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The null surfaces of a spacetime act as oneway membranes and can block information for a
corresponding family of observers (timelike curves). Since lack of information can be related to entropy,
this suggests the possibility of assigning an entropy to the null surfaces of a spacetime. We motivate and
introduce such an entropy functional for any vector field in terms of a fourth-rank divergence-free tensor
Pcdab with the symmetries of the curvature tensor. Extremizing this entropy for all the null surfaces then
leads to equations for the background metric of the spacetime. When Pcdab is constructed from the metric
alone, these equations are identical to Einstein’s equations with an undetermined cosmological constant
(which arises as an integration constant). More generally, if Pcdab is allowed to depend on both metric and
curvature in a polynomial form, one recovers the Lanczos-Lovelock gravity. In all these cases: (a) We only
need to extremize the entropy associated with the null surfaces; the metric is not a dynamical variable in
this approach. (b) The extremal value of the entropy agrees with standard results, when evaluated on shell
for a solution admitting a horizon. The role of the full quantum theory of gravity will be to provide the
specific form of Pcdab which should be used in the entropy functional. With such an interpretation, it seems
reasonable to interpret the Lanczos-Lovelock type terms as quantum corrections to classical gravity.

DOI: 10.1103/PhysRevD.75.064004 PACS numbers: 04.70.Dy, 04.20.Fy, 04.50.+h

I. INTRODUCTION
The strong mathematical resemblance between the dy-

namics of spacetime horizons and thermodynamics has led
several authors [1] to argue that a gravitational theory built
upon the principle of equivalence must be thought of as the
macroscopic limit of some underlying microscopic theory.
In particular, this paradigm envisages gravity as analogous
to the theory of elasticity of a deformable solid. The
unknown, microscopic degrees of freedom of spacetime
(which should be analogous to the atoms in the case of
solids), will play a role only when spacetime is probed at
Planck scales (which would be analogous to the lattice
spacing of a solid [2]). Candidate models for quantum
gravity, like e.g., string theory, do suggest the existence
of such microscopic degrees of freedom for gravity. The
usual picture of treating the metric as incorporating the
dynamical degrees of freedom of the theory is therefore not
fundamental and the metric must be thought of as a coarse
grained description of the spacetime at macroscopic scales
(somewhat like the density of a solid which has no meaning
at atomic scales).

In such a picture, we expect the microscopic structure of
spacetime to manifest itself only at Planck scales or near
singularities of the classical theory. However, in a manner
which is not fully understood, the horizons—which block
information from certain classes of observers—link [3]
certain aspects of microscopic physics with the bulk dy-
namics, just as thermodynamics can provide a link between

statistical mechanics and (zero temperature) dynamics of a
solid. (The reason is probably related to the fact that
horizons lead to infinite redshift, which probes virtual
high energy processes; it is, however, difficult to establish
this claim in mathematical terms). It has been known for
several decades that one can define the thermodynamic
quantities entropy S and temperature T for a spacetime
horizon [4]. If the above picture is correct, then one should
be able to link the equations describing bulk spacetime
dynamics with horizon thermodynamics in a well-defined
manner.

There have been several recent approaches which have
attempted to quantify this idea with different levels of
success [1,5,6]. An explicit example was [7] the case of
spherically symmetric horizons in four dimensions. In this
case, Einstein’s equations can be interpreted as a thermo-
dynamic relation TdS � dE� PdV arising out of virtual
radial displacements of the horizon. More recently, it has
been shown [8] that this interpretation is not restricted to
Einstein’s general relativity (GR) alone, but is in fact true
for the case of the generalized, higher derivative Lanczos-
Lovelock gravitational theory in D dimensions as well.
Explicit demonstration of this result has also been given
for the case of Friedmann models in the Lanczos-Lovelock
theory [9] as well as for rotating and time dependent
horizons in Einstein’s theory [10]. In a related develop-
ment, there have been attempts to interpret other gravita-
tional Lagrangians (like f�R� models) in terms of
nonequilibrium thermodynamics [11].

In standard thermodynamics, extremization of the func-
tional form of the entropy (treated as a function of the
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relevant dynamical variables) leads to the equations gov-
erning the equilibrium state of the system. This suggests
that in the context of gravity as well, one should be able to
define an entropy functional, which—on extremization—
will lead to the equations describing the macroscopic,
long-wavelength behavior of the system (which in this
case is the spacetime.) That is, if our analogy is to be taken
seriously, we should be able to define an ‘‘entropy func-
tional for spacetime,’’ the extremization of which should
lead to the gravitational field equations for the metric of the
spacetime. At the lowest order, this should give Einstein’s
equations but the formalism will continue to be valid even
in the quantum regime. It is important to recall that—even
in the case of ordinary matter—there is no such thing as
‘‘quantum thermodynamics’’; only quantum statistical me-
chanics. What quantum theory does is to modify the form
of the entropy functional (or some other convenient ther-
modynamic potential, like free energy); the extremization
now leads to equations of motion which incorporate quan-
tum corrections. Similarly, we expect our entropy func-
tional to pick up corrections to the lowest order term,
thereby leading to corrections to Einstein’s equations. In
that sense, this approach is very general and this is what we
will develop in this paper.

A crucial point to note is that the concept of entropy,
both in the standard thermodynamics as well as in the
gravitational context, stems from the fact that certain de-
grees of freedom are not observable for certain classes of
observers. (Throughout the paper, we will use the term
observers to mean family of timelike curves, without any
extra connotations.) In the context of a metric theory of
gravity this is inevitably linked with the existence of one-
way membranes which are provided by null surfaces in the
spacetime. The classical black hole event horizons, like
e.g., the one in the Schwarzschild spacetime, are special
cases of such oneway membranes. This also leads to the
conclusion—suggested by several authors e.g., [5,12]—
that the concept of entropy of spacetime horizons is in-
trinsically observer dependent, since a null surface (one-
way membrane) may act as a horizon for a certain class of
observers but not for some other class of observers. In flat
Minkowski spacetime, the light cone at some event can act
as a horizon for the appropriate class of uniformly accel-
erated Rindler observers, but not so for inertial observers.
Similarly, even the black hole horizon (which can be given
a ‘‘geometrical’’ definition, say, in terms of a Penrose
diagram) will be viewed differently by an observer falling
into the black hole compared to another who is orbiting at a
radius r > 2M. The fact that the dynamics of the spacetime
should nevertheless be described in an observer indepen-
dent manner leads to very interesting consequences, as we
shall see.

The above discussion also points to the possibility that
the null surfaces of the spacetime should play a key role in
the extremum principle we want to develop. It is also

important, within this conceptual framework, that the met-
ric is not a dynamical variable but an emergent, long-
wavelength concept [13]. In this paper, we will construct
such an entropy functional in a metric theory of gravity and
derive the equations resulting from its extremization. We
will show that not only Einstein’s GR, but also the higher
derivative Lanczos-Lovelock theory can be naturally in-
corporated in this framework. The formalism also allows
us to write down higher order quantum corrections to
Einstein’s theory in a systematic, algorithmic procedure.

The paper is organized as follows: In Sec. II we motivate
a definition for the entropy functional S related to a vector
field �a in the spacetime in the context of the Einstein and
Lanczos-Lovelock theories, and elaborate upon the varia-
tional principle we employ to determine the spacetime
dynamics from this functional. In Sec. III we compute
the extremized value of S��� and show that under appro-
priate circumstances it is identical to the expression for the
horizon entropy as derived by other authors in the context
of Lanczos-Lovelock theories, thus justifying (at least
partially) the name ‘‘entropy functional.’’ Section IV re-
phrases our results in the language of forms, to give its
geometrical meaning. We conclude in Sec. V by discussing
some implications of our results.

II. AN ENTROPY FUNCTIONAL FOR GRAVITY

Our key task is to define a suitable entropy functional for
the spacetime. Since this is similar to introducing the
action functional for the theory, it is obvious that we will
not be able to derive its form without knowing the micro-
scopic theory. So we shall do the next best thing of moti-
vating its choice. (If the reader is unhappy with the
motivating arguments, (s)he may take the final form of
the entropy functional in Eq. (1) below as the basic postu-
late of our approach.)

The first clue comes from the theory of elasticity. We
know that, in the theory of elasticity [14], the key quantity
is a displacement vector field �a�x� which describes the
elastic displacement of the solid through the equation xa !
xa � �a�x�. (Of course, in elasticity, one usually deals with
three-vectors while we need to work in D-dimensions.) All
thermodynamic potentials, including the entropy of a de-
formable solid can be written as an integral over a qua-
dratic functional of the displacement vector field, which
can capture the relevant dynamics in the long-wavelength
limit. In the context of gravity, the ‘‘solid’’ in question is
spacetime itself [15]. The crucial difference from the the-
ory of elasticity is the following: In elasticity, extremizing
the entropy function will lead to an equation for the dis-
placement field and determine �a. In the case of spacetime,
the equations should determine the background metric.
This is a nontrivial constraint on the structure of the theory
and we will show how this can be achieved.

In the case of elasticity as well as gravity, we will expect
the entropy functional to be an integral over a local entropy
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density, so that extensivity on the volume is ensured. In the
case of an elastic solid, we expect the entropy density to be
translationally invariant and hence depend only upon the
derivatives of �a quadratically to the lowest order. We
would expect this to be true for pure gravity as well,
and hence the entropy density should have a form
Pab

cdrc�
ard�

b, where the fourth-rank (tensorial) object
Pab

cd is built out of metric and other geometrical quantities
like curvature tensor of the background spacetime. But in
the presence of nongravitational matter distribution in
spacetime (which, alas, has no geometric interpretation),
one cannot demand translational invariance. Hence, the
entropy density can have quadratic terms in both the de-
rivativesra�b as well as �a itself. We will denote the latter
contribution as Tab�a�b where the second rank tensor Tab
(which is taken to be symmetric, since only the symmetric
part is relevant to this expression) is determined by matter
distribution and will vanish in the absence of matter. (We
will later see that Tab is just the energy-momentum tensor
of matter; the notation anticipates this but does not demand
it at this stage.) So our entropy functional can be written as:

 S��� �
Z
V
dDx

�������
�g
p

�4Pab
cdrc�ard�b � Tab�a�b�; (1)

where V is a D-dimensional region in the spacetime with
boundary @V , and we have introduced some additional
factors and signs in the expression for later convenience.
We will now impose two additional conditions on Pab

cd

and Tab. (i) For the case of the elastic solid, the coefficients
of the quadratic terms are constants (related to the bulk
modulus, the modulus of rigidity, and so on). We take the
analogues of these constant coefficients to be quantities
with vanishing covariant divergences. That is, we postulate
the ‘‘constancy’’ conditions:

 rbPabcd � 0 � raTab: (2)

(ii) The second requirement we impose is that the tensor
Pabcd should have the algebraic symmetries similar to the
Riemann tensor Rabcd of the D-dimensional spacetime;
viz., Pabcd is antisymmetric in ab and cd and symmetric
under pair exchange. Equation (2) then implies that the
Pabcd will be divergence free in all its indices. Because of
these symmetries, the notation Pabcd with two upper and two
lower indices is unambiguous.

In summary, we associate with every vector field �a in
the spacetime an entropy functional in Eq. (1), with the
conditions: (i) The tensor Pabcd is built from background
geometrical variables, like the metric, curvature tensor, etc.
and has the algebraic index symmetries of the curvature
tensor. It is also divergence free. (ii) The tensor Tab is
related to the matter variables and vanishes in the absence
of matter. It also has zero divergence. One key feature of
the functional in Eq. (1) is that the entropy associated with
null vector fields is invariant under the shift Tab ! Tab �

�gab where � is a scalar. This fact will play an interesting
role later on.

A. Explicit form of Pabcd

Obviously, the structure of the gravitational sector is
encoded in the form of Pabcd and we need to consider
the possible choices for Pabcd which determine the form of
the entropy functional. In a complete theory, the form of
Pabcd will be determined by the long-wavelength limit of
the microscopic theory just as the elastic constants can—in
principle—be determined from the microscopic theory of
the lattice. However, our situation in gravity is similar to
that of the physicists of the 18th century with respect to
solids and—just like them—we need to determine the
‘‘elastic constants’’ of spacetime by general considera-
tions. Taking a cue from the standard approaches in renor-
malization group, we expect Pabcd to have a derivative
expansion in powers of number of derivatives of the metric:

 Pabcd�gij; Rijkl� � c1P
�1�
abcd�gij� � c2P

�2�
abcd�gij; Rijkl�

� � � � ; (3)

where c1; c2; � � � are coupling constants. The lowest order
term must clearly depend only on the metric with no
derivatives. The next term depends on the metric and
curvature tensor. Note that since Pabcd is a tensor, its
expansion in derivatives of the metric necessarily involves
the curvature tensor as a ‘‘package’’ comprising of prod-
ucts of first derivatives of the metric (the �� terms) and
terms linear in the second derivatives (@�), where � sym-
bolically denotes the Christoffel connection. Higher order
terms can involve both higher powers of the curvature
tensor, as well as its covariant derivatives.

These terms can, in fact, be listed from the required
symmetries of Pabcd. For example, let us consider the
possible fourth-rank tensors Pabcd which (i) have the sym-
metries of curvature tensor; (ii) are divergence free;
(iii) are made from gab and Rabcd but not derivatives of
Rabcd. If we do not use the curvature tensor, then we have
just one choice made from the metric:

 P
�1� ab
cd �

1

32�
��ac�bd � �

a
d�

b
c�: (4)

We have fixed an arbitrary constant in the above expression
for later convenience. Next, if we allow for Pabcd to depend
linearly on curvature, then we have the following addi-
tional choice of tensor with the required symmetries:

 P
�2� ab
cd �

1

8�
�Rabcd �G

a
c�

b
d �G

b
c�

a
d � R

a
d�

b
c � R

b
d�

a
c�: (5)

We have again chosen an arbitrary constant for conve-
nience, but in this case the constant can always be specified
in the factor c2 of Eq. (4).

The expressions in Eqs. (4) and (5) can be expressed in a
more illuminating form. Note that, the expression in
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Eq. (4) is just

 P
�1� a1a2
b1b2
�

1

16�
1

2
�a1a2
b1b2

; (6)

where we have the introduced the alternating or ‘‘determi-
nant’’ tensor �a1a2

b1b2
. Similarly, the expression in Eq. (5)

above can be rewritten in the following form:

 P
�2� a1a2
b1b2
�

1

16�
1

2
�a1a2a3a4
b1b2b3b4

Rb3b4
a3a4

; (7)

where we have again introduced the alternating tensor
�a1a2a3a4
b1b2b3b4

 �a1a2a3a4
b1b2b3b4

�
�1

�D� 4�!
�c1���cD�4a1a2a3a4�c1���cD�4b1b2b3b4

: (8)

The alternating tensors are totally antisymmetric in both
sets of indices and take values �1,�1, and 0. They can be
written in any dimension as an appropriate contraction of
the Levi-Civita tensor density with itself [16]. (In 4 dimen-
sions the expression in Eq. (5) is essentially the double-
dual of Rabcd.) We see a clear pattern emerging from
Eqs. (6) and (7) with the mth order contribution being a
term involving (m� 1) factors of the curvature tensor.
Following this pattern it is easy to construct the mth order
term which satisfies our constraints. This is unique and is
given by

 P
�m�

ab
cd / �cda3...a2m

abb3...b2m
Rb3b4
a3a3
� � �Rb2m�1b2m

a2m�1a2m : (9)

These terms have a close relationship with the Lagrangian
for Lanczos-Lovelock theory, which is a generalized
higher derivative theory of gravity. Before proceeding
further, we shall briefly recall the properties of Lanczos-
Lovelock theory and describe this connection.

The Lanczos-Lovelock Lagrangian is a specific example
from a general class of Lagrangians which describe a
(possibly semiclassical) theory of gravity and are given by

 L � Qa
bcdRabcd; (10)

where Qa
bcd is the most general fourth-rank tensor sharing

the algebraic symmetries of the Riemann tensor Rabcd and
further satisfying the criterion rbQa

bcd � 0 (several
general properties of this class of Lagrangians are dis-
cussed in Ref. [17]). The D-dimensional Lanczos-
Lovelock Lagrangian is given by [18] a polynomial in
the curvature tensor:
 

L�D� �
XK
m�1

cmL
�D�
m ;

L�D�m �
1

16�
2�m�a1a2...a2m

b1b2...b2m
Rb1b2
a1a2

Rb2m�1b2m
a2m�1a2m;

(11)

where the cm are arbitrary constants and L�D�m is the mth
order Lanczos-Lovelock term. Here the generalized alter-
nating tensor �...

... is the natural extension of the one defined

in Eq. (8) for 2m indices, and we assumeD 	 2K � 1. The
mth order Lanczos-Lovelock term L�D�m given in Eq. (11) is
a homogeneous function of the Riemann tensor of degree
m. For each such term, the tensor Qa

bcd defined in Eq. (10)
carries a label m and becomes

 

�m�Qab
cd �

1

16�
2�m�cda3...a2m

abb3...b2m
Rb3b4
a3a3
� � �Rb2m�1b2m

a2m�1a2m: (12)

The full tensor Qab
cd is a linear combination of the

�m�Qab
cd with the coefficients cm. Einstein’s GR is a special

case of Lanczos-Lovelock gravity in which only the coef-
ficient c1 is nonzero. Since the tensors �m�Qab

cd appear
linearly in the Lanczos-Lovelock Lagrangian and conse-
quently in all other tensors constructed from it, it is suffi-
cient to concentrate on the case where a single coefficient
cm is nonzero. All the results that follow can be easily
extended to the case where more than one of the cm are
nonzero, by taking suitable linear combinations of the
tensors involved. Hence, to avoid displaying cumbersome
notation and summations, we will now restrict our attention
to a single mth order Lanczos-Lovelock term L�D�m , and
will also drop the superscript (m) on the various quantities.
Comparing with our expression in Eq. (9) it is clear that
Paijk can be taken to be proportional to Qa

ijk which can be
conveniently expressed as a derivative of the Lanczos-
Lovelock Lagrangian with respect to the curvature tensor.
To be concrete, we shall take the mth order term in Eq. (9)
to be:

 Paijk � mQa
ijk � Ma

ijk 

@L�D�m

@Raijk
: (13)

This equation defines the divergence-free tensor Ma
ijk,

where the partial derivatives are taken treating gab, �abc,
and Rabcd as independent quantities. The numerical coef-
ficients are chosen for later convenience and can be, of
course, absorbed into the definitions of the cm. With this
choice, we have completely defined the geometrical struc-
ture of the entropy functional, except for the coupling
constants cm which appear at each order [19].

Just to see explicitly and in gory detail what we have, let
us write down the entropy functional in the absence of
matter (Tab � 0), correct up to first order in the curvature
tensor in Pabcd. To this order, our entropy functional (1)
takes the form S � S1 � S2 where

 S1��� �
Z
V

dDx
8�
��rc�c�2 �ra�brb�a�;

S2��� � c2

Z
V
dDx�Rcdabrc�

ard�b � �Gc
a � Rca�

� �rc�
arb�

b �rc�
brb�

a��;

(14)

where c2 is a coupling constant and we have used Eqs. (4)
and (5). We will later see that the entropy given by S1 leads
to Einstein’s equations in general relativity while S2 and
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higher order terms can be interpreted as corrections to this.
If we choose �a to be the normal vector field of a sequence
of hypersurfaces foliating the spacetime, then the integrand
in S1 has the familiar structure, �TrK�2 � Tr�K2� where
Kab is the extrinsic curvature. (This could offer an alter-
native interpretation of Arnowitt-Deser-Misner (ADM) ac-
tion; however, we will not discuss this aspect here except to
cast our results in the familiar language when appropriate.)
The expression in Eq. (14) can be further simplified by
integrating it by parts where appropriate and writing the
right-hand side as a sum of a contribution from the bulk
and a surface term. The general expression after such a
splitting is given later in Eq. (29) and can also be found in
Sec. IV where it arises transparently in the language of
forms (see Eq. (53)).

B. Field equations from extremizing the entropy

Having made these general observations regarding the
choice of Pabcd let us now return to the entropy functional in
Eq. (1). This expression is well defined for any displace-
ment vector field �a. We can, therefore, associate an en-
tropy functional with any hypersurface in the spacetime, by
choosing the normal to the hypersurface as �a. Among all
such hypersurfaces, the null hypersurfaces will play a key
role since they act as oneway membranes which block
information for a specific class of observers. Given this
motivation, we will now extremize this S with respect to
variations of the null vector field �a and demand that the
resulting condition holds for all null vector fields. That is,
the equilibrium configurations of the ‘‘spacetime solid’’
are the ones in which the entropy associated with every null
vector is extremized. Varying the null vector field �a after
adding a Lagrange multiplier � for imposing the null
condition �a��a � 0, we find:

 �S � 2
Z
V
dDx

�������
�g
p

�4Pab
cdrc�a�rd��b� � Tab�a��b

� �gab�
a��b�


 2
Z
V
dDx

�������
�g
p

�4Pab
cdrc�a�rd��b� � �Tab�a��b�;

(15)

where we have used the symmetries of Pab
cd and Tab and

set �Tab � Tab � �gab. (As we said before such a shift
leaves entropy associated with null vectors unchanged so
the Lagrange multiplier will turn out to be irrelevant;
nevertheless, we will use �Tab for the moment.) An integra-
tion by parts and the condition rdPab

cd � 0, leads to
 

�S � 2
Z
V
dDx

�������
�g
p

��4Pab
cd�rdrc�a� � �Tab�a���b

� 8
Z
@V

dD�1x
���
h
p
�ndPab

cd�rc�
a����b; (16)

where na is the D-vector field normal to the boundary @V
and h is the determinant of the intrinsic metric on @V . As

usual, in order for the variational principle to be well
defined, we require that the variation ��a of the null vector
field should vanish on the boundary. The second term in
Eq. (16) therefore vanishes, and the condition that S��� be
an extremum for arbitrary variations of �a then becomes

 2Pab
cd�rcrd �rdrc��a � �Tab�a � 0; (17)

where we used the antisymmetry of Pab
cd in its upper two

indices to write the first term. The definition of the
Riemann tensor in terms of the commutator of covariant
derivatives reduces the above expression to

 �2Pb
ijkRaijk � �Tab��a � 0; (18)

and we see that the equations of motion do not contain
derivatives with respect to �. This peculiar feature arose
because of the symmetry requirements we imposed on the
tensor Pab

cd. We further require that the condition in
Eq. (18) hold for arbitrary null vector fields �a. A simple
argument based on local Lorentz invariance then implies
that

 2Pb
ijkRaijk � T

a
b � F�g��ab; (19)

where F�g� is some scalar functional of the metric and we
have absorbed the ��ab in �Tab � Tab � ��

a
b into the defini-

tion of F. The validity of the result in Eq. (19) is obvious if
we take a dot product of Eq. (18) with �b. (A formal proof
can be found in Appendix A 1.) The scalar F�g� is arbitrary
so far and we will now show how it can be determined in
the physically interesting cases.

1. Lowest order theory: Einstein’s equations

To do this, let us substitute the derivative expansion for
Pabcd in Eq. (3) into Eq. (19). To the lowest order we find
that the equation reduces to:

 

1

8�
Rab � T

a
b � F�g��ab; (20)

where F is an arbitrary function of the metric. Writing
this equation as �Ga

b � 8�Tab � � Q�g��ab withQ � 8�F�
�1=2�R and using raGa

b � 0, raTab � 0 we get @bQ �
@b�8�F� �1=2�R� � 0; so that Q is an undetermined in-
tegration constant, say �, and F must have the form
8�F � �1=2�R��. The resulting equation is

 Rab � �1=2�R�ab � 8�Tab ���ab (21)

which leads to Einstein’s theory if we identify Tab as the
matter energy-momentum tensor with a cosmological con-
stant appearing as an integration constant. (For the im-
portance of the latter with respect to the cosmological
constant problem, see Ref. [20]; we will not discuss this
issue here.)

The same procedure works with the first order term in
Eq. (3) as well and we reproduce the Gauss-Bonnet gravity
with a cosmological constant. In this sense, we can inter-
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pret the first term in the entropy functional in Eq. (14) as
the entropy in Einstein’s general relativity and the term
proportional to c2 as a Gauss-Bonnet correction term.
Instead of carrying out this analysis explicitly order by
order, we shall now describe the most general structure in
the family of theories starting with Einstein’s GR, Gauss-
Bonnet gravity, etc.—and will show that we reproduce the
Lanczos-Lovelock theory by our approach.

2. Higher order corrections: Lanczos-Lovelock gravity

To see this result, let us briefly recall some aspects of
Lanczos-Lovelock theory. It can be shown that (see e.g.,
[17]) the equations of motion for a general theory of
gravity derived from the Lagrangian in Eq. (10) using the
standard variational principle with gab as the dynamical
variables, are given by

 Eab �
1

2
Tab;

Eab 

1�������
�g
p

@

@gab
�
�������
�g
p

L� � 2rmrnMamnb:
(22)

Here Tab is the energy-momentum tensor for the matter
fields. The tensor Mabcd defined through Ma

bcd 

�@L=@Rabcd� is a generalization of the one defined for
the Lanczos-Lovelock case in Eq. (13). The partial deriva-
tives are as before taken treating gab, �abc, and Rabcd as
independent quantities. For the mth order Lanczos-
Lovelock Lagrangian L�D�m , since Mabcd is divergence
free, the expression for the tensor Eab in Eq. (22) becomes

 Eab �
@L�D�m

@gab
�

1

2
L�D�m gab; (23)

where we have used the relation @�
�������
�g
p

�=@gab �
��1=2�

�������
�g
p

gab. The first term in the expression for Eab
in Eq. (23) can be simplified to give

 

@L�D�m

@gab
� mQa

ijkRbijk � Ma
ijkRbijk; (24)

where the expressions in Eq. (24) can be verified by direct
computation, or by noting that L�D�m is a homogeneous
function of the Riemann tensor Rabcd of degree m. To
summarize, the Lanczos-Lovelock field equations are
given by

 Eab �
1
2Tab; Eab � mQa

ijkRbijk �
1
2L
�D�
m gab: (25)

Further, diffeomorphism invariance implies that the tensor
Eab defined in Eq. (22) is divergence free, raEab � 0. The
equations of motion for the matter imply that the energy-
momentum tensor Tab is also divergence free (as required
by Eq. (2)). Using these conditions in Eq. (19) together
with the choice in Eq. (13) for Paijk leads to

 @aF � @aL
�D�
m ; (26)

which fixes F�g� as F � L�D�m ��=8� where � is a
constant with the normalization chosen so as to conform
with the usual definition of the cosmological constant. The
resulting field equations for Lanczos-Lovelock gravity will
be:

 16��Pb
ijkRaijk �

1
2�

a
bL
�D�
m � � 8�Tab; (27)

where we have included a possible cosmological constant,
that arises as an undetermined integration constant in the
definition of Tab . Taking the trace of this equation, we find
that L�D�m � �2m�D��1T. In other words, the on shell
value of the Lagrangian is proportional to the trace of the
stress tensor in all Lanczos-Lovelock theories, just like in
GR. In the absence of the source term, this implies that
L�D�m � 0 and the equation of motion reduces to
Pb

ijkRaijk � 0. The case m � 1 with L�D�m�1 � �1=16��R
is easily seen to reduce to that of Einstein’s gravity.

To summarize, if we take the derivative expansion in
Eq. (3) to correspond to a polynomial form in the curvature
tensor, then it has the form given by Eq. (13). In this case,
extremizing the entropy leads to the Lanczos-Lovelock
theory. We stress that the resulting field equations have
the form of Einstein’s equations with higher order correc-
tions. In our picture, we consider this as emerging from the
form of the entropy functional which has an expansion in
powers of the curvature.

Before concluding this section, we want to comment on
an interesting property of the entropy functional. The
derivation of Eq. (19) was based upon a variational prin-
ciple which closely resembles the usual variational princi-
ple used in other areas of physics in which some quantity is
varied within an integral arbitrarily, except for it being
fixed at the boundary. Instead of such an arbitrary variation,
let us consider a subset of all possible variations of the null
vector field �a, given by �a�x� ! �1� ��x���a�x�; namely,
infinitesimal rescalings of �a. We assume that the scalar
��x� is infinitesimal and also that it vanishes on the bound-
ary @V . In this case it is easy to see that the variation of
S��� in Eq. (16) becomes

 �Sjrescale � 2
Z
V
dDx

�������
�g
p

�2Pb
ijkRaijk � T

a
b ��a�

b��x�:

(28)

Clearly, requiring that the functional S��� be invariant
under rescaling transformations of �a leads to the same
requirement as before, namely, that Eq. (19) be satisfied.
We can understand the physical motivation behind impos-
ing such a symmetry condition on S��� as follows. Let us
begin by noting the fact that the causal structure of a
spacetime, which can be thought of as the totality of all
possible families of null hypersurfaces in the spacetime, is
left invariant under rescalings of the generators of these
null hypersurfaces. To see this symmetry, note that any
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curve in the spacetime, with tangent vector field ta �
dxa=d�, say, is invariant under the rescaling ta ! f���ta

of the tangent field, where f is some scalar. This is so
because a rescaling of the tangent vector field is equivalent
to a reparametrization of the curve. A null hypersurface H
can be thought of as being ‘‘filled’’ by null geodesics
contained in it, and is hence invariant under rescalings of
its generator field �a. The result for the full causal structure
then follows. The functional S��� depends only on the
generator �a of some null hypersurface (apart from the
metric and matter fields which we consider as given quan-
tities). It is therefore natural to demand that this symmetry
of the causal structure also be a symmetry of S���. We do
not, however, use this feature in this paper. (For a com-
pletely different, purely classical, approach to general
relativity based on null surfaces, see [21]).

III. EVALUATING THE ENTROPY FUNCTIONAL
ON SHELL

The results in the previous section show that our ap-
proach provides—at the least—an alternative variational
principle to obtain not only Einstein’s theory but also
Lanczos-Lovelock theory. In the conventional approaches
to these theories, one can obtain the field equations by
varying the action functional. But once the field equations
are obtained, the extremum value of the action functional is
not of much concern. (The only exceptions are in the
semiclassical limit in which it appears as the phase of the
wave function or in some specific Euclidean extension of
the solution.) In our approach, it is worthwhile to proceed
further and ask what this extremal [‘‘on shell’’] value
means in specific contexts. We will be able to provide an
interpretation under some specific contexts, justifying the
term entropy functional but it should be stressed that the
results in this section are logically independent of the
derivation of field equations in the previous section. In
particular, we need to consider non-null vectors to provide
a natural interpretation of the extremum value of the
functional.

The term ‘‘on shell’’ refers to satisfying the relevant
equations of motion, which in this case are given by
Eq. (18). Manipulating the covariant derivatives in
Eq. (1), we can write

 S��� �
Z
V
dDx

�������
�g
p

�4rd�Pab
cd�rc�

a��b�

� 4Pab
cd�rdrc�

a��b � Tab�
a�b�

� 4
Z
@V

dD�1x
���
h
p
nd�Pab

cd�brc�
a�

�
Z
V
dDx

�������
�g
p

�2Pmb
cdRmacd � Tab��

a�b: (29)

In writing the first equality, we have used the condition
rdPabcd � 0. As before, in the first term of second equal-
ity, na is the vector field normal to the boundary @V and h

is the determinant of the intrinsic metric on @V . (In
general, the boundary is �D� 1� dimensional. We will
soon see that the really interesting case occurs, in fact,
when part of the boundary @V is null and hence intrinsi-
cally �D� 2� dimensional. This case needs to be handled
by a limiting procedure and in what follows we will
elaborate on the procedure we use.) The second term of
the second equality in Eq. (29) vanishes in the absence of
matter because, when Tab � 0, the equation of motion
reduces to Qa

ijkRbijk � 0, thereby allowing us to interpret
the first term as the on shell value of entropy from the
gravity sector. Even in the presence of matter, the second
term can be expressed in terms of matter variables as an
integral over the trace of the stress tensor (see the discus-
sion around Eq. (27)) and, of course, is not a surface term.
We will, therefore, concentrate on the surface term arising
from the gravitational sector which reduces to

 Sjon shell � 4
Z
@V

dD�1x
���
h
p
na�Pabcd�crb�d�

!
1

8�

Z
@V

dD�1x
���
h
p
na��

arb�
b � �brb�

a�;

(30)

where we have manipulated a few indices using the sym-
metries of Pabcd. The second expression after the arrow is
the result for general relativity; we give this explicitly to
show the form of the expression in a familiar setting. Note
that, when �a is chosen as the normal to a set of surfaces
foliating the spacetime, the integrand has the familiar
structure of ni��iK � ai� where ai � �brb�i is the accel-
eration associated with the vector field �a andK 
 �rb�b

is the trace of extrinsic curvature in the standard context.
This is the standard surface term which arises in the ADM
formulation and the cognoscenti will immediately see its
connection with entropy of horizons in GR.

At this stage, we have not put any restriction of the
boundary @V or on the choice of the vector field �a. The
expression in Eq. (30) is valid for any vector field �a—not
necessarily null. (Our entropy functional is defined for any
vector field; to obtain the equation of motion we consider
only the variation of null vector fields but having done that,
we can study the on shell entropy for any vector field.) The
only restriction is that the expression in Eq. (30) should be
evaluated on a solution to the field equations. It is clear that
one cannot say much about the value of this expression in
such a general context, keeping the boundary and �a totally
arbitrary. Further, even in the case of a null vector field �a,
the integrand I in Eq. (30) changes by I ! f2�x�I , under
a rescaling �a ! f�x��a which keeps the null vector as
null. Since the value of the integral can be changed even by
such a rescaling, it is clear that a choice has to be made for
the overall scaling of the null vector field before we can
evaluate S��� on shell [22].

The fact that Eq. (30) has no clear interpretation in
general should not be surprising since we expect to obtain
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a nontrivial value for the entropy only in specific cases in
which the solution has a definite thermodynamic interpre-
tation and the surface and the vector field is chosen appro-
priately. Obviously, making this connection will require
choosing a particular solution to the field equations, a
particular domain of integration for the entropy functional,
etc. and making other specific assumptions. We shall now
calculate the extremum value in specific situations and
demonstrate that it gives the standard result for the gravi-
tational entropy when the latter is well defined and under-
stood. We will also discuss several features of this issue
and, in particular, will demonstrate that in the standard
cases with horizons, the extremal value of the entropy
correctly reproduces the known results, not only in GR
but even for Lanczos-Lovelock theory.

The most important case corresponds to solutions with a
stationary horizon which can be locally approximated as
Rindler spacetime. Many of the results which had moti-
vated us to develop the current formalism were proved in
this specific context and hence this will act as a natural
testing ground. In this case, the relevant part of the bound-
ary will be a null surface and we will choose �a to be a
spacelike vector which can be interpreted as describing the
displacement of the horizon normal to itself. To define this
properly, we will use a limiting procedure and provide the
physical motivation for the choice of �a (based on certain
locally accelerated observers) thereby leading to a mean-
ingful interpretation of the on shell value of S���.

To set the stage for calculations that follow, we will
begin by briefly recalling the notion of Rindler observers
in flat (Minkowski) spacetime. In Minkowski spacetime
with inertial coordinates xiM � �tM; x

�
M�, � � 1; 2; . . . ;

D� 1, observers undergoing constant acceleration along
the x1

M direction (the Rindler observers) follow hyperbolic
trajectories [5,16] described by �x1

M�
2 � �tM�2 � constant.

A natural set of coordinates for these observers is given by
xaR � �tR; N; x

A
?�, A � 2; 3; . . . ; D� 1, where the transfor-

mation between xaR and xaM is given by

 tM �
N
�

sinh��tR�; x1
M �

N
�

cosh��tR�;

N � ���x1
M�

2 � �tM�2�1=2; tR �
1

�
tanh�1

�
tM
x1

M

�
;

xAM � xA?; A � 2; 3; . . . ; D� 1;

(31)

with constant �. The metric in the Rindler coordinates
becomes

 ds2 � �N2dt2R � dN
2=�2 � dL2

?; (32)

where dL2
? is the (flat) metric in the transverse spatial

directions. It is easy to see that the surface described by
�x1

M�
2 � �tM�

2 � 0 (or N � 0 in the Rindler coordinates) is
simply the null light cone in the tM-x1

M plane at the origin,
and that it acts as a horizon for the observers maintaining
N � constant � 0.

In a general curved spacetime, one can introduce a
notion of local Rindler frames along similar lines. We first
go to the local inertial frame (LIF, hereafter) around any
event P and introduce the LIF coordinates xiM � �tM; x

�
M�,

� � 1; 2; . . . ; D� 1. We then use the transformations in
Eq. (31) to define a local Rindler frame (LRF, hereafter).
The choice of x1

M axis is of course arbitrary and one could
have chosen any direction in the LIF as the x1

M axis by a
simple rotation. In particular, a general null surface H in
the original spacetime passing through P can be locally
mapped to the null cone in LIF which—in turn—can be
locally identified with the N � 0 surface for the local
Rindler frame. This local patch H LIF �H of the original
null surface acts as a horizon for these observers. We will
make good use of this observation below. (The local nature
of the construction is more transparent in the Euclidean
description. If we choose a LIF around any event and then
transform to a LRF, then the null surface in the Minkowski
coordinates gets mapped to the origin of the Euclidean
coordinates. Our constructions in a local region around
the origin in the Euclidean sector capture the physics
near the Rindler horizon in the Minkowski frame.) The
crucial fact to notice is that locally, H is the Killing
horizon for a suitable class of Rindler observers. To see
this, choose some point P 2H and erect a D-ad (the
D-dimensional generalization of a tetrad) in the LIF at P ,
endowed with Minkowski coordinates. Let H LIF �H
denote the part of H contained in the LIF. Choose the
D-ad in such a way that the only nonvanishing components
of the generator 	a of H LIF are 	0 and 	1. In other words,
with respect to this D-ad, H LIF is defined by �x1

M�
2 �

�x0
M�

2 � 0, where xiM are the Minkowski coordinates in
the LIF. Now transform to the local Rindler frame using the
transformation in Eq. (31) and consider the vector va �
�1; ~0� in the Rindler frame. Clearly va is the Killing vector
associated with time translations in the Rindler frame, with
norm vava � �N

2, and hence H LIF (given byN � 0) is a
Killing horizon for the Rindler observers, generated by va.
(It can be shown that the original generator 	a of H LIF

when transformed to the Rindler frame, is proportional to
the Rindler Killing vector va on the horizon H LIF.)

We will now give a prescription for the evaluation of
Sjon shell in a specific LIF (i.e. on H LIF �H ), which
extends to the entire surface H in an obvious way. For
notational convenience therefore, we will drop the sub-
script ’’LIF’’ on H . Instead of the surface H , consider the
surfaces in the local Rindler frame at P given by N � � �
constant. Take �a � na as the unit spacelike normal to
these surfaces, so that

 na � �a � �0; �; 0; 0; . . .�;
���
h
p
� �

����


p

; (33)

where 
 is the metric determinant on the tR � constant,
N � constant surfaces. We will evaluate the surface inte-
gral for Sjon shell on a surface with N � � � constant, and
take the limit �! 0 at the end of the calculation. The
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vector displacement field �a then has the natural interpre-
tation of moving the surface N � � � constant normal to
itself and previous work has shown that these displace-
ments play a crucial role in the thermodynamic interpre-
tation [7,8]. In our limiting procedure, we use the normal
vector to the surface N � � � constant, fix its norm when
the surface is not null (i.e., � � 0), and take the �! 0 limit
right at the end so that it remains properly normalized. In
this process, we are considering the null surface as a limit
of a sequence of timelike surfaces. This is clearly only an
ansatz and—as we have said before—the final result will
be different for a different ansatz. In this sense, it is the end
result that we obtain which provides further justification
for this choice. This prescription can be understood in a
natural way in the Euclidean continuation (tR ! itR) of
the Rindler frame, where the N � � surfaces are circles
of radius �=� in the t-x plane of the Euclideanized
Minkowski coordinates.

Computing the entropy functional using this vector field,
and taking the �! 0 limit at the very end, we find that

 SjH �
XK
m�1

4�mcm
Z
H
dD�2x?

����


p

L�D�2�
�m�1�; (34)

where x? denotes the transverse coordinates on H , 
 is
the determinant of the intrinsic metric on H , and we have
restored a summation over m thereby giving the result for
the most general Lanczos-Lovelock case. The proof of
Eq. (34) can be found in Appendix A 2. The expression
in Eq. (34) is precisely the entropy of a general Killing
horizon in Lanczos-Lovelock gravity based on the general
prescription given by Wald and others [23] and computed
by several authors [24]. This result justifies the choice of
vector field �a used to compute the entropy functional (as
well as the nomenclature ‘‘entropy functional’’ itself ). For
a wide class of Killing horizons (H K) it is possible to take
the Rindler limit of the near-horizon geometry, and write
ds2 � �N2dt2 � dN2=�2 � dL2

? near the horizon, where
dL2
? denotes the line element on the transverse surfaces

(and, in particular, on the N � 0 surface which is the
horizon; around any point P 2H K the transverse direc-
tions will be locally flat in the Rindler limit). In this case, �
is the surface gravity of the horizon (being constant over
the entire horizon) and we choose �a by the above limiting
prescription. Our construction is then valid over the entire
surface H K and the resulting on shell value of the entropy
functional is precisely the standard entropy of the horizon.

To summarize, we get meaningful results in two cases of
importance. First, whenever we have a solution to the field
equations which possesses a stationary horizon with
Rindler limit, we have a natural choice for �a through a
limiting procedure such that the extremum value of the
entropy functional on shell matches with the standard
result for the entropy of the horizon. Second, in any space-
time, if we take a local Rindler frame around any event we
will obtain an entropy for the locally defined Rindler

horizon. In the case of GR, this entropy per unit transverse
area is just 1=4 as expected. This requires working in a
local patch and accepting the notions of local Rindler
observers and local Rindler horizons about which there is
still no universal agreement. (Not everyone is comfortable
with the de Sitter universe having an observer dependent
entropy let alone Rindler horizon, but we believe this is the
correct paradigm.) Finally, in the situation in which the
boundary @V is nowhere null and �a is an arbitrary vector
field—as we pointed out before—it is hard to say anything
about the value of S. We hope to investigate this case fully
in a later work.

IV. THE RESULTS IN THE LANGUAGE OF FORMS

The purpose of this section is to recast our formalism in
the language of forms for the sake of those who find such
things attractive. This will, hopefully, help in further work
because of two reasons. First, the expression for Wald
entropy [23] can be expressed in the language of forms
nicely. Second, the action for Lanczos-Lovelock gravity
can be expressed in terms of the wedge product of curva-
ture forms. We shall begin with brief pedagogy to set the
stage and notation and then will derive the key results.

Since the tensor Pabcd has the same algebraic structure
as curvature tensor, one can express it in terms of a 2-form
analogous to the curvature 2-form. We define a 2-form Pab

related to our tensor Pabcd by:

 P ab 

1

2!
Pabcd!

c ^!d: (35)

Throughout this section we will assume a coordinate 1-
form basis !i � dxi. If v � eava is a vector, then the
vector-valued 1-form dv is given by
 

dv� ea�dva�!a
bv

b� � ea�rbva�!b; !a
b � �abc!

c:

(36)

We will work in the case of pure gravity (that is, Tab � 0)
since this is more geometrical and since it does not affect
the value of the final on shell entropy functional. Our
entropy functional in Eq. (1) has the integrand (D-form):

 I � �4Pab
cdrc�

ard�
b��; (37)

where � � �1=D!��a1���aD!
a1 ^ � � � ^!aD is the natural

D-form on the integration domain V . The first point to
note is that the D-form in Eq. (37) is the same as the
following:

 I � 4�
Pab ^ �d��a ^ �d��b�; (38)

where �d��a � �rc�a�!c, etc. To see this, we use

 
 Pab �
1

�D� 2�!

1

2!
Pab

cd�cda1���aD�2
!a1 ^ � � � ^!aD�2 ;

(39)

which allows us to expand the D-form in Eq. (38) as
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I �
2

�D� 2�!
Pab

cd�cda1���aD�2
�raD�1

�a�

� �raD�
b�!a1 ^ � � � ^!aD : (40)

Since this is a D-form in a D-dimensional space, the right-
hand side of Eq. (40) should be expressible as f� where f
is a scalar. This implies

 

2

�D� 2�!
Pab

cd�cda1���aD�2
�raD�1

�a��raD�
b�

�
1

D!
f�a1���aD: (41)

We now use the identity

 �b1���bD�ja1���aj�b1���bD�jc1���cj � ��1�s�D� j�!�
a1a2...aj
c1c2...cj ;

(42)

where s is the number of minus signs in the metric and �...
...

is the alternating tensor with our normalization. This also
implies

 �a1���aD�a1���aD � ��1�sD!: (43)

Contracting both sides of Eq. (41) with �a1���aD and using
the symmetries of �a1���aD leads to

 f � 2Pab
cd�ri�a��rj�b��

ij
cd � 4Pab

cd�rc�a��rd�b�;

(44)

which is exactly what is required in Eq. (37). Therefore the
entropy functional for any vector field can be written,
somewhat more geometrically, as

 S��� �
Z
V

4�
Pab ^ �d��a ^ �d��b�: (45)

We will now do two things. The first is to derive the
equations of motion and hence the on shell value of S���,
and the second is to relate this value to the Wald entropy.
To derive the equations of motion, it is convenient to
introduce some new notation which makes the derivation
more compact. (Essentially, we will suppress all explicit
index occurrences in, say Eq. (45), etc.). The relation to
Wald entropy, however, is more easily seen with the indices
explicitly in place, so we will revert to the explicit notation
at that stage.

To get rid of tagging along the indices, we will first
introduce the convention that in a tensor valued p-form T,
the tensor indices will always be thought of as being
superscripts. For example if T is a 2-tensor valued
p-form, we have T � eaebTab where Tab is a p-form
and we have suppressed the direct product sign for the
basis vectors. We come across p-forms like Pab which are
antisymmetric in a and b. These can be denoted by the
‘‘bivector valued’’ p-form P � �1=2!�ea ^ ebPab. This
will allow us to consistently introduce a dot product for
the tensor valued forms. Let us now introduce the notation
‘‘wedge-dot’’ _̂ as follows in terms of a couple of ex-

amples: (1) If A is a 2-tensor valued p-form and B is a
vector valued q-form then

 A _̂ B 
 ea�eb � ec�Aab ^Bc � eaAa
b ^Bb: (46)

That is, the wedge in _̂ acts in the usual fashion on the
p-forms and the dot acts on the two nearest basis vectors it
finds. This last condition also implies that: (2) If A is a
bivector valued p-form (Aab � �Aba) and B is a vector
valued q-form, then

 A _̂ B � ��1�pq�1B _̂ A; (47)

where the ��1�pq is the usual factor on exchange of the
wedge product, and the additional factor of (� 1) arises
due to the dot in _̂ shifting from one index of A to the
other.

In this notation, we have
 


Pab ^ �d��a ^ �d��b � ��1�D�2�d��a ^ 
Pab ^ �d��b

� ��1�D�2d� _̂ 
 P _̂ d�: (48)

Further, in this notation one can show that for the bivector
valued 2-form P, the following relation holds

 
 d 
 P �
1

2!
ea ^ eb�rcPabcd�!

d; (49)

and the condition rcPabcd � 0 is equivalent to d 
 P � 0.
This also means d�
P � �� � ��1�D�2 
 P _̂ d� (where the
ordinary dot is defined in the obvious way on the nearest
basis vectors), and the entropy functional becomes

 S��� �
Z
V
��1�D�24�d� _̂ 
 P _̂ d��

�
Z
V

4�d� _̂ d�
P � ���: (50)

Using the identity

 d �d� _̂ 
 P � �� � d2� _̂ 
 P � � � d� _̂ d�
P � ��; (51)

and the definition of the (bivector valued) Riemann curva-
ture 2-form via
 

d2� � R � � � �� �R;

R �
1

2!
ea ^ ebRab; Rab �

1

2!
Rabcd!

c ^!d; (52)

the entropy functional can be rewritten as

 S��� � �
Z
V

4�� �R _̂ 
 P � �� �
Z
@V

4�d� _̂ 
 P � ��;

(53)

where @V is the �D� 1�-dimensional boundary of the
volume V .

We will now specialize to a subset of vector fields which
are null and vary the entropy functional with respect to
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them. The first term in Eq. (53) is manifestly symmetric in
� and will give a contribution with a factor of 2. (This can
also be verified using the rules of exchanging the _̂ , etc., or
by explicitly working with the indices in place.) The
second term of Eq. (53) will not contribute since the
variation �� vanishes on the boundary. The condition
� � � � 0 is preserved by adding a Lagrange multiplier
term �� � � to the entropy functional. The resulting equa-
tions of motion are therefore

 � 4� �R _̂ 
 P� �� � 0; (54)

which is a set of vector equations. Taking a dot product
with � we get

 � 4� �R _̂ 
 P � � � 0; (55)

which must hold for all null vector fields �. Equation (55)
can clearly also be written (since d 
 P � 0) as

 4�d�d� _̂ 
 P�� � � � 0; (56)

which can also be derived directly by the variation of
Eq. (50). It is easy to show that Eq. (55) is equivalent (after
bringing back all indices) to the vacuum version of
Eq. (18). To see this, consider
 

�4� �R _̂ 
 P � � � �4�aRab ^ 
Pbc�c

� �
1

�D� 2�!
�aRabk1k2

Pbcmn

� �c�mnk3���kD!
k1 ^ � � � ^!kD: (57)

On equating the right-hand side of Eq. (57) to f�where f is
a scalar and using arguments similar to the ones following
Eq. (40), we find

 f � 2Pmb
ijRmaij�

a�b � 2Pb
ijkRaijk�a�

b; (58)

which is what appears in the first term on the left-hand side
of Eq. (18). The rest of the derivation of field equations
follows as before.

Having derived the equations of motion by extremizing
the entropy functional with respect to the null vector fields,
we go back to the entropy functional for an arbitrary vector
field and evaluate it on shell. Using Eqs. (53) and (55), the
on shell value of the entropy functional for an arbitrary
vector field is

 Sjon shell � �4
Z
@V
�d� _̂ 
 P � ��: (59)

To show that the on shell value agrees with Wald entropy
for our specific choice described earlier, we take @V to be
a null surface and denote an arbitrary spacelike cross
section of @V by H . Reverting to (semi)index notation,
we have

 

Sjon shell ��4
Z
@V
�d��a ^
Pab�b

��4
Z
@V
�rk�a�

�
1

�D� 2�!

1

2!
Pabcd�b�cda1���aD�2

�

�!k ^!a1 ^ � � � ^!aD�2 : (60)

To show that this expression is the same as the Wald
entropy, we will again employ the limiting procedure
used in Sec. III; namely, we will consider the Rindler limit
of the geometry near the null surface @V . We consider the
vector field � to be normal to surfaces of N � constant for
the Rindler metric Eq. (32) and take the N ! 0 limit at the
end. The spacelike cross section H of @V corresponds to
the transverse directions of the Rindler metric and has
coordinates labeled with uppercase indices xA?, A �
2; 3; � � � ; D� 1.

For the vector � � �aea � �0; �; 0; . . .�, we have
rk�a � ��1=���

N
ka of which only the component �N00 �

�2N � 0. The integrand I of Eq. (60) becomes

 

I � 4N
�

1

�D� 2�!

1

2!

�

� P0Ncd�cda1���aD�2
!0 ^!a1 ^ � � � ^!aD�2 : (61)

Since the integrand is a �D� 1�-form restricted to a sur-
face of constant N, and since the basis 1-form !0 appears
explicitly, it follows that the remaining basis 1-forms must
be intrinsic to the spacelike cross section H . The indices
a1 � � � aD�2 in Eq. (61) can then be replaced by
A1 � � �AD�2, and the integrand reduces to

 I � 4N�g00gNNP0N
0N�

��������������������
�g00gNN
p 1

�D� 2�!

�
����


p

eA1���AD�2
!0 ^!A1 ^ � � � ^!AD�2 ; (62)

where eA1���AD�2
is the alternating symbol which takes

values �1��1� when the indices are an even (odd) permu-
tation of 2; 3; � � � ; D� 1, and is zero otherwise. The metric
coefficients refer to the Rindler metric in Eq. (32), and
cancel the N dependence of the integrand. Recognizing the
natural �D� 2�-form on H given by

 

~� �
1

�D� 2�!

����


p

eA1���AD�2
!A1 ^ � � � ^!AD�2 ; (63)

the integrand becomes

 I � �4�P0N
0N!0 ^ ~�: (64)

In a standard derivation of the expression for the Wald
entropy—e.g. Ref. [25]—one would be dealing with the
binormal to the cross section H , defined in terms of two
null vectors normal to H . Since we are dealing with a
limiting procedure in which the horizon (null surface @V )
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is approached in the limit N ! 0, we define a 2-form n �
�1=2!�nij!

i ^!j which reduces to the standard binormal
to H on the horizon. To do this we use the fact that in the
standard case, the natural �D� 2�-form ~� on H is simply
the dual of the 2-form binormal n. We therefore define our
‘‘binormal’’ via the relation

 nij �
��1�s

�D� 2�!

����


p

eA1���AD�2
�ijA1���AD�2 : (65)

It is now straightforward to check, using
�������
�g
p

���������������������
�g00gNN
p ����



p

, that Pabcdnabncd � �4P0N
0N . In

Appendix A 2 we have explicitly shown that this quantity
is independent of N in the Lanczos-Lovelock case, and
hence the N ! 0 limit is trivial. The on shell value of the
entropy functional therefore becomes

 Sjon shell � �
Z
@V

Pabcdnabncd!0 ^ ~�: (66)

Since !0 � dtR, when the on shell entropy is evaluated in
a solution which is stationary, the above integral splits into
a time integration and an integral over the arbitrary cross
section H of @V . Then restricting the time integration
range to from 0 to 2�=�, we get

 Sjon shell � 2�
I
H
Pabcdnabncd~�; (67)

which is precisely the expression for Wald’s entropy when
we recall that Pabcd � �@L=@Rabcd� for the Lanczos-
Lovelock type theories (up to a sign which depends on
the sign convention used for ~�). Using the definition of nij
and following the algebra in Appendix A 2, one can also
easily recover the expression in Eq. (34) thereby proving
the equivalence of the two approaches.

V. DISCUSSION

Since we have described the ideas fairly extensively in
the earlier sections as well as the introduction, we will be
brief in this section and concentrate on the broader picture.

We take the point of view that the gravitational interac-
tion described through the metric of a smooth spacetime is
an emergent, long-wavelength phenomenon. Einstein’s
equations provide the lowest order description of the dy-
namics and one would expect higher order corrections to
these equations as we probe the smaller scales. It was
shown in Ref. [7] that the Einstein equation G0

0 � 8�T0
0

for spherically symmetric spacetimes with horizons can be
rewritten in terms of thermodynamic variables and is in
fact identical to the first law of thermodynamics TdS �
dE� PdV. In Ref. [8] this result was extended to the E0

0 �
�1=2�T0

0 equation for spherically symmetric spacetimes in

Lanczos-Lovelock gravity where Eab was defined in
Eq. (22). In fact, the Lorentz invariance of the theory, taken
together with the equation E0

0 � �1=2�T0
0 then leads to the

full set of equations Eab � �1=2�Tab governing the dynamics
of the metric gab. The invariance under Lorentz boosts in a
local inertial frame maps to translation along the Rindler
time coordinate in the local Rindler frame. Hence the
validity of local thermodynamic description for all
Rindler observers allows one to obtain the full set of
equations from the time-time component of the equations.
Given the key role played by horizons in all these, it seems
natural that we should have an alternative formulation of
the theory in terms of the entropy associated with the
horizons. This is precisely what has been attempted in
this paper.

The first key result of this paper is an alternative varia-
tional principle to obtain not only the Einstein’s theory but
also the more general Lanczos-Lovelock theory. We have
shown that there is a natural procedure for obtaining the
dynamics of the metric (which is now interpreted as a
macroscopic variable like the density of a solid) using
the functional S��� given in Eq. (1). This functional can
be defined for any vector field �a. When we restrict atten-
tion to null vector fields, and demand that the entropy
associated with all the null vectors should be an extremum,
we obtain a condition on the background geometry that is
equivalent to the dynamical equations of the theory. This
provides an alternative route without the usual problems
which arise in the handling of surface terms, etc. when the
metric is varied. Interestingly, our approach selects out the
Lanczos-Lovelock type of theories, which are known to
have nice properties regarding the integrability of the field
equations, etc.

As an aside, we want to make a remark on the usual
derivations of the field equations in Lanczos-Lovelock
theory. To illustrate the point consider the familiar D � 4
case. We know that in 4D, the second order Lanczos-
Lovelock term L�4�2 (the Gauss-Bonnet term) is a total
divergence, and the higher terms identically vanish.
Usually in the literature, one will ignore the Gauss-
Bonnet term, since it is a total divergence, and claim that
the equations of motion are identical to Einstein’s equa-
tions. One must note, however, that in a situation wherein
the Lagrangian contains a total derivative term, the con-
ventional action principle is well defined only when all
surviving surface terms are held fixed. It is well known that
in Einstein’s GR this can be achieved by adding the
Gibbons-Hawking term to cancel certain surface contribu-
tions. The case of the Gauss-Bonnet term in 4 dimensions
proves to be trickier in terms of defining consistent bound-
ary conditions. (See Ref. [26] for an attempt to address this
issue, and for further references.) So the Lanczos-Lovelock
theory, in the conventional formalism based on varying an
action principle, faces certain difficulties associated with
the boundary term. Our formalism, of course, reproduces
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the standard result and the correct entropy and—as a
bonus—the above difficulties do not arise in our approach
since we do not vary the metric to get the equations of
motion.

The second result in the paper is related to providing an
interpretation of the extremum value of this functional.
Here we find that one needs to make some ansatz
which—though physically well motivated and natural—
is logically independent of the derivation of field equa-
tions. The ideas we have used are closely connected with
previous attempts to interpret the radial displacements of
horizons as the key to obtaining a thermodynamic inter-
pretation of gravitational theories [7,8]. When we evaluate
the on shell value of the entropy functional associated with
a normal to a sequence of timelike surfaces and take the
limit when these timelike surfaces approach the horizon,
we obtain the standard entropy of the horizon. In the case
of GR, the result is intuitively obvious since the integrand
of the entropy functional has the structure nj�K�j � aj�
which is essentially the surface term in Einstein-Hilbert
action from which we know that the correct entropy can be
obtained. Remarkably enough the same prescription works
even in the case Lanczos-Lovelock gravity for which there
is no simple intuitive interpretation.

Thus, at the least, we have provided an alternative varia-
tional principle to obtain not only Einstein gravity but also
its closely related extensions, without varying the metric in
the functional. This, by itself, is worth further study from
three points of view. First, it is important to understand
why it works. In conventional approaches one interprets
the extremum value of action in terms of the path integral
prescription in which alternative histories are explored by a
quantum system; here this should correspond to fluctua-
tions of the light cone structure in some sense. It is not clear
how to make this notion more precise and useful. Second,
the matter sector is—as usual—quite ugly and nongeo-
metrical and one could even claim that it was added by
hand. It is not clear whether the entropy functional, includ-
ing the matter term has a geometric interpretation [19].
Finally, the work clearly endows a special status to the
Lanczos-Lovelock theory as a natural extension of GR
within the thermodynamic paradigm. Several previous re-
sults, especially Ref. [17], have already pointed in this
direction. Given the rich geometrical structure of the
Lanczos-Lovelock theory (compared to, for example, theo-
ries based on f�R� Lagrangians), it is worth investigating
this issue further.

These results certainly indicate a deep connection be-
tween gravity and thermodynamics which goes well be-
yond Einstein’s theory. The general Lanczos-Lovelock
theory, which is expected to partially account for an effec-
tive action for gravity in the semiclassical regime, satisfies
the same relations between the dynamics of horizons and
thermodynamics, as Einstein’s GR. This suggests that
these results have possible consequences concerning a

quantum theory of gravity as well. In a previous work
[17] it was shown that this class of theories exhibits a
type of classical ‘‘holography’’ which assumes special
significance in the backdrop of current results.
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APPENDIX A

In this appendix we provide proofs for some of the
results quoted in the text.

1. Proof of Eq. (19)

It is sufficient to prove that if a symmetric tensor Sab
satisfies

 Sab�
a�b � 0; (A1)

for an arbitrary null vector field �a, then it must satisfy
Sab � F�x�gab where F is some scalar function. Consider a
point P in the spacetime and construct the local inertial
frame LIF at P , endowed with Minkowski coordinates.
The vector field �a appearing in Eq. (A1) is arbitrary, and
the choice of the D-ad erected in the LIF is also arbitrary
up to a local Lorentz transformation (LLT) (which has
D�D� 1�=2 degrees of freedom). We will utilize the �D�
1��D� 2�=2 (spatial) rotational degrees of freedom avail-
able in the LLT to choose the D-ad axes such that the
purely spatial components of Sab with respect to these
axes, vanish; namely S�� � 0, �;� � 1; 2; . . . ; D� 1.
Similarly, we utilize the (D� 1) boost degrees of freedom
in the LLT to choose theD-ad axes such that S0� � 0, � �
1; 2; . . . ; D� 1. Further, since the null vector field � is
arbitrary, we will in turn consider the vector fields given by

 �a��� � �a0 � �
a
�; � � 1; 2; . . . ; D� 1; (A2)

where the components are understood to be with respect to
the local Minkowski coordinates. Substituting for this
choice of �a in Eq. (A1), we find

 S00 � 2S0� � S�� � 0: (A3)

The middle term drops out because of our choice of D-ad
axes. Repeated application of Eq. (A3) for all allowed
values of � then gives us S�� � �S00 for all �, and
combined with S0� � 0 � S��, we obtain

 Sab�P � � F�P ��ab; (A4)

where F is a scalar depending on the choice of P . Since
Eq. (A4) is a tensor equation in the LIF, it immediately
generalizes as required, to

 Sab�x� � F�x�gab�x�; (A5)
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2. Proof of Eq. (34)

We now consider the algebraic details in the evaluation
of the on shell value of entropy functional. As explained in
the text, we expect to obtain a meaningful result only for
certain solutions, when a specific choice is made for the
boundary and the vector field. To do this we define it
through a limiting process involving a sequence of timelike
surfaces and their normals with the limit taken at the end of
the calculation. According to the prescription laid down in
the text, we take �a � na to be the unit spacelike normal to
the N � � surfaces in the Rindler frame, and taking the
�! 0 limit at the very end of the calculation. (This limit-
ing procedure is physically well motivated; in the case of
standard GR and a Schwarzschild black hole, for example,
it will correspond to approaching the r � 2M surface as
the �! 0 limit of r � 2M� � sequence of surfaces.) In
the Rindler frame, with the metric ds2 � �N2dt2R �
dN2=�2 � dL2

?,

 na � �a � �0; 1=�; 0; 0; . . .�;

na � �a � �0; �; 0; 0; . . .�;
���
h
p
� �

����


p

;
(A6)

where h is the metric determinant for the N � � surfaces
and 
 the metric determinant for the N � constant, tR �
constant surfaces. (When � � 0, the surface and its normal
are not null but � � 0 is the null Rindler horizon). The
entropy functional is

 S��� �
Z
@V ;�

dD�1x
���
h
p
na�4Pabcd�crb�d�: (A7)

Here, dD�1x � dtRdD�2x?, and rb�d � ��abd�a �
��1=���Nbd, of which only �N00 � �2� � 0. The � on
the integration symbol reminds us that we are not actually
on the given boundary @V , but will approach it as �! 0.
As mentioned in the text, our choice of the tensor Pabcd is a
single tensor �m�Pabcd � m�m�Qabcd, and appears linearly in
the expression for Sjon shell. It is sufficient to analyze this
expression using the single �m�Pabcd and to take the appro-
priate linear combination for the general Lanczos-
Lovelock case at the end. This will not interfere with the
process of taking the limit �! 0. As in the text, we will
drop the superscript (m) for notational convenience. The
integrand for a single m can be evaluated as follows
 ���
h
p
na�4Pabcd�crb�d� �

�
����


p

�2 �4P
NbNdrb�d�

�
�

����


p

�2

�
�4PN0N0 1

�
�N00

�

�
�2 ����



p

�
��4PN0N0�

�
�2 ����



p

�
��4mg00gNNQN0

N0�

� �
����


p
�4mQN0

N0�: (A8)

Consider the quantity QN0
N0 which—for the mth order

Lanczos-Lovelock action—is given by

 QN0
N0 �

1

16�
1

2m
�N0a3...a2m
N0b3...b2m

�Rb3b4
a3a4

. . .Rb2m�1b2m
a2m�1a2m�N��:

(A9)

The presence of both 0 andN in each row of the alternating
tensor forces all other indices to take the values
2; 3; . . . ; D� 1. In fact, we have �N0a3...a2m

N0b3...b2m
� �A3A4...A2m

B3B4...B2m

with Ai; Bi � 2; 3; . . . ; D� 1 (the remaining combinations
of Kronecker deltas on expanding out the alternating tensor
are all zero since �0

A � 0 � �NA and so on). Hence QN0
N0

reduces to

 QN0
N0 �

1

2

�
1

16�
1

2m�1

�
�A3A4...A2m
B3B4...B2m

�RB3B4
A3A4

. . .RB2m�1B2m
A2m�1A2m

�N��:

(A10)

In the �! 0 limit therefore, recalling that RABCDjH �
�D�2�RABCDjH , we find that QN0

N0 is essentially the
Lanczos-Lovelock Lagrangian of order (m� 1):

 QN0
N0 � 1

2L
�D�2�
�m�1�jH ; (A11)

and the entropy functional becomes

 SjH � 2m�
Z
H
dtRd

D�2x?
����


p

L�D�2�
�m�1�: (A12)

Restricting the tR integral to the range �0; 2�=�� as usual
and using stationarity (which cancels the � dependence of
the result), we get

 S�m�jH � 4�m
Z
H
dD�2x?

����


p

L�D�2�
�m�1�; (A13)

where we have restored the superscript (m) in the last
expression. Finally, taking the appropriate linear combina-
tion we find

 SjH �
XK
m�1

cmS�m�jH

�
XK
m�1

4�mcm
Z
H
dD�2x?

����


p

L�D�2�
�m�1�: (A14)

This is precisely the entropy in the Lanczos-Lovelock
theory. We have also verified that this expression is explic-
itly recovered when working with a spherically symmetric
metric of the form ds2 � �f�r�dt2 � dr2=f�r� �
r2d�2

�D�2� which admits a horizon at some value of r �
rH . The calculation in this case can be done using this
metric (instead of the Rindler metric) and considering the
limit r! rH .

Note that, instead of the above limiting procedure, if we
had just foliated the spacetime with null surfaces, chosen
�a to be the null normal vector field to the foliating
surfaces, and taken the boundary to be one of the foliating
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surfaces (so that the normal vector na coincides with the
null vector on the boundary) then the surface term Sjon shell

will give zero on H . This is transparent in Einstein
gravity, where the integrand of S��� becomes
�na���a�rb�b� � �brb�a�, which vanishes on H
where na and �a coincide and are null. It can be shown
that the same result holds more generally and is only
dependent on the algebraic symmetries of Pabcd.
Similarly, if we choose �a � va � �1; ~0� in the local
Rindler frame—which is the Rindler time translation
Killing vector that becomes null on the horizon—and
use the same limiting procedure, we get a vanishing en-
tropy. On the other hand, the normalized vector in the
timelike direction N�1va gives the same (correct) result
as our choice. Clearly the final result depends on our choice
and no general statement can be made.

Finally, to make contact with results in a more familiar
setting, we point out that some of these features are not
unique to the above context. In fact, a similar caveat also
applies to the well-known Gibbons-Hawking term which is
a similar surface term arising in the Einstein-Hilbert
Lagrangian. Apart from some constant proportionality
factors which are irrelevant to this discussion, this term
actually arises as the integral of a total derivative (in 4
dimensions) as

 

AGH �
Z
V
d4x

�������
�g
p

ra�narbnb�

� �
Z
V
d4x

�������
�g
p

ra�naK� �
Z
@V

d3x
���
h
p
�vana�K;

(A15)

where na is the normal to the foliating surfaces, va is the
normal to the boundary @V of the 4-dimensional region
V , and K � �rbnb is the trace of the extrinsic curvature.
We now consider the case in which the boundary surfaces
are chosen to be members of the set of foliating surfaces
(e.g., we can foliate the spacetime by t � constant surfaces
and choose part of @V to be given by t � t1 and t � t2) so
that va � na. Then we have

 AGH �
Z
@V

d3x
���
h
p
�nana�K �

Z
@V

d3x
���
h
p
K; (A16)

provided @V is not null, so that the normal vector can be
assumed to have unit norm nana � �1. This is the familiar
expression often quoted in the literature. Clearly, the above
naive argument breaks down (but the result still holds)
when the spacetime is foliated by a series of null surfaces
(nana � 0) and the boundary is one of these surfaces. But
this case also can be handled by a limiting procedure
similar to the one we used for computing our surface
integral. In fact, our prescription essentially foliates the
Rindler limit of the horizon by a series of timelike surfaces
(like the r � 2M� � � constant surfaces in the
Schwarzschild) approaching the null horizon in a particular
limit (like �! 0). In the case of GR, this is equivalent to
the standard calculation of integrating the extrinsic curva-
ture (defined by this foliation) over the surface and—of
course—we get the standard result of entropy density
being a quarter of transverse area. What is more interesting
and nontrivial is that the same prescription works in a much
wider context and reproduces the Lanczos-Lovelock
entropy.
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