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In this paper we revisit the relation between the Friedmann equations and the first law of thermody-
namics. We find that the unified first law first proposed by Hayward to treat the outertrapping horizon of a
dynamical black hole can be used to the apparent horizon (a kind of inner trapping horizon in the context
of the FRW cosmology) of the FRW universe. We discuss three kinds of gravity theorties: Einstein theory,
Lovelock thoery, and scalar-tensor theory. In Einstein theory, the first law of thermodynamics is always
satisfied on the apparent horizon. In Lovelock theory, treating the higher derivative terms as an effective
energy-momentum tensor, we find that this method can give the same entropy formula for the apparent
horizon as that of black hole horizon. This implies that the Clausius relation holds for the Lovelock theory.
In scalar-tensor gravity, we find, by using the same procedure, the Clausius relation no longer holds. This
indicates that the apparent horizon of the FRW universe in the scalar-tensor gravity corresponds to a
system of nonequilibrium thermodynamics. We show this point by using the method developed recently
by Eling et al. for dealing with the f�R� gravity.
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I. INTRODUCTION

Quantum mechanics together with general relativity
predicts that a black hole behaves like a black body, emit-
ting thermal radiations, with a temperature proportional to
its surface gravity at the black hole horizon and with an
entropy proportional to its horizon area [1,2]. The Hawking
temperature and horizon entropy together with the black
hole mass obey the first law of black hole thermodynamics
(dM � TdS) [3]. The formulas of black hole entropy and
temperature have a certain universality in the sense that the
horizon area and surface gravity are purely geometric
quantities determined by the space-time geometry.

Since the discovery of black hole thermodynamics in the
1970’s, physicists have been speculating that there should
be some relation between the thermodynamic laws and
Einstein equations. Otherwise, how does general relativity
know that the horizon area of a black hole is related to its
entropy and the surface gravity to its temperature [4]?
Indeed, Jacobson [4] was able to derive Einstein equations
from the proportionality of entropy to the horizon area, A,
together with the fundamental relation (Clausius relation)
�Q � TdS, assuming the relation holds for all local
Rindler causal horizons through each space-time point.
Here �Q and T are the variation of heat flow and Unruh
temperature seen by an accelerated observer just inside the
horizon. More recently, Eling et al. found that one cannot
get the right equations of motion for f�R� gravity if one
simply uses the Clausius relation and the entropy assump-
tion S � �f0�R�A. In order to get the equations of motion,

an entropy production term has to be added to the Clausius
relation. They have argued that this corresponds to the
nonequilibrium thermodynamics of space-time [5]. It is
interesting to see whether the nonequilibrium thermody-
namics is needed in other gravity theories. In this paper, we
will discuss the scalar-tensor gravity by following [5]. By
using entropy assumption S � �F���A in the scalar-
tensor gravity and Clausius relation with an appropriate
entropy production term, we can obtain correct equations
of motion for the scalar-tensor gravity. This suggests that
for the scalar-tensor gravity the nonequilibrium thermody-
namics also has to be employed to derive the dynamic
equations of motion of space-times.

On the other hand, most discussions of black hole ther-
modynamics have been focused on the stationary black
holes. For dynamical (i.e., nonstationary) black holes,
Hayward has proposed a method to deal with thermody-
namics associated with a trapping horizon of a dynamic
black hole in four-dimensional Einstein theory [6–9]. In
this method, for spherical symmetric space-times, Einstein
equations can be rewritten in a form called ‘‘unified first
law.’’ Projecting this unified first law along a trapping
horizon, one gets the first law of thermodynamics for a
dynamical black hole. A definition of energy-supply, �, is
introduced in the unified first law. It is an energy flux
defined by the energy-momentum tensor of matter. After
projecting along a vector � tangent to the trapping horizon,
one finds hA�; �i � �

8�G hdA; �i. This equation can be
regarded as the Clausius relation of the dynamical black
hole. The Friedmann-Robertson-Walker (FRW) universe is
one kind of nonstationary spherically symmetric space-
times. Certainly, we can discuss its thermodynamics on
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the trapping horizon. However, in the FRW universe, the
trapping horizon (‘‘outer trapping horizon’’) is absent;
instead there exists a kind of cosmological horizon like
trapping horizon (‘‘inner trapping horizon’’). This horizon
coincides with the apparent horizon in the context of the
FRW cosmology. In this paper, we therefore do not distin-
guish them. We will focus on this apparent horizon and
discuss associated thermodynamics. An interesting ques-
tion is whether the field equations for non-Einstein gravity
can be written to a form as the unified first law in Einstein
gravity. We do not try to resolve this issue, instead we
rewrite the field equations for non-Einstein gravity to a
form of the Einstein gravity by introducing an effective
energy-momentum tensor. Thus, we can use unified first
law to non-Einstein gravity theories and get the thermody-
namics of apparent horizon in the FRW universe in those
theories. As a result, we have the equation hA�; �i �
�

8�G hdA; �i even for the non-Einstein gravity theories.
But, the energy-supply � here includes the contribution
of the effective energy-momentum tensor.

In order to get the heat �Q (defined by integration of
pure matter energy flux) in the Clausius relation, we have
to extract the contribution of pure matter fields from the
hA�; �i in the left-hand side of the equation hA�; �i �
�

8�G hdA; �i and put the others into the right-hand side of the
equation. Now, does the right-hand side of the equation
have the correct form of TdS in Clausius relation? If the
answer is yes, the Clausius relation holds and we are
treating equilibrium thermodynamics. On the contrary, if
the answer is no, the Clausius relation in equilibrium
thermodynamics no longer holds, and we have to treat
the system with nonequilibrium thermodynamics. In this
paper, we will use this idea to treat the Lovelock gravity
and scalar-tensor gravity. We find that the Clausius relation
holds in Lovelock gravity, while it breaks for the scalar-
tensor gravity. We will also show this point by using the
method of Eling et al. developed for the f�R� gravity [5].

There exist some works dealing with the relation be-
tween the Einstein equations and the first law of thermo-
dynamics. In a setup of a special kind of spherically
symmetric black hole space-times, Padmanabhan et al.
[10] showed that the Einstein equations on the black hole
horizon can be written into the first law of thermodynam-
ics, dE � TdS� PdV. This also holds in Lovelock gravity
[10]. In the setting of the FRW universe, some authors
investigated the relation between the first law and the
Friedmann equations describing the dynamic evolution of
the Universe [11]. In particular, Cai and Kim in [12]
derived the Friedmann equations by applying the funda-
mental relation �Q � T�S to the apparent horizon of the
FRW universe with any spatial curvature and assuming that
the apparent horizon has temperature and entropy

 T �
1

2�RA
; S �

�R2
A

G
; (1.1)

where RA is the apparent horizon radius. Further they
showed that using the same procedure, the Friedmann
equations can be derived also in the Gauss-Bonnet gravity
and more general Lovelock gravity. For the scalar-tensor
gravity and f�R� gravity, the possibility to derive the
corresponding Friedmann equations in those theories was
investigated in [13]. More recently, Akbar and Cai [14]
have shown that at the apparent horizon, the Friedmann
equation can be written into a form of the first law of
thermodynamics with a volume change term, not only in
Einstein gravity, but also in Lovelock gravity.

This paper is organized as follows. In Sec. II, we give a
brief review on the unified first law by generalizing it to
�n� 1�-dimensional Einstein gravity. In Sec. III, we con-
sider a FRW universe and give the projection vector which
will be used in the following sections. In Sec. IV, we give
the rigorous first law of thermodynamics on the apparent
horizon for the FRW universe in Einstein theory. In Sec. V,
we treat the thermodynamics of apparent horizon in the
Lovelock gravity and find that the Clausius relation holds
for the Lovelock gravity. In Sec. VI, we discuss the scalar-
tensor gravity and show that the Clausius relation no longer
holds. In Sec. VII, we derive the equations of motion for
the scalar-tensor gravity by using the method of Eling et al.
developed for dealing with the f�R� gravity. We end this
paper with a conclusion in Sec. VIII.

II. A BRIEF REVIEW ON THE UNIFIED
FIRST LAW

Hayward has proposed a general definition of black hole
dynamics on a trapping horizon in four-dimensional
Einstein theory [6–9]. In this section, we will make a brief
review and generalize his discussions to the �n�
1�-dimensional Einstein gravity.

For an arbitrary �n� 1�-dimensional spherical symmet-
ric space-time, locally we can put its metric in the double-
null form

 ds2 � �2e�fd��d�� � r2d�2
n�1; (2.1)

where d�2
n�1 is the line element of an �n� 1�-sphere with

unit radius, r and f are functions of ���; ���. Certainly,
there are some remainder freedoms to choose the double-
null coordinates. Assume that the space-time is time ori-
entable and @� � @=@�� are future pointing. Considering
radial null geodesic congruence, from ds2 � 0, one can
find that there are two kinds of null geodesics correspond-
ing to �� � constant and �� � constant, respectively. It is
easy to get the expansions of these two congruences

 �� � �n� 1�
@�r
r
: (2.2)

The expansion measures whether the light rays normal to
the sphere are diverging (�� > 0) or converging (�� < 0)
or equivalently, whether the area of the sphere is increasing
or decreasing in the null directions.
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A sphere is said to be trapped, untrapped, or marginal if
(on this sphere)

 ���� > 0; ���� < 0; or ���� � 0: (2.3)

Note that

 gab@ar@br � �
2

�n� 1�2
efr2����: (2.4)

We can write this definition to be

 gab@ar@br < 0; gab@ar@br > 0; gab@ar@br � 0:

(2.5)

If ef���� is a function with nonvanishing derivatives, the
space-time is divided into trapped and untrapped regions,
separated by marginal surface. Some subdivisions may be
made as follows.

(i) A trapped sphere is said to be future, if �� < 0
(@�r < 0) and past if �� > 0 (@�r > 0).

(ii) On an untrapped sphere, a spatial or null normal
vector z is outgoing if hdr; zi> 0 and ingoing if
hdr; zi< 0. Equivalently, fixing the orientation by
locally �� > 0 and �� < 0, z is outgoing if
g�z; @��> 0 or g�z; @��< 0 and ingoing if
g�z; @��< 0 or g�z; @��> 0. In particular, @� and
@� are, respectively, the outgoing and ingoing null
normal vectors.

(iii) A marginal sphere with �� � 0 is future if �� < 0,
past if �� > 0, bifurcating if �� � 0, outer if
@��� < 0, inner if @��� > 0, and degenerate if
@��� � 0.

The closure of a hypersurface foliated by future or past,
outer or inner marginal sphere is called a (nondegenerate)
trapping horizon.

In the works of Hayward, the future (past) outer trapping
horizon is taken as the definition of black (white) holes,
i.e., on the marginal sphere of the trapping horizon, we
have

 �� � 0; �� < 0; @��� < 0; (2.6)

or equivalently

 @�r � 0; @�r < 0; @�@�r < 0: (2.7)

However, in the FRW universe, we will treat a horizon
which is similar to the cosmological horizon in the de Sitter
space-time. In this case, the surface gravity is negative. So,
we need not the requirement of ‘‘outer.’’ In fact, we will
take the future inner trapping horizon as a system on which
the thermodynamics will be established.

The Misner-Sharp energy [7,15,16] is defined to be

 E �
1

16�G
�n� 1��n�1r

n�2�1� gab@ar@br�: (2.8)

This energy is the total energy (not only the passive en-
ergy) inside the sphere with radius r. It is a pure geometric

quantity. From the definition, the ratio E=rn�2 controls the
formation of black and white holes and trapped sphere
generally [7,16]. There are a lot of definitions for energy
in general relativity, such as, ADM mass for asymptotically
flat space-time, Bondi-Sachs energy defined at null infinity
of the asymptotically flat space-time, Brown-York energy
and Liu-Yau energy, etc. [17–21]. These definitions can be
found in a recent review [22]. The physical meanings of
Misner-Sharp energy, and the comparison of Misner-Sharp
energy to ADM mass and Bondi-Sachs energy have been
given in [7,15]. For spherical space-time, Brown-York
energy agrees with the Liu-Yau energy, but they both differ
from the Misner-Sharp energy. For example, for the four-
dimensional Reissner-Nordström black hole, the Misner-
Sharp energy differs from the Brown-York or Liu-Yau
mass by a term which is the energy of the electromagnetic
field inside the sphere. The Misner-Sharp energy has the
relation to the structure of the space-time and one can
relate it to Einstein equations [see Eq. (2.11) below].
This is an important advantage of Misner-Sharp energy.

From the energy-momentum tensor Tab, we can give two
useful invariants—work and energy-supply:

 W � �1
2traceT � �g��T��; (2.9)

 �a � Ta
b@br�W@ar: (2.10)

By using the Misner-Sharp energy and these two quan-
tities, one can find that the (0,0) component of Einstein
equations can be written as

 dE � A��WdV; (2.11)

where A � �n�1rn�1 and V � 1
n�n�1rn with �n�1 �

2�n=2=��n=2� are the area and volume of a sphere with
radius r. Equation (2.11) is called unified first law. It is the
natural result of Einstein equations for spherical symmetric
space-times. The unified first law (2.11) contains rich
information. After projecting it along different directions,
this equation gives different meanings. For instance,
(i) projecting the unified first law along the future null
infinity, one has the Bondi energy loss equation;
(ii) projecting the unified first law along the flow of a
thermodynamic material yields the first law of relativistic
thermodynamics; (iii) projecting the unified first law along
the trapping horizon, one obtains the first law of black hole
thermodynamics. Here, we will concentrate on the first law
of black hole thermodynamics, which has the form

 hdE; zi �
�

8�G
hdA; zi �WhdV; zi; (2.12)

where � is the surface gravity of the trapping horizon and is
defined by

 � � 1
2r

arar; (2.13)

where r corresponds to the covariant derivative of two-
dimension space normal to the sphere, and z is a vector
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which is tangent to the trapping horizon. (Certainly, z is not
arbitrary and must satisfy some conditions on the trapping
horizon.) In the double-null coordinates, z can be ex-
pressed as

 z � z�@� � z
�@�: (2.14)

The Eq. (2.12) is obtained through projecting the unified
first law along the vector z. The nontrivial part is to show

 hA�; zi �
�

8�G
hdA; zi: (2.15)

As mentioned above, we take the horizon to be

 @�r � 0: (2.16)

Then, one has on the marginal sphere,

 za@a�@�r� � z�@�@�r� z
�@�@�r � 0: (2.17)

Using Einstein equations and the definition of surface
gravity, one can arrive at (2.15). The most important thing
is to note that z is not arbitrary, on the trapping horizon it
must satisfy the equation above, then

 

z�

z�
� �

@�@�r
@�@�r

: (2.18)

Therefore z belongs to the one-dimensional subspace of the
tangent space. Through the above projection along z, the
extra differential on the space-time is replaced by the
differential on the state space of a dynamical black hole,
and one can arrive at the exact first law of the trapping
horizon for dynamical black holes [8]. This Eq. (2.18)
plays a curial role in getting the projection vector. We
will give this ratio for the FRW universe in the next section.

III. TRAPPING HORIZON AND APPARENT
HORIZON OF THE FRW UNIVERSE

Now, we consider an �n� 1�-dimensional FRW uni-
verse. We put the FRW metric in the form

 ds2 � habdxadxb � ~r2d�2
n�1; (3.1)

where x0 � t, x1 � r, ~r � ar is the radius of the sphere
and a is the scale factor. It should be noted here that ~r �
~r�t; r� plays the role of sphere radius r defined in the
previous section. Defining

 d�� � �
1���
2
p

�
dt�

a����������������
1� kr2
p dr

�
;

d�� � �
1���
2
p

�
dt�

a����������������
1� kr2
p dr

�
;

(3.2)

where k is the spatial curvature parameter of the FRW
universe, we can put the FRW metric into a double-null
form

 ds2 � �2d��d�� � ~r2d�2
n�1: (3.3)

It is easy to find

 @� �
@
@��

� �
���
2
p �

@t �

����������������
1� kr2
p

a
@r

�
;

@� �
@
@��

� �
���
2
p �

@t �

����������������
1� kr2
p

a
@r

�
;

(3.4)

where the minus signs ensure that @� are future pointing.
The trapping horizon, we denote it by ~rA, is defined to be

 @�~rj~r�~rA � 0: (3.5)

Solving this equation, one finds

 ~r 2
A �

1

H2 � k
a2

: (3.6)

This radius has the same form as apparent horizon [16]. It
is not surprising because the trapping horizon and apparent
horizon coincide with each other in the FRW universe. On
the other hand, we have

 @�~rj~r�~rA � �2~rAH < 0; (3.7)

that is, this trapping horizon is future. A similar calculation
on the trapping horizon gives

 @�@�~rj~rA � 2~rA

�
_H � 2H2 �

k

a2

�
;

@�@�~rj~rA � 2~rA

�
_H �

k

a2

�
:

(3.8)

By definition, one can find the surface gravity

 � � �
~rA
2

�
_H � 2H2 �

k

a2

�
� �

1

~rA

�
1�

_~rA
2H~rA

�
: (3.9)

Further, we define

 � �
_~rA

2H~rA
: (3.10)

Here, we assume � < 1 such that � < 0. In another words,
we are treating an ‘‘inner’’ trapping horizon, rather than
‘‘outer ‘‘ trapping horizon (with positive surface gravity)
discussed by Hayward. Note that in Refs. [11,12], in fact,
an approximation �� 1 has been used in calculating the
energy flow crossing the apparent horizon. In the present
paper, no approximation will be used. In terms of the
horizon radius ~rA, we have

 

_H�
k

a2 � �
2�

~r2
A

: (3.11)

Substituting this into (3.8), we get

 

z�

z�
� �

@�@�~r
@�@�~r

��������~rA

�
�

1� �
: (3.12)

Let z� � 1, then z� � �
1�� , in the coordinates �t; r�, we

then can express z as
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 z � �

���
2
p

1� �

�
@
@t
� �1� 2��Hr

@
@r

�
; (3.13)

where we have used the relation

 

����������������
1� kr2
p

a

��������~rA

� Hrj~rA ; (3.14)

on the trapping horizon. Thus, if we use the �t; r� coordi-
nates instead of double-null coordinates, any project vector
� must have the form

 � � �t
�
@
@t
� �1� 2��Hr

@
@r

�
: (3.15)

Certainly, we can choose �t � 1. All calculations in this
section are pure geometrical. Therefore, the results in this
section are applicable for the FRW universe in any gravity
theory.

IV. THERMODYNAMICS OF APPARENT
HORIZON IN EINSTEIN GRAVITY

Consider a Lagrangian for an �n� 1�-dimensional
Einstein gravity with perfect fluid

 L �
1

16�G
R�L

m

; (4.1)

where L
m

denotes the Lagrangian for the perfect fluid. In the
FRW universe, the energy-momentum tensor of the perfect
fluid has the form

 Tab � T
m

ab � �	m � pm�UaUb � pmgab; (4.2)

where 	m and pm are the energy density and pressure of the
perfect fluid, respectively. It is easy to find that the energy-
momentum tensor projecting onto two-dimensional space-
time normal to the sphere has the form

 Tab � diag
�
	m;

pma
2

1� kr2

�
; Tab � diag��	m; pm�;

(4.3)

and then the work term and energy supply are

 W � 1
2�	m � pm�; (4.4)

 �t � �
1
2�	m � pm�H~r; (4.5)

 �r �
1
2�	m � pm�a; (4.6)

respectively. One then has

 � � �tdt��rdr

� �1
2�	m � pm�H~rdt� 1

2�	m � pm�adr: (4.7)

Thus, on the trapping horizon/apparent horizon we have

 

dE � A��WdV � A�� AWd~rA

� �A�	m � pm�H~rAdt� A	md~rA

� Vd	m � 	mdV � d�	mV�: (4.8)

Substituting the first Friedmann equation [H2 � k=a2 �
16�G	m=�n�n� 1��] into the last line in the above equa-
tion, one can get nothing but the differential of the Misner-
Sharp energy. On the other hand, if we use the Misner-
Sharp energy (2.8) inside the apparent horizon with the
radius (3.6), the above Eq. (4.8) gives us the first Friedmann
equation [14].

Let � be a vector tangent to the apparent horizon, which
can be expressed as (3.15). From now on we choose �t �
1, thus we have

 hdE; �i � �AH~rA��1� 2��	m � pm�	: (4.9)

On the other hand,

 

�
8�G

dA � ��n� 1��1� ��
A

8�G~r2
A

�H~rAdt� adr�:

(4.10)

By using the Friedmann equation, we have

 

�
8�G

hdA; �i � ��n� 1�2��1� ��
A

8�G~r2
A

H~rA

� ��1� ��AH~rA�	m � pm�: (4.11)

Similarly, one can show

 hWdV; �i � �AH~rA�	m � pm�: (4.12)

Combining them yields

 

�
8�G

hdA; �i � hWdV; �i � �AH~rA��1� 2��	m � pm�	:

(4.13)

Thus we have shown that the unified first law on the inner
trapping horizon has the form

 hdE; �i �
�

8�G
hdA; �i � hWdV; �i: (4.14)

Here some remarks are in order. (i) The unified first law
(2.11) is not a real first law of thermodynamics, but just an
identity concerning the (0,0) component of Einstein equa-
tions. However, the projection of the unified first law along
a trapping horizon (or apparent horizon in FRW cosmology
context) gives a real first law of thermodynamics. (ii) The
Misner-Sharp energy plays an important role in the unified
first law and the definition of work and energy supply is
very useful. The separation of work and energy supply
gives a very similar form as the first law of thermodynam-
ics before projecting it along the horizon. (iii) On the
horizon, the energy supply has the form

 hA�; �i �
�

8�G
hdA; �i: (4.15)
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This is the Clausius relation in the version of black hole
thermodynamics. The left-hand side of the above equation
is nothing but heat flow �Q defined by the matter energy-
momentum tensor. The right-hand side has the form TdS if
one identities that temperature T � �=2� and S � A=4G.
Thus we conclude that in Einstein theory, the unified first
law also implies the Clausius relation �Q � TdS. (iv) For
the FRW cosmology in Einstein theory, the Misner-Sharp
energy inside the trapping horizon is E � 	mV [see
(4.8)]—the energy density times the volume. This energy
form for the FRW cosmology in Einstein theory is very
special. In general, the Misner-Sharp energy has no such a
form in other gravity theories, which will be seen in the
next sections.

V. THERMODYNAMICS OF APPARENT HORIZON
IN LOVELOCK GRAVITY

The Lagrangian of the Lovelock gravity [23] consists of
the dimensionally extended Euler densities

 L �
Xm
i�0

ciLi; (5.1)

where ci is an arbitrary constant, m 
 �n=2	, and Li is the
Euler density of a 2i-dimensional manifold

 L i �
1

2i
�a1b1���aibi
c1d1���cidi

Rc1d1
a1b1
� � �Rcidiaibi : (5.2)

L0 corresponds to the cosmological term. L1 is just the
Einstein-Hilbert term, and L2 corresponds to the so called
‘‘Gauss-Bonnet’’ term. Although the Lagrangian of the
Lovelock theory contains higher curvature terms, there
are no terms with more than second order derivatives of
metric in equations of motion. This point can be directly
found from the equations of motion

 G a
b �

Xm
i�0

ci
2i�1 �

aa1b1���aibi
bc1d1���cidi

Rc1d1
a1b1
� � �Rcidiaibi � 0:

(5.3)

If we introduce matter fields, the equations of motion
become

 G a
b �

Xm
i�0

ci
2i�1 �

aa1b1���aibi
bc1d1���cidi

Rc1d1
a1b1
� � �Rcidiaibi � 8�GT

ma
b:

(5.4)

In the FRW cosmology, the energy-momentum tensor is
still taken to be that of perfect fluid. We can put this
equation of motion into the standard form in Einstein
gravity by moving those terms except the Einstein tensor
into the right-hand side of the equation

 Ga
b � 8�G�T

ma
b � T

e a
b�; (5.5)

where the effective energy-momentum tensor T
e a
b has the

expression

 T
e a
b � �

1

8�G

Xm
i�0;i�1

ci
2i�1 �

aa1b1���aibi
bc1d1���cidi

Rc1d1
a1b1
� � �Rcidiaibi :

(5.6)

In the FRW metric, some nonvanishing components of
Riemann tensor have the forms

 Rtrtr � _H �H2; Rtitj � � _H �H2��ij;

Rrirj �
�
H2 �

k

a2

�
�ij; Rijkl �

�
H2 �

k

a2

�
�ijkl:

(5.7)

Substituting these into (5.6), we have

 T
e t
t � �

1

8�G

Xm
i�0;i�1

ĉi
2

�
H2 �

k

a2

�
i
; (5.8)

 

T
e r
r � �

1

8�G

Xm
i�0;i�1

ĉi
2

��
H2 �

k

a2

�
i

�
2i
n

�
H2 �

k

a2

�
i�1
�

_H�
k

a2

��
; (5.9)

where

 ĉ i �
n!

�n� 2i�!
ci: (5.10)

The work term can be decomposed as

 W � W
m

�W
e

; (5.11)

where

 W
m

� �1
2h
abT

m

ab �
1
2�	m � pm�; W

e

� �1
2h
abT

e

ab:

(5.12)

The higher curvature terms produce the effective work
term
 

W
e

�
1

8�G

Xm
i�0;i�1

ĉi
2

��
H2 �

k

a2

�
i

�
i
n

�
H2 �

k

a2

�
i�1
�

_H�
k

a2

��
: (5.13)

Similarly, the energy-supply � can also be divided into

 � � �
m

��
e

; (5.14)

where

 �
m

a � T
mb
a@b~r�W

m

@a~r; �
e

a � T
e b
a@b~r�W

e

@a~r:

(5.15)

After some calculations, we arrive at

 �
m

� �1
2�	m � pm�H~rdt� 1

2�	m � pm�adr; (5.16)
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 �
e

�
1

16�G

Xm
i�0;i�1

�
ĉi
i
n

�
H2 �

k

a2

�
i�1
�

_H �
k

a2

��
H~rdt

�
1

16�G

Xm
i�0;i�1

�
ĉi
i
n

�
H2 �

k

a2

�
i�1
�

_H �
k

a2

��
adr:

(5.17)

Thus, we have put the Lovelock theory into the form of
Einstein theory with an effective energy-momentum ten-
sor, and the effective energy-momentum tensor has been
used in the work and energy-supply terms. These imply
that the unified first law discussed previously is applicable
as well here and the energy has the form of the Misner-
Sharp energy (2.8).

The Friedmann equations of Lovelock gravity read [12]

 

Xm
i�0

ĉi

�
H2 �

k

a2

�
i
� 16�G	m; (5.18)

 

Xm
i�0

iĉi

�
H2 �

k

a2

�
i�1
�

_H �
k

a2

�
� �n8�G�	m � pm�:

(5.19)

Using the Friedmann equations and the work and energy-
supply terms given above, one can obtain the differential of
the Misner-Sharp energy from the unified first law. Turn
around, if we use the Misner-Sharp energy and work and
energy-supply terms, we can obtain the Friedmann equa-
tions in the Lovelock gravity from the unified first law. An

interesting point is here that for the Lovelock gravity, we
cannot put the Misner-Sharp energy inside the trapping
horizon into the form E � 	mV since the effective energy-
momentum tensor will make a contribution to the energy
inside the horizon [14]. Projecting the unified first law
along the trapping horizon, we have

 hdE; �i �
�

8�G
hdA; �i � hWdV; �i; (5.20)

since we have written the equation of motion for the
Lovelock gravity to the form of Einstein gravity. This
projection implies that we have

 hA�; �i �
�

8�G
hdA; �i: (5.21)

Namely, we have

 hA�
m

; �i �
�

8�G
hdA; �i � hA�

e

; �i: (5.22)

Clearly, the left-hand side is just the ‘‘energy supply’’
projecting along �, which is nothing but the heat flow
�Q defined by pure matter energy-momentum tensor.
Thus, an interesting question is whether the right-hand
side of the equation can be of the form TdS in the
Clausius relation as is the case in Einstein gravity? The
answer is yes: the right-hand side of the equation can
indeed be written to a form with the surface gravity times
the differential of the entropy in Lovelock theory project-

ing along �. Now we show this. From the definition of �
e

,
we have

 

�
8�G

hdA; �i � hA�
e

; �i � �
A

4�G~r2
A

��1� ���n� 1�H~rA �
A

4�G
��1� ��

Xm
i�0;i�1

�
ci
i�n� 1�!

�n� 2i�!

�
1

~r2
A

�
i
�
H~rA: (5.23)

Having considered c1 � 1, we can rewrite the above equation into

 

�
8�G

hdA; �i � hA�
e

; �i � �
A

4�G
��1� ��

Xm
i�0

�
ci
i�n� 1�!

�n� 2i�!

�
1

~r2
A

�
i
�
H~rA

� �
1

2�~rA
�1� ���n�1

�
1

4G

Xm
i�0

�
ci
i�n� 1�!

�n� 2i�!
~rn�2i
A

�
d~rA; �

�

�
�

2�
�n�1

�
1

4G

Xm
i�0

�
ci

i�n� 1�!

�n� 2i� 1�!
d~rn�2i�1

A

�
; �
�

�
�

2�

�
d
	
A

4G

Xm
i�0

�
ci

i�n� 1�!

�n� 2i� 1�!
~r2�2i
A

�

; �
�
� ThdS; �i; (5.24)

where T � �=2� and

 S �
A

4G

Xm
i�0

�
ci

i�n� 1�!

�n� 2i� 1�!
~r2�2i
A

�
: (5.25)

Thus we have shown that �
8�G hdA; �i � hA�

e

; �i is exactly
the surface gravity times a total differential projecting
along the tangent direction of the trapping horizon. This

total differential is nothing but the differential of the hori-
zon entropy defined in Lovelock gravity [12,14,24].

The above discussions tell us: In Lovelock gravity, if one
uses the pure matter energy momentum to define �Q, i.e.,

�Q � hA�
m

; �i, then �
8�G hdA; �i � hA�

e

; �i is of the form
TdS. That is, the Clausius relation �Q � TdS still holds in
Lovelock gravity.
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An interesting question arises: Does the Clausius rela-
tion always hold for any gravity theory? In the next section,
using the method developed in this section, we will show
that the Clausius relation does not hold in the scalar-tensor
theory.

VI. THERMODYNAMICS OF APPARENT
HORIZON IN SCALAR-TENSOR GRAVITY

In the Jordan frame, the Lagrangian of the scalar-tensor
gravity in �n� 1�-dimensional space-times can be written
as

 L �
1

16�G
F���R�

1

2
gab@a�@b�� V��� �Lm;

(6.1)

where F��� is a positive continuous function of the scalar
field � and V��� is its potential. Varying the action, we
have the equations of motion

 FGab � gabr2F�rarbF � 8�G�T
�

ab � T
m

ab�; (6.2)

 r2�� V0��� �
1

16�G
F0���R � 0; (6.3)

where T
m

ab is the energy-momentum tensor of matter. We

denote T
�

ab by

 T
�

ab � @a�@b�� gab�
1
2g
cd@c�@d�� V����: (6.4)

Note that here T
�

ab is not the energy-momentum tensor of
the scalar field. As in the case of Lovelock gravity, in order
to use the unified first law in Einstein gravity, we rewrite
the equations of motion into the following form:

 Gab � 8�GTab � 8�G
1

F
�T
�

ab � T
m

ab � T
e

ab�; (6.5)

where

 T
e

ab �
1

8�G
��gabr

2F�rarbF�: (6.6)

In the FRW metric, it is easy to find that r2F and the
nonvanishing components of rarbF are

 r2F � � �F� nH _F; rtrtF � �F;

rrrrF � �
a2

1� kr2 H
_F;

(6.7)

respectively. We then have

 T
e t
t �

1

8�G
nH _F; T

e r
r �

1

8�G
� �F� �n� 1�H _F�:

(6.8)

The work term can be decomposed as

 W � W
�

�W
m

�W
e

; (6.9)

with

 W
�

�W
m

�
1

2F
�	� � 	m � p� � pm�; (6.10)

 W
e

� �
1

16�GF
� �F� �2n� 1�H _F�; (6.11)

where

 	� �
1
2

_�2 � V���; p� �
1
2

_�2 � V���: (6.12)

Similarly, the energy supply has the form

 � � �
�

��
m

��
e

; (6.13)

with
 

�
�

��
m

� �
1

2F
�	� � 	m � p� � pm�H~rdt

�
1

2F
�	� � 	m � p� � pm�adr; (6.14)

 

�
e

� �
1

16�GF
� �F�H _F�H~rdt�

1

16�GF
� �F�H _F�adr:

(6.15)

On the trapping horizon/apparent horizon, the unified first
law tells us
 

dE� A��WdV � A��AWd~rA

�
A
F

�
��	��	m�p��pm�H~rAdt��	��	m�d~rA

�
1

8�G
� �F�H _F�H~rAdt�

1

8�G
nH _Fd~rA

�
: (6.16)

By using Friedmann equations, one can find that dE is
nothing but the exterior differential of the Misner-Sharp
energy

 E �
1

16�G
�n� 1��n�1~rn�2

A

�
V
F

�
	� � 	m �

1

8�G
nH _F

�
: (6.17)

On the other hand, if substituting the Misner-Sharp energy,
work and energy-supply terms defined above into the
unified first law (6.16), we can obtain the Friedmann
equations in the scalar-tensor gravity [13]:

 

1

2
n�n� 1�F

�
H2 �

k

a2

�
� nH _F � 8�G�	� � 	m�;

(6.18)

 � �n� 1�F
�

_H �
k

a2

�
� � �F�H _F�

� 8�G�	� � p� � 	m � pm�; (6.19)
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where 	� and p� have the same form as (6.12). Since we
have rewritten the equations of motion of the scalar-tensor
gravity into a form as in Einstein theory, the following
equation should hold:

 hdE; �i �
�

8�G
hdA; �i � hWdV; �i; (6.20)

where W is given by (6.9). Further, we have

 hA�; �i �
�

8�G
hdA; �i; (6.21)

where � is given by (6.13). Substituting � into the above
equation, we have

 FhA�
�

; �i � FhA�
m

; �i �
�F

8�G
hdA; �i � FhA�

e

; �i:

(6.22)

The left-hand side of this equation can be explicitly ex-
pressed as
 

FhA�
�

;�i�FhA�
m

;�i � h�1
2�	��	m�p��pm�H~rdt

� 1
2�	��	m�p��pm�adr;�i:

(6.23)

This is just the energy-supply term provided by matter and
the scalar field. We denote it by �Q as is the case in
Einstein gravity. Can we put the right-hand side of
Eq. (6.22) into a form with the surface gravity times a total
differential projecting along the vector � as the case of
Lovelock gravity? The answer is no in the present case. To
see this, let us note that the right-hand side of the equation
can be expressed as
 

�F
8�G

hdA; �i � FhA�
e

; �i �
�F

8�G~rA
A�n� 1�2�H~rA

�
�

8�G
A~rA� �F�H _F�H~rA

� ThdS; �i

� T
A

4G
~r2
A

� _F

~r2
A

�H �F�H2 _F
�
;

(6.24)

where

 T �
�

2�
; S �

F���A
4G

: (6.25)

Here S has the form of the entropy of black holes in the
scalar-tensor gravity [25]. Thus Eq. (6.22) can be reex-
pressed as

 �Q � TdS� TdiS; (6.26)

where

 diS �
A

4G
~r2
A

� _F

~r2
A

�H �F�H2 _F
�
: (6.27)

The Eq. (6.26) implies that the Clausius relation �Q �
TdS does not hold for the scalar-tensor gravity. The term
diS in (6.27) can be interpreted as the entropy production
term in the nonequilibrium thermodynamics associated
with the apparent horizon. Indeed, in Einstein gravity,
Jacobson [4] used the Clausius relation �Q � TdS and
derived the Einstein field equations. However, recently
Eling et al. [5] have found that the Clausius relation does
not hold for the f�R� gravity, and that in order to obtain the
equations of motion for the f�R� gravity, an entropy pro-
duction term has to be added to the Clausius relation like
(6.26). In the next section, following [4,5], we will show
that indeed for the scalar-tensor gravity, an additional
entropy production term is needed for deriving the equa-
tions of motion.

VII. SCALAR-TENSOR GRAVITY AND
NONEQUILIBRIUM THERMODYNAMICS

In [4], Jacobson derived Einstein equations from the
proportionality of entropy to the horizon area, A, together
with the fundamental Clausius relation �Q � TdS, assum-
ing that the relation holds for all local Rindler causal
horizons through each space-time point. Here �Q and T
are the variation of heat and Unruh temperature seen by an
accelerated observer just inside the horizon. Recently,
Eling et al. [5] have shown that the Clausius relation plus
the entropy assumption S � �Af0�R� cannot give the cor-
rect equations of motion for the f�R� gravity. In order to get
correct equations of motion, one has to modify the equi-
librium Clausius relation to a nonequilibrium one; an
entropy production term needs to be added to the
Clausius relation of equilibrium thermodynamics.
Namely, the f�R� gravity corresponds to a nonequilibrium
thermodynamics of space-time. In this section, we will deal
with the scalar-tensor gravity by using their method.

For a space-time point p in �n� 1� dimensions, locally,
one can define a causal horizon as in [5]: Choose a space-
like �n� 1�-surface patch B including p and then choose
one side of the boundary of the past of B. Near the point p,
this boundary is a congruence of the null geodesics or-
thogonal to B. These comprise the horizon. To define the
heat flux, we can employ an approximate boost killing
vector 
 which is future pointing on the causal horizon
and vanishes at p. 
 has a relation with the tangent vector
of causal horizon k: 
 � ��k, where � is the affine
parameter of the corresponding null geodesic line. The
heat is defined to be the boost energy current of matter
(including the scalar field in the scalar-tensor gravity)
across the horizon

 �Q �
Z
Tab
ad�b: (7.1)
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Using relation 
 � ��k, and temperature T � @=2�, we
have

 

�Q
T
�

2�
@

Z
Tabkakb����d�dn�1A; (7.2)

where

 Tab � T
�

ab � T
m

ab: (7.3)

Assuming that the entropy is of the form

 S � �F���A; (7.4)

where � is a constant depending on the number and nature
of quantum fields, we have

 �S � �
Z
��F� _F�d�dn�1A; (7.5)

where � is the expansion of null geodesic congruence and
the overdot means the derivative with respect to the affine
parameter � (do not confuse this with the derivative with
respect to t in the previous sections). To extract the O���
term from the integrand, we differentiate it with respect to
� and use the requirement [5]: ��F� _F��p� � 0, at the
point p, we have

 

d
d�
��F� _F�

����������0
� _�F� F�1 _F2 � �F: (7.6)

By using the Raychaudhuri equation for the null geodesic
congruence in �n� 1� dimensions

 

d
d�

� � �
1

n� 1
�2 � �ab�ab � Rabkakb; (7.7)

and the geodesic equation, we can rewrite Eq. (7.6) as
 

� kakb�Rab �rarbF� F�1raFrbF�

�
1

n� 1
F�2 � F�ab�

ab: (7.8)

We assume that the shear term vanishes in the whole space-
time. With the Clausius relation, we have

 FRab �rarbF�
n

n� 1
F�1raFrbF��gab

�
2�
�@
�T
�

ab � T
m

ab�; (7.9)

where � is an undetermined function and T
�

ab �

@a�@b�� gab�
1
2g

cd@c�@d�� V����. We assume that

the matter stress tensor is divergence free, i.e., raT
m

ab �
0, but due to the coupling function F��� between � and

scalar curvature R, the T
�

ab is not conserved, namely,

raT
�

ab � 0. Instead the divergence of T
�

ab is

 raT
�

ab � r
2�rb�� V0���rb�: (7.10)

Considering the identity

 ra�FRab �rarbF� �
1
2rb�FR� � rbr

2F� 1
2RF

0rb�

(7.11)

and taking divergence for both sides of the Eq. (7.9), we
find
 

rb� � rb

�
r2F�

1

2
FR

�
�ra

�
n

n� 1
F�1raFrbF

�

�

�
1

2
F0R�

2�
�@
�r2�� V0�

�
rb�: (7.12)

The last term in the right-hand side of the above equation is
nothing but the equation of motion for the scalar field.
Therefore, this term always vanishes. While the left-hand
side is a pure gradient of a scalar, the second term in the
right-hand side of the equation ra� nn�1F

�1raFrbF� can-
not always be written as the gradient of a scalar. As a result,
as the case of f�R� gravity [5], there is a contradiction here.
To resolve this, we add an entropy production term diS to
the Clausius relation. It is easy to find if we choose

 diS �
Z
�d�dn�1A (7.13)

with entropy production density

 � � �
n

n� 1
�F�1 _F2� (7.14)

and use the equation of motion for the scalar field

 

1
2F
0R�

2�
�@
�r2�� V 0� � 0: (7.15)

The field equations (7.9) for the scalar-tensor theory be-
come

 FGab �rarbF� gabr2F �
2�
�@
�T
�

ab � T
m

ab�; (7.16)

where Gab is the Einstein tensor. Taking � � 1
4G@ ,

Eqs. (7.15) and (7.16) are just the equations of motion for
gab and � in the scalar-tensor gravity theory, whose
Lagrangian is given by (6.1).

Thus we conclude that in order to get the equations of
motion in the scalar-tensor gravity, the Clausius relation
has to be modified; we have to add an entropy production
term diS (7.13) to the Clausius relation. This suggests that
as in the case of f�R� gravity, the scalar-tensor gravity
corresponds to nonequilibrium thermodynamics of space-
time. We note that this entropy production term (7.13) does
not coincide with the entropy production term (6.27) in the
setup of the FRW universe although they look similar to
each other. This is not surprising because the analysis of
Eling et al. is locally at each space-time point, while our
previous analysis is focused on the trapping horizon/ap-
parent horizon of the FRW universe. The common point
between them is that both of them imply that the scalar-
tensor gravity requires a nonequilibrium thermodynamic
treatment as the f�R� gravity.

RONG-GEN CAI AND LI-MING CAO PHYSICAL REVIEW D 75, 064008 (2007)

064008-10



VIII. CONCLUSIONS

In this paper we have revisited the relation between the
Friedmann equations and the thermodynamics on the trap-
ping horizon/apparent horizon in the FRW universe. We
have generalized the unified first law to the case of �n�
1�-dimensional Einstein theory. After projecting the uni-
fied first law along inner trapping horizon/apparent hori-
zon, we have obtained the first law of thermodynamics of
the FRW universe, which is very similar to the thermody-
namics of dynamic black holes on their outer trapping
horizon. The form of the first law of thermodynamics is
rigorous without any approximation. For non-Einstein
gravity theories, we have rewritten the field equations to
a form of Einstein gravity by introducing an effective
energy-momentum tensor and treated them as Einstein
gravity theory. In these theories the first law of thermody-
namics for the apparent horizon in the FRW universe has
the same form

 hdE; �i �
�

8�G
hdA; �i � hWdV; �i;

where E is the Misner-Sharp energy, as the case of Einstein
gravity theory. But here W is an effective work term, the
Misner-Sharp energy is fixed to be the form of Eq. (2.8)
because it is defined through space-time geometry. In the
Lovelock gravity, if we define the heat �Q by pure matter
energy supply projecting along the horizon, we find that the
Clausius relation

 �Q � TdS

still holds, where T � �=2� and S is of the exact form of
the entropy of black hole horizon in the Lovelock gravity.
However, the same treatment tells us that the Clausius
relation cannot be fulfilled for the scalar-tensor gravity.
We have to introduce an entropy production term to the
Clausius relation

 �Q � TdS� TdiS:

This implies that the thermodynamics of apparent horizon
is nonequilibrium thermodynamics for the scalar-tensor
theory.

Following Eling et al. [5], we have treated the scalar-
tensor gravity and shown that the Clausius relation plus the
entropy form S � �F���A cannot give the correct equa-
tions of motion for the theory. In order to resolve this issue,
we have to modify the Clausius relation by introducing an
entropy production term. This also indicates that the scalar-
tensor gravity is the nonequilibrium thermodynamics of
space-time as the case of f�R� gravity.
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