
Head-on collisions of boson stars

C. Palenzuela,1 I. Olabarrieta,1,2 L. Lehner,1 and S. L. Liebling3

1Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001, USA
2TELECOM Unit, ROBOTIKER-Tecnalia, Edificio 202 Parque Tecnológico Zamudio E-48170, Bizkaia, Spain

3Department of Physics, Long Island University–C.W. Post Campus, Brookville, New York 11548, USA
(Received 13 December 2006; published 2 March 2007)

We study head-on collisions of boson stars in three dimensions. We consider evolutions of two boson
stars which may differ in their phase or have opposite frequencies but are otherwise identical. Our studies
show that these phase differences result in different late time behavior and gravitational wave output.

DOI: 10.1103/PhysRevD.75.064005 PACS numbers: 04.25.Dm

I. INTRODUCTION

Models of compact ‘‘stars’’ described by nonfluid
sources serve both as probes of strong-field gravity and
as exotic alternatives to the standard ‘‘regular’’ fluid stars.
Among these nonstandard star models, a geon—a self-
gravitating star consisting of electromagnetic fields—was
first considered by Wheeler [1]. Despite its appeal, no
stable geon could be constructed and so interest dimin-
ished. However, borrowing from this idea, Kaup was able
to construct the first stable configuration—referred to as a
Klein-Gordon geon—by considering a U(1) classical sca-
lar field [2]. Soon after Kaup’s construction, Ruffini and
Bonazzola revisited the solution, adopting a quantum point
of view while the geometry was maintained as a classical
entity [3]. By employing a Hartree-Fock (multiparticle)
approximation, they reobtained Kaup’s equations (and
hence solutions), providing an alternative view to the re-
sulting stars. These solutions are currently known as boson
stars and describe a family of self-gravitating scalar-field
configurations within general relativity.

Boson stars have been studied in many different contexts
(see [4,5] for reviews). They have been proposed as models
for dark matter (see [6] for a recent review) and more
recently have been used as convenient models for compact
objects including black holes [7]. One can consider
strongly gravitating compact-star spacetimes without the
worries associated with regular matter—such as shock
fronts and discontinuities in the fluid variables—making
boson stars very useful probes of strong-field general
relativity.

Given this utility, a number of efforts have modeled the
dynamical evolution of boson stars. For instance, they have
been considered in one and two dimensions for studies of
critical phenomena [8,9]. In three dimensions, studies of
the dynamics of perturbed boson stars have been presented
in [10,11] and preliminary collisions in [12]. Works exam-
ining boson-star collisions in two dimensions were carried
out in [8] while in three dimensions, in addition to our own,
another effort is under way [13]. Another work which
studies the collisions of Q-balls also has relevance here
[14]. These Q-balls are solitonic solutions of the Klein-

Gordon (KG) equations in the absence of gravity with an
attractive potential.

In this paper we investigate several boson-star configu-
rations paying particular attention to head-on collisions in
3D. Our aim is to survey some of the phenomenology that
can be found in these scenarios. Additionally, since one can
employ this particular physical system to describe strongly
gravitating compact stars, one can use them to model
compact systems in general relativity in their early stages
where tidal effects are not too severe. On a more specula-
tive level, one can also examine the gravitational wave
signature produced so that searches by gravitational wave
detectors might place constraints on their existence.

The paper is organized as follows. In Sec. II we detail the
formalism we use for the Einstein-Klein-Gordon (EKG)
system. Section III describes the numerical implementa-
tion of the governing equations. In Sec. IV we present our
results. We conclude in Sec. V, adding some final com-
ments. The computation of the initial data for a single
boson star is described in Appendix A, while Appen-
dix B is devoted to some (qualitative) physical consider-
ations in order to explain the results of the simulations.

II. THE EINSTEIN-KLEIN-GORDON SYSTEM

The dynamics of a complex scalar field in a curved
spacetime is described by the following Lagrangian den-
sity (adopting geometrical units, i.e. G � c � 1) [15],

 L � �
1

16�
R�

1

2
�gab@a ��@b�� V�j�j2��: (1)

Here R is the Ricci scalar, gab is the spacetime metric, � is
the scalar field, �� its complex conjugate, and V�j�j2� a
potential depending only on j�j2. Throughout this paper
roman letters at the beginning of the alphabet, a, b, c; . . . ,
denote spacetime indices ranging from 0 to 3, while letters
near the middle, i, j, k; . . . , range from 1 to 3, denoting
spatial indices. This Lagrangian gives rise to the equations
determining the evolution of the metric (Einstein equa-
tions) and those governing the scalar-field behavior
(Klein-Gordon equations).
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A. Einstein equations

The variation of the action associated with the
Lagrangian (1) with respect to the metric gab leads to the
Einstein equations

 Rab �
R
2
gab � 8�Tab; (2)

where Rab is the Ricci tensor and Tab is the stress-energy
tensor given by
 

Tab �
1
2�@a

��@b�� @a�@b ���

� 1
2gab�g

cd@c ��@d�� V�j�j
2��: (3)

The Einstein equations form a system of 10 nonlinear
partial differential equations for the spacetime metric com-
ponents gab. A convenient way to express the equations
can be obtained by the identity

 Rab � �
1
2g
cd@c@dgab � @�a�b� � �cab�c

� gcdgef�@egca@fgdb � �ace�bdf�; (4)

where we have introduced the quantities

 �a � gbc�abc; (5)

 �abc �
1
2�@bgac � @cgab � @agbc�: (6)

Up to this point we have considered arbitrary coordi-
nates xa that label spacetime points. In order to define an
initial value problem for the Einstein equations, a foliation
defined by the hypersurfaces with x0 � t � const is intro-
duced with the (normalized) vector na � �rat=jjratjj,
where ra is the covariant derivative associated with gab.
The harmonic formulation of Einstein equations exploits
the fact that the coordinates xa can be chosen satisfying the
harmonic rcrcxa � 0 [16] or their generalized version
[17,18]

 rcrcx
a � ��a � Ha�t; xi�; (7)

where the functions Ha amount to prescribing coordinate
conditions. These expressions can be combined to reex-

press Einstein equations (2) in their generalized harmonic
form, as [17,19]
 

gcd@cdgab � @aHb � @bHa � �16�
�
Tab �

T
2
gab

�

� 2�cabH
c

� 2gcdgef�@egac@fgbd

� �ace�bdf�: (8)

Notice that the partial derivatives of Ha do not belong to
the principal part of the system since they are prescribed
spacetime functions. The principal part of (8) is a well-
posed system of decoupled wave equations for the 10
metric components. It is important to stress that Eqs. (8)
with the generalized harmonic condition (7) constitute an
overdetermined system since �a can be obtained either
from the choice of coordinates (7) or from the evolution
of the metric itself (8). In the free-evolution approach,
Eq. (8) is adopted to update the metric, and Eq. (7) is
regarded as a constraint on the full system. Possible con-
straint violations can be measured by introducing a new
four-vector [20],

 2Za � ��a �Ha�t; xi�: (9)

Clearly, the physical solutions will be those satisfying the
algebraic condition Za � 0 throughout the spacetime; we
will refer to the Za quantities as the Z-constraints from now
on. Note that added flexibility, useful for numerical pur-
poses, is attained by adding these constraints to the equa-
tions. In particular, since the addition of these Z-constraints
to the evolution system can change the stability of the
solutions against perturbations off the constraint surface,
one can exploit this fact to one’s advantage. Indeed, suit-
able terms can be added to the equations in order to
construct an attractor for the physical solutions in certain
spacetimes, in such a way that small Z-constraint viola-
tions will be damped during the evolution [21]. With these
damping terms, Eq. (8) can be written as

 gcd@cdgab � @aHb � @bHa � �2�cabH
c � 2gcdgef�@egac@fgbd � �ace�bdf� � 2�0�naZb � nbZa � gabn

cZc�

� 16�
�
Tab �

T
2
gab

�
(10)

where we have introduced �0, which is a free parameter
that controls the damping of the Z-constraints (9).

B. Klein-Gordon equations

As mentioned, the variation of the Lagrangian (1) with
respect to the scalar field � leads to the KG equations

 �� �
dV

dj�j2
�; (11)

where the box � � gabrarb stands here for the wave
operator on a curved background. For concreteness, from
now on we will consider the free field case where the
potential takes the form

 V�j�j2� � m2j�j2; (12)

with m a parameter that can be identified with the bare
mass of the field theory times @ [2]. With the convention
adopted here (@ � 1), m has inverse length units. For
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simplicity, we have fixed its value to unity. The potential
(12) leads to the so-called miniboson stars, because achiev-
able stable configurations have small masses. More general
terms can be included, such as the �j�j4 self-interaction
term introduced in [22], leading to heavier boson stars
which have masses and sizes more relevant to astrophysical
applications when considering their compactification ratio.
In the present work we restrict ourselves to the � � 0 case,
deferring to a future work the study of the effect of this
self-interacting term.

C. Reduction of the complete system to first order

The second order EKG equations (10) and (11) can be
employed to obtain the future evolution of the spacetime if
fgab; �; gab;t; �;tg are provided at an initial hypersurface.
For a numerical implementation, it is also useful to further
reduce the system to fully first order to take advantage of
several numerical techniques devised to exploit stability
theorems for these kinds of systems [23–26]. Con-
sequently, these techniques provide a clean path to discre-
tize the system in a robust manner [27–29]. Thus we begin
by reducing these equations to first order form.

The reduction in time is achieved by introducing new
independent variables related to the time derivatives of the
fields. Following a similar route as in [19], we define

 Qab � �nc@cgab; � � �nc@c�: (13)

The evolution equations for Qab and � are now given by
the EKG equations (10) and (11), while the evolution
equations for gab and� are simply given by their definition
(13).

The reduction to first order in space is made by intro-
ducing new independent variables, encoding the first space
derivatives as

 Diab � @igab; �i � @i�: (14)

The equations of motion for these quantities are obtained
by applying the time derivative to their definition (14) and
imposing that time and spatial derivatives commute.
Notice that in this step, just as with the Z-constraints,
one encounters an overdetermined system since spatial
derivatives can be obtained either by deriving the fields
or from the evolution equation of the new quantities (14).
This fact can be reinterpreted as adding new constraints to
the system,

 C iab � @igab �Diab � 0; Ci � @i���i � 0;

(15)

which must be satisfied for a consistent solution. An analo-
gous situation is encountered with the conditions
 

Cijab � @iDjab � @jDiab � 0;

Cij � @i�j � @j�i � 0
(16)

resulting from the commutativity of the second spatial

derivatives. Henceforth we will refer to the fCi; Cij;
Ciab; Cijabg quantities as the C-constraints. At this point
the resulting first order system is described by the evolution
equations for the array of fields fgab; Qab;Diab; �;�;�ig
together with the Z-constraints (9) and C-constraints (15)
and (16).

Additionally, as with the Z-constraints, the mathemati-
cal properties of the evolution system can be changed—
when the constraints are not exactly satisfied—by judi-
ciously adding the C-constraints to the right-hand side of
the equations. For instance, in [19] these constraints are
incorporated in the equations in such a way that the physi-
cal solutions (i.e., those satisfying Ci � Cij � Ciab �
Cijab � 0) are an attractor in certain spacetimes. This
means that small C-constraint violations will also be
damped during the evolution. We follow the same ap-
proach here for the full first order reduction of the
Einstein Klein-Gordon equations by writing them as

 @tgab � �kDkab � �Qab; (17)

 

@tQab � �k@kQab � ��
ij@iDjab � �1�

k@kgab � �@aHb

� �@bHa � 2��cabH
c

� 2�gcd��ijDicaDjdb �QcaQdb � g
ef�ace�bdf�

�
�
2
ncndQcdQab � ��

ijDiabQjcn
c � �1�

kDkab

� 16��
�
Tab �

gab
2
T
�

� 2��0�naZb � nbZa � gabn
cZc�; (18)

 @tDiab � �k@kDiab � �@iQab � ��1@igab

�
�
2
ncndDicdQab � ��jkncDijcDkab

� ��1Diab; (19)

 @t� � �k�k � ��; (20)

 @t� � �k@k�� ��ij@i�j � �1�k@k��
�
2

�ncndQcd

� ��ij�in
cQjc � ��c�

c � �m2�� �1�
k�k;

(21)

 

@t�i � �k@k�i � �@i�� ��1@i��
�
2

�ncndDicd

� ��jk�kncDijc � ��1�i (22)

where �1 is another free parameter that controls the damp-
ing of the first order constraints (15) and (16). Additionally,
we have introduced the familiar lapse � and shift �i

functions for convenience. These are defined through the
relations �i � �ij�j (�ij being the spatial projection of
gab satisfying �il�lj � �ij, gti � �i) and gtt � ��2.
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Equations (17)–(22) constitute the final set of equations
being integrated in our implementation.

D. Analysis quantities

One way to identify the position of the boson star, which
might be difficult in the fully dynamical case, is to use the
energy density 	 � nanbTab. We have used the maximum
of 	, at each temporal slice, to represent the center of each
starlike configuration.

Another useful quantity, which is of special interest in
the case of the boson-antiboson collision, is the Noether
charge of the theory. Because of the U(1) symmetry of the
stress-energy tensor, there is a conserved quantity which
can be computed by

 N �
Z
J0dx3; J0 �

i
2

�������
�g
p

g0
� ��@
���@
 ���:

(23)

We employ the Noether density J0 to give additional
evidence as to the location of the boson star. As discussed
in [3], this quantity can be associated with the number of
bosonic particles.

The mass of the stars is computed by means of the ADM
mass, which is defined as

 M �
1

16�
lim
r!1

Z
gij�@jgik � @kgij�N

kdS (24)

where N k stands here for the unit outward normal to the
sphere.

The gravitational radiation is described asymptoti-
cally—when the correct tetrad and coordinates are
adopted—by the Newman-Penrose (spin-weighted) �4

scalar. This quantity is defined as

 �4 � Cabcdn
a �mbnc �md; (25)

with Cabcd being the Weyl tensor and where na denotes the
incoming null normal to the extraction worldtube � while
�ma is the complex conjugate of the null vector tangent to �
at a constant time slice. (Note that the tetrad vector na is
not to be confused with the unit normal to the hypersurface
na.)

To analyze the structure of the radiated waveforms it is
convenient to decompose the signal in �2 spin-weighted
spherical harmonics as

 r�4 �
X
l;m

Cl;m
�2Yl;m (26)

where the factor r is included to better capture the 1=r
leading order behavior of �4. For head-on collisions of
nonspinning objects, one could take advantage of the natu-
ral axis of symmetry defined by the line joining the centers
of the objects. In such a case, the (spin-weighted) spherical
harmonics sYl;m can be defined such that the radiation
produced in the axisymmetric configuration would display
essentially only m � 0 modes. However, as we are inter-

ested in more general cases also, we adopt spherical har-
monics defined with respect to an axis that can be regarded
as orthogonal with respect to the orbital plane, which in our
present case is given by the z axis. In this case, the radiation
extracted would have nontrivial components for m � 0.

We also focus on integral quantities that are independent
of the specific basis of the spherical harmonics, such as the
radiated energy. In terms of �4, we can write

 

dE
dt
�
r2

ext

4�

Z
�

���������
Z t

�1
�4�t0�dt0

��������
��������
Z t

�1

��4�t0�dt0
��������
�
d�;

(27)

where ��4 denotes the complex conjugate of �4, and rext is
the extraction radius. Using both the decomposition (26)
and the orthonormalization of the spherical harmonics, this
expression can also be written as

 

dE
dt
�

1

4�

X
l;m

jDl;mj
2; Dl;m �

Z t

�1
Cl;m�t

0�dt0: (28)

Finally, we will assume that the resulting coordinates in the
neighborhood of the extraction surfaces satisfy, to a rea-
sonable level, conditions ensuring �4 is essentially free of
spurious effects (aside from those arising from the extrac-
tion at finite distances) [30,31]. Detailed studies of the
possible influences of these in more general settings will
be presented elsewhere [32].

III. IMPLEMENTATION ISSUES

The first order symmetric hyperbolic system (17)–(22)
is implemented following techniques devised to take ad-
vantage of several useful theorems which guarantee the
stable implementation of linear hyperbolic systems. In
general, these techniques involve (i) discrete derivative
operators satisfying summation by parts (SBP), which
allow defining a semidiscrete norm and an energy estimate
for the solution [24,26], (ii) a method of lines employing a
third order Runge-Kutta operator for the time integration
that preserves the energy estimate in the fully discrete case
[25], and (iii) maximally dissipative boundary conditions
that keep this energy bounded in time [23] in the presence
of boundaries. The combination of techniques (i)–(iii)
guarantee that linear problems are implemented stably
and thus provides a direct route to a robust implementation
of generic first order hyperbolic systems. Additionally, we
introduce a Kreiss-Oliger type dissipative operator (suit-
ably modified at/near boundary points so as not to spoil the
energy estimate [27,28]). The introduction of dissipation
allows one to control the high frequency modes of the
solution which are always poorly described by a finite
difference approach. In what follows we provide further
details of the particular application of these techniques in
the present work.
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A. Discrete operators and time evolution

We have adopted second order derivative operators sat-
isfying SBP and defined a discrete energy essentially as the
L2 norm of the solution, that is,

 E �
X
A

jjUAjj �
X
A

X
I;J;K

UA�I; J; K�
2 (29)

where UA � fgab; Qab; Diab; �;�;�ig is an array with all
the evolved variables and UA�I; J; K� is the value of UA at
the grid point �I; J; K�. The energy estimate is obtained
when the discrete operators reduce to the standard three-
point centered derivative operator at interior points with
the standard (first order) two-point sideways stencil at
boundary points. The particular form for the Kreiss-
Oliger fourth order dissipation operator is described in
[27,28] as is the third order Runge-Kutta scheme employed
to advance the solution in time.

We additionally employ the norm of the Z-constraints,

 jjZjj �
X3

a�0

jjZajj; (30)

to monitor the deviation of the numerical solution from the
physical one.

B. Characteristic structure

As mentioned, we employ maximally dissipative bound-
ary conditions. These conditions rely on knowing the
characteristic mode structure of the principal part of the
system. In essence, these conditions bound the amount of
‘‘energy’’ the incoming modes introduce at the boundaries
to remain below what the outgoing modes carry away from
the computational domain. Schematically, this reduces to
adopting conditions satisfying w� � Lw� with w�, w�

denoting incoming/outgoing modes at a given boundary,
and L a bounded matrix [24]. As a result, the norm (29) of
the solution remains bounded in the linear regime, which is
key to ensure the well posedness of the initial boundary
value problem (for details see [23–25]). In our particular
case, we choose L � 0, thus setting the incoming modes to
zero. The characteristic decomposition (eigenmodes w
with velocity v) for the EKG system (17)–(22) is given by
 

wab
0 � gab; v0 � 0;

wiab
� � Diab �N kDkabN i; v� � �N k�

k;

wab
�	� � Qab � �1gab 	N kDkab;

v	 � �N k�
k 	 �

(31)

with N k the outgoing normal vector to the boundary
surface; the supra-indices f0; �;	g denote modes propa-
gating with the different speeds fv0; v�; v	g. Thus the
incoming modes are given by w�ab and wiab

� as long as
N k�k < 0. To apply the maximally dissipative conditions
at the numerical level, we follow the prescription described
in [23,27] and simply enforce

 @twab
��� � 0; (32)

 @tw
�
iab � 0; if N k�k < 0: (33)

We point out that these boundary conditions, although key
for ensuring stability, are not enforcing the constraints.
Thus, constraint violations are expected to arise (and
propagate inwards) at the boundaries. Constraint preserv-
ing boundary conditions [19] are being implemented in the
code and will be employed in future projects.

C. Mesh refinement

Adaptive mesh refinement (AMR) provides increased
resolution where and when needed, and therefore becomes
an essential tool in resolving a wide range of dynamical
scales, both spatial and temporal. As described by Berger
and Oliger [33], a given numerical grid can be further
refined based on dynamical measures of the numerical
error by the creation of refined grids which are evolved
in sync with the coarse grid. We have built our code taking
advantage of the computational infrastructure called HAD
(an outgrowth of the code presented in [34,35]). HAD
implements a (slight) modification of the standard
Berger-Oliger strategy that guarantees preserving the
stability properties of the unigrid implementation and sig-
nificantly reduces spurious reflections at interface bounda-
ries [36]. In HAD creation or destruction of finer grids is
automated so that points which display an error above
some threshold are ‘‘covered’’ by a finer grid. The error
associated with each point is computed via a self-shadow
hierarchy [37]. In this technique, the error is computed on
any given grid by subtracting the solution on that grid with
that on the next coarser level. Because these solutions
evolve with different resolutions, their difference repre-
sents a measure of the local truncation error without re-
course to more complicated shadow schemes. In particular,
at any given point, the L2 norm of the difference between
the solutions over all evolved fields is taken as the trunca-
tion error estimate. Although we have performed binary
boson-star runs employing AMR, in this work we take only
partial advantage of the mesh refinement capabilities of
HAD. One reason for this is that we want to compare
significantly different scenarios and we find it useful to
ensure that similar discretizations are employed across the
cases considered. Our procedure is to let the infrastructure
define the grid structures at the initial time and keep it fixed
throughout the simulations. The truncation error value
employed by the self-shadow hierarchy to define the grids
is chosen such that the original stars are contained within
the finest grid and that this grid covers the whole region in
between. Fixing the grid structure at the initial time re-
duces some of the overhead and memory required by
dynamic regridding.
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IV. SIMULATIONS AND RESULTS

In this section we describe the simulations we have
performed both to check the correctness of the implemen-
tation and investigate interesting aspects of boson-star
head-on collisions. We begin in Sec. IVA, by considering
a single isolated boson-star configuration and verify that
the code is able to reproduce known features of the solu-
tion. The evolution of the star is performed employing two
different coordinate systems, the static one and the har-
monic one. The former coordinate system is the natural one
employed in constructing a single static boson-star solu-
tion, and so the evolution with it should be trivial. The
latter one does not conform to the ansatz employed to
obtain the solution and some nontrivial gauge dynamics
can be expected.

In Sec. IV B we consider different binary systems de-
scribed by boson stars with zero initial momentum. Initial
data for these systems are obtained by a simple superposi-
tion of a single boson star with another which is identical to
it up to a possible phase or reflection of its natural fre-
quency. The stars are placed sufficiently far from each
other to ensure the constraints are satisfied to a degree
consistent with the value obtained in the single boson-
star case.

We have performed three different types of head-on
collisions: collisions of equal boson stars (Sec. IV B 1),
collisions of boson stars whose phases are in opposition
(Sec. IV B 2), and finally collisions of boson stars with
antiboson stars (Sec. IV B 3) (these differences are ex-
plained in detail below).

For all of the simulations presented here we have
adopted damping parameters �0 � �1 � 1, a Courant fac-
tor �t=�x � 0:25, and Kreiss-Oliger dissipation parame-
trized by 0.03 (as described in [27,28]). The simulations
have been performed on 64 to 128 processors employing
three refinement levels, placed as defined by the shadow
hierarchy.

A. The single boson star

As described in the Introduction, a boson star is a self-
gravitating configuration of the scalar field with the
Lagrangian given by (1). In a particular coordinate system,
one assumes a particular form for the spherically symmet-
ric scalar field

 � � �0�r�e
�i!t: (34)

Therefore the field values at any given point oscillate with
a constant frequency !. Details of the calculation of �0�r�
are presented in Appendix A. The geometry, on the other
hand, remains static in these same coordinates. This solu-
tion provides a reasonable model for a compact object in
equilibrium.

We have carried out simulations of single boson stars
under two coordinate choices. The initial data for the

coordinate evolution are the same in both cases, but the
equations determining their evolution differ. These equa-
tions are obtained by either exploiting the requirement of
staticity or by adopting harmonic conditions. In Sec. IVA 1
we summarize the results in the coordinate system on
which the solution is static, and the results in the harmonic
gauge are presented in Sec. IVA 2. The simulations pre-
sented for both cases employ a grid structure consisting of
three levels of refinement. The finest level covers the radius
R95 of the star (defined as region of space containing
approximately 95% of the star’s mass) while the resolution
decreases a factor 2 on the box surrounding it. For all these
runs the star is located at xi � 0 (i � 1 . . . 3) and the
computational domain is given by xi 2 ��144; 144�.

To obtain a measure of the convergence rate of the
solution, we have performed simulations with different
resolutions for the boxes. The finest grid of each resolution
considered has �x 2 f0:375; 0:25; 0:156g for the static
coordinates and �x 2 f0:5; 0:375; 0:25g for the harmonic
ones. The others grids, as mentioned, have a gradual 2:1
ratio in their discretization length.

Below we detail certain convergence tests of the code
about which we would like to make a general comment.
Residuals of constraints are expected to approach zero with
increases in resolution while field variables should ap-
proach a unique solution, and this behavior is indeed
what we find. The rate of convergence can also be exam-
ined and compared to the expected approximation order of
the difference equations solved, and we found the expected
second order convergence in the unigrid case. However,
when dealing with a complicated grid hierarchy, precise
measurements of this rate become somewhat problematic,
especially when the hierarchies produced vary with the
truncation error threshold chosen. Also, we should mention
that more detailed convergence tests with this code infra-
structure applied to other problems demonstrate the ex-
pected order of convergence [36,38].

1. Single boson star in static coordinates

In order to maintain the coordinates such that the space-
time remains static, theHa�t; xi� functions in (7) need to be
chosen in a suitable way. Since we are considering a static
situation, the condition on Ha can be read directly from
Eq. (9) by imposing the constraints (i.e., Za � 0) and the
staticity of the spacetime (i.e., @tgab � 0). In an explicitly
static scenario, this initial value of the Ha�t � 0; xi� is
preserved for all times.

We begin with initial data describing a star with the
value of the scalar field at the origin being j�0�r � 0�j �
0:01. This star, which is obtained by solving the initial-data
problem with a high resolution one-dimensional code as
described in Appendix A, has an ADM mass of M1D �
0:361 and radius R95 � 19:6, and lies well inside the stable
branch of solutions.
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The evolution of an isolated star displays the expected
behavior. In particular, the evolution of the scalar field
agrees with Eq. (34) as demonstrated in Fig. 1 where the
central value of the real part of the scalar field versus time
describes an oscillatory behavior with a frequency ! �
0:96	 0:03. This result is in excellent agreement with the
frequency obtained with the one-dimensional initial-data
problem code!1D � 0:976. Also, the geometry is static, as
can be seen in Fig. 2 with the evolution of the maximum of
gxx as a function of coordinate time t for three different
resolutions.

2. Single boson star in harmonic coordinates

In this section we revisit the initial data of the previous
one, but in this case we do not adopt coordinate conditions
that explicitly demonstrate the staticity of the spacetime.
One goal of this exercise is to test the ability of the
harmonic-coordinate condition to adapt to the physical
problem under consideration. This will be important for
the binary cases considered later, as that problem is cer-
tainly not static.

The implementation evolves the system for as long as
the code was run without any signs of instabilities. For this
particular case we have evolved the system for more than
t � 1500. During this evolution, we have monitored the
ADM mass which we extract at rext � 100 and obtainM �

0:364 which decreases by less than 3%=1% for the coars-
est/finest resolution considered (�x � 0:5=0:25 for the
innermost grid) by the time we stop the code. This illus-
trates the ability of the code to preserve this conserved
quantity for long times.

We have also checked that, for this particular solution,
both the harmonic and the static coordinates agree at the
center of symmetry. This implies that the scalar field
should have the same local oscillatory behavior (34) at r �
0 in both coordinate systems. This is indeed the case and is
illustrated in Fig. 1. In particular, the measured oscillation
frequency is ! � 0:97	 0:06, Additionally, we have
checked that the absolute value of the scalar field at the
center of the star varies by at most 12%=2% for the
coarsest/highest resolution considered.

Coordinate effects do arise however. As mentioned
above, the geometry should have some nontrivial
coordinate-induced dynamics since we are not adopting a
coordinate system on which the solution is explicitly static.
This effect can be seen in Fig. 3 where the evolution of the
maximum of gxx as a function of coordinate time t for three
different resolutions is displayed. As evident in the figure,
there is an initial transient variation of the metric value
which later approaches a constant value.

Finally, we monitor the constraints in Fig. 4. The figure
shows the L2 norm (30) of the physical constraints [i.e., the

 

FIG. 2 (color online). Single boson star. L1 of gxx versus time
for the solution obtained employing the static coordinate condi-
tion. The figure displays the result of the evolution for three
different base resolutions �x � f0:375; 0:25; 0:156g (in addition,
each numerical solution is obtained with three levels of refine-
ment). The values obtained converge to a constant value as
expected, and the maximum variation observed to t � 50 is ’
0:0073% for the coarsest base resolution while for the highest
one it is just ’ 0:0015%.

 

FIG. 1 (color online). Single boson star. Phase oscillation of
the real part of the scalar field at the center of symmetry up to
t � 50 for the resolution �x � 0:25 (similar behavior was
followed up to t � 500). The solid line indicates the analytically
expected value, the crosses show the values read off from the
numerical solution within the static coordinates, and the circles
show the same by using the harmonic coordinates.
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Z-constraints (9)] and its behavior when the resolution is
improved, converging clearly to zero. The measured con-
vergence rate is 2.9 between the low-and-medium and 2.8
between the medium-and-high resolutions.

B. Binary boson-star head-on collisions

Initial data for the collision of two boson stars is ob-
tained by a simple superposition of the single boson solu-
tion in a way described below. Additionally, in order to
consider different configurations, we take advantage of the
following observations:

(i) The solution of the initial-data problem is unaffected
by a phase difference in the ansatz assumed for the
scalar field. Namely, � � �0�r�ei�wt��� gives rise to
the same initial data for fgab; @tgab � 0g.

(ii) If fgab; �0; @tgab � 0; @t� � i!�0g provides con-
sistent initial data, so does fgab; �0; @tgab �
0; @t� � �i!�0g. The difference is solely in a
frequency reflection of the boson star and is known
as an antiboson star.

We will exploit these observations to consider what we
will refer to as a boson in phase opposition by taking � �
� in (i) and/or an antiboson in (ii).

The initial data we consider is schematically represented
by considering the following construction:

 � � ��1��x� x1; y; z� ���2��x� x2; y; z�;

 �  �1��x� x1; y; z� �  �2��x� x2; y; z� � 1;

� � ��1��x� x1; y; z� � ��2��x� x2; y; z� � 1

(35)

where u�i� denotes the corresponding field of the boson i,
centered at �xi; 0; 0�, and the value of ��i� will be dictated
by the type of boson star considered, that is, a boson star, a
boson star in phase opposition, or an antiboson star. Notice
that three fields (the scalar field �, the conformal factor  ,
and the lapse �) are enough to set initial data consistent
with the EKG equations, as described in Appendix A.
Under this approach we are making the assumption that
the boson stars are described with a single global scalar
field � instead of considering two sets of complex scalar
fields to represent each star. This choice fixes in a straight-
forward way the interaction of the stars.

In order to consistently choose the initial position of the
boson stars, we have measured, at the initial time, the L1
norm of the Hamiltonian constraint for different coordinate
separations of the centers D. Since at sufficiently large
distances the adopted data satisfies the constraints by con-
struction, the constraint’s behavior versus D provides a
measure of the distance that must be adopted. As illustrated
in Fig. 5, the error decreases very rapidly with separation
and we have chosen the value D � 50 (which corresponds
to x1 � �x2 � 25) that is close to the asymptotic behavior.
In addition, we will use for all the head-on collisions the
same form of the scalar function �0�r� in order to compare
easily the different cases.

 

FIG. 4 (color online). Single boson star. Convergence of the L2

norm of the Z-constraint residual [defined by Eq. (30)] versus
time by using harmonic coordinates, for the same resolutions as
in Fig. 3. As the resolution is increased the constraint violation is
clearly reduced.

 

FIG. 3 (color online). Single boson star. L1 of gxx versus time
for the solution obtained employing the harmonic-coordinate
condition. The figure displays the result of the evolution for
three different base resolutions �x � f0:25; 0:375; 0:50g (in ad-
dition, each numerical solution is obtained with three levels of
refinement). After a small transient behavior, the values obtained
converge to a constant value. The maximum variation observed
to t � 500 is ’ 0:72% for the coarsest base resolution while
’ 0:11% for the highest one.
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1. Merging of the boson/boson pair

In this case, two identical boson-star configurations are
adopted to define the initial data. Since the stars adopted
have no initial velocity, their initial behavior is marked by a
slow approach towards each other as they feel their gravi-
tational attraction. As the evolution progresses, however,
the resulting behavior depends on the mass of the single
initial boson stars. Previous studies which concentrated on
a particular set of initial masses always displayed a colli-
sion of stars giving rise to the formation of a black hole
[12]. More recently, the work of [8,39], which considered
boosted stars with large kinetic energy, presented cases
where the stars appear to pass through each other in a
sort of ‘‘solitonic’’ behavior.

Here we want to study the situation in which there is a
final regular object (that is, containing no singularities). To
do so we begin with a broad parameter search along the
masses of the boson stars, searching for cases where the
final compact object does not collapse to a black hole. As
shown in Fig. 6, for stars with masses around M � 0:26
[corresponding to an amplitude of �0�r � 0� � 0:005] the
final object appears to avoid black hole formation. This
avoidance is indicated by the geometric variables tending
to a smooth, slow, oscillatory behavior for M< 0:26 while
a marked violent behavior is displayed for larger values,
together with a collapse of the lapse function.

We thus focus on the particular case where each star has
masses M � 0:26, which is approximately 40% of the

maximum allowed mass on the stable branch for the po-
tential (12). The radius of the single star is around R95 �
27, and in this case we extend the computational domain to
xi 2 ��320; 320�. As mentioned above, the refinement
regions are rectangular boxes covering the centers of the
stars and the span between them with a grid spacing at the
region of the star of �x � 0:50 for the lowest resolution
and �x � 0:375 for the highest one. We compute the
values of the ADM mass and �4 at extraction surfaces
located at rext � 140, 170, and 200, where the grid spacing
is given by �x � 4 for the lowest resolution and �x � 3
for the highest one (i.e., there are three levels of refine-
ment). Since the wavelength of the observed radiation is of
the order � ’ 100, the traveling wave is well represented
by the grid structure at the extraction location.

In an effort to ensure fidelity to the continuum problem,
we monitor constraint residuals and convergence of the
metric variables for these evolutions. Notice however that,
again, the grid structure for different resolutions differs and
so our evolutions do not lend themselves to a traditional
convergence study. However, we do see the expected be-
havior, in that the constraint residuals decrease in regions
where the resolutions differ and the fields indicate conver-
gence to a common value. This is illustrated in Fig. 7 where

 

FIG. 6 (color online). Boson/boson pair. Geometry behavior
for different central values of the scalar field that defines the
stars. As the stars merge, the behavior of geometric variables
changes drastically for different values. Stars with initial central
densities >0:005 seem to give rise to a black hole as illustrated
by their considerable growth; those below this value yield
much smoother behavior. This is illustrated in the figure which
displays the maximum of the component of the metric gxx versus
time for different central amplitudes of the scalar field f�0 �
0:02; 0:015; 0:01; 0:05g, respectively. These give rise to stars with
masses fM � 0:47; 0:42; 0:36; 0:26g, respectively.

 

FIG. 5 (color online). Boson/boson pair. L1 norm of the
Hamiltonian constraint residual versus the initial (coordinate)
separation of the boson stars. As the distance is increased the
violation decreases as expected since each star is defined so as to
satisfy the constraints. We choose a value of D � 50 which lies
close to the asymptotic behavior and is still manageable in terms
of the boundaries.
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the maximum value of gxx versus time is displayed. As
evident in the plots, the values for different resolutions
agree quite well until a time of about t ’ 800 where
accumulation of errors and boundary effects becomes
apparent.

To illustrate the dynamics displayed by the solution, we
present in Figs. 8 and 9 a sequence of plots illustrating the
behavior of the Noether density J0. The extremes of this
function correspond, at least initially, to the centers of the
stars and, as the evolution proceeds, the extremes give an
indication as to the movement of the stars. Figure 8
presents two-dimensional slices (at z � 0) of J0. Notice
that the maximum value of J0 is reached after the collision.
This suggests that the boson stars have merged and oscil-
lations of the merged object are clearly distinguishable.
Figure 9 shows the nature of these oscillations in more
detail by presenting contour plots of J0 � 2
 10�5 at
more frequent times.

The gravitational radiation produced in the collision, as
encoded in �4, is presented in Fig. 10 which illustrates the
(real) coefficients of its l � 2 spin-weighted spherical
harmonic modes. Because of the symmetry of this particu-
lar problem and with the spherical harmonics defined with
respect to the z axis, there are the following simple rela-
tions between the nontrivial coefficients C2;m,

 Re fC2;2g � RefC2;�2g; RefC2;2g � �
��������
3=2

p
RefC2;0g:

(36)

 

t = 0

-60-40-20 0 20 40 60
x

-30
-15

 0
 15

 30

y
 0

 2e-05
 4e-05
 6e-05
 8e-05

t = 300

-60-40-20 0 20 40 60
x

-30
-15

 0
 15

 30

y
 0

 2e-05
 4e-05
 6e-05
 8e-05

t = 600

-60-40-20 0 20 40 60
x

-30
-15

 0
 15

 30

y
 0

0.0004
0.0008
0.0012
0.0016

t = 900

-60-40-20 0 20 40 60
x

-30
-15

 0
 15

 30

y
 0

0.0001
0.0002
0.0003
0.0004

t = 1200

-60-40-20 0 20 40 60
x

-30
-15

 0
 15

 30

y
 0

0.0001
0.0002
0.0003
0.0004

FIG. 8. Boson/boson pair. 2D z � 0 cuts of the Noether den-
sity J0 at different times. As the stars come closer and merge, the
maximum value of J0 grows significantly, followed by a quad-
rupolar oscillation.

 

FIG. 7 (color online). Boson/boson pair. L1�gxx� as a function
of time for three different resolutions and their differences. We
can observe clearly that the merger occurs at approximately t ’
550. The solution is qualitatively convergent during the first part
of the merger until t ’ 800 when boundary effects negatively
affect the convergence.
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Numerically we have found that RefC2;2g � RefC2;�2g and
RefC2;2g � �1:22 RefC2;0g, which is in excellent agree-
ment with the expected analytical relations. The gravita-
tional radiation emitted during the collision reaches the
first extraction surface (at rext � 140) at t � 600. It takes
around t � 200–300 to reach the boundary, be reflected
and pass again through the same extraction surface, as can
be seen in Fig. 11. Notice that, despite having the surface
extraction far from the sources, they are still not well
within the ‘‘wave zone’’ since r�4 still displays a slight
dependence on rext. Nevertheless, the structure of the
radiated wave is evident in the plot.

In Fig. 12 we have plotted the emitted energy (or power)
dE=dt [Eq. (28)] as a function of time for different reso-
lutions. We find that practically all energy is radiated in the
l � 2 mode which would simplify the parametrization of
the obtained waveforms for their use in data analysis
searches [31].

These evolutions therefore suggest that the merger of the
two boson stars produces an oscillating single boson star.
However, we note that the resulting star does not corre-
spond to the boson star with mass equal to the sum of the
individual masses. One might suspect the collision dis-
persed energy in the form of scalar and gravitational ra-
diation, but that does not appear to be the case. The ADM
mass hardly decreases and the gravitational wave output is
minimal. Instead, it would appear that the resultant object
has yet to settle into a stationary star.

2. Collision of boson/boson in opposition of phase pair

The case previously considered, in its early stages, can
be regarded as generic for equal-mass objects in a head-on
configuration. The inner-structure details only become
relevant when the objects become sufficiently close to
each other as indicated by the effacement theorem [40,41].

However, as the stars approach each other, the particular
details of the star under consideration can have strong
consequences. Let us consider the more general possibility
of having a relative phase difference between the single
boson stars that we will use to construct the global solution
(35) as, for instance,

 ��1� � �0�r�e
�i!t; (37)

 

-40 -30 -20 -10  0  10  20  30  40

-20

-10

 0

 10

 20

-40 -30 -20 -10  0  10  20  30  40

-20

-10

 0

 10

 20

-40 -30 -20 -10  0  10  20  30  40

-20

-10

 0

 10

 20

-40 -30 -20 -10  0  10  20  30  40

-20

-10

 0

 10

 20

-40 -30 -20 -10  0  10  20  30  40

-20

-10

 0

 10

 20

FIG. 9 (color online). Boson/boson pair. Contours correspond-
ing to the value J0 � 2
 10�5 at the z � 0 plane. From top to
bottom the contours are shown for times f0; 160; 240; 300g,
f340; 380; 420; 460g,f500; 540; 580; 640g, f680; 760; 840; 900g,
and f980; 1060; 1140; 1200g indicated by solid lines, solid lines
with crosses, solid lines with squares, and solid lines with
triangles, respectively, in each plot. As the stars get closer, the
initially spherical contours deform until merging, as illustrated
by a cusp on the topmost figure. Afterwards, J0 exhibits essen-
tially quadrupolar-type oscillations.
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 ��2� � �0�r�e�i�!t��� (38)

with � the relative phase. We will concentrate here on the
extreme case, � � �, and so the stars are in phase oppo-
sition. Recall that, while Einstein equations are not sensi-
tive to this phase difference, the Klein-Gordon equations
are. Notice that in our head-on configuration the surface
x � 0 is an antisymmetry plane for the scalar field, so it
must remain zero in that plane. This symmetry may sug-
gest that the boson stars will not merge, and this is pre-
cisely what is observed. As shown in Figs. 13 and 14, the
behavior resembles what one would expect for two objects
subject to a repulsive force but confined within a potential
well. Such a scenario is supported by the analysis of
Appendix B. Thus the objects oscillate about the coordi-
nate position (x � 	15, y � 0, z � 0). Elucidating the
final fate of this system will require much longer evolu-
tions (making sure there is no causal interaction with the
boundaries). Additional discussion, in light of results ob-
tained from the other cases, can be found in the conclusion.

The gravitational radiation produced in this scenario is
considerably weaker than the previous case, as the in-
volved objects never acquire significant velocities to in-
duce a strong time dependent quadrupole. In fact, our
extracted radiation is of the same order as the spurious
signal produced by the initial data. From these results

 

FIG. 11 (color online). Boson/boson pair. The coefficient
C2;�2 for different extraction radii. This figure illustrates both
the outgoing waves due to the dynamics of the spacetime and the
incoming waves that have traveled to the boundary and bounced
off it. Additionally, some remnant dependence on r is visible
indicating that the extraction is still performed not sufficiently
far from the sources. Nevertheless, the structure of the outgoing
waves is clearly visible.

 

FIG. 10 (color online). Boson/boson pair. Coefficients corre-
sponding to the l � 2 modes of r�4 as a function of time,
extracted at rext � 200. After some initial transient due to
spurious radiation in the initial data, the signal is clearly visible
corresponding to the merger of the stars and later decaying to
smaller values. At late times, t > 800, contamination with
boundary effects obscures the extracted signals.

 

FIG. 12 (color online). Boson/boson pair. Radiated energy as a
function of time. The top plot indicates the energy radiated in all
modes (dashed line) together with that radiated solely in l � 2
modes. Clearly, until boundary effects begin to affect the results,
practically all energy is radiated in the l � 2 modes. The bottom
plot displays the difference between the l � 2 radiated energies
at three different resolutions, indicating convergent behavior
until t ’ 950.
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coupled with the analysis presented in Appendix B, we
conjecture that the maximum of the radiation happens at
� � 0 while the minimum corresponds to � � �, just by
assuming that the radiation is a smooth function of the
phase difference. However, this must be substantiated by
studying several representative cases.

3. Boson against antiboson

Another interesting case is the collision of a boson star
with an otherwise identical star except with the opposite
charge density. Such a star is called an antiboson star and
rotates in the opposite direction as its partner in the com-
plex plane. Recall that the initial value problem solution
was degenerate upon the reflection !! �!. Addi-
tionally, while this change leaves the geometry unchanged,
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FIG. 14 (color online). Boson/boson in opposition of phase
pair. Contours with value J0 � 2
 10�5 on the z � 0 plane.
From top to bottom the contours are shown for times
f180; 360; 540; 720g and f720; 900; 1080; 1200g indicated by
solid lines, solid lines with crosses, solid lines with squares,
and solid lines with triangles, respectively, in each plot. The stars
initially get closer (top frame) but afterwards they move apart
from each other (bottom frame); this process continues on as the
stars are trapped in a common gravitational well.
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FIG. 13. Boson/boson in opposition of phase pair. 2D z � 0
cuts of the Noether density J0 at different times Although the
stars come closer, they never seem to merge.
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the associated Noether change is affected by an overall
sign change. In this section, we study the dynamical be-
havior of a binary system composed of a boson and an
antiboson star. The initial conditions for such a scenario are
simply obtained with the following choice,

 ��1� � �0�r�e�i!t; (39)

 ��2� � �0�r�e
�i!t: (40)

We obtain the evolution of such a system, and as with the
phase-opposition case, the early behavior agrees with that
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FIG. 15. Boson/antiboson pair. 2D z � 0 cuts of the Noether
density J0 at different times. Although the stars come closer and
merge, the bosonic part is distinguishable from the antibosonic
one by means of the different sign of the Noether density.
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FIG. 16 (color online). Boson/antiboson pair. Contours with
value J0 � 2
 10�5 on the z � 0 plane. From top to bottom
contours are shown for times f180; 360; 540; 600; 660g and
f660; 780; 840; 900g indicated by solid lines, solid lines with
crosses, solid lines with squares, and solid lines with triangles,
respectively, in each plot. Only the right star has such a contour
initially as the left has a negative initial value for J0. As the stars
come closer to each other, the ‘‘tunneling’’ behavior is illustrated
by the positive value appearing on the left side (top frame). As
time progresses, this process essentially reiterates itself from the
left side to the right side (bottom frame). The dynamics that
follows repeats this side-to-side ‘‘motion’’ in the Noether density
with the stars trapped in a common gravitational well.
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of the boson-boson case. As time progresses, however,
notable differences arise which are illustrated in Figs. 15
and 16. The dynamical behavior when the stars are close is
less strong than in the boson-boson case but more so than in
the boson-phase-opposition case. As a result, there is non-
trivial generation of gravitational waves, though their time
scale is longer than and their strength smaller than the
boson-boson case. The total radiated energy, however, is
similar as illustrated in Fig. 17.

V. CONCLUSIONS

We have studied the behavior of boson stars both
in isolation and in head-on collisions with a three-
dimensional implementation of the Einstein equations.
Studies of the isolated star in Sec. IVA provided a non-
trivial test of the implementation and showed it capable of
accurately extracting delicate features of the solution such
as the oscillation frequency. Additionally, by considering a
coordinate condition not adapted to the static spacetime
under study, the solution obtained further illustrated the
ability of the harmonic coordinates to deal with compact
objects in a smooth manner.

We then considered head-on collisions of different con-
figurations of boson stars. Our studies revealed the inter-
esting and varied phenomenology to which interacting
boson stars can give rise. In particular, we have studied
head-on configurations of equal-mass boson stars where
their only differences could come from a reflection of their
natural frequency or an overall phase difference. While
their associated stress-energy tensor is insensitive to those
options, the interaction gives rise to very different phe-

nomenology. In fact, as is further supported by the discus-
sion in Appendix B, this interaction is responsible for
possible merger processes ranging from a simple-direct
merger to a ‘‘repulsive-type’’ behavior while being trapped
within a gravitational well.

The differences are further illustrated by taking a closer
look at the position of the boson stars as well as the
maximum of the energy density as a function of time.
The positions are determined by the location where the
energy density reaches a maximum in a given neighbor-
hood. Figure 18 shows the proper distance between the
origin and these maximums (i.e., that can be identified with
the center of the boson stars) located in the �x direction.
Because of the symmetry of the problem, this is enough to
draw conclusions on both stars. Included in the figure is the
position a star would have as dictated by a simple
Newtonian behavior of two-point particles with the mass
of the boson star.

Notice that a priori, since the initial separation of the
stars is of the same order of their radii, scalar-field inter-
action effects would be expected to become relevant early
on. This is clearly visible for the boson-boson and boson-
boson in phase-opposition cases; however, the Newtonian
result is a reasonably good approximation for the boson-
antiboson collision. This results from the significantly
different interaction between their scalar fields in these
cases, while in the boson-boson case a merger takes place

 

FIG. 18 (color online). The proper distance from the center of
the boson star to the center of the computational domain as a
function of time for the different cases and the Newtonian
approximation. The position of the boson is identified with the
maximum of the energy density.

 

FIG. 17 (color online). Boson/antiboson pair. The C2;m coef-
ficients of the r�4 decomposition (top frame) and the emitted
radiation versus time (bottom frame).
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at relatively early times, and in the boson-antiboson case
the stars approach and essentially go through each other.

Additionally, this plot together with Fig. 19 (which
shows the maximums of the energy density 	) also ex-
plains, qualitatively, why the radiated energy is stronger for
the boson-boson case since it is the one where the source’s
quadrupole has the most dynamic behavior. As a paren-
thetical remark, we note that the difference between the
coordinate and the proper distances, during most of the
evolution (the early part), is given in all cases by a slowly
varying function of time, compared to the time scale of the
solution. If the same behavior takes place in the binary
black hole simulations presented, it would give further
support to the comparison of the numerically calculated
gravitational waves with those obtained from the quadru-
pole approximation based on the coordinate location of the
black holes [42–45]. However, one must be cautious in the
present case as we are considering a particular model to
define the scalar fields through a single complex field.

Finally, it is also interesting to compare the observed
behavior with those of similar scalar-field scenarios with-
out gravitational interaction. This is the case of Q-balls
[14] where boson-starlike configurations are obtained
through the inclusion of a nontrivial potential in the
Klein-Gordon equation. There one can also consider analo-
gous situations, from the scalar-field point of view, such as
those considered in this work. A qualitative comparison of
the dynamics observed in both cases reveals that the in-
clusion of gravitational effects modifies the dynamics
strongly. Besides not needing to boost the stars for a
collision to take place, the gravitational attraction of the
stars in our case is evidenced by the ‘‘trapping’’ of the stars
instead of ‘‘bouncing apart’’ (for the boson-boson in phase

opposition) or going through each other (for the boson-
antiboson) as in [14]

Summarizing, the results presented here illustrate the
rich behavior displayed by binary boson-star dynamics
even in the rather simple scenario of a head-on collision.
In particular, the dependence on possible phase differences
revealed that these phases strongly affect the outcome of
the problem. In Appendix B is presented a simple treat-
ment that sheds light on the influence that different phases
between the stars or the frequency reflection in one of the
them (boson/antiboson pair) can have on the dynamics of
the problem. This treatment suggests that energy argu-
ments explain why the boson-boson case gives rise to a
merge while in the boson-opposition in phase boson case
they seem to repel each other.

Additionally, these scenarios provided an excellent test
of the implementation under strongly dynamical condi-
tions. This implementation is being employed to deal
with black hole spacetimes, and the results will be com-
municated elsewhere.

Having examined the landscape of head-on boson-star
collision behavior, near future studies will concentrate on
the more complex situations of orbiting cases as well as
boson-star black hole binaries.
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APPENDIX A: INITIAL DATA FOR AN ISOLATED
BOSON STAR

The initial data for the boson-star configuration is com-
puted first in spherical symmetry with a one-dimensional
code. The resulting solution is then extended to three
dimensions. The one-dimensional solution is obtained in
the following way. First, we adopt a specific ansatz for the
scalar field,

 ��t; r� � �o�r�e
��i!t�: (A1)

With this assumption, our goal is then to find �o�r�, ! and
the metric coefficients such that the spacetime generated
by this matter configuration is static. We begin by consid-
ering the problem in polar-areal coordinates as is done, for

 

FIG. 19 (color online). The maximum of the energy density 	
is plotted as a function of time for the three different cases.
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instance, in [2,8,9]. The line element in these coordinates
takes the form

 ds2 � ���r�2dt2 � a�r�2 � r2d�2: (A2)

The equilibrium equations in this coordinate system are
then given by

 a0 �
a
2

�
�
a2 � 1

r
� 4�r

��
!2

�2 �m
2

�
a2�2

o ��2
o

��
;

(A3)

 �0 �
�
2

�
a2 � 1

r
� 4�r

��
!2

�2 �m
2

�
a2�2

o ��2
o

��
; (A4)

 �0o � �o; (A5)

 �0o � ��1� a
2 � 4�r2a2m2�2

o�
�o

r
�

�
!2

�2 �m
2

�
�oa

2;

(A6)

where a prime denotes differentiation with respect to r. In
order to obtain a solution of this system adapted to the
desired physical situation, we provide the following
boundary conditions:

 a�0� � 1; (A7)

 �o�0� � �c; (A8)

 �o�0� � 0; (A9)

 @r��0� � 0; (A10)

 lim
r!1

a�r� � 1; (A11)

 lim
r!1

�o�r� � 0; (A12)

 lim
r!1

��r� � 1; (A13)

which guarantee regularity at the origin and asymptotic
flatness. For a given value of �c, these equations and
boundary conditions only admit solutions for a discrete
set of values of !. In our particular case, we are interested
in the fundamental (lowest frequency) solution. The prob-
lem is solved by integrating from r � 0 outwards using a
second order shooting method implemented with the nu-
merical package LSODA [46]. The equations are integrated
setting ��r � 0� � 1 initially, and after all the equations
are solved, the lapse is rescaled in order to obtain a
function which asymptotes to 1 at infinity [47]. The same
rescaling is then performed to the frequency !.

Once the solution is computed in this coordinate system,
a change of coordinates is performed to maximal isotropic
ones:

 ds2 � �2�~r�dt2 �  4�~r��d~r2 � ~r2d�2�: (A14)

In these coordinates the extension to three dimensions is
direct since the space part of the metric is explicitly con-
formally flat. We perform the transformation of coordi-
nates as in [8]. Since ��~r� and  �~r� [and the scalar field
�o�~r�] are scalar functions of the spacelike hypersurface,
and the time slicing is not changed, the extension to three
dimensions involves only writing these functions as func-
tions of x, y, and z such that ~r2 � x2 � y2 � z2. This task is
performed using a five-point Lagrange interpolation.

This way we obtain initial data for gab and �; the rest of
the fields for the three-dimensional code are chosen as
follows: Qab � 0, � is computed from ansatz (A1), and
Diab and �i are calculated using constraint equations (14).
That completely defines the initial data for a boson star.

APPENDIX B: ENERGY CONSIDERATIONS

To gain some physical insight into these results, we
consider here how the energy density behaves for the three
different cases studied. To simplify the discussion, we
consider the energy density in flat spacetime, i.e. we as-
sume a Minkowski metric. Under this assumption, the
energy density for a complex scalar field � can be written
as

 	 � 1
2�j�j

2 � j�j2 �m2j�j2� (B1)

where � and � are the derivatives of � defined as before
in Eqs. (13) and (14). Now, we treat the scalar field as given
by the superposition� � �1 ��2 with�1,�2 describing
the different stars we study. The energy density associated
with this superposition can be expressed as

 	 � 	1 � 	2 �� (B2)

where 	i is the energy density that corresponds to the field
�i in isolation and � is the interaction potential which
vanishes when the stars are well separated. The interaction
potential can then be written as
 

� � 1
2�

��1�2 ��1
��2 � ��1�2 ��1

��2

�m2� ��1�2 ��1
��2��: (B3)

We next assume the scalar field has the form

 �1 � �0
1�t; x

i�ei!t; (B4)

 �2 � �0
2�t; x

i�ei��!t���; � � 	1 (B5)

where �1 represents the complex field configuration asso-
ciated with a dynamic boson star and �2 represents the
field configuration of the other star. Both stars are charac-
terized by the same frequency ! but the second star can be
a regular boson (� � 1, � � 0), a boson in opposition of
phase (� � 1, � � �), or an antiboson (� � �1, � � 0).
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The profile of each is described by the real field �0
A�t; x

i�
which is assumed to be a slowly varying function of time,
so the most dynamical part of the time dependence is
represented by the harmonic factor ei!t.

Under these assumptions, a straightforward computation
reveals that the effective interaction potential can be ex-
pressed as

 � � �0 cos��1� ��!t� ��: (B6)

Notice that when the two stars are centered in the same
position the function �0 is strictly non-negative, since it is
a sum of quadratic terms,
 

�0 � � ��o
1�o

2 ��o
1

��o
2 �

��o
1�o

2 ��o
1

��o
2

�m2� ��o
1�

o
2 ��

o
1

��o
2��; (B7)

and the behavior of the interaction term for each case
considered is governed by that of cos��1� ��!t� ��.
Thus, for the problems analyzed in the present work, the
interaction potential for each case is

 �B�B � �0; �B�OPB � ��0;

�B�AB � �0 cos�2!t�:
(B8)

Since the contribution of �0 is positive for the boson-boson
case, the resulting gravitational potential associated with
this case would be deeper than if not present. As a result, a
merge of the two stars would seem a natural consequence.
On the other hand, the �0 contribution has the opposite
sign for the boson-opposition phase boson case, translating
into a gravitational potential exhibiting a bump at the
center with two minimums around it. Such a bump would
suggest that it is energetically preferable for the stars not to
merge. Finally, the boson-antiboson interaction potential is
governed by a varying function of time. If the interaction
time scale is much longer than ’ 1=!, the interaction term
essentially integrates away to 0. Whether this is the case
depends on the collision under study and, in particular, the
stars’ momentum as they come close to each other.
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