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It is proven that in Vaidya spacetimes of bounded total mass, the outer boundary, in spacetime, of the
region containing outer trapped surfaces, is the event horizon. Further, it is shown that the region
containing trapped surfaces in these spacetimes does not always extend to the event horizon.
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I. INTRODUCTION

There has been renewed interest in the last several years
in studying black holes from a more local perspective,
including attempting to come up with a local definition
for the boundaries of black holes. A black hole is defined as
a region in spacetime that cannot be observed from infinity.
The boundary of the black hole region is the event horizon.
This is a 3-surface defined globally and therefore knowl-
edge of the entire future evolution of the spacetime is
required before the event horizon’s position and even ex-
istence are known. Turning next to local surfaces, the
notion of an outer trapped surface was introduced in the
studies of black holes. An outer trapped surface is a com-
pact spacelike surface where the outgoing null geodesics
orthogonal to the surface are initially converging, i.e. their
expansion is negative. Examples of outer trapped surfaces
are 2-spheres inside the event horizon in a Schwarzschild
spacetime. Verifying that a surface is outer trapped only
requires knowledge of the spacetime in a neighborhood of
the surface. In this sense outer trapped surfaces are local
while the event horizon, as mentioned, is global.

Assuming reasonable energy conditions and a non-
nakedly singular spacetime, outer trapped surfaces lie en-
tirely inside the event horizon [1]. In numerical applica-
tions locating these surfaces is of interest in finding the
existence of a black hole surrounding them, since locating
the event horizon is more difficult. Outer trapped surfaces
are also useful in excision techniques, since outer trapped
surfaces, and the region enclosed by them, lie entirely
inside the black hole. Hence, modifying this region cannot
affect the evolution outside the black hole and a numerical
simulation can be carried out more easily.

Consider some time slice of the spacetime, i.e. a space-
like 3-surface in the spacetime. One could consider the
region in this 3-surface containing outer trapped surfaces
that lie entirely in this 3-surface. The outer boundary of this
region is the apparent horizon. This is a spacelike 2-surface
with the expansion of outgoing null geodesics orthogonal
to it vanishing [1]. Given a foliation of the spacetime by
spacelike 3-surfaces, the apparent horizon on each leaf of
the foliation can be found, and one can consider the union

of the apparent horizons on all such leafs. This is a 3-
surface that will be referred to as the apparent 3-horizon, so
as to distinguish it from the apparent horizon, a 2-surface
on one time slice. In general, the apparent 3-horizon can be
discontinuous. Furthermore, the apparent horizons in
spacetime are not unique. A different foliation of the
spacetime into spacelike surfaces can result in a different
location of the apparent horizon through the spacetime. As
a result the apparent 3-horizon is, in general, neither
unique, nor continuous.

More recently, the notions of trapping horizons [2] and
dynamical horizons [3] were introduced. These are 3-
surfaces that, like the apparent horizon, are quasilocal
and therefore do not require the entire evolution of the
spacetime in order for them to be located. Though these
surfaces are smooth by definition, they come with addi-
tional requirements. It is not known, in general, whether
these surfaces always exist in spacetimes containing black
holes. Furthermore, these 3-surfaces need not be unique.1

As described, the apparent horizon is defined by restrict-
ing attention to outer trapped surfaces lying in a single time
slice. Consider removing this restriction. Instead, consider
the region in spacetime containing outer trapped surfaces.
The outer boundary of this region is some unique 3-
surface2 that is certainly independent of any slicing of
the spacetime. This 3-surface has not been studied much
in the past.

Even in spherically symmetric spacetimes, where, due to
symmetry, finding apparent horizons on spherically sym-
metric slices is, relatively, an easy task, finding this 3-
surface is not as easy. In spherically symmetric spacetimes,
this 3-surface is spherically symmetric. However, the outer
trapped surfaces contained within the region enclosed by

*Electronic mail: ibd@uchicago.edu

1In [4], Ashtekar and Galloway show that the intrinsic struc-
ture of a dynamical horizon is unique, i.e. a 3-surface cannot
admit two distinct foliations both of which render the 3-surface a
dynamical horizon. However, they point out that there still
remains freedom, so that, in general, a spacetime may contain
different dynamical horizons in the same region of the
spacetime.

2It has not been proven that the outer boundary of this region is
always sufficiently regular as to fully deserve the designation of
3-surface. The discussion here is heuristic as to illustrate and
motivate the rigorous sections that follow.
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this surface, need not be spherically symmetric. In fact,
they need not lie in spherically symmetric slices. Not much
is known about the locations of nonspherically symmetric
outer trapped surfaces, and this is the main source of
difficulty in locating this 3-surface.

Given some foliation of the spacetime, consider the
apparent 3-horizon that is associated with this foliation.
It is clear that the 3-surface, which is the boundary of the
region containing outer trapped surfaces, lies outside of (or
coincides with) the apparent 3-horizon and lies inside of
(or coincides with) the event horizon. However, in general,
the apparent 3-horizon and the event horizon can be sepa-
rated in the dynamical regime, and therefore there is room
for this 3-surface to lie somewhere in-between.

This point is well illustrated in Vaidya spacetimes, com-
monly used to describe gravitational collapse that ends in
the formation of a black hole. The metric for a Vaidya
spacetime is given by
 

gab � �
�

1�
R�v�
r

�
dvadvb � 2dv�adrb�

� r2�d�ad�b � sin2�d�ad�b� (1)

with R�v� some non-negative, nondecreasing, smooth
function of v. In this work, R�v� is also assumed to be
bounded from above with a least upper bound, R0. The
stress energy is given by

 Tab �
R0�v�

8�r2 dvadvb (2)

The function R�v� is non-negative to ensure a non-nakedly
singular spacetime. It is nondecreasing in order for the
spacetime to satisfy the dominant energy condition, as
can be seen in (2). Finally, the additional requirement of
it being bounded from above, is in order to guarantee that
the spacetime is asymptotically flat and asymptotes to
Schwarzschild.

This spherically symmetric spacetime describes the col-
lapse of null dust in forming a black hole of mass M �
1
2R0. The metric is given in terms of the following coor-
dinates. Advanced time, v, areal radius, r, and the usual
angular coordinates, � and �. In the special case R�v� �
2M, with M some positive constant, the metric is that of
Schwarzschild in ingoing Eddington-Finkelstein
coordinates.

Given any 2-sphere, i.e. a surface of constant v and r, the
expansion, �, of outgoing null geodesics orthogonal to it is
given by

 � � �
2�R�v� � r�

r2 (3)

Since the apparent horizon on any spherically symmetric
slice of this spacetime is a 2-sphere, then it follows from
(3) that the apparent horizon on any spherically symmetric
asymptotically flat slice is the outermost 2-sphere satisfy-
ing r � R�v� in that slice. Consider the spacelike 3-surface

given by r � R�v� for all v. Outside the r � R�v� surface,
2-spheres are not outer trapped, while inside it, 2-spheres
are outer trapped. The event horizon does not, in general,
coincide with this 3-surface, and thus there exists, in
general, a nonempty region between the surface r �
R�v� and the event horizon.

Moreover, notice that, in general, far in the past R�v�
may vanish and that region of the spacetime will be a
portion of flat space. In fact, the spacetime where R�v� �
0 for v < v0 and R�v� � 2M for v � v0, which can be
obtained as a limit of a smooth family of such Vaidya
spacetimes, describes the collapse of a thin null dust shell
in flat space. A spacetime diagram of a thin null dust shell
collapse is shown in Fig. 1.

As can be seen in this figure, the event horizon extends
into the flat region. But, it is known that there are no outer
trapped surfaces in flat space.3 Indeed, the surface r �
R�v� does not extend into the flat region of the spacetime.
What about the boundary of the region containing outer
trapped surfaces? Could this 3-surface extend into the flat
portion?

Eardley [5] conjectured that the boundary of the region
that contains marginally outer trapped surfaces coincides
with the event horizon. For this conjecture to be true, there

 

r=0

Schwarzschild

r=0 singularity

Flat Space

Collapsing Shell

Event Horizon

Apparent Horizon

Is this point part of an
outer trapped surface?

FIG. 1 (color online). A spacetime diagram of the collapse of a
thin null dust shell in flat space. Two angular dimensions are
suppressed. Points in this diagram are, therefore, 2-spheres. The
region to the left of the shell is a portion of flat space. The region
to the right of it is a portion of a Schwarzschild spacetime. The
event horizon, a null 3-surface, is shown. The point on the left
represents a single event (as part of a 2-sphere). It lies inside the
event horizon but is deep in the flat region. Is there an outer
trapped surface that contains this point?

3This follows since, as mentioned, outer trapped surfaces lie
entirely inside an event horizon when certain conditions—which
flat space certainly satisfies—hold. Since flat space does not
contain any black holes, it therefore cannot contain any outer
trapped surfaces either.
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need to exist marginally outer trapped surfaces close to the
event horizon in the flat portion. For example, a marginally
outer trapped surface must pass through the point shown in
Fig. 1. However, as was just pointed, there are no margin-
ally outer trapped surfaces in flat space. Could there be
marginally outer trapped surfaces in this spacetime that lie,
in part, in the flat portion?

In [5], Eardley gave an argument showing how one can
get outer trapped surfaces, parts of which extend beyond
the apparent horizon on some given slice. He then dis-
cussed how one might, in spacetimes such as the null shell
collapse, find outer trapped surfaces that reach into the flat
portion. The idea is to have a 2-surface that lies mostly far
in the future, with a thin tendril that is almost null and lies
near the event horizon. The tendril reaches into the flat
portion and this 2-surface with a tendril is outer trapped.

The existence of nonspherically symmetric marginally
trapped surfaces in Vaidya spacetimes was investigated
numerically by Schnetter and Krishnan [6]. For specific
choices of R�v� they located marginally trapped surfaces,
i.e. surfaces where both expansions are nonpositive, that
penetrate into part of the flat region of the Vaidya
spacetime.

These results do not address Eardley’s conjecture.
Eardley’s conjecture is about the boundary of the region
containing (marginally) outer trapped surfaces, i.e. sur-
faces with no restriction on the expansion of ingoing null
geodesics orthogonal to the 2-surface. In contrast, the
surfaces found by Schnetter and Krishnan are marginally
trapped, i.e. they satisfy the additional requirement that the
ingoing expansion is everywhere nonpositive. However,
since trapped surfaces are, of course, also outer trapped,
then Schnetter and Krishnan’s results show numerically
that it is possible to find marginally outer trapped surfaces
extending into the flat region of a Vaidya spacetime.
Moreover, one can also consider the region containing
trapped surfaces and its outer boundary. This boundary is
some unique 3-surface that lies inside of (or coincides
with) the event horizon.4 The numerical results of
Schnetter and Krishnan show that this 3-surface can extend
into the flat region of a Vaidya spacetime.

The main purpose of this work is to prove that in Vaidya
spacetimes there are outer trapped surfaces extending ar-
bitrarily close to the event horizon in any region of the
spacetime. The event horizon, then, is the boundary of the
region containing outer trapped surfaces and in this case
Eardley’s conjecture is indeed true.

This will be achieved by constructing an outer trapped
surface. Starting with the initial point that lies inside the
event horizon, and which might be located in a flat portion,
a spacelike narrow tube is constructed. This tube stays
inside the event horizon and corresponds to Eardley’s

tendril. The tube reaches inside the apparent horizon in
the far future and it then tends to a region very close to the
singularity. The idea is to close the surface off in a specific
way once it is close to the singularity, thereby ensuring that
the resulting surface is outer trapped. A sketch of this idea
is shown in Fig. 2. Closing this tube into a surface shaped
like a worm’s skin, could lead to an inner trapped surface as
can be seen on the left. Inner trapped surfaces certainly
exist in flat space. If instead the surface is closed off inside-
out, like the face of Pacman,5 then it may be possible to
obtain an outer trapped surface in this way, since this
procedure interchanges the ingoing and outgoing direc-
tions, as can be seen on the right. Recall that inside the
spherically symmetric apparent horizon, 2-spheres are
outer trapped. Since the closing off is done in the far future,
inside the apparent horizon, then it will be possible to keep
the expansion negative in that region as well.

It will also be shown in this work that in Vaidya space-
times, the region containing trapped surfaces does not, in
general, extend everywhere to the event horizon. As shown
by Schnetter and Krishnan, the boundary of the region
containing trapped surfaces may extend to the flat region
of a Vaidya spacetime. However, the result obtained here
shows that in general, this boundary is separated from the
event horizon in the flat region.

II. MAIN RESULT AND KEY IDEAS

Consider a Vaidya spacetime with a metric given by (1)
with R�v� some non-negative, nondecreasing, smooth
function of v that is bounded from above with a least upper
bound, R0.

 

Inside

Inside

Outside

Outside

Inside
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FIG. 2 (color online). Left, a narrow tube shaped like a worm’s
skin. The ingoing and outgoing directions are shown. Right, a
similar tube closed off differently. Now it is closed inside-out,
like the face of Pacman. As a result the ingoing and outgoing
directions of the tube on the left, are interchanged. Therefore, a
portion of an inner trapped surface (the worm) can be used in
constructing an outer trapped surface (the Pacman). The specific
closing off inside-out will be done in the far future, inside the
apparent horizon, where 2-spheres are outer trapped.

4In fact, it lies inside of (or coincides with) the outer boundary
of the region containing outer trapped surfaces.

5The surface that is closed off inside-out is more accurately
described as the boundary of a ball with a cylinder removed.
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Since R�v� is bounded by R0 then this spacetime is
asymptotically flat and tends to Schwarzschild spacetime
in the far future. It follows that this spacetime (for the
nontrivial R0 � 0 case) contains a spherically symmetric
event horizon, which can be described by the equation r �
reh�v�. The function reh cannot be specified without full
knowledge of the function R�v�. However, like R�v�, this
function is nondecreasing and in addition reh�v� � R�v�
with equality holding at v0 only if R�v� is constant for all
v � v0 (i.e. if the spacetime is exactly Schwarzschild in
the future). If the spacetime contains a flat region, i.e. if
there exists some vflat such that R�v� � 0 for all v � vflat,
then the event horizon extends to this region as well.

Consider a point in this spacetime that lies inside the
event horizon, but may be arbitrarily close to it. It lies, in
the coordinates above, at r0 and v0 satisfying r0 < reh�v0�
and, without loss of generality, this point is assumed to lie
at � � 0.

The main result of this work is a proof by construction of
the existence of an outer trapped surface that contains this
point. More precisely, the following proposition is proven:

Proposition: Given a Vaidya spacetime with metric as in
(1) such that R�v� is a non-negative, nondecreasing,
bounded function with R0 > 0 the least upper bound of
R�v�, and given any point that lies inside the event horizon,
then there exists a compact smooth spacelike 2-manifold,
such that the expansion, �, of outgoing future-directed null
geodesics normal to it is everywhere negative.

This leads directly to the following result:
Corollary: In any Vaidya spacetime of bounded total

mass, the outer boundary of the region containing outer
trapped surfaces is the event horizon.

The proposition will be proved in the next section by
direct construction. Before doing so, it is worthwhile to
understand the general situation and the central ideas of the
construction.

As discussed earlier, 2-spheres with r < R�v� are outer
trapped. Therefore, the challenge is to construct an outer
trapped surface containing a point that is located at some
given r � r0 and v � v0 such that R�v0�< r0 < reh�v0�.

Since the desired outer trapped surface cannot be spheri-
cally symmetric, the next simplest option is an axisymmet-
ric surface. The first central idea in the present work is the
particular way in which this surface is constructed. A
spacelike vector field, wa, is defined. This vector field is
orthogonal to the axial Killing field, ca � � @@��

a. The in-
tegral curve of wa that contains the initial point is chosen.
This curve is then translated by the axial Killing field, ca,
and this results in a surface. Since the Killing field has
closed orbits then provided that the integral curve starts
and ends at the axis and does not intersect it in-between,
the resulting surface will be compact. If wa is smooth then
the surface obtained in this way is smooth except possibly
for the north and south poles. Extra care will be taken at the
poles to ensure the surface is smooth everywhere.

Next, consider the expansion, �. The outgoing, future-
directed, null rays orthogonal to this surface are given by
some null vector field la such that la is orthogonal to the
vector fields wa and ca. There still remains a scaling free-
dom for la. However, this freedom does not affect the sign
of the expansion, and since for a surface to be outer trapped
it is the sign of the expansion that matters, then any
convenient choice will do.

The expansion of la is given by � � qabralb where ra
is the covariant derivative associated with gab and qab is
the inverse of the induced metric on the 2-surface given by

 qab �
wawb

wcwc
�
cacb

cccc
(4)

Given a choice of a spacelike vector field wa as above,
such that the expansion of outgoing null rays, la, is nega-
tive along the integral curve of wa then the surface ob-
tained in this way is, as desired, an outer trapped surface.

There are other, more direct, ways of specifying a 2-
surface in spacetime. For example, two functions in space-
time could be defined such that the intersection of two level
surfaces of these functions is a 2-surface. However, it is
much more difficult to use such direct methods for all
Vaidya spacetimes with a metric as in (1) and with any
R�v� that satisfies the conditions above, since they require
the global specification of the surface ‘‘all at once’’ such
that �< 0 everywhere. Instead, using the method em-
ployed here, one defines a vector field in spacetime. This
allows one to make appropriate ‘‘local adjustments’’ to the
surface in the process of defining it. Thus, one is able to
ensure that the expansion is negative by such ‘‘local
adjustments.’’

The central idea leading to a suitable choice of the vector
field, wa, is that proximity to the axis combined with a
specific closing of the 2-surface will enable maintaining
the expansion negative. This was described earlier and was
shown in Fig. 2. Figure 3 shows how this idea is actually
implemented in a Vaidya spacetime. The top diagram is a
spacetime diagram of the collapse of null dust in flat space.
In this diagram a spherically symmetric spacelike slice that
contains the desired outer trapped surface is shown. The
bottom diagram depicts this spacelike 3-surface. The outer
trapped surface including its angular (�) dependence is
shown as a line in this 3-surface. As can be seen in the
bottom diagram of Fig. 3, the outer trapped surface remains
close to the axis for the most part, i.e. at a very small �.
Once the conditions are right, the 2-surface closes off in the
particular way described earlier, as can be seen at the right
side of the bottom diagram.

A sketch of the construction is now given. Full details
are given in the next section. In what follows the compo-
nents of the vector fields are given with respect to the
coordinates v, r, and � used in the metric above.6

6There are no expressions containing �, since, as discussed
earlier, wa is orthogonal to the axial Killing vector.
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The vector field wa is constructed by a sequence of
smooth transitions between five vector fields. Each one
of these is used only in a restricted region of the spacetime.
This is achieved by taking wa to be of the form:

 

wa � �1��1;2�w1
a��1;2�1��2;3�w2

a

��2;3�1��3;4�w3
a��3;4 cos�4;5w4

a� sin�4;5w5
a

(5)

and the five vector fields are given by

 w1
a � 2R0r sin�

�
@
@v

�
a
� 2R0

�
r�

R�v�
2

�
sin�

�
@
@r

�
a

� �2R0 cos�� r�
�
@
@�

�
a

(6)

 

w2
a � 2

�
@
@v

�
a
�

�
1�

R�v�
r

�

������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

� �2R0 cos�� r�������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

� �2R0 cos�� r�

�

	

�
@
@r

�
a

(7)

 w3
a � 2

�
@
@v

�
a
�

�
1�

R�v�
r

�
1�

�
r

���
@
@r

�
a

(8)

 w4
a � 2

�
@
@v

�
a

(9)

 w5
a �

2

r

�������������������
1�

R�v�
r

s �
@
@�

�
a

(10)

where � is some positive constant to be specified later.
The functions �i;i�1 appearing in (5), are referred to as

transition functions, i.e. these are functions that facilitate
the transition from one vector field to the next. Except for
the last transition function, �4;5, the functions �i;i�1 are all
smooth, nondecreasing functions of v into 
0; 1�, and are
chosen so that in a neighborhood where one such � is not
identically 0 or 1 then all the other �s are fixed to either 0
or 1 identically there.7 This can be explained more clearly
as follows: The smooth functions �i;i�1 result in the divi-
sion of the spacetime into several disjoint regions that
border each other. First, there is a region where wa �
w1

a. This region contains the initial point. Next, there is
a transition region where wa is a smooth linear combina-
tion ofw1

a andw2
a. The next region is such that wa � w2

a

there. This is followed by another transition region, and so
on. The integral curve that starts at the initial point will be
shown to traverse all these different regions.

Here is a rough description of what this surface is like.
Initially the surface starts at � � 0 and � increases to some
small fixed value. Meanwhile, the surface continues to-
wards increasing v and r, tending closer to the event
horizon. In the top diagram of Fig. 3, this is the horizontal
part of the 3-surface in a small neighborhood of the initial
point. Next, the surface starts following the event horizon
into the future at constant �, always remaining inside the
event horizon. At late v—when the 3-surface r � R�v�
tends to the event horizon as the spacetime asymptotes to
Schwarzschild—the constructed surface is finally inside
the 3-surface r � R�v�, as can be seen in the top diagram
of Fig. 3. At this stage r starts decreasing. This is shown in
the bottom diagram of Fig. 3. The surface, next, settles to

 

Flat Space

r=0

r=0 singularity

At much greater v

Event Horizon

r=R(v)

Spacelike 3−surface

Null Dust

Outer trapped surface

Spacelike 3−surface

FIG. 3 (color online). Top: A spacetime diagram of a Vaidya
spacetime. Two angular dimensions are suppressed. Points in
this diagram are, therefore, 2-spheres. A spherically symmetric
spacelike 3-surface is shown. Bottom: A schematic of this 3-
surface. One angular dimension is not shown. The desired outer
trapped surface is the line traced on this 3-surface.

7In the case of the last transition, which, for convenience, uses
cos� and sin�, instead of 1� � and �, respectively, the tran-
sition function �4;5 is instead a smooth function into 
0; �2�. As a
result, in regions of the spacetime where �4;5 is not identically 0
or �

2 , the other �s are fixed to either 0 or 1.
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very small r, close to the black hole singularity. This can be
seen in the top diagram of Fig. 3, at much larger v. In the
bottom diagram, this is the part where the geometry tends
to a cylinder with a constant thickness. Finally, the surface
closes off like a 2-sphere, following the idea described
earlier, as shown in the bottom diagram of Fig. 3.

III. DETAILS

The proposition is now proved by presenting the full
details of the construction.

Given a metric of the form (1) with R�v� satisfying the
conditions above, consider an event, i.e. a point in this
spacetime, which without loss of generality can be taken to
lie at the north pole, � � 0, at some v � v0 and r � r0

such that R�v0�< r0 < reh�v0�. The first inequality here
ensures that finding an outer trapped surface is nontrivial,
since if r0 were smaller than R�v0� then the 2-sphere with
constant r and v passing through the point would be outer
trapped. The second inequality follows since the point of
interest lies strictly inside the event horizon (though per-
haps arbitrarily close to it).

The following notation is used. Let vi, ri, and �i stand
for the value of the coordinates v, r, and � respectively,
when the transition from wi

a to wi�1
a starts. Let vi;i�1,

ri;i�1, and �i;i�1 be the values of these coordinates at the
end of the transition to wi�1

a.
Given the value of wa in some region, one needs an

expression for la in order to evaluate the expansion. Since
la can be rescaled by an arbitrary function, there remains
some freedom in choosing the components of la. Here, a
choice will be made by fixing8 the component of la along
� @@v�

a to be two. The components of la along � @@r�
a and � @@��

a

can then be uniquely determined as follows. The two
conditions lala � 0 and lawa � 0 translate into equations
that when solved uniquely determine the component along
� @@r�

a. These also yield two possible solutions for � @@��
a since

the conditions used so far allow la to be either outgoing or
ingoing. The outgoing direction, as discussed earlier and
shown in Fig. 3 is the solution tending towards smaller �,
i.e. the more negative solution. This procedure is followed
for the entire sequence of transitions including during the
transitions themselves.

Using (4), the expansion, �, can be written as

 ��w� � qabralb �
�
wawb

wcwc
�
cacb

cccc

�
ralb

� �
walbrawb
wcwc

�
calbrbca
cccc

� �
walbrawb
wcwc

�
1

2
lbrb log�caca� (11)

where in the third equality, lawa � 0 was used in getting
the first term and laca � 0 and ca being a Killing vector
field were used in getting the second term. Throughout this
work the expansion is evaluated using this expression.

Getting an outer trapped surface requires precise control
over the location of the integral curve. This is achieved
with a suitable tuning of the transition functions �i;i�1 that
control the five vector fields and basically turn the vector
fields on and off in certain regions of the spacetime.

Except for the final transition, from w4
a to w5

a, all the
transitions are taken to be of the form

 wa � �1� �i;i�1�v��wi
a � �i;i�1�v�wi�1

a (12)

As functions of v this means that wa, except for the final
transition, simply changes with v as follows. At v � v1,
wa � w1

a. A transition via �1;2 takes place and at any
intermediate v, i.e. v1 < v< v1;2, the vector field wa is
some linear combination of w1

a and w2
a. At v1;2 � v �

v2, wa � w2
a, and so on.

For simplicity, the form of the transition is picked once
and is used repeatedly. Pick a smooth function f�x� such
that f�x� is nondecreasing, f�x� � 0 for x � 0, f�x� � 1
for x � 1, and finally f0�x�> 0 8 x 2 �0; 1�. Given this
choice9 of f�x�, all of the transition functions, except the
last one, will be of the form

 �i;i�1�v� � f���v� vi�� (13)

with � � 1
vi;i�1�vi

. It follows that �i;i�1�v� � 0 for v � vi
and that �i;i�1�v� � 1 for v � vi;i�1.

As a result of using this canonical transition, it remains
only to choose the various starting and ending regions for
the transitions. In each transition it will be shown that with
the choices made, the integral curve along wa reaches the
desired regions and the expansion along the integral curve
of wa is always negative.

Two parameters will be used in the choosing of the
beginning and ending regions for the transition functions.
These are given by

 � � min
�
reh�v0� � r0

7
; ��;

R0

16

�
(14)

 

~� � min
� ����������
�R�
p

2R0
;

������������������
�

v�r0
� v0

s
; ��1; �

�
2; �

�
3;
�
8

�
; (15)

where v�r0
satisfies R�v�r0

� � r0, and R� is given by
 

R� �

8<
:

1
2R�v0�; R�v0�> 0

1
2r0; R�v0� � 0:

(16)

8This is possible since the outgoing null vector field satisfies
la� @@r�a > 0. As a result this component is always positive and can
be chosen to be equal to two.

9Here is one possible choice. Let g�x� be the smooth function
defined by g�x� � e�1=x2

for x > 0, and g�x� � 0 otherwise. It
follows that f�x� � e�g�1�x�=x

2
for x > 0, and f�x� � 0 other-

wise, satisfies the desired properties.
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The parameters ��1, ��2, ��3, and �� are chosen in the follow-
ing sections. The choice of ��1 is made at the end of
Sec. III A. ��2 is chosen in Sec. III B. The choice of ��3 is
made at the beginning of Sec. III C. Finally, �� is chosen in
Sec. III E. It is important to note that the choices of ��1, ��2,
��3, and �� are all independent of each other.10 The speci-
fication of ��1, ��2, ��3, and �� is discussed later purely for
convenience, so that the relevant conditions for making
these specifications will be at hand.

Since ��1, ��2, ��3, and �� are all positive then it follows
that ~� and � are positive as well. The reasons for these
choices will be clear once the parameters are used in the
construction.

Along the integral curve r can be considered as a func-
tion of v and therefore it is possible to define the following
function:

 ~r�v� � r�v� � reh�v� (17)

This function serves to keep track of where is the integral
curve relative to the event horizon, for a given v.

A. Initially wa � w1
a: Starting at the north pole

At the initial point, at the north pole, the construction
starts with wa � w1

a where w1
a was given11 by (6).

As mentioned earlier, the north pole, � � 0, is one point
where extra care must be taken to ensure the surface is
smooth. This choice of w1

a guarantees that the resulting
surface will be smooth at the north pole as follows. The
integral curve of w1

a near the north pole can be parame-
trized by � � cos�. This gives a system of ordinary dif-
ferential equations for v and r as functions of � with
smooth coefficients in a neighborhood of the north pole.
It follows that in a neighborhood of the north pole, in the
resulting surface, v and r are smooth functions of �.
Changing into Cartesian coordinates one can then verify
that the surface is smooth at the north pole.

The outgoing null vector field la is needed for evaluating
the expansion. Following the procedure discussed earlier, it
is found to be

 

l1
a� 2

�
@
@v

�
a
�

2

1�a�r;��

�
1�

R�v�
2r
�a�r;��

R�v�
2r

��
@
@r

�
a

�
2a�r;��

1�a�r;��
2R0 sin�

r
����������������������������������������������
4R0

2�4R0rcos��r2
q �

@
@�

�
a

(18)

with the function a�r; �� given by

 a�r; �� �

������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

2R0 cos�� r
(19)

Using (11) the expansion is found to be
 

��w1� � �
2�r2 � �2R0 � r�R�v��

r2�2R0 � r�
�O��2�

<�
1

R0
�O��2� (20)

where in the last inequality, R�v�< r< R0 was used. This
holds when wa � w1

a.
It follows that there exists some ��1 > 0 such that if � �

��1 then the expansion is negative. Thus ��1 is now chosen.
As will be seen below, when wa � w1

a, R�v�< r < R0

and � � 1
2

~� � 1
2�
�
1 will be maintained. As a result, during

this stage the expansion is negative.

B. Transition from w1
a to w2

a: The integral curve
becomes radial

Initially R�v� � R�v0�, ~r�v� � �7�, and � � 0. In or-
der to keep control of where the integral curve eventually
reaches, it is desired to have the transition tow2

a start when

 R�v� � R�v0� � �; ~r�v� � �6�; and 0<�� 1
2
~�

(21)

where � > 0 is given by

 � � 1
4�r0 � R�v0�� (22)

Sincew1
� � w1

ad�a is positive and bounded away from
zero for � � �

16 and since, from (6), the integral curve stays
away from the origin, r � 0, and its components are all
bounded, then the integral curve alongw1

a reaches � � �
16 .

Let v1 be the smallest value of v > v0 such that one of
the following occurs along the integral curve of w1

a start-
ing at the initial point: (i) R�v� � R�v0� � �,
(ii) ~r�v� � �6�, or (iii) � � 1

2
~�. This ensures that v1 is

reached and the transition to w2
a starts. The choice of v1

implies that r1 � R�v1� � 3�, ~r�v1� � �6� and �1 �
1
2

~�.
As previously indicated, the transition is taken to be of

the form

 wa � �1� �1;2�v��w1
a � �1;2�v�w2

a (23)

where w2
a was given in (7). The transition function �1;2 is

given by (13) with v1 as chosen above and v1;2, the value of
v where the transition ends, is chosen next.

Let v1;2 � v1 � �1;2 where �1;2 > 0 is now chosen.
Since R�v1� � R�v0� � � then it follows that a sufficiently
small �1;2 implies that R�v1;2� � R�v0� � 2�. Therefore,
this is one upper bound on �1;2 so that if �1;2 is chosen
smaller than this bound, then R�v� is kept under control.

From the form of the transition, (23), and since it starts at
�1 > 0 then it can easily be verified that d�dv and dr

dv are both

10If this were not the case, then a choice of one of these later in
the construction, could affect, via (15), a choice that has already
been made. Thus, this independence is important to avoid any
circular logic in making these choices.

11The choice of w1
a was originally motivated by considering a

2-sphere in flat space and shifting it by 2R0 along the z-axis.
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non-negative and bounded from above during the entire
transition (i.e. 8�1;2 2 
0; 1�).

As a result, a sufficiently small �1;2 > 0 implies that
r1;2 � r1 � � and that �1;2 � �1 �

~�
2 . Now, r1;2 � r1 � �

implies that ~r�v1;2� � ~r�v1� � � as well, since recall that
~r�v� � r�v� � reh�v� and reh�v� is nondecreasing.

Therefore, a sufficiently small �1;2 is chosen such that
during the transition, including when it ends, R�v� �
R�v0� � 2�, ~r�v� � �5�, and � � ~�.

It is important to verify that given �1;2�v�, the integral
curve along wa that is given by (23) actually reaches v �
v1;2, i.e. verify that the transition ends and reaches the
region in spacetime where wa � w2

a. Since during the
transition, the component wv � wadva is positive and
bounded away from zero, and since the other components
are bounded and the integral curve does not tend to r � 0,
then the integral curve reaches v � v1;2.

Consider, next, the expansion throughout the transition.
It is helpful to note that l2

a � l1
a, i.e.w2

a has the same null
field orthogonal to it, as w1

a does. This follows since one
can write

 w1
a � Cww2

a � Cll1
a (24)

where Cw and Cl are some smooth functions and in the
region of interest Cw is positive while Cl is negative.

Since l1
a � l2

a then it follows that throughout the tran-
sition, the expansion does not depend on �01;2�v�.
Combining (23) and (24) one obtains

 wa � fw2
a � gl1

a (25)

where f � �1� �1;2�Cw � �1;2 and g � �1� �1;2�Cl.
Using (11) the expansion is then found to be given by

 

���1� �1;2�w1 � �1;2w2� � ��w2�

�
�1� �1;2�Cl

�1� �1;2�Cw � �1;2

	
l1
al1

braw2b

w2
cw2c

(26)

Consider the first term in the expansion above, the
expansion of w2

a. Using l2
a � l1

a and (11) this is found
to be
 

��w2� �

�R�v� � 4r� � R�v��2R0 cos��r��������������������������������
4R0

2�4R0r cos��r2
p

r�2R0 cos�� r�
������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

�

� �
2r� R�v�
r�2R0 � r�

�O��2� (27)

There exists some ��2 > 0 such that ��w2� is negative for
all � � ��2 when R�v�< r< reh�v�. This ��2 is chosen and
appears in (15).

Consider, next, the second term in (26). The dependence
on �1;2 is given by

 

�1� �1;2�Cl
�1� �1;2�Cw � �1;2

(28)

Since in the region of interest Cw is positive and Cl does
not change sign, then it follows that this expression is
monotonic in �1;2. As a result, the maximum for (26) is
attained at �1;2 � 0 or �1;2 � 1. When �1;2 � 0, (26) is
the expansion of w1

a and when �1;2 � 1, it is the expan-
sion of w2

a. As a result it follows that

 ���1� �1;2�w1 � �1;2w2�� � max���w1�;��w2�� (29)

Since the expansions ofw1
a andw2

a are both negative then
the expansion during the transition is negative as well.

In the region where wa � w2
a, it will be seen below that

� � ��2 and that R�v�< r< reh�v�. Hence, the expansion
along the integral curve of wa is negative in the region
where wa � w2

a.

C. Transition from w2
a to w3

a: Once R is positive

Consider, first, the value v2 of v, at which the transition
begins. Let v2 be the smallest value to satisfy R�v2� �
R�v0� � 3�, where � was given by (22). This means that
when the transition to w3

a starts, R�v� is already positive.
This will turn out to be crucial for keeping the expansion
during the transition negative.

Along the integral curve of w2
a, for all v � v2, it will

now be shown that ~r�v� � �4�. The condition set forth for
R�v2� already takes care of controlling the increase in
R�v�. Since � is constant, its increase is certainly under
control.

Consider the following function that is given in (7) as
part of a component of w2

a.

 

h�r; �� �

������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

� �2R0 cos�� r�������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

� �2R0 cos�� r�

�
4R0

2�2

4�2R0 � r�
2 �O��

4�< �2 �O��4� (30)

where for the last inequality, r < reh�v� � R0 was used. It
follows that there exists some ��3 > 0 such that for all � �
��3 and when r < reh�v� then

 h�r; �� � 2�2 (31)

Such a ��3 is now chosen and since along the integral curve
of w2

a, � � ~� and r < reh�v�, then (31) is satisfied there.
A bound on the change in ~r�v� � r�v� � reh�v� is ob-

tained as follows.
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d~r�v�
dv

�
1

2

�
�
R�v�
r
�

������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

� �2R0 cos�� r�������������������������������������������������
4R0

2 � 4R0r cos�� r2
q

� �2R0 cos�� r�
�
R�v�
reh�v�

�
�

1

2
h�r; �� � �2 (32)

where, for the first equality, dreh=dv �
1
2 �1�

R�v�
r � was

used and dr=dv was obtained from (7). The last inequality
follows from (31).

Given this bound it follows that
 

~r�v2� � ~r�v1;2� � �2�v2 � v1;2� � �2�v�r0
� v0� � � (33)

where recall that v�r0
satisfies R�v�r0

� � r0 and therefore
v�r0

> v2. For the last inequality, it follows from (15) that

� � ~� �
������������

�
v�r0�v0

q
.

At v � v1;2, whenwa � w2
a initially, ~r � �5� holds. It

follows from (33) that at v � v2, r � reh�v� � 4�.
Consider next, the choice of v2;3 where the transition

ends. Let v2;3 � v2 � �2;3 where �2;3 > 0 is now chosen.
Once again, it is of interest to keep the changes in ~r and
R�v� under control as well as make sure the expansion is
negative. This will be achieved by imposing three upper
bounds on �2;3

The derivative, d~r
dv is bounded from above throughout the

transition (i.e. 8 �2;3 2 
0; 1�) and hence if �2;3 is suffi-
ciently small then ~r�v2;3� � ~r�v2� � �. This is the first
upper bound on �2;3.

Taking �2;3 � v�r0
� v2 guarantees that by the end of this

transition v2;3 � v�r0
and therefore R�v2;3� � R�v�r0

� � r0.
This is the second upper bound on �2;3. The third upper
bound on �2;3 will be specified after discussing the expan-
sion during the transition.

The vector field is transformed into w3
a via a transition

of the usual form,12

 wa � �1� �2;3�v��w2
a � �2;3�v�w3

a (34)

where w3
a was given in (8).

The vector field la for this transition can easily be found,
and using (11), the expansion, �, is found to be
 

���1� �2;3�v��w2 � �2;3�v�w3�

�
1

X

�
r2

R�v�
h�r; �� � �

�
�02;3�v� �

�2;3�v��
X

R0�v�
R�v�

�
�1� �2;3�v���X� r�

r
R�v� � 1��

2X
@h�r; ��
@r

�
2

r

���������������
R�v�

r2 X

s
cot��

2� �1� �2;3�v��h�r; ��
r

�
R�v�

r2 �
�1� �2;3�v��h�r; ���

r
R�v� � 1�

X
(35)

where h�r; �� was given in (30) and X � r2

R�v� 	

�1� �2;3�v��h�r; �� � �2;3�v�� > 0. This expression con-
sists of five terms.

The first term goes like �02;3�v� (first term in the second
line). This term is negative since

 

r2

R�v�
h�r; �� �

2�2r2

R�v�
�
�
2

R�
R�v�

r2

R2
0

<
�
2

(36)

where (31) was used in the first inequality and (15) was
used in the second one. The last inequality follows since,
during this transition, r < R0 and R� <R�v�, where R�
was defined in (16). Note that the coefficient in front of
�02;3�v� is negative and bounded away from zero for all
�2;3 2 
0; 1�. This fact will be used shortly.

The second term, the one that is proportional to R0�v�
(second term in the second line) is always nonpositive. The
third term is proportional to @h�r;��

@r > 0 (third line). This
term is nonpositive when r > R�v� and this is satisfied
since R�v� � R�v0� � 4� � r0 < r holds throughout the
transition.

Finally there are two more terms, a term that goes like
cot� (first term in the fourth line) and the remaining term
(second term in the fourth line and entire fifth line). These
two combined, i.e. the last two lines, will only be consid-
ered in the limits �2;3�v� � 0 and�2;3�v� � 1, since, it will
be shown that as long as this combined term is negative in
both limits, then a suitable choice of �2;3, where the tran-
sition ends, will guarantee that the last three lines can never
make the expansion non-negative.

When �2;3�v� � 0, i.e. the beginning of the transition,
the combined term (last two lines) is negative. When
�2;3�v� � 1, i.e. when the transition ends, this term is

negative provided that tan� <
�������������
�R�v2;3�
p

r . This is indeed
satisfied, since

 tan� < 2� �

����������
�R�
p

R0
<

�����������������
�R�v2;3�

q
r

(37)

where the first inequality certainly holds for � � �
8 . The

next inequality follows from (15). Using R�v2;3� �
R�v2�>R� and r < R0, the final inequality immediately
follows.

Since the combined term is negative for �2;3 � 0 and
�2;3 � 1 for all v, r, and � satisfying the other conditions
above, then there exists some 	> 0 such that the com-
bined term is negative for �2;3 <	 and for �2;3 > 1� 	.
It will now be shown that a suitable choice of �2;3 can keep
the combined term negative for all �2;3 2 
0; 1�.

12Recall that by now �1;2 � 1 and in this region all other
transition functions �i;i�1 are zero, except for �2;3. Hence
locally the transition involves only w2

a and w3
a in this manner.
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From the form of �2;3 in terms of f�x�, (13), it follows
that

 �02;3�v� � �f0�x�jx���v�v2�
(38)

with � � �v2;3 � v2�
�1 � �2;3

�1. Since f0�x�> 0 for all
x 2 �0; 1� then there exists an inverse function f and there-
fore �2;3 2 
	; 1� 	� corresponds to f�x� for x 2

f�1�	�; f�1�1� 	��. This closed interval for x is compact
and f0�x�> 0 there. It follows that f0�x� has a minimum in
this interval, f0min > 0.

Using (38) and f0min as well the fact that the coefficient in
front of �02;3�v� in the expansion is negative and bounded
away from zero, then the �02;3�v� term can be made as
negative as desired by choosing � sufficiently large.
Meanwhile, the potentially positive remaining term (last
two lines) is bounded from above. Thus by taking �
sufficiently large, it can be ensured that the �02;3�v� term
is more negative than the remaining term is, perhaps,
positive. As a result, for such � the expansion is negative.

Taking � sufficiently large is, by definition, taking �2;3

sufficiently small. Thus, the condition on � translates to the
final upper bound imposed in the choice of �2;3. Hence, �2;3

is taken to be smaller than all three upper bounds.
It is important to verify that given this �2;3�v�, the

integral curve along wa that is given by (34) actually
reaches v � v2;3, i.e. verify that the transition ends and
reaches the region in spacetime where wa � w3

a. This is
the case for precisely the same reason the previous tran-
sition ended. Since during the transition, the component
wv � wadva is positive and bounded away from zero, and
since the other components are bounded and the integral
curve does not tend to r � 0, then the integral curve
reaches v � v2;3.

Setting �2;3 � 1 in (35), the expansion once wa � w3
a

is found to be

 ��w3� � �
R�v� � 2

�������������
�R�v�

p
cot�� 2r

r2 �
R0�v�
R�v�

(39)

The expansion is negative if tan� <
���������
�R�v�
p

r , but this is
satisfied by (37).

When wa � w3
a, at the end of the transition from w2

a,
r � reh�v� � 3� as a result of the bound on the change in ~r.
Using w3

r, it is easy to verify that d~r
dv is negative if reh�v� �

r� 3�. In other words, once wa � w3
a it will remain at

r � reh�v� � 3� indefinitely.

D. Transition from w3
a to w4

a:
When r is sufficiently small

The transition to w4
a starts at v3, which is now chosen.

Let v3 be the smallest v such that R�v3� �
1
2R0 and such

that r3 � r�v3� satisfies r3 � 2�.
Along the integral curve of w3

a, v increases and can
reach any arbitrary large value without the curve getting to
the singularity, r � 0. This follows since when r � �, w3

r

is positive, and therefore r > � along the integral curve.
As a result, the curve reaches v such that R�v� � 1

2R0. It
remains to show that the integral curve along w3

a reaches
r � 2�.

It was shown that r � reh�v� � 3� holds along the in-
tegral curve of w3

a. Since this integral curve reaches
arbitrarily large v then it reaches v large enough so that
R�v� � R0 � �. It follows that for this v and later, r �
R�v� � 2�. The idea is that since R�v� is bounded from
above then late enough the spacetime asymptotes to
Schwarzschild and the surface r � R�v� tends to the event
horizon. Since the integral curve lies at r � reh�v� � 3�
then once the surface r � R�v� is close enough to the event
horizon, the integral curve must cross it and it now lies
inside the surface r � R�v�.

It can easily be shown that once r � R�v� � 2�, then
w3

r is negative, i.e. the integral curve starts tending to-
wards smaller r. For r in the range 2� � r � R�v� � 2�,
w3

r is negative and bounded away from zero. As a result,
since, in addition, w3

v � 2, then at finite coordinate v, the
integral curve reaches r � 2�. As already discussed, it
does not reach the singularity since it tends to r * �.

Thus, v3 was chosen above and the choice of v3;4 will be
discussed after the expansion is explored. The transition is
taken to be of the usual form and w4

a was given by (9).
This transition is motivated by a desire to keep the final
transition, as simple as possible. After finding la for the
transition, the expansion is evaluated to be

 ���1� �3;4�v��w3 � �3;4�v�w4� �
r2 � ��� r�R�v�

Y
�03;4�v� �

�� �3;4�v��r� ��
Y

R0�v� �
2

r2

����
Y
p

cot�

�
�R�v� � 2r���3;4�v��1� �3;4�v���r2 � ��� r�R�v�� � 2�R�v��

2r2Y
(40)

where Y � �R�v� � �3;4�v��r
2 � ��� r�R�v��. It follows,

since � � r � 2�, that Y > 0 and exploring the four terms,
it is found that all are manifestly either nonpositive or
negative, except for the term that goes like �03;4�v�, which,

without further analysis, may be positive. However, since
the cot� term is negative and bounded away from zero for
all�3;4�v� 2 
0; 1�, then as long as�03;4�v� is small enough,
the expansion remains negative. As seen before, the de-
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rivative of the transition function is

 �03;4�v� � �f0�x�jx���v�v3�
(41)

with � � �v3;4 � v3�
�1, where v � v3;4 is where the tran-

sition to w4
a is complete. Since f0�x� is bounded then v3;4

can be chosen sufficiently large so that � is sufficiently
small and the potentially positive �03;4�v� term is domi-
nated by the negative cot� term. Thus, v3;4 is now set and
as a result, this transition may terminate at some very large
value of v.

During the transition, wa 
 2� @@v�
a and therefore the

transition ends, i.e. the integral curve reaches v � v3;4.
Once the transition ends, the expansion along the inte-

gral curve of w4
a is obtained by setting �3;4�v� � 1 and

�03;4�v� � 0 in (40). Following the previous discussion, the
expansion is negative in this case as well.

E. Transition from w4
a to w5

a : Closing off as a 2-sphere

The required conditions for the transition to w5
a to start

are already satisfied as soon as the transition to w4
a ends,13

and therefore the final transition starts at any v4 > v3;4.
The final transition requires a different way of perform-

ing the transition. A choice of v4;5 and a transition of the
form �1� �4;5�v��w4

a � �4;5�v�w5
a will not work. The

integral curve, in this case, will never reach v4;5 since as
�4;5 tends to 1, then wv tends to 0, but �4;5�v� increases
only if v increases and therefore a transition where the
transition function depends on v alone in this way, is not
possible. A simple solution is to take, in this case, a
transition function that depends on v and �, such as
�4;5�v� ��.

The vector fields w4
a and w5

a defined in (9) and (10),
respectively, satisfy w4

aw4a � w5
aw5a and w4

aw5a � 0.
Thus, using cos��4;5� and sin��4;5�, it is possible to keep
wawa independent of �4;5 and this simplifies the expres-
sion for the expansion. For convenience, then, the transi-
tion is taken to be of the form

 wa � cos��4;5�v� ���w4
a � sin��4;5�v� ���w5

a (42)

where in this case, the transition function, �4;5 is given by

 �4;5�v� �� �
�
2
f���v� �� �v4 � �4��� (43)

and in this transition � is simply chosen to be

 � �
4

�
(44)

Note that this choice of � is really a specification of v4;5 �
�4;5, where the transition ends. In this transition �4;5 varies
from 0 to �

2 as f varies from 0 to 1.

The transition in this form does end, i.e. the integral
curve reaches the region where wa � w5

a. First, v and �
are nondecreasing during the entire transition and it will be
shown that � < �

2 throughout the transition. Initially, when
�4;5 �

�
4 , wv is positive and bounded away from zero. In

this case the increase in v guarantees that �4;5 will reach �
4 .

When �4;5 �
�
4 , w� is positive and bounded away from

zero. Here the increase in � guarantees that �4;5 will reach
�
2 . Thus, the combination of v and � in this way as well as
the particular choice of �, ensure that the integral curve
crosses the transition region.

The null field, la, for the transition is obtained, and the
expansion is evaluated to be
 

�
�

cos�4;5����������������
R�v�
r � 1

q �
@
@v

�
a
�

sin�4;5

r

�
@
@�

�
a
�

�
2�cos�4;5 �

1
r

����������������
R�v�
r � 1

q
sin�4;5�

1� sin�4;5
�04;5

�
1� sin�4;5

R�v� � r
R0�v� �

2

r

�������������������
R�v�
r
� 1

s
1� sin�4;5

cos�4;5
cot�

�
2�cos�2�4;5� � 3�r� �5� 3 cos�2�4;5��R�v�

2r2�cos
�4;5

2 � sin
�4;5

2 �
2 (45)

Consider the different terms in the expansion. The term
proportional to R0�v� is always nonpositive. This leaves
two terms. A term proportional to cot� and the combina-
tion of the �04;5 term and the remaining term, the last line.

The term proportional to cot� is nonpositive provided
that cot� � 0, i.e. � � �

2 . Since �4, the angle at which the
final transition starts, satisfies �4 � �1;2 �

�
8 then if the

additional change in � during the final transition is not
greater than, say, �4 , then this term will remain nonpositive
throughout the transition. A simple bound on the change in
� is obtained as follows

 �� � �4;5 � �4 <
1

�
��v4;5 � �4;5 � �v4 � �4�� �

1

�
�
�
4

(46)

since at the end of the transition, the argument of f in (43)
is equal to 1, and v4;5 > v4. Thus, � was chosen to ensure
that the cot� term remains nonpositive throughout the final
transition.

Consider next the combined two terms consisting of the
term proportional to �04;5 and the remaining term, the last
line of (45). First, since f0�x� is bounded from above, then
let f0max be its maximum. From the definition of �4;5, (43),
if follows that

 �04;5��
0
4;5�v����

�
2
f0���v����v4��4����� 2f0max

(47)

The combined two terms can be bounded from above as

13Indeed, as mentioned earlier, the reason for w4
a in the first

place was simply to allow for the final transition to be as simple
as possible.
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follows

 

2�cos�4;5 �
1
r

����������������
R�v�
r � 1

q
sin�4;5�

1� sin�4;5
�04;5

�
2�cos�2�4;5� � 3�r� �5� 3 cos�2�4;5��R�v�

2r2�cos
�4;5

2 � sin
�4;5

2 �
2

< 4
�
1�

1

r

�������������������
R�v�
r
� 1

s �
f0max �

R�v�

4r2

< 4
�
1�

1

r

���������������
R0

r
� 1

s �
f0max �

R0

8r2 (48)

where, in the first inequality, R�v� � 4r � 1
2R0 � 8� � 0,

which follows from (14), was used. The last inequality
follows since 1

2R0 � R�v� � R0.
Given R0 and f0max it follows that there exists some

positive value �� such that if r � 2�� then the right hand
side of (48) is negative. Therefore, ��, the parameter
appearing in (14), is now chosen14 and since by (14), � �
��, then this ensures that the contribution to the expansion
from the combined two terms is negative. Since the other
terms in the expansion are nonpositive, it follows that the
expansion throughout the final transition is always
negative.

Once wa � w5
a the integral curve continues along � @@��

a

until the axis is reached at � � �. Along the integral curve
of w5

a, the expansion is that of a 2-sphere, as given by (3).
It is negative, since, in this region, r < R�v�. The ending
point, � � �, of the integral curve, is the south pole of the
2-surface. The 2-surface obtained by translation of the
curve by the axial Killing field is smooth there, since, in
a neighborhood of this point, the 2-surface is just a portion
of a 2-sphere.

F. The 2-surface obtained in this way

Since the integral curve starts and ends at the axis, then
the resulting 2-surface is compact. Since wa, and the axial
Killing field are spacelike everywhere, then so is the re-
sulting 2-surface. The 2-surface is smooth since wa is
smooth everywhere and at the north pole, � � 0, and at
the south pole, � � �, the surface was shown to be smooth.
Finally, the expansion of outgoing null geodesics orthogo-
nal to it is negative everywhere, as was shown throughout
the construction. It is, therefore, an outer trapped surface
and it contains the initial point. This completes the proof.

IV. TRAPPED SURFACES

The situation regarding outer trapped surfaces in Vaidya
spacetimes is now clear. These can lie arbitrarily close to
the event horizon in any region of the spacetime. What
about trapped surfaces, i.e. surfaces where both expansions
are required to be negative? Exploring the region contain-
ing outer trapped surfaces and its boundary leads to a
similar question about the region containing trapped
surfaces.

Future trapping horizons [2] and dynamical horizons [3]
are foliated by inner trapped and marginally outer trapped
surfaces, i.e. foliated by surfaces that are almost trapped,
except that in the outgoing direction the expansion van-
ishes instead of being everywhere negative. It is the region
containing trapped surfaces and not the one containing
outer trapped surfaces that is relevant when trying to ex-
plore where future trapping horizons and dynamical hori-
zons can exist.

It will now be shown that in Vaidya spacetimes that
contain a flat region, a portion of the event horizon does
not have any trapped surfaces lying close to it.15 As a
result, the boundary of the region containing trapped sur-
faces is not, in general, the event horizon.

Consider some spacelike 2-surface, S, in spacetime. Let
this 2-surface be embedded in a spacelike 3-surface, �,
which, itself, is embedded in the four dimensional space-
time. Let sa be the outgoing spacelike unit normal to S in
�, and let ta be the timelike, future-directed, unit normal to
� in the spacetime. The outgoing null normal to the 2-
surface, is then given by

 la � ta � sa (49)

The expansion in this case is given by

 � � qabralb � habratb � s
asbratb � q

abDasb (50)

where qab is the inverse of the induced metric on S, hab is
the induced metric on �, and Da is the covariant derivative
associated with �. If instead of the outgoing direction, the
ingoing one is of interest, then this derivation can be
repeated with the change sa ! �sa. The first two terms
in (50) include the trace of the extrinsic curvature of the 3-
surface, �, in spacetime and the component of the extrinsic
curvature orthogonal to S. These are independent of the
change sa ! �sa. The last term in (50), the trace of the
extrinsic curvature of the 2-surface, S, in the 3-surface, �,
changes sign with the change sa ! �sa.

This can now be applied in flat space in inertial coor-
dinates. Let � be a t � const hyperplane. Then � is a 3-
surface with vanishing extrinsic curvature in the flat four
dimensional spacetime. As a result, any 2-surface in this
hyperplane will have the two expansions of equal size and

14Notice how the choice of ��, for example, depends only on R0
and f0max. Even though this choice is discussed in this section,
after the choices of ��1, ��2, and ��3 have been made, it clearly does
not depend on any of these choices.

15This result, as well as the argument that proves it, were
suggested by Bob Wald.
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of opposite signs (or, of course, both vanishing).16 If some
2-surface embedded in such a hyperplane in flat space is
inner trapped, with that expansion being everywhere nega-
tive, then this 2-surface is not outer trapped, with that
expansion being everywhere positive, and vice versa.

For a trapped surface to extend into the flat region of a
Vaidya spacetime, it will be shown that it needs to ‘‘bend
down in time,’’ since otherwise, the expansions cannot both
be negative. An example of a surface that ‘‘bends down in
time’’ is the intersection of the past light cones of two
single events in flat space. This spacelike 2-surface has
both ingoing and outgoing expansions everywhere nega-
tive. It is not, however, a trapped surface, because, as the
intersection of two past light cones, this surface is not
compact.

It will be shown that because of the required ‘‘bending
down in time,’’ a trapped surface, which extends into the
flat region of the spacetime, cannot have a minimum there,
for any inertial time t. It will follow that there is an
excluded region, where not having a minimum for any
inertial time t cannot occur without the surface crossing
the event horizon, which is impossible. It will therefore be
shown, that no trapped surfaces can pass in this excluded
region. The situation is shown in Fig. 4. The excluded
region can be seen in the flat region of the spacetime,
bordering the event horizon. The proposition is now stated
and proved.

Proposition: Consider a Vaidya spacetime with metric as
in (1) such that R�v� is a non-negative, nondecreasing,
bounded function, and such that R�v� � 0 for v�vflat

and R�v�>0 for v>vflat. Let t be the global inertial
time coordinate in the flat region such that the 2-spheres
of the global spherical symmetry of the Vaidya spacetime
are at rest. Let t0 be the value of t at the intersection of the
event horizon with the surface v�v0. Then, no trapped
surface in this spacetime may contain a point with v<v0

and t<t0.
Proof: LetU be the region in this spacetime that contains

all the points that lie inside, or coincide with, the event
horizon and with t � t0. Thus, in the figure, this is the
shaded region including the portion of the 3-surface t � t0
at the top of the region, and including the portion of the
event horizon at the bottom of this region. The region U is
compact.

Assume that a trapped surface contains some point
�t1; x1; y1; z1� that lies strictly inside this region, i.e. t1 <
t0, and, of course, it is strictly inside the event horizon. Let
W be the intersection of the trapped surface with U. The
region W is compact and it is nonempty, since, by assump-
tion, it contains the point above. As a result a minimum for
t exists in W. Let �~t; ~x; ~y; ~z� be a point in W where this
minimum for t is attained.

This point cannot lie in the boundary of U, since this
would mean that either ~t � t0 or that the point lies in the
event horizon. The first is impossible, since, by assump-
tion, another point in W satisfies t1 < t0, and therefore this
would contradict this point being a minimum for t in W.
The second is impossible, since trapped surfaces lie strictly
inside the event horizon, so the point cannot lie on the
event horizon. Therefore, the minimum for t is attained
strictly inside U, and this implies that �~t; ~x; ~y; ~z� must be a
local minimum for t.

Without loss of generality, the Cartesian coordinates can
be chosen so that at �~t; ~x; ~y; ~z�, the z-axis is orthogonal to
the trapped surface. It follows that in a neighborhood of
this point, the 2-surface can be expressed in terms of x and
y. Therefore, in a neighborhood of this point the surface’s
coordinates are given by

 �T�x; y�; x; y; Z�x; y�� (51)

with T�x; y� and Z�x; y� some smooth functions in this
neighborhood. Since �~t; ~x; ~y; ~z� is a local minimum for t
then

 

@T�x; y�
@x

���������~x;~y�� 0 and
@T�x; y�
@y

���������~x;~y�� 0 (52)

Similarly, since the z-axis is orthogonal to the 2-surface at
this point then

 

FIG. 4 (color online). A spacetime diagram of the collapse of
null dust in flat space. The coordinate t is such that �@@t�

a is
pointing upwards in the flat region in the diagram. The surfaces
v � vflat and t � t0 are shown. The excluded region is the region
inside the event horizon satisfying t < t0. This is the shaded
triangular region in the diagram. It follows from the proposition
that trapped surfaces cannot extend into this region. As a result,
the boundary of the region containing trapped surfaces, is not, in
general, the event horizon.

16This follows since, in this case the first two terms in (50)
vanish and the last term changes sign between the ingoing and
outgoing expansions.
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@Z�x; y�
@x

���������~x;~y�� 0 and
@Z�x; y�
@y

���������~x;~y�� 0 (53)

Consider the 3-surface given by t� T�x; y� � 0. At
�~t; ~x; ~y; ~z�, the normal to the surface, ra�t� T�x; y��, is
timelike. Since this gradient is smooth in the coordinates,
then it is timelike in some small neighborhood of �~t; ~x; ~y; ~z�.
Furthermore, in this neighborhood the 2-surface given by
(51) is embedded in this 3-surface. Consider the sum of the
outgoing and ingoing expansions at the point �~t; ~x; ~y; ~z�.
Since, in the interchange of ingoing and outgoing, sa

changes sign in (50), then in this sum only the first two
terms of (50) will contribute. These two terms depend on
ta, the future-directed timelike unit normal to the 3-
surface, in a neighborhood of the point. They depend on
sa, the spacelike unit normal to the 2-surface in the 3-
surface, as well as on hab, the metric on the 3-surface.
However, in order to evaluate the sum of the expansions at
�~t; ~x; ~y; ~z�, sa and hab are needed only at that point.

A simple evaluation shows that
 

ta �
1������������������������������

1� Tx2 � Ty2
q �

@
@t

�
a
�

Tx������������������������������
1� Tx2 � Ty2

q �
@
@x

�
a

�
Ty������������������������������

1� Tx
2 � Ty

2
q �

@
@y

�
a

(54)

where Tx �
@T�x;y�
@x and similarly for Ty. At �~t; ~x; ~y; ~z�, using

(52), the metric of the 3-surface is given by

 habj�~x;~y;Z�~x;~y�� � dxadxb � dyadyb � dzadzb (55)

Finally, using (52) and (53), the normal to the 2-surface in
the 3-surface at �~t; ~x; ~y; ~z� is given by17

 saj�~x;~y� �
�
@
@z

�
a

(56)

It is now possible to use (50) to evaluate the sum of the two
expansions. Using ta, hab, and sa as above, as well as (52),
the sum of the two expansions is found to be

 ��1 ��2�j�~t;~x;~y;~z� � 2
�
@2T�x; y�

@x2 �
@2T�x; y�

@y2

�
(57)

Since the 2-surface is trapped, then the sum of the two
expansions is negative, and therefore at least one of the two
terms in (57) must be negative. This is a contradiction to
�~t; ~x; ~y; ~z� being a local minimum. (It also shows that for a

surface to be trapped, it has to ‘‘bend down in time’’
everywhere in the flat region.)

Thus, the assumption that �t1; x1; y1; z1�, a point of the
trapped surface, lies strictly inside U, cannot hold. This
completes the proof.

V. DISCUSSION

In Vaidya spacetimes, the situation regarding outer
trapped surfaces, is now clear. Outer trapped surfaces can
reach arbitrarily close to the event horizon everywhere and
Eardley’s conjecture is true for these spacetimes.

Extending the main result to other spacetimes using a
similar procedure, seems unlikely since the technique used
here relies on precise control of the location of the integral
curve relative to the spherically symmetric apparent 3-
horizon and the event horizon. The level of precision,
required for this particular method, can be obtained in
Vaidya spacetimes in the ingoing Eddington-Finkelstein
coordinates, but appears to be substantially harder to obtain
in general spherically symmetric spacetimes and much
more so in spacetimes that are not spherically symmetric.
Nonetheless, the class of spacetimes covered by the main
result is wide as it includes spacetimes that start flat and
later, with some collapsing matter, form a black hole. As a
result, since it was shown that outer trapped surfaces exist
even in the flat region in such spacetimes, then this appears
to, perhaps, capture the essential features of general black
hole collapse spacetimes. This then strengthens the expec-
tation that Eardley’s conjecture is true, in general.

The situation regarding trapped surfaces in Vaidya
spacetimes was explored as well. A proposition was
proved, showing that there is a portion of the flat region
of a Vaidya spacetime that is excluded, i.e. that trapped
surfaces cannot enter this region. This is consistent with the
results of Schnetter and Krishnan [6]. They describe find-
ing a marginally trapped surface that extends into the flat
region of a Vaidya spacetime. Since the flat region is not
excluded entirely, it follows that the surface described by
Schnetter and Krishnan can extend into the flat region in
the nonexcluded part.

It would be of interest to find in Vaidya spacetimes the
exact location of the boundary of the region containing
trapped surfaces, as this will give a better understanding of
where can surfaces such as future trapping horizons and
dynamical horizons be located in these spacetimes. In
Fig. 4, this boundary must lie somewhere above the t �
t0 surface.
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17This sa may be the outgoing or the ingoing normal to the 2-
surface and without the entire 2-surface, this remains undeter-
mined. However, since it is the sum of the two expansions that is
of interest and in it only sasb appears, then, in this case, the sign
of sa does not matter.
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