and @0
	 1, has the form

 �x i � 2
_a
a

_xi � �
@i


a3 : (25)

Proceeding as for the electric case, the equation of motion
in physical coordinates is

 

�~r�
�a
a
~r � � ~rr�: (26)

The physical-coordinate potential ��t; ~r� � 
�t; ~x�=a sat-
isfies

 r2
r� � 4�G~��t; ~r�; (27)

where ~��t; ~r� � dM
d3r
� 1

a3
dM
d3x
� 1

a3 ��t; ~x� is the proper den-
sity of the matter perturbation in physical coordinates. For
a stationary spherically symmetric mass distribution the
potential is � � �GM=r and (26) has the same form as
the electric field equation (13).

We note here that (27), giving an instantaneous connec-
tion between mass density here and potential there, will
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break down unless the size of our local region (R) is small
enough so that the cosmological mass density does not
change much in the time R=c necessary for information to
propagate across the region. In other words, we require
R	 RH where RH � c=H0 is the Hubble distance.

III. RADIAL EXPANSION OF ORBITS AS A
MATHEMATICAL PROBLEM

In this section we will consider the effect of the �a=a
cosmological force term on orbits as a purely mathematical
problem—discussion of the physical content of this equa-
tion will be delayed until the next section. Two kinds of
distortions of Keplerian orbits have been discussed in the
literature: changes to the orbital radius and cosmologically
induced precession. In this section we will focus on the
cosmological effect on the radius.

In order to make sense of the literature, it is essential to
realize that two types of radius change have been consid-
ered. These are, first, the change with time of the radius of a
circular orbit found, for example, by studying the position
of the minimum of the effective potential; and second, the
change with time of the radius of an initially circular orbit
found by solving the equations of motion. We pause to
make the distinction more clearly.

The first type of radius change can be described more
completely as follows. Let the value of the cosmological
force term at some initial time t1 be f1. With the net force
consisting of the force due to the central mass (or charge)
plus f1, and with a given angular momentum, there is a
unique radius r1 for a circular orbit. The particle will never
actually trace out this orbit as long as the cosmological
force term is changing, but this is the orbit that it would
have were the cosmological force constant. At a later time
t2 the cosmological force has value f2. At this time, with
the same angular momentum as at time t1, there is a
different radius r2 for a circular orbit with the new force.
This definition of the radius change �r � r2 � r1 was used
by Gautreau [12], Cooperstock, Faraoni, and Vollick [13],
and by Bonnor [14] in his Appendix B. The most common
usage was to calculate the radius change per orbit by
multiplying the time rate of change of �r by the orbital
period.

The second type of radius change was found by starting
a particle on what would be a circular orbit (were the
cosmological force constant) of radius r0 at time t0 and
following the trajectory of the particle through one revo-
lution. In this approach, �r is the difference between the
final radius and r0. More specifically, the particle is
launched with the initial conditions r�t0� � r0, _r�t0� � 0,
and �r�t0� � 0, where r0 and the angular momentum are
such that, were the cosmological force constant at its value
at time t0, the orbit would be circular. The particle follows
the trajectory required by the equation of motion, and ends
up after one revolution at radius r0 � �r. This is what
Bonnor [14] calculates in the body of his paper. Price

[17] also looked at orbits found as solutions to the equation
of motion. This solution to the equation of motion tells
where the particle actually is, as opposed to the approxi-
mate position resulting from the first approach.

We point out that a particle obeying the equations of
motion in a time varying potential will not necessarily
remain at the minimum of the potential energy curve if it
starts there, but for a slowly varying potential the particle
will remain at least near the minimum. This behavior will
be seen for particle orbits in an expanding universe.

In the remainder of this section we will give explicit
calculations of the two types of radius change for a flat,
dust-filled universe. We use the nonrelativistic equation of
motion

 

�~r � �
�

r2 r̂�
�a
a
~r; (28)

where � � GM for motion under the influence of gravita-
tion around a central massM; and� � �Qq=m for motion
of a charge qwith massm around a central chargeQ. For a
flat dust-filled universe, the scale factor is a�t� � �t=t0�2=3

where t0 is the age of the universe, so �a=a � �2=�9t2�. In
spherical coordinates, (28) implies angular momentum
conservation

 h � r2 _
 � const: (29)

(where overdots now indicate time derivatives), and the
radial equation

 �r�
h2

r3 �
�

r2 �
2

9t2
r � 0: (30)

A. Radius of a circular orbit

Circular orbits have �r � 0, so the radius is given by the
solution to

 �
h2

r3 �
�

r2 �
2

9t2
r � 0: (31)

For very large time the cosmological force in this model
vanishes, and for a given value of h we call the correspond-
ing circular-orbit radius r0. We find r0 � h2=�. At finite
times the circular-orbit radius r satisfies (31) and can be
written as r � r0�1� ��. The value of r is very close to r0

since the age of the universe t is so much larger than the
orbital period � � 2�r2=h, which is the only other time
scale in the problem. We rewrite (31) as

 h2� � �
2r4

0

9t2
�1� ��4; (32)

and find that approximately � � �2r4
0=�9h

2t2�. So for the
orbital radius we have

 r � r0

�
1�

1

18�2

�
�
t

�
2
�
: (33)

This is precisely result (4.10) of Cooperstock et al. [13]. It
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is also the result one would obtain by following the posi-
tion of the minimum of the effective potential U�r� �
h2=�2r2� � h2=�r0r� � r2=�9t2� for fixed h. The effective
potential can be written as

 U�r� �
h2

r2
0

�
1

2�2 �
1

�
�

�2

36�2

�
�
t

�
2
�
; (34)

where � � r=r0. The minimum is at � � 1 when t! 1,
but is slightly smaller than 1 for finite t. The position of the
minimum grows according to (33) as t increases. The
increase of radius (33) during the course of one period,
evaluated at the present cosmological time t0, is

 �r �
dr
dt
� �

r0

9�2

�
�
t0

�
3
: (35)

This is equivalent to the results (6.26) of Gautreau [12] and
(B4) of Bonnor [14], but differs from (59) of Carrera and
Guilini [7,27].

Of course, the result (33) for r�t� is not where the particle
will actually be if free to move in the specified field of
force. Instead, we have found the radius at time t of a
circular orbit with a given angular momentum and with the
cosmological force held artificially fixed.

B. Orbital out-spiraling

The second type of cosmologically induced radial per-
turbation that has been considered is that found by solving
the equation of motion (28) for a particle moving on an
initially circular orbit. We choose initial conditions to
ensure that at the present moment (time t0), were the
cosmological force to remain fixed, the particle would
move in a circular orbit of radius r0. That is, the initial
conditions are r�t0� � r0, _r�t0� � 0, and �r�t0� � 0. The
time parameter t has an awkward zero point for our pur-
poses here, so we reparametrize time according to

 t � t0�1� s�; (36)

where the new time parameter s is small for times t not so
different from the initial time t0. We will use a power series
approach to solve the equation of motion, so we write the
radial variable as

 r � r0

�
1�

X1
n�1

ans
n
�

 r0
�s�: (37)

The initial conditions immediately tell us that a1 � a2 �
0. In fact, the vanishing of �r�t0� and the radial equation of
motion (30) give a relation among r0, h, and �:

 �
h2

r3
0

�
�

r2
0

�
2

9t20
r0 � 0: (38)

In terms of the new parameters, and with the use of (38),
the radial equation of motion (30) takes the form

 

d2


ds2
��2 
� 1


3 �
2

9

�



�1� s�2
�

1


2

�
� 0; (39)

where � � ht0=r2
0 � 2�t0=� is a very large parameter. We

find the values of the an by equating the coefficients of the
various powers sn, and obtain the series solution for 
�s�:
 


�s� � 1�
2

27
s3 �

1

18
s4 �

�
17

405
�

�2

270

�
s5

�

�
�

253

7290
�

�2

540

�
s6 �O�s7�: (40)

This series may be truncated at the s3 term as long as s3 	
�2s5; that is, for times ~t � t� t0 � t0s small compared to
an orbital period. For times ~t comparable to an orbital
period, �s is of order one, and the leading contributions
for all coefficients an with n odd are of order �n�3sn �
O���3�. The next-to-leading terms for the odd coefficients
have order ��5, while the even coefficients have main
contributions of order ��4. This allows us to sum the
principal contributions for ~t � O��� and get the approxi-
mate analytic form
 


�s� � 1�
4

9

�
s3

3!
�

�2s5

5!
�

�4s7

7!
� � � �

�
�O

�
1

�4

�

� 1�
4

9�3 ��s� sin��s�� �O
�

1

�4

�
: (41)

The secular term increases linearly with time with the same
coefficient

 

dr
dt
�

r0

9�2

�2

t30
(42)

as in (35). So the actual radius follows the minimum of the
effective potential as time progresses but with some slosh-
ing around represented by the sin�2�~t=�� term. This is in
accord with expectations based on the adiabatic theorem of
classical mechanics [28].

Bonnor [14] calculated the out-spiral radius increase
starting from the relativistic equation of motion using a
power series approach. His results (47) and thus (51) in
[14] agree with our power series solution for 
�s� through
the term of order s3. However, in order to apply the series
expansion for values of time as large as an orbital period,
an infinite subset of terms must be summed, as shown
above. We see that special relativistic kinematics do not
affect the result to this order (as was suggested in [14]),
since our calculation was purely nonrelativistic.

Numerically, the effects under discussion are exceed-
ingly small. For example, the Earth has � � 1 y and r0 �
1:5� 1011 m. Using t0 � 14 Gy for the age of the
Universe, we find �=t0 � 7:1� 10�11, so the change in
the radius in one period is only �r � 6� 10�22 m,
roughly a millionth the size of a nucleus. The accumulated
change over the 4.6 Gy life of the Earth only amounts to
about 5� 10�12 m, smaller than the radius of an atom.
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IV. PHYSICAL EFFECTS OF COSMIC EXPANSION

Now we come to the real question: is there a cosmolog-
ically induced perturbation to planetary and Coulombic
orbits, or not? In order to approach this question, we begin
by considering the physical interpretation of the �a

a ~r force.
If the physical picture specifies the superposition of a mass
M on a background homogeneous expanding universe,
then besides the usual gravitational attraction to M there
will be an additional gravitational attraction from the
cosmological mass 4

3�r
3 ��m inside the planet’s orbit. The

radial force due to this mass is fr � �G�
4
3�r

3 ��m�
1
r2 �

� 4�G
3 ��mr. This mass is continually decreasing on account

of the outflow of cosmological mass through a spherical
surface of radius r due to the Hubble flow, which leads to a
decreasing fr. The connection of fr to the scale factor is
through the Friedmann equations

 

3 _a2

a2
� 8�G ��; (43)

 �
_a2

a2 � 2
�a
a
� 8�G �p; (44)

where �� and �p are the total cosmological mass density and
pressure. If we focus on a matter-only universe for the
moment, �p � �pm � 0 and �a

a � �
4�G

3 ��m. The cosmologi-
cal force fr �

�a
a r in the equation of motion is present

exactly to represent the gravitation of the cosmological
mass. This agrees with the interpretation of Gautreau [12].

Our position then is as follows. If the model includes the
cosmological mass spread homogeneously throughout the
Universe and following Hubble’s expansion law, then cos-
mological perturbations to orbits will in fact occur.
Otherwise there will be no perturbations to the orbits. It
is imperative that on the scale set by the size of the system,
it must be a good approximation to consider the cosmo-
logical matter to be continuous. An example of a model of
this nature is Bonnor’s hydrogen atom situated in the
Einstein-de Sitter (flat, dust-only) universe with the proton
comoving with the cosmological fluid [14]. The dust must
be composed of parts small compared to the size of the
atom, and must be homogeneous as seen on a scale set by
the size of the atom. In such a world, the electron (consid-
ered classically, of course) would spiral outwards accord-
ing to the calculations of the preceding section.

On the other hand, if the model considered does not
include actual cosmological mass expanding according to
the Hubble law and homogeneous on a scale set by the size
of the system, then there are no cosmological perturba-
tions. This is the situation, for example, in the solar system.
It is not possible to imagine a mass like the sun simply
placed in a background cosmology without affecting the
cosmological mass located nearby. For example, consider
the sun and earth as a binary system. With the origin at the
center of the sun, the Hubble-law speed for cosmological

mass at the location of the earth is only 3:4� 10�7 m=s,
and it would take just 57 �s for the sun to bring this mass
to rest and initiate its plunge into the sun. Clearly a model
of the solar system including cosmological Hubble flow is
not physically reasonable.

Now recall that the perturbation is based on the differ-
ence between the actual mass present and the cosmological
mass. So the � ~r� force in (26) is the gravitational force
due to the perturbative mass. The cosmological force, �a

a ~r,
also has an associated potential � �a

a
r2

2 so the potential due
to the total mass (cosmological plus perturbation) is ~� �

� �a
a
r2

2 ��. It follows that the force law can be rewritten as

 

�~r �
Qq
m

r̂

r2 �
~r ~�; (45)

where the electric term accounts for the electric force, if
any. The explicit cosmological � �a=a� ~r force term has dis-
appeared: all gravitational forces are due to the mass
actually present. If there is in fact cosmological mass
present in Hubble flow, its effect is included in the � ~r ~�
force.

The effect of dark energy is apparently a different story.
There is no known clumpiness to dark energy: it seems to
be a property of the vacuum itself, and is thus truly homo-
geneous. The universe at the present seems to be well
described by a two-component model consisting of
cosmological-constant dark energy and matter. Using ���

and �p� � � ��� for the dark energy density and pressure,
and ��m for the matter density (and �pm � 0), the Friedmann
equations become

 

3 _a2

a2
� 8�G� ��m � ����; (46)

 �
_a2

a2 � 2
�a
a
� 8�G �p�: (47)

It follows that the cosmological force is proportional to

 

�a
a
� �

4

3
�G ��m �

8

3
�G ���: (48)

The ��m term in �a=a combines with the perturbation to give
the force due to the actual, physical mass distribution. The
dark energy term can be written as H2

0�� where H0 is the
present value of the Hubble constant and �� measures the
density of dark energy in terms of the critical density:

��� � ���crit where �crit �
3H2

0

8�G . For values we use H0 �

70�7� �km=s�=Mpc � 2:27�0:23� � 10�18 s�1 and �� �
0:7 [29]. Including the dark energy effect (but no charges),
the force equation takes the form

 

�~r � � ~r ~��k~r; (49)

where again ~� is the potential due to the physically present
matter, and k~r is the linear repulsive force due to the
cosmological constant with k � H2

0��.
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A. Orbital precession due to dark energy

The linear cosmological repulsion is a real force and is
potentially observable. The challenge of course is the very
small size of the coefficient k: k � 3:6� 10�36 s�2. The
k~r force is time independent, so there will be no spiraling
of planetary orbits. The orbits will just be slightly larger
than they would be without the presence of this force. As a
modification of the 1=r2 gravitational force law, the k~r
force will cause precession of elliptical orbits. We have
calculated the rate of this precession for orbits of period �
and eccentricity e, and find

 ��p �
3k
4�

�2
��������������
1� e2

p
(50)

radians per orbit [30]. This agrees with the result of Kerr,
Hauck, and Mashhoon. [31] For orbits in the solar system
this is too small to be observed [32]. An alternate expres-
sion for (50) is

 ��p � 0:16
�
�
t0

�
2 ��������������

1� e2
p

; (51)

which tells us that the precession is only large for systems
with periods an appreciable fraction of the age of the
Universe. Excessively short human lifetime precludes
any effective application of (51) to real orbits.

B. Effect of dark energy on galaxy cluster dynamics

Galaxy clusters are among the largest structures in the
cosmos, and the effect of cosmological repulsion will be
relatively more important in them than in smaller struc-
tures. We will consider the corrections induced by the
cosmological repulsion on the rotation curve and virial
relation for galaxy clusters.

The rotation curve for a galaxy cluster can be con-
structed from the mass distribution in the cluster and the
force law (49). A useful model for the mass distribution
was proposed by Navarro, Frenk, and White (NFW)
[33,34]: the NFW model, based on N-body simulations
of dark matter halos in cold dark matter cosmologies, has
been found to be consistent with recent observations [35–
37]. The NFW mass distribution is spherically symmetric
with a ‘‘cuspy’’ core. It can be written as

 ��r� � �crit
��c�

cx�1� cx�2
��1� x�; (52)

where x � r=r200 and

 ��c� �
200

3

c3

ln�1� c� � c=�1� c�
: (53)

This distribution has two parameters: a ‘‘concentration’’ c
that determines the degree of central peaking, and a radius
r200 roughly delineating the radius inside of which the
matter of the cluster is virialized and outside of which
material is still infalling [38,39]. The theta function cuts

the distribution function off at r � r200. The critical mass
density in (52) is �crit �

3H2�z�
8�G where H�z� is the Hubble

constant appropriate for the redshift of cluster formation—
which we take to be approximately the same as the ob-
served redshift of the cluster [37]. The total mass of such a
cluster is

 M �
Z
d3r��r� �

4�
3
r3

200�200�crit�; (54)

so the cluster has an average density contrast, relative to
�crit, of 200 [40]. The mass inside radius r � r200x is

 M�r� �
4�
3
r3

200�200�crit�
ln�1� cx� � cx=�1� cx�

ln�1� c� � c=�1� c�
(55)

for r < r200 (i.e. x < 1). The force equation (49) then
implies

 

v2�r�
r
�
GM�r�

r2 � kr (56)

for circular motion about the center, which leads to

 v2�r� �
1

2

�
200

ln�1� cx� � cx=�1� cx�
x�ln�1� c� � c=�1� c��

� 2��x2

�
H2�z�r2

200: (57)

The effect of cosmological repulsion is greatest at the outer
reaches of the cluster where x � 1, and there amounts to a
correction of only 2�� compared to 200. This correction is
negligible considering the sizes of the observational un-
certainties [35–37]. The small size of the correction can be
traced directly to the small size of the dark energy density
���crit compared to the mass density of at least 200�crit in
the cluster.

The cosmological repulsion also corrects the virial rela-
tion for galaxy clusters. The ‘‘moment of inertia’’ of a
cluster can be defined to be

 I �
1

2

X
a

Ma ~ra � ~ra; (58)

where a labels the constituents of the cluster. For a cluster
in steady-state, the moment of inertia is constant. This fact,
combined with the equation of motion (49), yields

 0 � �I �
X
a

Ma�
_~ra � _~ra � ~ra � �~ra� � Mhv2i �

GM2

re
� 2Ik;

(59)

whereM is the mass of the cluster and re is a characteristic
radius of the cluster defined so that the average value of the
potential energy is� 1

2

P
a;b

GMaMb
j~rb�~raj

� � GM2

re
. We define the

root-mean-square radius of the cluster in the usual way:
Mr2

rms � Mhr2i �
P
aMar2

a � 2I, and obtain
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GM
re
� hv2i � kr2

rms (60)

as the generalization of the usual virial formula. For the
NFW mass distribution we find re � fe�c�r200 and rrms �
frms�c�r200, where

 fe�c� �
2��1� c� ln�1� c� � c�2

c��2�1� c� ln�1� c� � c�2� c��
; (61)

 f2
rms�c� �

6�1� c� ln�1� c� � c�6� 3c� c2�

2c2��1� c� ln�1� c� � c�
: (62)

Over the range 3< c< 20 found for sample clusters [35–
37] we have 1:10 * fe�c� * 0:62 and 0:33 * f2

rms�c� *

0:20. The dark energy term kr2
rms corrects hv2i by a frac-

tional amount

 

kr2
rms

hv2i
�

kr2
rms

GM=re
�

2��

200
f2

rms�c�fe�c�: (63)

This is a small correction indeed, at most about a quarter of
a percent for clusters that are nearby and having c � 3.

We conclude that the effect of dark energy, even on
structures as large as galaxy clusters, is small compared
to the size of observational uncertainties. However, dark
energy becomes progressively more important on yet
larger distance scales, and on the scale of the cosmos as
a whole it is dominant—leading to accelerated expansion.

V. CONCLUSION

Motion in local systems is governed by the gravitational
forces due to the actual mass present, along with other

forces such as electromagnetism, the linearly repulsive
cosmological-constant force, and initial conditions. There
is no additional effect caused by cosmological expansion:
the � �a=a�~r cosmological force combines with the gravita-
tional force due to the perturbation of the mass distribution
(mass present above and beyond the cosmological mass) to
produce the gravitational force due to the distribution of
mass actually there. It follows that calculations like those
of Sec. III, while interesting, do not correspond to physi-
cally realizable situations for gravitational systems. It is
possible in principle to imagine two charged objects with
one in orbit around the other, along with a continuum (at
least relative to the size of the orbit) of outflowing cosmo-
logical dust, for which the orbit spiraling of Sec. III would
in fact occur, but there are no known systems of this type in
practice. On the other hand, if ‘‘dark energy’’ is homoge-
neous with a constant density, the k~r dark energy force is
real and will affect particle orbits. We have calculated the
perihelion precession due to the k~r force, and have also
found generalized forms for the rotation curve and virial
relation appropriate to clusters of galaxies using a particu-
lar model of the cluster mass distribution. The effect of the
dark energy force is only marginally important even for
such large systems.
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