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A scalar field with a modified dispersion relation may seed, under certain conditions, the primordial
perturbations during a decelerated expansion. In this paper we examine whether and how these
perturbations can be responsible for the structure formation of the observable universe. We discuss
relevant difficulties and possible solutions.
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I. INTRODUCTION

Recently, lots of observations have paid attention to the
nature of primordial perturbations that gave rise to the
inhomogeneities observed in the Universe. The results of
these measurements are consistent with an adiabatic and
nearly scale invariant spectrum of primordial perturba-
tions, as predicted by the simplest models of inflation [1].
However, due to the central role of primordial perturba-
tions on the formation of cosmological structure, it is still
very interesting and might also be desirable to explore
various and possible origins of primordial perturbations.

The inflation stage is supposed to have taken place at the
earlier moments of the Universe [2,3], which superlumi-
nally stretched a tiny patch to become our observable
universe today, and in the meantime makes the quantum
fluctuations in the horizon leave the horizon to become the
primordial perturbations responsible for the formation of
cosmological structure [4,5]. This is one of the remarkable
successes of inflation, see also the superinflation, e.g.
Refs. [6–9], in which the null energy condition is broken.
In Ref. [6], it was first noticed that there is an interesting
case in the generating phases of primordial perturbations,
in which the scale factor and thus the wavelengths of
perturbations grow very slowly but the Hubble length
rapidly shrinks. The inflation can be generally regarded
as an accelerated or superaccelerated stage, and so may be
defined as an epoch when the comoving Hubble length
decreases. This length starts out very large, and then the
inflation forces it to shrink enough so that the perturbations
can be generated causally. In a decelerated expanding
background the comoving Hubble length is increased,
thus in this case it seems hardly possible to causally
explain the origin of primordial perturbations. The variable
speed of light [10,11] has been considered, however, also
see Ref. [12] for a reexamination. Note that it has been
illustrated in Ref. [13] that the existence of adiabatic
perturbations on scales much larger than the Hubble radius
implies that either inflation occurred in the past, the per-
turbations were there as initial conditions, or causality is
broken. Thus if we want to obtain the primordial perturba-
tions in a decelerated expanding phase, we have to require
that the scalar field responsible for the perturbations should

have some special or modified dispersion relation. Though
there have been many detailed descriptions how the re-
quired dispersion relations are obtained from the effective
field theory [14], it will be still significant to examine the
feasibility of this seeding mechanism matched to the ob-
servable cosmology.

The outline of this paper is as follows. In Sec. II, we will
show how the primordial perturbation may be generated
during a decelerated expanding phase when the dispersion
relation is modified. In this case, the perturbation spectrum
is calculated in Sec. III. We discuss relevant difficulties in
matching the spectrum to observable cosmology and pos-
sible solutions. Finally, we summarize and discuss our
results, as well as give some comments on future issues.

II. GENERATION OF SPECTRUM

In this section we will begin with a general discussion on
the generation of causal primordial perturbations. The
generation of primordial perturbations requires that the
perturbation modes can leave the horizon during their
generation and then reenter the horizon at late time. Thus
it may be convenient to define

 N � ln
�
ke
k

�
�

�
aehe
ah

�
; (1)

which measures the efolding number of mode with some
scale �k�1 which leaves the horizon before the end of the
generating phase of perturbations, see Ref. [15], where k is
the comoving wave number, and the subscript ‘e’ denotes
the end time of the generating phase of perturbations; thus
ke is the last mode to be generated, and h � _a=a is the
Hubble parameter, where the dot denotes the derivative
with respect to the cosmic time. When taking ah � a0h0,
where the subscript ‘‘0’’ denotes the present time, we will
obtain the efolding number required by observable cos-
mology. In this case, Eq. (1) is actually the ratio of the
physical wavelength corresponding to the present observ-
able scale to that at the end of the generating phase of
perturbations.

The evolution of the scale factor in the expanding back-
ground can be simply taken as a�t� � tn, (t! 1) and
a�t� � ��t�n, (t! 0�). We will assume that n is a constant
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for simplicity. In the conformal time �, we obtain a��� �
����n=�1�n�. Thus we have

 a�
�

n
�n� 1�ah

�
n=�1�n�

: (2)

To produce the efolding number, i.e. N > 0, ah must
increase with time, i.e. �a > 0. This suggests that n > 1
for a�t� � tn, which corresponds to the accelerated expand-
ing phases, in which _h < 0, and n < 0 for a�t� � ��t�n,
which corresponds to the superaccelerated expanding
phases, in which _h > 0, e.g. see Ref. [16].1 Taking the
logarithm in both sides of (2), we obtain

 ln
�

1

ah

�
�

�
1� n
n

�
lna: (3)

This equation can be also applied to the expansion with
arbitrary constant n. We plot Fig. 1, in which, as well as in
the whole paper, we have assumed that after the generating
phases of primordial perturbations ends, the ‘‘reheating’’
will rapidly occur and then bring the Universe back to the
usual Friedmann-Robertson-Walker (FRW) evolution.2

Here the reheating means a transition that the fields or
fluids dominating the background decay into radiation.

We can see in Fig. 1 that in principle one cannot obtain
the primordial perturbations in the decelerated expanding
phases in which 0< n< 1, however, introducing the
modified dispersion relation can change this point. The
usual dispersion relation may be generally expected to
receive some corrections with the increase of energy,
which in some sense can be regarded as a phenomenologi-
cal description of high energy new physics, see
Refs. [19,20]. These modifications have been applied to
the early universe, especially the inflation cosmology, in
which the modified dispersion relation can significantly
affect the spectrum of primordial perturbations generated
during inflation [21,22]. The modified dispersion relation
can also naturally arise from a generally covariant scalar
field [23]. Following Ref. [14], in the conformal time, one
can introduce a projector h��, which projects onto the
space orthogonal to a timelike vector u� � �1=a; 0; 0; 0�
and satisfies h��h�� � h�� and h��u� � 0. Thus one may
write h�� as h�� � a2 � �0; 1; 1; 1�. By the help of the
projection tensor, we can define a spatial derivative as
D� � h��r�, which is orthogonal to u� and so has only
spatial components, and a time derivative ���� � h���r�. In
principle, by combining these two generally covariant
derivatives, one can obtain any combination of time and
spatial derivatives, so can any dispersion relation when
acting on a scalar field. For example, if the spatial compo-
nent of the scalar field Lagrangian is as follows

�’�D�D
��q’=ap, where p and q are constant, we will

have the dispersion relation

 ! �
kq

ap
: (4)

Here for our purpose we will not pay more attention to the
relevant discussions on the modified dispersion relation. In
the following we will focus on the primordial perturbations
of the scalar field with the dispersion relation (4) in a
decelerated expanding background.

We first begin with a simple modification as follows
! � k=ap, where p is the constant, and when p � 0, it
recovers to the normal one. Note also that this case in some
sense is similar to that of the fluid with the decaying sound
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FIG. 1 (color online). The sketch of the evolution of ln�1=ah�
with respect to the scale factor lna during the generation of
perturbations. The left side of ae is the generating phase of
perturbations, in which in the region above the lna axis the
dashed line corresponding to the usual exponential inflation with
jnj ! 1 divides this region into the superaccelerated phase
(upper right) in which n < 0 and the accelerated phase (lower
left) in which n > 1. The perturbation modes (dashed lines) with
the wave number k can leave the Hubble horizon during their
generations and then reenter the horizon during the radiation/
matter domination at late time. In principle it is hardly possible
to obtain the causal primordial perturbations in a decelerated
expanding phase in which 0< n< 1, see the region below the
lna axis, since there is nothing leaving the horizon during their
evolutions. However, when we introduce the scalar field with the
modified dispersion relation ! � k=ap, the similar case to
inflation can be imitated in a decelerated expanding phases. In
this case the comoving wave number of perturbations will not
unchange any more. This makes the evolution of their physical
wavelengths able to be faster than that of 1=h when the condition
n�p� 1� � 1> 0 is satisfied.

1The limit case of n ’ 0� can be very interesting [6] and was
studied in detail in the island universe model [17,18].

2The superaccelerated phase will generally evolve to a big rip
at late time, unless there is not an exit mechanism or reheating.
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speed [24,25]. To make a match to the observable cosmol-
ogy, it is convenient to define an equivalent ‘‘efolding
number.’’ Note that with the above modification to the
dispersion relation, the effective comoving wave number
! will not unchange anymore during its evolution and has
an extra suppression lead by ap, and thus an increasing
�ap of the effective comoving wavelength, which directly
affects the physical wavelength of the correspondent mode.
What the efolding number required by observable cosmol-
ogy actually reflects is the ratio of the physical wavelength
corresponding to the present observable scale to that at the
end of the generating phase of perturbations, thus the
change of physical wavelength induced by the shift of
the comoving wave number must be included in the defi-
nition of the efolding number. Thus similar to Eq. (1), the
equivalent efolding number can be written as

 eN �
�
ae
a

�
p
�

�
ke
k

�
: (5)

From Eq. (2), we have ln�ke=k� � �n� 1� ln�h=he�. Thus
substituting it and Eq. (2) into Eq. (5), we can obtain N �
�np� n� 1� ln�h=he�. For an expanding universe with
0< n< 1, we can generally have h > he. Thus to make
N > 0, which is required by the generation of primordial
perturbations, n�p� 1� � 1> 0 must be satisfied. This
can be reduced to n > 1 for p � 0, which corresponds to
the usual inflationary cases. In the expanding process, for
the field with the normal dispersion relation, the physical
wavelength of its modes �a, and only when the evolution
of a is faster than that of 1=h, can the primordial perturba-
tions be generated, which can only be implemented in the
cases of n > 1 and n < 0 (here h < he). However, for the
field with the modified dispersion relation k=ap, the physi-
cal wavelength of correspondent modes is �a � ap, thus
even if for 0< n< 1 it is also possible that the evolution of
physical wavelength is faster than that of 1=h, which
means that the correspondent modes can leave the horizon
and thus the generation of primordial perturbation, see
Fig. 1 for an illustration. In fact the condition n�p� 1� �
1> 0 means that in Fig. 1 the lines of k modes must have
been intersected with that of ln�1=ah�, in the past. If n�p�
1� � 1 ’ 0, the intersection will be expected to be in an
infinite far position of the lower left side of Fig. 1, and in
this case the scale of h will be required to be very high.
Note that h can be taken to the Planck scale at most and in
principle he has also a lower limit, thus generally n�p�
1� � 1 should be far away from 0 in order to obtain enough
efolding number.

III. CALCULATIONS OF SPECTRUM

In this section we will calculate the primordial perturba-
tions spectrum of the scalar field with modified dispersion
relation. We assume that this scalar field ’ does not affect
the evolution of the background. In the momentum space,
the motion equation of ’ is given by

 u00k � �!
2 � f����uk � 0; (6)

where uk is related to the perturbation of ’ by uk � a’k,
the prime denotes the derivative with respect to �, and! is
given by Eq. (4) with q � 1. Generally since ! � k=ap �
k=����n=�1�n�, which is different from the usual case with
! � k constant, by using the mathematics handbook about
the deformed Bessel equation, f��� is required to be
written as

 f��� �
v2r2 � 1=4

�2 ; (7)

where v is generally required to be nearly constant so that
Eq. (6) is solvable, and is determined by the evolution of
the background and the details of the ’ field, such as its
mass and its coupling to the background, and r is deter-
mined by the behavior of !���. Conventionally, the dis-
persion relation of the scalar field is ! � k, which
corresponds to q � 1 and p � 0, and thus r � 1. When
p � 0, we have

 r �
n�p� 1� � 1

n� 1
: (8)

The general solutions of this equation are the Hankel
functions with the order v and the variable !�. In the
regime !�	 1, the modes can be regarded as adiabatic.
Note that the reason is that!0=!� 1=�, thus the adiabatic
condition !0=!2 
 1 is equivalent to !�	 1. Note also
that �� 1=�ah�, we have!��!=�ah� 	 1, and thus we
obtain a!�1 
 1=h, which corresponds to the case that
the effective physical wavelength is very deep into the
horizon. Thus in this regime we may take

 uk ’
1������������������

2!�k; ��
p exp

�
�i

Z �
!�k; ��d�

�
(9)

as an approximate solution of Eq. (6), which in some sense
is similar to the case in which the initial condition can be
taken as the usual Minkowski vacuum. Note that !� will
decrease with the expansion. Thus at late time, we can
expect !�
 1, i.e. a!�1 	 1=h. The expansion of
Hankel functions to the leading term of !� gives

 k3=2j’kj � k3=2�v; (10)

where the other factors without k have been neglected.
Thus to obtain the scale invariant spectrum, v � 3=2 is
required.

A. Massless case

For the massless scalar field, we have f��� � a00=a.
Note that a� �n=�1�n�, and then using Eqs. (7) and (8),
we can obtain

 v �
1

2

�������� 3n� 1

n�p� 1� � 1

��������: (11)
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If p � 0, Eq. (11) will be reduced to the normal case, in
which when jnj ! 1 we can obtain v � 3=2 and thus a
scale invariant spectrum, which is a familiar result in the
inflation. From the above discussions we have known that
n�p� 1� � 1 is required to be larger than 0 for the gen-
eration of primordial perturbations. Thus in Eq. (11) taking
v � 3=2 required by the scale invariant spectrum, we have

 n�p� 1� � 1 � jn� 1
3j: (12)

Substituting it to N lead by Eq. (5), we obtain

 N �

��������n� 1

3

��������ln
�
hi
he

�
; (13)

where the subscript ‘i’ denotes the beginning time of the
generating phase of perturbations. Note that in Eq. (13), the
efolding number is not related to p, which is also actually
valid for the case with arbitrary spectrum, though we are
constrained to that with the scale invariant spectrum and
then obtain Eq. (13). Thus since 0< n< 1, we see that to
obtain enough efolding number required by observable
cosmology, the ratio hi to he must be large enough. Note
that hi has an upper limit, i.e. the Planck scale, thus it
seems that he must be taken very low.

The efolding number required is generally determined
by the evolution after reheating. In principle the lower the
energy density when the generating phase of perturbations
is over, the smaller the efolding number required. For an
idealistic case, in which after the generating phases of
perturbations ends the Universe will rapidly be linked to
a usual FRW evolution, one can have N ’ 68:5� �1=2��
ln�he=mp� [26]. Instituting it into (13), we can cancel N
and obtain a relation between he and n. We plot Fig. 2 in
which for various n in the region 0:4< n< 1, the
log�hi=he� required are given. We can see that when taking
the initial energy scale as a Planck scale and the end scale
as a nucleosynthesis scale, in which we have hi=he � 1040,
in order to obtain enough efolding number, n > 0:6 is
required, while when the end scale lies in the TeV scale,
we have n > 0:8. We may also consider slightly red spec-
trum, i.e. v > 3=2, as was favored mildly by Wilkinson
Microwave Anisotropy Probe (WMAP) [1]. From Eqs. (5)
and (11), we see that the value of n will be required to be
larger. These results indicate that generally it seems
slightly difficult to satisfy simultaneously the conditions
required by enough of an efolding number and the scale
invariant spectrum, since the he required must be very low
and in the meantime n is generally constrained in a cabined
region. This makes some familiar phases, e.g. the radiation
phase and the matter phase, hardly included in possible
applications.

We may introduce the more general dispersion relation,
e.g. change the power of k, as in Eq. (4) with q � 1.
However, it seems unhelpful to relax the above difficult,
since this only equals bringing a factor proportional to 1=q
in N obtained from Eq. (5) and the denominator of

Eq. (11) simultaneously. They will be generally set off in
the calculations obtaining Eq. (13). Thus to solve the above
problem, we must assure that the modifications introduced
do not change N obtained from Eq. (5) and the denomi-
nator of Eq. (11) simultaneously.

B. Massive case

When the scalar field is massive, f��� is given by

f��� � a00
a ���ah�

2, where � � m2
’

h2 has been defined,
see Ref. [27] for details on the spectrum of the massive
scalar field with normal dispersion relation. Note that a�
�n=�1�n�, thus we can obtain

 f��� �
�

1

4

�
3n� 1

n� 1

�
2
�

�
n

n� 1

�
2
���

1

4

�
�

1

�2 ; (14)

where ah�n� 1�=n � � has been used. Note that h� 1=t,
i.e. it generally changes with the time in the decelerated
expanding phase, thus� is generally not constant and so is
the numerator of Eq. (14), which will make it very difficult
for us to obtain the analytic solution of Eq. (6). Thus we
need to fix � constant, which can be done by introducing a
nonminimally coupling �R’2 between ’ and gravity,
where R� h2 is the Ricci curvature scalar. In this case,
we will have that m2

’ � R� h2, and so � can be a con-
stant. Thus Eq. (6) becomes solvable exactly. From
Eq. (14), and then using Eqs. (7) and (8), we can obtain

 

FIG. 2 (color online). The value of the log�hi=he� with respect
to n in order to obtain enough efolding number. The horizontal
axis is n. The solid line is the case of hi �mp and the dashed
line is that of hi � 10�4mp. The region above the corresponding
line is that with enough efolding number. The lower line corre-
sponds to the maximal reheating temperature at the he epoch
where hi is taken as Planck scale.
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 v2
m � v2 �

�
n

n�p� 1� � 1

�
2
�� (15)

which is used to replace v in Eq. (10), where the subscript
m denotes the value of v for the massive scalar field. The
scale invariance of the spectrum requires vm � 3=2, thus
with Eq. (15), we can obtain

 n�p� 1� � 1 �

�����������������������������������������������
n�

1

3

�
2
�

�
2n
3

�
2
��

s
: (16)

Note that the term inside the square root in Eq. (16) should
be larger than 0, which suggests�< �3=2� 1=�2n��2. For
0< n< 1, the range of �3=2� 1=�2n��2 lies between 0
and 1. Thus to obtain enough efolding number, �< 0 is
generally required, which corresponds to introducing a
scalar field with negative mass term. Substituting
Eq. (15) into N obtained from Eq. (5), we can obtain

 N �

� �����������������������������������������������
n�

1

3

�
2
�

�
2n
3

�
2
��

s �
ln
�
hi
he

�
: (17)

Thus one can see that to satisfy the requirements of ob-
servable cosmology, for the decelerated expanding phase
with 0< n< 1, enough efolding number may be obtained
by properly selecting the value of� in the case with fixed n
in Eq. (17), while when n and � are fixed by Eq. (17), the
scale invariant spectrum may be obtained by properly
matching the value of p in Eq. (15). We plot Fig. 3, in
which for arbitrary n in the region 0:4< n< 1, in order to
obtain enough efolding number, the �� required with
respect to n is given. We can see that for a different value

of n, �� lies in an acceptable region and in the meantime
hi=he is not required to be very large, which is from the
case with the massless scalar field. Note that both cases in
Fig. 3 cannot be implemented in the massless field, in
which the value of hi=he in Fig. 3 is not so large that it
ensures enough efolding number.

IV. SUMMARY AND DISCUSSION

The modification of the dispersion relation of the scalar
field brings a possibility generating the primordial pertur-
bations in a decelerated expanding background, however,
we find that in order to generate a nearly scale invariant
spectrum, it will be slightly difficult to obtain enough
efolding number required by the observable cosmology
in a simple case. But when we consider more general cases,
e.g. the massive scalar field, the problem can be relaxed.
Thus though the conditions required look slightly special,
it seems possible to seed the nearly scale invariant primor-
dial perturbations within a conventional evolution not
involving the inflation. These perturbations may be trans-
ferred to the curvature perturbations at late time by some
mechanisms, e.g. as in Refs. [28,29], thus it may be inter-
esting and responsible for the structure formation of an
observable universe. Note that current observations ac-
tually favor a red tilt spectrum [1], but not an exact scale
invariant one. However, this does not pose any problem
here, since we can always set any value of p in Eq. (11) or
(15) to obtain the v or vm required by the red tilt of the
spectrum, or even the blue tilt. In principle there is not the
generation of the primordial gravitational wave, since the
seeding of scalar perturbation occurs during a decelerated
expansion, unless the sound speed of the gravitational
wave is also time dependent, as in the case of scalar
perturbation. Non-Gaussianity is expected to be small.
However, we still need a detailed discussion on the gravi-
tational wave and non-Gaussianity in order to match the
coming observable tests. In addition, since the energy scale
when the generating phase of primordial perturbations
ends may be very low to TeV, even the big bang nucleo-
synthesis (BBN) scale, it is also interesting to study
whether there are some observable effects on e.g. baryo-
genesis. Thus it seems that many significant issues related
to this work remain. We expect to come back to these
studies in the future.

Finally, it should be pointed out that such a decelerated
evolution of the early universe cannot solve all problems of
standard cosmology, as has been explained in the inflation
models. For example, here initially the homogeneity in the
super-Hubble scale must be imposed. Be that as it may,
however, this work displays an ‘‘unnatural’’ but possible
example seeding a phenomenologically realistic spectrum
of primordial perturbations in a nonaccelerated expanding
background, which to some extent highlights the fact again
that identifying the origin of primordial perturbations may
be a much more subtle task than expected.

 

FIG. 3 (color online). The value of �� with respect to n in
order to obtain enough efolding number. The vertical axis is��
and the horizontal axis is n. The solid line corresponds to the
case of hi � 10�4mp and he � Tev, and the dashed line is that of
hi �mp and he � 10�9mp.
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