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The relation between the results of cosmological N-body simulations, and the continuum theoretical
models they simulate, is currently not understood in a way which allows a quantification of N dependent
effects. In this first of a series of papers on this issue, we consider the quantification of such effects in the
initial conditions of such simulations. A general formalism developed in [A. Gabrielli, Phys. Rev. E 70,
066131 (2004).] allows us to write down an exact expression for the power spectrum of the point
distributions generated by the standard algorithm for generating such initial conditions. Expanded
perturbatively in the amplitude of the input (i.e. theoretical, continuum) power spectrum, we obtain at
linear order the input power spectrum, plus two terms which arise from discreteness and contribute at large
wave numbers. For cosmological type power spectra, one obtains as expected, the input spectrum for wave
numbers k smaller than that characteristic of the discreteness. The comparison of real space correlation
properties is more subtle because the discreteness corrections are not as strongly localized in real space.
For cosmological type spectra the theoretical mass variance in spheres and two-point correlation function
are well approximated above a finite distance. For typical initial amplitudes this distance is a few times the
interparticle distance, but it diverges as this amplitude (or, equivalently, the initial redshift of the
cosmological simulation) goes to zero, at fixed particle density. We discuss briefly the physical
significance of these discreteness terms in the initial conditions, in particular, with respect to the definition
of the continuum limit of N-body simulations.
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I. INTRODUCTION

The goal of dissipationless cosmological N-body simu-
lations (NBS) is to trace the evolution of the clustering of
matter under its self-gravity, starting from a cosmological
time at which perturbations to homogeneity are small at the
physically relevant scales (for reviews, see e.g. [1–3]). A
fundamental question about such simulations concerns the
degree to which they reproduce the evolution of the simu-
lated models. The problem arises because the N-body
technique, which simulates a large number of particles
evolving under their self-gravity (with some small scale
regularization), is not a direct discretization of the theo-
retical models. The N-body approach is taken because it is
not numerically feasible to simulate, at a useful level of
resolution, the continuum Vlasov-Poisson equations de-
scribing the evolution theoretically.

Since the Vlasov-Poisson system corresponds to an
appropriately defined N ! 1 of this particle dynamics
[4,5], NBS can be considered as related to the models in
this limit. The problem of discreteness is thus that of the
relation of the results obtained from these simulations, for
typical statistical quantities characterizing clustering, with
those which would be obtained with such a simulation
done with N ! 1 particles. The existing studies of this
‘‘convergence’’ problem in the literature (e.g. [1,6–10]) are
almost exclusively numerical, and consider the stability of
different measured quantities as a function of N. In the

absence, however, of any analytic understanding of the
possible N dependence of the results, such studies, which
extend over a very modest range of N, cannot be conclu-
sive. Different groups of authors have in fact drawn very
different conclusions about the correctness of results for
standard quantities at smaller scales. Some [6,11] even
place in question the validity of results for clustering
amplitudes below the initial interparticle distance, while
such results are widely interpreted as physical in almost all
current simulations. Further it is not specified in such
studies how precisely the limit of large N should be taken,
i.e., which other parameters (e.g. box size, force softening,
initial redshift) should be kept fixed or varied. These
questions are becoming of ever greater practical impor-
tance as the quantification of the precision of results from
simulations is essential in order to confront cosmological
models with a rich host of observations (see, e.g., [12]).

In this paper we address only one simple aspect of this
problem: the relation between the discretized initial con-
ditions (IC) of an NBS and the IC of the corresponding
theoretical model. More specifically we study and quantify
analytically the differences between the two for the two-
point correlation properties, in real space and reciprocal
space, in the infinite volume limit (at a fixed particle
density). The discreteness effects, i.e., the differences be-
tween the continuous theoretical IC and the discrete IC of
the actual NBS are then terms which depend on the particle
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density. We study these terms and their relative importance
for different theoretical IC. We also study and check our
analytic results with the aid of numerical simulations,
performed in one dimension because of the modest nu-
merical cost of calculating the ensemble average using a
large number of realizations. We underline that our ana-
lytic results apply to the infinite volume limit, i.e., to the
case that the size of the simulation box goes to infinity at
fixed particle density. They thus do not include effects
associated with the finite size of the box. Such effects,
which are quite distinct from those studied here, have been
studied extensively elsewhere (see e.g. [13–18]), both
analytically and numerically.

The direct motivation for this work on IC in NBS came
originally from some numerical studies of these issues by
two groups [19–22], who have drawn quite different con-
clusions about the accuracy with which the IC produced by
the canonically used algorithm in NBS represent the input
IC.1 The results in this paper, which are essentially ana-
lytic, clarify the issues underlying the discussion in and
differences between these numerical studies. Our conclu-
sions are consistent with the findings of both sets of au-
thors, and explain the differences. In short the authors of
[20,22] are correct that certain real space properties, nota-
bly the mass variance in spheres, are in fact reasonably
well represented for typical IC in NBS. The authors of [19],
however, are correct in diagnosing the important system-
atic differences between the actual and theoretical corre-
lation properties in real space. Indeed one of our main
findings is that there is a very nontrivial difference between
the two spaces: while the discreteness of the underlying
particle distribution is strictly localized in reciprocal space,
this is not the case in real space. The result is that, in the
limit of low amplitude initial density fluctuations—or,
equivalently, high initial redshift for the simulation—the
correlation properties of the input theoretical model are
approximated well only in reciprocal space. Taking instead
the limit that the particle density goes to infinity at fixed
amplitude, the theoretical correlation properties are recov-
ered in both real and reciprocal space, provided an appro-
priate cutoff is imposed at large wave number in the input
PS.

The implications of these results for what concerns the
agreement between an evolved NBS and the evolved theo-
retical model of which it is the discretization is beyond the
scope of this paper. In a forthcoming paper [23], treating
discreteness effects up to shell crossing, we will see that the
evolution of an NBS deviates arbitrarily from its contin-
uum counterpart as the initial redshift increases at fixed
particle density, while keeping the amplitude fixed at in-
creasing particle one approximates increasingly well the
continuum (fluid limit) evolution. Thus the results we find

for the initial conditions here do indeed turn out to have
physical significance for the question of discreteness ef-
fects in the evolved simulations.

The algorithm used to generate IC in NBS which we
analyze is in fact well defined, in the infinite volume limit,
only for a certain range of asymptotic behaviors of the
input theoretical PS. We specify here carefully these limits.
While it turns out that they are not particularly relevant to
current cosmological models, they are of interest in other
contexts in which this algorithm may be used, notably in
the study of gravitational clustering from other classes of
initial conditions (e.g. [24,25]). These properties are also
of interest in the context of statistical physics, where the
problem of ‘‘realizability’’ of point processes is studied
(see e.g. [26–28]). Specifically we find that the algorithm
has interesting limits for the case of very ‘‘blue’’ input PS:
for the case of spectra with a small k behavior proportional
to kn, and n > 1, the real space variance is never that of the
input model, while for n > 4 the reciprocal space repre-
sentation is never faithful either.

The paper is organized as follows. In the section which
follows we briefly review the standard method for setting
up IC for cosmological simulations, using the Zeldovich
approximation. This also sets conventions for notation in
the rest of the paper. In Sec. III we analyze the PS of the
configurations of points generated in this way, comparing it
with the PS of the input theoretical model. To obtain these
results we use a very general exact result derived in [29],
which gives the two-point properties of a point distribution
generated by superimposing an arbitrary correlated dis-
placement field on an arbitrary initial stochastic point
distribution. In the following section we consider how
these properties described in k-space translate into real
space. Specifically we present a general qualitative analy-
sis of the relation between the two-point correlation prop-
erties of the IC and those of the input models. We treat
specifically the mass variance in spheres, and the reduced
two-point correlation function. For the latter case the com-
parison of the theoretical model and full IC is more diffi-
cult, because of the complicated nonmonotonic form of the
correlation function of the underlying point distributions.
In the following section we illustrate, and verify our results
quantitatively, using one-dimensional numerical simula-
tions. We choose to work in one dimension for numerical
economy, and because all the pertinent questions can be
posed equally well and answered in this case.2 In the final
section we summarize our results, discuss what conclu-
sions can be drawn concerning the papers mentioned above
which motivated the present study, and finally briefly com-
ment on the physical significance of our results, which will
be further developed in the companion paper [23]. Several
technical details in the paper, notably concerning the per-

1A more detailed account is given in the conclusions section
below.

2The same is evidently not true when considering discreteness
effect in the dynamics.
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turbative expansion of the exact expression for the PS of
the generated IC, are given in three appendices.

II. GENERATION OF IC USING THE ZELDOVICH
APPROXIMATION

The method which is used canonically for the generation
of IC in cosmological NBS is based on the so-called
Zeldovich approximation (ZA) [30]. It may be derived at
linear order in a perturbative treatment of the equations
describing a self-gravitating fluid in the Lagrangian for-
mulation [31]. It relates the initial position q of a fluid
element to its final position3 x through the expression

 x �q; t� � q� f�t�u�q�; (1)

i.e., it expresses the displacement of a particle as a sepa-
rable function of the initial position q and the time t. The
function f�t� is equal, up to an arbitrary normalization, to
the growth factor of density perturbations derived in linear
perturbation theory (see below). The vector field u�q� is
thus proportional to both the velocity and acceleration of
the fluid element, and with a suitable normalization it can
thus be taken to satisfy

 u �q� � �r ���q� (2)

where ��q� is the gravitational potential at the initial time
created by the density fluctuations. To set up IC represent-
ing a density field, one thus simply determines the asso-
ciated potential through the Poisson equation and infers the
appropriate displacements [and velocities, given f�t�] us-
ing Eq. (1) to apply to a set of points representing the
unperturbed fluid elements.

We note that to understand this algorithm for generating
IC representing a continuous density field it is not in fact
necessary to invoke the ZA, nor anything which has spe-
cifically to do with gravity. These latter are relevant only
for the determination of the velocity field. The only rela-
tion needed is in fact the continuity equation, which relates
the velocity (and thus displacement) field in a fluid to the
density fluctuations. At leading order in the density fluctu-
ations it gives

 ���x� � �r � u�x�; (3)

where the density fluctuation ���x� is defined by

 ���x� �
��x� � �0

�0
; (4)

��x� is the (continuous) density field, �0 the average
density, and u�x� is the displacement field. By inversion
one can determine a displacement field which gives a

desired density field. If one assumes further that the former
is curl-free, and thus derivable as the gradient of a scalar
field, one obtains a unique prescription for the displace-
ment field which is identical to that given by the ZA as
described above.

In cosmological models the starting point for IC is not a
specific density field, but a power spectrum (PS) of density
fluctuations. The latter is defined as

 P�k� � lim
V!1

hj��̂�k�j2i
V

; (5)

where h. . .i denotes the average over an ensemble of real-
izations and �̂ �̂�k� denotes the Fourier transform (FT) of
��x� defined as

 ��̂�k� �
Z
V
ddx���x�e�ik�x: (6)

It follows then from Eq. (3) that

 P�k� � kikjĝij�k� (7)

where

 gij�k� � lim
V!1

hûi�k�û�j �k�i

V
(8)

and û�k� is the Fourier transform (FT) of the vector field
u�q�. Assuming that the latter is derived from a scalar
potential as in Eq. (2) we have

 ĝ ij�k� � k̂ik̂jĝ�k� (9)

where ĝ�k� � Tr�ĝij�k�	 is a function of k � jkj only
because the stochastic process is assumed to be statistically
homogeneous and isotropic, and k̂ � k=jkj. We thus have

 P�k� � k2ĝ�k� � k4P��k� (10)

where P��k� is the PS of the fluctuations in the scalar field,
i.e.,

 P��k� � lim
V!1

hj��k�j2i
V

: (11)

If one considers now a displacement field which varies
as a function of time as in Eq. (1), it follows that the PS of
density fluctuations is proportional to the square of the
function f�t�. For a self-gravitating fluid such a behavior
applies, and thus one can determine the function f�t� for
the determination of the velocities.4 Indeed Zeldovich
originally proposed his approximation as an ansatz, on
the basis that Eq. (1) implies the correct evolution of the
density fluctuation in linearized Eulerian theory. The
power of the ZA is that it can be applied well beyond the

3We do not make the distinction here between physical and
comoving coordinates, and do not write the associated time
dependent factors. Since we will analyze only IC for density
fluctuations (and not velocities) these are not relevant details,
and so we omit them for simplicity.

4Normally f�t� is chosen so that density perturbations are in
the pure growing mode in which the velocity field is parallel to
the displacement field.
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regime of validity of Eulerian perturbation theory, to which
it matches at early times.

To set up IC for the N particles of a cosmological NBS
the procedure is then [1,32]:

(i) to set up a ‘‘preinitial’’ configuration of the N parti-
cles. This configuration should represent the fluid of
uniform density �0. The usual choice is a simple
lattice, but a commonly used alternative [32] is an
initial ‘‘glassy’’ configuration obtained by evolving
the system with negative gravity (i.e. a Coulomb
force) with an appropriate damping.

(ii) given an input theoretical PS Pth�k�, the correspond-
ing displacement field in the ZA is applied to the
‘‘preinitial’’ point distribution. The cosmological IC
are usually taken to be Gaussian, and the displace-
ments are determined by generating a realization of
the gravitational potential

 ��q� �
X
k

ak cos�k � q� � bk sin�k � q� (12)

with

 ak � R1

�������������
Pth�k�

p
k2 ; bk � R2

�������������
Pth�k�

p
k2 ; (13)

where R1 and R2 are Gaussian random numbers of
mean zero and dispersion unity. From Eq. (10) we
see that this corresponds to generating a realization
of a stochastic displacement field with PS ĝij�k� as
in Eq. (9) and

 ĝ�k� � Pth�k�=k
2: (14)

III. ANALYTIC RESULTS IN k-SPACE

The configuration (or ensemble of configurations) gen-
erated by the method outlined in the previous section has
PS given through Eq. (10), and thus equal to the theoretical
PS Pth�k�, up to the following approximations:

(i) The system is considered as a continuous fluid. Thus
we expect the exact PS of the (discrete) particle
distribution to differ by terms which come from the
‘‘granularity’’ (i.e. particlelike) nature of this
distribution.

(ii) The calculations are performed at leading order in
the amplitude of the density fluctuations, or equiv-
alently, at leading order in the gradient of the dis-
placements (cf. Equation (3)). We would thus
anticipate that the exact PS of the generated con-
figurations will have corrections which are signifi-
cant for k larger than the inverse of a scale
characterizing the amplitude of the input PS.

The rest of the paper is principally focussed on the
consideration of the differences arising from the first point
between the theoretical PS Pth�k� and the exact PS (which
we will simply denote P�k�) of the distribution generated

by the algorithm described in the previous section.5 We
refer the reader to [33,34] for analyses of the second point,
i.e. of corrections coming from the use of the leading order
ZA. These latter studies work in the continuum limit, and
so completely decouple the problem of nonlinear correc-
tions from the effects of discreteness studied here.

A. General results

The starting point for our analysis is a result derived in
[29]. One considers, in d dimensions, the application of a
displacement field u�r� to a generic point distribution. The
latter is taken to have PS Pin�k� and correlation function
~�in�r�, given by the inverse Fourier transform

 

~� in�r� �
1

�2��d
Z
ddke�ik�rPin�k�; (15)

where the integral is over all space. The displacement field
u�r� is assumed to be a realization of a continuous sto-
chastic process, which is statistically homogeneous. An
exact calculation [29] gives that the PS of the distribution
obtained in this way may be written as

 P�k� �
Z
ddre�ik�rp̂�k; r��1� ~�in�r�� � �2��d��k�:

(16)

where

 p̂�k; r� �
Z
ddse�ik�sp�s; r�; (17)

and p�s; r� is the probability that two particles with a
separation r undergo a relative displacement s.

We note that our choice of notation here follows also that
of [35] (rather than that of [29]). In this work (see also [36])
an expression for the PS generated by displacements given
by the ZA is derived, for the case of a continuous fluid. The
general expression given is exactly that obtained by setting
~�in�r� � 0 in (16). This extra term in our expression arises
because we do not make the approximation of treating the
‘‘preinitial’’ configuration as a continuous uniform back-
ground. We note that this additional term contains not just
the effect of taking into account the correlations in the
‘‘preinitial’’ configuration, but also includes more gener-
ally all the effects of the discreteness of the (‘‘preinitial’’
and final) distribution. In this respect we note that the
correlation function ~�in�r� for the ‘‘preinitial’’ distribution
contains generically a delta-function at r � 0, which is
characteristic of its discreteness, as well as a nonsingular
function which describes correlations (for a detailed dis-
cussion see [37,38]).

5Note that the full PS is assumed to be a function of k, as it
will not in general share the statistical isotropy and homogeneity
of the theoretical PS (which makes it a function only of k � jkj).
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From the definition of p�s; r� it follows that

 p̂�k; r� �
Z

DuP �fu�r�g�e�ik��u�r��u�0�	 (18)

where the functional integral is over all possible displace-
ment fields weighted by their probability P �fu�r�g�.
For a displacement field which is (i) Gaussian, and
(ii) statistically isotropic (as well as homogeneous) it is
then simple to show [29] that

 p̂�k; r� � e�kikjdij�r� (19)

where a sum is implied over the labels i and j, and

 dij�r� 
 gij�0� � gij�r�; (20)

where

 gij�r� � hui�0�uj�r�i (21)

is the (matrix) two-displacement correlation function. We
note that the scalar function

 g�r� � Tr�gij�r�� � hu�0� � u�r�i (22)

is simply the inverse FT of ĝ�k� defined above (and, by
statistical isotropy, a function only of r � jrj), and that
g�0� � hu2i is the variance of the displacement field. We
have that

 dij�r� � 1
2h�ui�0� � ui�r�	�uj�0� � uj�r�	i; (23)

i.e., it is proportional to the correlation matrix of the
relative displacements.

Substituting (19) in (16), we obtain

 P�k� �
Z

�
ddre�ikre�kikjdij�r��1� ~�in�r�� � �2��d��k�:

(24)

It will be useful for our discussion to break this expression
into two pieces, P�k� � Pc�k� � Pd�k�, written in the
form
 

Pc�k� �
Z

�
ddre�ikr�e�kikjdij�r� � 1� (25a)

Pd�k� � Pin�k� �
Z

�
ddre�ikr�e�kikjdij�r� � 1�~�in�r�:

(25b)

The first term Eq. (25a) is the ‘‘continuous’’ piece of the
generated PS (identical, as discussed above to that given in
[35]), and the second term Eq. (25b) is the contribution
coming from the discreteness.

B. Application to cosmological IC

In the algorithm used to generate cosmological NBS, we
have seen that the FT of gij�r� is [cf. Equations (9) and
(14)] given by

 ĝ ij�k� � k̂ik̂j
Pth�k�

k2 : (26)

Expanding the exponential factor in Eq. (25a) and (25b) in
power series, we can thus obtain expressions for Pc�k� and
Pd�k� at each order in powers of Pth�k�. At zero order we
have evidently

 P�0�c �k� � 0 P�0�d �k� � Pin�k� (27)

and, at linear order,
 

P�1�c �k� � Pth�k� (28a)

P�1�d �k� �
k2

�2��d
Z

�
ddq�k̂ � q̂�2

Pth�q�

q2

� �Pin�k� q� � Pin�k�	: (28b)

To this order the PS of the generated distribution is thus the
sum of the input theoretical PS and two discreteness terms:
the PS of the ‘‘preinitial’’ (i.e. lattice or glass) distribution
and a second term which is a convolution of the input PS
and the ‘‘preinitial’’ PS. At next order in the expansion [i.e.
at second order in Pth�k�] we will obtain both further
discreteness corrections, and corrections which survive in
the limit in which we neglect discreteness completely. This
result is in line with what we anticipated at the beginning of
this section.

C. Domain of validity of the expansion

We have implicitly assumed above that the expansion
we have performed is well defined.6 This assumption
corresponds to that of finiteness of various integrals of
the input PS Pth�k�. If the latter function is well-behaved,
this corresponds to constraints on its asymptotic properties,
at small and large k. To determine these constraints we
consider a PS of the form

 Pth�k� � Aknf�k=kc� (29)

where A and n are constants, and f�x� is a function which
interpolates between unity for x� 1 and zero for x
 1,
i.e., which may act as a cutoff for k > kc. In the use of this
algorithm in cosmological simulations, for reasons which
we will discuss further below, a very abrupt (usually top-
hat) such cutoff is always imposed at wave numbers of
order the inverse of the scale characteristic of the interpar-
ticle separation.7 Thus we will consider only the con-
straints at small k, i.e., the lower bound placed on the
index n.

6We note that we have also assumed Gaussianity in deriving
Eq. (24). This is not in fact a necessary condition to obtain
Eqs. (27), (28a), and (28b). Making instead only the assumption
that dij�r� is bounded, it is easy (see also [29]) to recover the
same result directly from an expansion of Eq. (18).

7In this case the cutoff imposed in simulations, as explained
below, is actually a function of k.
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Firstly we note that, using Eqs. (20) and (26), it is simple
to show that dij�r� is well defined only if

 lim
k!0

kdPth�k� � 0; (30)

i.e., if n >�d in Eq. (29). This is a condition which is
always satisfied in cosmological models, as it follows from
the finiteness of the one-point variance of the theoretical
density fluctuations.8

In Appendix A we analyze in detail the full expansion of
Pc�k� to all orders in A, separating two different cases:
(i) �d < n <�d� 2, in which the one point variance
g�0� is infinite, and (ii) n >�d� 2, in which case g�0�
is finite. From the expansions in each case one can infer the
following:

(i) For �d < n <�d� 2 the leading nonzero term,
equal to Pth�k�, approximates well the full Pc�k�
for the range of k in which9

 �2
th�k� 
 kdPth�k� � 1: (31)

(ii) For �d� 2< n< 4 the criterion to satisfy the
same condition is:

 k2g�0� � k2hu2i � 1: (32)

(iii) For n � ��d� 2� � d=2 there is, at next order in
the expansion of Pc�k�, a correction proportional to
k4. This implies that, for n � 4 the leading term
Pth�k� is never well approximated at asymptotically
small k by the PS of the generated IC.

To analyze the expansion of the discreteness contribu-
tion Pd�k� we need to specify the ‘‘preinitial’’ distribution.
It is evident however that generically it is at least as
convergent as than that of Pc�k�, since Eq. (25b) contains
in the integrand simply an extra factor of ~�in�r�, which is
typically smaller than unity and decreasing at large sepa-
rations. For a Poisson distribution of number density n0, for
example, one has ~�in�r� � 1

n0
��r� (where ��r� is a Dirac

delta function in d-dimensions), and therefore the expan-
sion becomes trivial with Pd�k� � Pin�k� �

1
n0

at all or-
ders.10 In cosmological NBS the ‘‘preinitial’’ distribution,
as we have discussed, is usually taken to be a simple lattice

or glass. We will see below that for the case of the lattice
the coefficients of the expansion are sums which are regu-
lated at small k, by the Nyquist frequency of the lattice
(defined below). For the case of the glass, or indeed any
distribution with an analytic Pin�k�, we limit ourselves to
an analysis of the integral coefficient of the leading term in
Eq. (28b). It is simple to see, by Taylor expanding the
expression inside the square brackets at small q, that the
finiteness requires only the integrability of Pth�q� at small
q. This coincides precisely with the condition Eq. (30). We
expect that Pd�k� � P�0�d �k� � P

�1�
d �k� will thus also be

satisfied when Eq. (31) applies. We will verify below
with numerical simulations that this is indeed the case.

We note that the condition Eq. (31) for the validity of the
perturbative expansion at a given k is one which could be
guessed from the simple continuum derivation using
Eq. (3), in which the expansion parameter is the amplitude
of the theoretical density fluctuation: �2

th�k� is just a di-
mensionless measure of the amplitude of the density fluc-
tuations in the theoretical model arising from wave
numbers around k.11 Further we show in Appendix A
that if condition Eq. (32) is fulfilled for any k < kc, then
Eq. (31) is also. The two conditions are in fact essentially
equivalent in the case that a cutoff is imposed as typically is
done the cosmology.

D. The leading nontrivial discreteness correction

Let us now analyze in more detail the leading contribu-
tion to the generated PS arising from discreteness, i.e., the
expression which we have denoted above by P�1�d �k�.

12 We
note [cf. Eqs. (28a) and (28b)] that this term arises at the
same order as the input PS in the perturbative expansion,
i.e., at linear order in the amplitude of the input theoretical
PS. We consider the specific case of a ‘‘preinitial’’ distri-
bution which is a simple cubic lattice. Its PS is

 Pin�k� � �2��d
X
h�0

��k� h� (33)

where the sum over h is over all the vectors of the recip-
rocal lattice, i.e., h � m�2�=‘�, where ‘ is the lattice

8The one point variance of density fluctuations is equal to
~�th�0�, which is proportional [cf. Eq. (15)] to the integral of
Pth�k�.

9In the cosmological literature �2�k� is canonically defined
with a numerical prefactor so that ~��0� � h��2�0�i �R

�2�k�d�lnk�. Given that the resultant factor depends on the
dimension d we will not include it here.

10At leading order in the amplitude of the input theoretical PS
Pth one therefore has P�k� � 1

n0
� Pth�k�. Thus for an exponent

n < 0 in (29) one will have P�k� � Pth�k� for all k� �An0�
1=n.

For n > 0, on the other hand, one can have P�k� � Pth�k� at most
in an intermediate range of k: at small k the Poisson variance of
the ‘‘preinitial’’ distribution will always dominate.

11Consistent with with Eq. (3), this condition for the validity of
the expansion can be stated equivalently in terms of the
boundedness of the dimensionless quantity
jh�ui�0��ui�r�	�uj�0��uj�r�	ij

r2 , i.e., of the ‘‘gradient’’ of the displace-
ment fields. We note that in a first version of the paper, a stronger
condition was given for the validity of the expansion, n >�d�
2. This corresponds to the condition that variance of the dis-
placement field be finite. While this stronger condition is as-
sumed in the derivations in [29], and notably in arriving at
Eq. (19), it is not a necessary condition for the validity of the
method. We thank an anonymous referee for pointing out this
error.

12In Appendix B we present some further analysis of the full
expansion of Eq. (25a), providing analytical expressions for
some specific cases.
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spacing and m is a vector of nonzero integers. The minimal
value of jhj � 2�=‘, is the sampling frequency ks of the
lattice, equal to twice the Nyquist frequency, which we will
denote kN (and kN � �=‘). It is instructive to rewrite the
first order term Eq. (28b) in the form

 P�1�d �k� � Ak2kn�2
N I�k� (34)

where
 

I�k� 

1

�2��d
Z
ddq�k̂ � q̂�2

�
q
kN

�
n�2

f�q=kc�

� �Pin�k� q� � Pin�k�	 (35)

is dimensionless. Since Pin�k� � 0 for k � h, we there-
fore have, at linear order in our expansion in powers of the
input PS, that,

 P�k� � Pth�k� � P
�1�
d �k� � Aknf�k=kc� � Ak

2kn�2
N I�k�

(36)

where

 I�k� �
X
h�0

�k̂ � �h� k�	2

jh� kj2

�
jh� kj
kN

�
n�2

f
�
jh� kj
kc

�
(37)

for k � h.
The second (discreteness) term in Eq. (36) includes

explicitly what is known as ‘‘aliasing’’: power in the input
spectrum at large wave numbers (i.e. above the sampling

frequency) gives rise to power at small k. Indeed the
amplitude at small k of the discreteness term is propor-
tional to I�k! 0� in Eq. (35), which is a sum depending
strictly on the power in modes at wave numbers greater
than or equal to the sampling frequency ks � 2kN . Further
if one cuts at the Nyquist frequency kN , i.e., f�k=kc� �
��kN � k�, where � is the Heaviside step function, it
follows that I�k� � 0 for k < kN . In this case therefore
we have, for k � h, that

 P�k� � Pth�k���kN � k� � P
�1�
d �k���k� kN�; (38)

i.e., to leading order in the input spectrum the full PS of the
generated IC is exactly equal to this input spectrum below
the Nyquist frequency, and given by the discreteness term
Eq. (35) above the Nyquist frequency. It is easy to verify
that an analogous result applies if the cutoff is imposed in
the first Brillouin zone (FBZ), i.e., setting the PS to zero
but for vectors with all three components 2 ��kN; kN	. In
cosmological simulations a cutoff is usually imposed in
this way (see e.g. [2,39]).

In Fig. 1 is shown the numerically computed value of
I�k� as a function of k, in three dimensions,13 for a pure
power-law PS with n � �2, (i) without a cutoff [i.e. with
f�k� � 1 in Eq. (29)] and, (ii) with an abrupt top-hat cutoff
at kN , i.e., f�k� � ��kN � k�. In Fig. 2 we show the same
quantity but for n � 0 and three top-hat cutoffs at kN , 2kN,
3kN . We see clearly illustrated the behaviors discussed
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FIG. 1. Integral I�k� of Eq. (37), in three dimensions and
averaged over shells of jkj, for an input PS Pth�k� as in
Eq. (29) with n � �2 and (i) f�k� � 1, i.e., without a cutoff
(dotted line), and (ii) f�k� � ��kN � k�, i.e., an abrupt
(Heaviside step function) cutoff at k � kN (solid line). In the
former case we see that I�k� is approximately constant for k <
kN , and therefore the leading discreteness term P�1�d �k� � k

2 for
k < kN . In the latter case, the discreteness term contributes only
for k > kN . Such a cutoff is usually employed in the use of this
algorithm in cosmological simulations.
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FIG. 2. As in previous figure, but now for n � 0 and a top-hat
cutoff function, for three different values of the cutoff. We see
that as the cutoff increases the amplitude of I�k� does so
(corresponding to the UV divergence of the sum Eq. (37) for n >
�1 in three dimensions). We see again that for a cutoff at kN the
leading order discreteness term contributes only for k > kN ,
while for larger cutoff we have aliasing effects which manifest
themselves in the appearance of the term P�1�d �k� � k

2 for k <
kN .

13We show the average for all vectors k with modulus in a bin
centered about k � jkj.
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above. Note that for n <�d� 2 (n >�d� 2) the ex-
pression for I�k� converges (diverges) without a cutoff,
which explains the choices for the cutoff functions in the
two figures. If a sharp cutoff is not implemented at kN we
see that, in all cases, I�k� is nonzero and approximately
constant for k < kN . There is thus an associated aliasing
term which is, to a very good approximation, proportional
to k2.

E. Accuracy of generation algorithm in k space

We can now draw clear conclusions about the accuracy
with which the generation algorithm, applied on a simple
lattice, produces a point distribution with a PS approximat-
ing the input PS of the form assumed in Eq. (29):

(i) For �d < n < 4, and f an abrupt cutoff at kN , we
have P�k� � Pth�k� for k < kN , up to corrections
which depend parametrically on the dimensionless
quantity �2

th�k� � kdPth�k�. For k > kN we have
P�k� � P�1�d �k�, where the latter is a discreteness
term given explicitly in Eq. (35).

(ii) If any input power is included above the Nyquist
frequency kN of the lattice (or, more precisely, out-
side the FBZ of the reciprocal lattice), it leads to the
appearance of power in the IC at k < kN (i.e. inside
the first FBZ). With power included above the sam-
pling frequency (k � 2kN) there is an aliasing term
proportional to k2 at small k. In this case therefore
the range of n which may be accurately represented
at small k is limited to �d < n < 2.

(iii) For n > 4 one always has P�k� / k4 at sufficiently
small k, and the PS of the point process produced
by the algorithm therefore does not approximate
the input theoretical spectrum.

(iv) For n <�d the algorithm is not well defined be-
cause the correlation function of relative displace-
ments dij�r� is undefined. This is true in the infinite
volume limit. In practice one generates IC in a finite
system, usually taken to be a cube (with periodic
boundary conditions). This means that in practice
the input PS is always cut at the corresponding
fundamental frequency of the box, so that, even
for n <�d, the algorithm can be applied. The
implication of our result is that one will find in
this case that the PS obtained will depend on this
box size, becoming badly defined in the infinite
volume limit. We will verify that this is the case
in our numerical study below.

F. Glass preinitial conditions

The above conclusions were derived assuming that the
‘‘preinitial’’ distribution is a simple lattice. The alternative
starting point quite often used in cosmological NBS are
glassy configurations, obtained by evolving gravity with a
negative sign and a strong damping on the velocities
[32,39]. Without the damping, this system is essentially

just what is known as the ‘‘one component plasma’’ in
statistical physics (for a review, see [40]). The small k
behavior of the power spectrum is then expected to be
Pin�k� � k

2 at small k.14 With the damping term what is
found is a PS with a behavior �k4 at small scales [41].
Assuming this form for the spectrum15 it is easy to follow
through the analysis given above for this case. The only
change is that the term I�k� is now nonzero for all k :
because Pin�k� is nonzero for all k it is not possible to have
zero overlap of its support with that of Pth�k� in Eq. (28b).
This is what permitted this term to be zero in the case of a
lattice and a top-hat cutoff at the Nyquist frequency. Thus
in the case of a glass there will generically be a correction
/ k2 at k below the wave number characteristic of the
interparticle distance in the glass. Thus the range of
power-law spectra which may be accurately represented
by the generation algorithm in this case at small k is�d <
n < 2. The models simulated in the context of cosmologi-
cal N-body simulations are always well inside this range.

What is the source of these limits on the representation
of PS with n > 2 (or n > 4 on the lattice)? We remark that
the appearance of such terms16 would appear to be related
to a well-known argument used by Zeldovich [42,43] in
determining the limits imposed by causality on fluctuations
(See [44,45] for discussion of this result and further refer-
ences.): any stochastic process which moves matter in a
manner which is correlated only up to a finite scale gen-
erates terms proportional to k2 in the PS at small k. The
coefficient of the k2 term vanishes, leaving a leading term
proportional to k4, if the additional condition is satisfied
that the center-of-mass of the matter distribution is con-
served (i.e. not displaced) locally. The condition on the
support of the displacement field required to make the
coefficient of the k2 vanish should thus be equivalent to a
condition of local center-of-mass conservation under the
effect of the displacement field.

IV. RESULTS IN REAL SPACE

We now turn to the consideration of the real space
properties of the distributions generated by the algorithm.
In this section we use the k space results of the previous
section to determine these properties approximately, but
analytically. In the next section we will use numerical

14Here ‘‘small’’ means compared to the inverse of the Debye
length characterizing the screening. This statement is true only if
one neglects the damping, and assumes the system is in the fluid
phase

15We assume thus that Pin�k� � k
4 up to k of order the ‘‘Nyquist

frequency’’ (i.e. the inverse of a characteristic interparticle
distance) followed by a flattening to the required asymptotic
form Pin�k� � 1=n0 for larger k.

16We note that in [24], which studies an input ‘‘top-hat’’ PS
without power at small k, the k4 term in the PS has actually been
actually measured numerically in the IC. The authors give it the
same physical explanation we now discuss.
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simulations in one dimension to show in detail the validity
of these results.

A. Definitions and background

The quantities we will study in real space are the re-
duced 2-point correlation function ~��r� and the variance of
mass in spheres. In fact we will principally consider the
latter for reasons which we will explain below.

We recall that ~��r�, for a statistically homogeneous
distribution, is defined by

 h��r���r0�i � �2
0�1�

~��r� r0��; (39)

where h. . .i is the ensemble average. For a discrete distri-
bution (i.e. the case we always consider here)
h��r���r0�idV1dV2 is the a priori probability to find two
particles in the infinitesimal volumes dV1, dV2, respec-
tively, around r1 and r2. The correlation function ~��r�
measures therefore the deviation of this probability from
that in a Poisson distribution (equal to h�0i

2dV1dV2). It is
related to the PS as its Fourier transform.

The normalized mass variance �2�R� in spheres of ra-
dius R is defined as

 �2�R� �
hM�R�2i � hM�R�i2

hM�R�i2
; (40)

where M�R� is the mass in a sphere of radius R, centered at
a randomly chosen point in space. It is given in terms of the
correlation function by

 �2�R� �
1

V�R�

Z
V�R�

ddr1

Z
V�R�

ddr2
~��jr1 � r2j� (41)

(where V�R� is the volume of a sphere of radius R), and in
terms of the PS by

 �2�R� �
1

�2��d
Z
ddkP�k�j ~WR�k�j

2 (42)

where ~WR�k� is the Fourier transform of the window func-
tion for a sphere of radius R, normalized so that ~WR�0� �
1.

It is simple to show (see e.g. [44], and [37,38] for a more
detailed discussion) that, for a PS of the form (29), the
behavior of the integral in (42) depends strongly on the
value of n:

(i) for �d < n < 1 the integral for �2�R� is dominated
by modes k� 1=R and one has

 �2�R� � kdP�k�jk�1=R /
1

Rd�n
(43)

(ii) for n > 1 the integral is dominated by modes k�
k�1
c (i.e. by the ultraviolet cutoff) and one has al-

ways

 �2�R� /
1

Rd�1
: (44)

For n � 1 one obtains the transition behavior, in which
the integral depends logarithmically on the cutoff kc. This
gives �2�R� / lnR=Rd�1.

The behavior in Eq. (44) is thus actually a limiting
behavior. It is in fact a special case of a much more general
result (see [37,38] for a discussion and references to the
mathematical demonstration of this result): the most rapid
possible decay in any mass distribution of the unnormal-
ized variance of the mass h��M�2iV in a volume V is
proportional to the surface of the volume.

B. Perturbative results in real space

Returning now to Eqs. (27), (28a), and (28b), and using
Eq. (42), we infer that, at linear order in the amplitude of
the input PS, we have

 �2�R� � �2
in�R� � �

2
th�R� � �

2
d�R� (45)

 

~��r� � ~�in�r� � ~�th�r� � ~�d�r� (46)

for the normalized mass variance and correlation function
of the IC. The ‘‘in’’ and ‘‘th’’ subscripts in each case have
the obvious meanings, with ‘‘d’’ indicating the term asso-
ciated to the linear order discreteness correction P�1�d �k�.
We have assumed implicitly that the integrals pick up
negligible contribution from the regions, at large k, where
the linear approximation to the full PS is not good. This
will typically translate into a lower bound on R and r for
the validity of Eqs. (45) and (46).

It is simple to understand from Eqs. (45) and (46) why
the question of the representation of real space properties
of the IC generated using the ZA is nontrivially different
from that of k space properties. In k space we had analo-
gous expressions to Eqs. (45) and (46), from which it
followed that P�k� � Pth�k� to very good accuracy at small
k. One necessary ingredient for this was that the term
Pin�k� could be neglected at small k, as it is identically
zero outside the FBZ on a lattice and decreasing very
rapidly to zero ( / k4) in a glass. In real space we do not
have the same ‘‘localization’’ at large k of the intrinsic
fluctuations associated with the preinitial distribution.
Indeed we have noted above that there is a limiting behav-
ior ( / 1=Rd�1) to the decay with radius R of the mass
variance, for any distribution.17 The amplitude of this
leading term is fixed by the interparticle distance ‘, with
�2

in � �‘=R�
d�1, while that of the two other terms Eqs. (45)

is proportional to the amplitude A of the input spectrum.

17While the result we cited concerning the variance applies
strictly to the case of statistically homogeneous and isotropic
distributions, it can be shown (see [37,38]) that it applies also to
the variance in spheres measured in a lattice.
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Likewise for the correlation function the intrinsic term
~�in�r� is generically delocalized in space, and depends
only on the particle density, while the other two terms
are proportional to the amplitude of the input PS. At
sufficiently low amplitude, both quantities will be domi-
nated at any finite scale by those of the underlying preini-
tial point distribution, and thus will not be approximated by
their behaviors in the input model. This is a behavior which
is qualitatively different to what we have seen in reciprocal
space. We now examine in a little more detail these two-
point quantities. We treat them separately as they are quite
different for what concerns their comparison to the con-
tinuous theoretical input quantities: being an integrated
quantity, the mass variance is intrinsically smooth and
can be directly compared with its counterpart in the input
model.

C. Mass variance in spheres

Given Eq. (45), and the limits we have discussed on the
behavior of the variance, we can immediately make a
simple classification of the PS of the form (29) for what
concerns the representation of their variance in real space.
The faithfulness of such a representation requires simply

 �2
th�R� 
 �2

in�R�: (47)

For either a lattice or glass we have the ‘‘optimal’’ decay
�2

in�R� / 1=Rd�1. In order for Eqs. (45) and (46) to be valid
we require that Eqs. (27), (28a), and (28b) be valid. As
discussed in the previous section we expect this to corre-
spond to the criterion that �2

th�k� � kdPth�k�< 1 for the
relevant k. Given that P�1�d �k� is at most proportional to k2 at
small k, the associated variance is also / 1=Rd�1 above the
interparticle distance ‘, and thus subdominant with respect
to the leading term at all scales. Since we generically cut
the input spectrum around kN , and will consider simple
power law spectra up to this scale with n <�d, it suffices
to have

 �2
N 
 �2

th�kN� � kdNPth�kN�< 1: (48)

Up to a numerical factor of order unity this is none other
that the criterion18 that�2

th�‘�< 1, and so it follows that we
expect the following behaviors:

(1) For n > 1 we have seen that �2
th�R� � 1=Rd�1, i.e.,

�2
th�R� has the same functional behavior as that of

the ‘‘preinitial’’ variance. Given that the former is
necessarily smaller at the interparticle distance, the
condition Eq. (47) will never be fulfilled, as the full
variance will be dominated by that of the preinitial
configuration.

(2) For �d < n < 1 we have that �2
th�R� � 1=Rd�n,

which thus decays more slowly than the ‘‘preinitial’’
term. Thus there will be a scale Rmin such that for
R> Rmin one can satisfy the condition Eq. (47). It is
easy to infer that, for any d, we have

 Rmin � ‘
�

1

�N

�
2=1�n

: (49)

D. Two-point correlation function

The case of the two-point correlation function is similar.
The determination of the range of faithful representation of
the theoretical correlation function is, however, more com-
plicated by the very nonmonotonic behavior of the corre-
lation function in both the (unperturbed) lattice and glass.
This leads, as we will explain, to a strong dependence on
how the correlation function is smoothed when it is esti-
mated in a sample.

Unlike for the variance, there is no intrinsic limit on the
rapidity of the decay of the correlation function for point
processes. Indeed for a Poisson process one has ~�in�r� � 0
for r > 0, and exponentially decaying correlation functions
are commonplace in many physical systems. For both a
lattice and glass distributions the leading term ~�in�r� in
Eq. (46) presents a very nontrivial behavior. The two-point
correlation function of the lattice is in fact not a function of
r, but a distribution which depends on r: it is proportional
to a Dirac delta function when r links any two lattice
points, and equal to �1 otherwise (see Appendix C for
the explicit expression). For the glass the correlation func-
tion is not known exactly—it depends on the details of the
generation of the glass configuration used—but generi-
cally it will be expected to have a similar oscillatory
structure describing its very ordered nature, with decay
only at scales considerably above the interparticle dis-
tance.19 This underlying highly ordered structure is evi-
dently not washed out by the application of very small
displacements. In particular for relative displacements
much smaller than the initial interparticle separation, it is
clear that the form of the underlying correlation function
will remain highly oscillatory up to a scale considerably
larger than the interparticle distance. Just as in the case of
the mass variance, therefore, one can conclude that the
theoretical term in Eq. (46) will always be dominated by
the discreteness terms up to some scale, which becomes
larger as the input amplitude is decreased.

A simple analytical estimate, like that given above for
the variance, of the scale at which the theoretical term will

18For the case n � 1, this is true only because the input PS is
cut at the Nyquist frequency; for n < 1 it is true even without the
cutoff.

19The characteristic property of these configurations is that the
force on particles is extremely small. This imposes a very strong
correlation between the positions of particles. In studies of the
one component plasma, mentioned above [40], the appearance of
multiple peaks in the correlation function is observed as the
temperature is lowered.
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dominate the discreteness terms, and thus at which the
input theoretical two-point correlation function is well
approximated by that of the generated IC, is not possible:
for the lattice such an estimate must take also into account
the term ~�d�r� which together with ~�in�r� gives a regular
oscillating and decaying function; for a glass we do not
have the analytical form of the correlation function.

There is a further important difficulty if one wishes to
compare the correlation function in generated IC with the
input one. In estimating the correlation function in a finite
sample one must introduce a finite smoothing: one com-
putes it by counting the number of pairs of points with
separations in some finite interval, typically a radial shell
of some chosen thickness. Indeed while the full correlation
function is in general a function of r, this procedure makes
it a function of r like the theoretical correlation function.
Given that, at low amplitude of the relative displacements,
~��r� has both a strongly oscillating and strongly orientation
dependent behavior, such a smoothing can change very
significantly its behavior. Thus the scale at which agree-
ment may be observed between the measured ensemble
averaged two-point correlation function and that of the
input model will depend both on A, ‘ and the precise
algorithm of estimation of the correlation function.

V. NUMERICAL STUDY IN ONE DIMENSION

In this section we study the generation algorithm using
numerical simulations. This allows us to verify our con-
clusions about two-point properties in reciprocal and real
space, derived in the limit of small amplitudes of the input
PS. Further it allows it to show the accuracy of the full
analytic expression Eq. (24), for any input amplitude. We
work in one dimension because of the numerical feasibility
of the study in this case: we measure directly the real-space
mass variance for a large ensemble of configurations,
which is not numerically feasible (for modest computa-
tional power) in three dimensions. The exact ensemble
average results given above, on the other hand, are easily
calculated. The simplified and more explicit expressions
for the relevant quantities are given in Appendix C. There
is no intrinsic difference of importance between one and
three dimensions for the questions we address.20

We consider the case in which the preinitial distribution
is a lattice. Following our discussion in the previous sec-
tions we study separately the four following specific ex-
amples for input PS as in Eq. (29): (i) n � �1=2 (example
of �d < n < 1), (ii) n � 3 (example of 1< n< 4),
(iii) n � 7 (example of n > 4) and (iv) n � �2 (example
of n <�d, in which case we have found the algorithm to
be badly defined in the infinite volume limit). We will
specify the cutoff function in each case. We then also

present numerical results for the two-point correlation
function in just the first of these models to illustrate the
discussion of this quantity given at the end of the preceding
section.

A. n � �1=2 (Case �d < n < 1)

In Fig. 3 are shown results for an input PS Pth�k� �
Ak�1=2 with A � 10�3, which corresponds to �N �
1:77� 10�3. Here, as in the rest of this section, we use
units of length in which the interparticle distance is equal
to unity. We have imposed a sharp FBZ cutoff f�k� �
��k� kN�. In the figure we see, as expected, excellent
agreement between the PS measured by averaging over a
thousand realisations of IC, generated using the standard
algorithm (with Gaussian displacements) in a periodic
interval containing a thousand particles, and the theoretical
expression at linear order, as given in the previous section.
Note that on the x� axis is given k=2kN , so that first Bragg
peak appears at unity, and the sharp change in the PS at 0.5.

Figure 4 differs only in that we have now imposed a
continuous cutoff f � e�k=2kN . Again we observe, as ex-
pected, excellent agreement between the measured PS and
the theoretical expression. The agreement between the
input PS and the measured PS is, however, less perfect
around kN , because the discreteness term P�1�d �k� contrib-
utes now inside the FBZ (i.e. for k < kN). The effect is,
however, very small as the latter term is, in this range,
proportional to k2.

In Fig. 5 are shown results for the same shape PS, but
now with a higher amplitude, A � 0:1, corresponding to
�N � 0:18. The cutoff here is sharp. Shown are the input
theoretical PS, the average over 1000 realizations, and the
exact expression for the PS. We are not in this case in the
regime in which the perturbative expansion of the full PS is
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FIG. 3. PS of a model with n � �1=2, sharp cutoff f�k� �
��k� kN� and �N � 1:77� 10�3 (A � 10�3). The simulation
results are averaged over 1000 realizations of IC, generated
using the standard algorithm (adapted to one dimension).

20One minor exception for the case of the two-point correlation
function, related to the last point discussed in the previous
section, is discussed at the appropriate point below.
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valid at kN, and therefore do not plot P�1�d �k� as in the
previous figures. Indeed we see that the PS of the generated
IC begin to deviate sensibly from the input theoretical IC
already at a k significantly smaller than kN , with a discrep-
ancy of about a factor of 2 in the amplitude at k � kN . Note
that, nevertheless, the results of the simulations agree
extremely well with the exact expressions for the full PS.

In Fig. 6 are shown the real-space variance in spheres of
radius R (i.e. intervals of length 2R) for the case of the
sharp cutoff and the two different amplitudes just consid-
ered. The curves labeled ‘‘exact’’ are those corresponding
to the ensemble average of the full IC, and those labeled
‘‘theoretical’’ are those of the input model. We see clearly
illustrated the results anticipated in the previous section:
for low amplitudes the exact curve is dominated at small
distances by the variance of the underlying lattice, and the
low amplitude theoretical expression (which has a behavior

�2�R� / 1=R1=2) is approximated only once this term com-
ing from the lattice (with �2�R� / 1=R2) has decayed
sufficiently. At the higher amplitude the theoretical expres-
sion, on the other hand, is well approximated for scales just
above the interparticle distance.21

B. n � 3 (Case 1 < n < 4)

Figures 7–10 show exactly the same quantities as the
four previous figures, but now for an input power-law PS
with n � 3. The two amplitudes chosen are given in the
captions, the low amplitude corresponding to the case
where the linear approximation to the exact formula for
the PS is a good approximation. Figures 7 and 8 illustrate
the more important difference that arises in the case that
n > 2 when the cutoff imposed on the PS is smooth instead
of being imposed sharply inside the FBZ: the k2 term at
small k generated in P�1�d �k� in this case dominates the input
PS at small k so that it is no longer faithfully represented by
the PS of the generated IC at any k. Figure 9 shows
essentially the same thing as Fig. 5. For higher amplitudes
the agreement of the input PS with that of the generated IC
is shifted to smaller k. The exact formula for the PS agrees
very well with that of the generated IC measured in the
simulations, but the linear approximation to the discrete-
ness effects at larger k, given by P�1�d �k�, is no longer a good
approximation.

Comparison of Fig. 10 with Fig. 6 shows the difference
between the cases n < 1 and n > 1 for what concerns the
behavior of the mass variance in real space. Because the
theoretical variance has the same scale dependence
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21The discrepancy between the variance appears smaller than
that in the PS (shown in Fig. 5) at the inverse scale due to the
different range of scale on the y-axis in the two plots. The
relative difference is in fact of the same order.
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(�2�R� / 1=R2) as the lattice variance, the latter always
dominates the former if the amplitude is low. Specifically,
if the input mass variance at the lattice spacing is less than
that of the lattice (which is of order unity) the mass
variance of the IC is not approximated at any scale by
that of the input model.

C. n � 7 (Case n > 4)

Figures 11 and 12 show results for the PS of a single low
amplitude n � 7 input model, for the case of a sharp and
continuous cutoff, respectively. These figures illustrate the
limitation discussed in the previous section for the repre-
sentation of a small k input PS with n > 4. Using the sharp
cutoff inside the FBZ the term P�1�d �k� is zero for k inside
the FBZ, but nevertheless the theoretical behavior at small
k is not represented because the corrections to Eq. (38), at
quadratic order in the amplitude A, are nonzero. Thus at
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asymptotically small k we see the PS of the generated IC
deviate from the input one.22 Further the behavior at the
smallest k is well fit by a k4 behavior, which is shown in
Appendix A to be that of the quadratic order correction.

In Fig. 12 one can observe the dramatic effect, as we saw
illustrated also in Fig. 9, of using a continuous cutoff for
the case n > 2. Just as in the case of n � 3 we see that the
input PS is no longer well approximated—indeed not even
poorly approximated — by the PS of the generated IC.
Note that, differently from Fig. 11, there is no range of
intermediate k where the input PS is approximated. This is
because it is the correction P�1�d �k� which dominates at
small k, with an amplitude proportional to same (linear)
power of the input PS. Correspondingly in Fig. 11 the k at
which a deviation towards the k4 behavior is observed can
be shifted to arbitrarily small k by taking a sufficiently low
initial amplitude.

D. n � �2 (n <�d)

We show finally in Fig. 13 results for the PS for averages
over simulations of the case n � �2. In this case, as we
have discussed above, the algorithm is not well defined in
the infinite volume limit, because the variance of relative
displacements at any scale is a divergent. The implemen-
tation of the algorithm in a finite sample, with periodic
boundary conditions, is perfectly well defined as the spec-
trum of modes is cutoff at small k by the fundamental, fixed
by the box size. In the figure we show the results for the PS
of the averages of 1000 generated configurations, for dif-
ferent numbers of particles, i.e., for different sizes of the
system. As anticipated the results depend strongly on the

box size, and neither the amplitude nor the shape of the
input PS is approximated well by that of the generated
distributions.

E. Two-point correlation function

Figures 14 and 15 illustrate quantitatively the discussion
and conclusions in Sec. IV D above. They show both the
exact two-point correlation function, and a smoothing of
it, for IC corresponding to an input power-law PS with
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22The numerical integration of the exact expression in this case
is very difficult because of a very rapidly oscillating behavior in
d�x� at large x. The exact curve has thus been calculated just far
enough at small k so that the deviation from the input PS may be
discerned.
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n � �1=2. The smoothing is defined by a convolution of
the discrete density distribution with a spatial window
function WL:

 �c�r� �
Z �1
�1

d3r0WL�jr� r0j��d�r0�; (50)

where �c�r� is the density function of the continuous field,
�d�r� of the discrete distribution and L is the characteristic
scale introduced by the smoothing. For the correlation
function this gives

 

~� s�r� �
Z �1
�1

dr0FTr�r0 �jWL�k�j
2	~��x0�; (51)

where FT denotes the inverse Fourier transform of WL�k�.
For the latter we have taken here a simple Gaussian form as
specified in the caption of the figures.

We observe that the range of agreement between these
quantities and the theoretical correlation function is differ-
ent—illustrating that the result depends on the smooth-
ing—and, further, that this range depends also on the
amplitude of the input model. Just as for the mass variance,
the scale above which the theoretical and measured quan-
tities converge increases (for any given method of estima-
tion/smoothing) as the amplitude decreases. Further for
sufficiently low amplitude perturbations the underlying
structure of the lattice becomes visible if the estimated
two-point function is resolved to the required level (by a
sufficiently narrow smoothing).

One remark is appropriate here on the relation between
these results and those in three dimensions. One important
effect in that case is not illustrated by these results: if one
takes, as is usually done, a simple pair estimator for ~��r�
using spherical shells of equal width, the volume of the
shells grows as r2. Therefore the oscillations of the true
lattice or glass correlation function will be attenuated much
more rapidly as a function of distance than by the smooth-

ing considered here in one dimension. This, however, does
not change any of the conclusions above: the scale at which
agreement will be observed between the measured and
theoretical quantities will depend on the size of the bins,
and taking sufficiently small bins one can always make the
oscillatory structure of the underlying correlation function
dominate for a sufficiently low amplitude of the input
spectrum.

VI. SUMMARY AND CONCLUSIONS

We first summarize our findings on the accuracy and
limitations of the standard algorithm for generating IC for
cosmological simulations. We then discuss the conclusions
we can draw, in the light of our analysis, about the some
numerical work on IC [19,22] which partly motivated our
study. Finally we turn to the relevance of our results to the
problem of understanding discreteness effects in the evo-
lution of cosmological simulations.

A. Results on generation algorithm

We have investigated systematically the algorithm used
to generate IC of N-body simulations in cosmology, for
any given input PS. More specifically we have focussed on
the comparison of the two-point correlation properties, in
real and reciprocal space, of the IC with those of the input
theoretical models. We consider input PS which are a
simple power-law P�k� / kn, but the corresponding results
for more complicated cases may be easily inferred. Our
main results are:

(1) Applied on a grid with appropriate sharp cutoff at
the Nyquist frequency kN , the point distribution
produced by the algorithm has PS exactly equal to
the input one, below kN , to linear order in the
amplitude and for �d < n < 4. For k > kN we
have also given the exact expression for the PS,
which is thus the leading discreteness correction in
this space. It is a term of high amplitude, with a
damped oscillating form with maxima at the Bragg
peaks of the underlying lattice.

(2) Applied to a ‘‘glass’’ preinitial configuration, the
result is almost the same, except that the discrete-
ness correction has a small k tail proportional to k2.
Thus the range of ‘‘faithful representation’’ of the
PS is �d < n < 2. This latter restriction is not of
relevance to current cosmological models, for which
the effective exponent at all k is within this range.

(3) The algorithm does not produce IC representing
faithfully an input PS with n > 4 for arbitrarily
small k. There is the case because there is a term
proportional to k4 in the PS of the generated PS, at
second order in the amplitude of the input PS.

(4) For the case n <�d the algorithm is not well
defined in the infinite volume limit, and we have
verified that results in a finite volume depend
strongly on the volume.
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(5) The transposition of these results to real space is
more subtle than one might have anticipated, due to
the fact that the mass variance and two-point corre-
lation of the underlying ‘‘preinitial’’ point distribu-
tion are delocalized in this space.

(6) For models with�d < n < 1 the real space variance
in spheres can be well represented by the generated
configurations starting from a finite scale Rmin pro-
portional to the interparticle spacing. For typical
chosen input amplitudes it is a few times this dis-
tance, but we note that it diverges as the amplitude
of the input model goes to zero.

(7) For models with n > 1, the real space variance is
always dominated, at linear order in the amplitude,
by the ‘‘preinitial’’ variance of the lattice or glass.

(8) The conclusions concerning the representation of
the reduced two-point correlation function are quite
similar to those for the mass variance: the theoreti-
cal properties are recovered above a finite scale
proportional to the interparticle distance, which di-
verges as the amplitude goes to zero. In practice
there is a further difference with respect to the mass
variance, in that the value of this scale depends also
on the smoothing is necessarily introduced in esti-
mation of the correlation function. For a sufficiently
narrow smoothing the correlation function will al-
ways show at a given scale, for sufficiently low
amplitude of the input model, the underlying struc-
ture of the lattice or glass configuration.

B. Comments on precedent literature

Let us now consider, in the light of these results, the
articles [19–22] which have partly motivated this work.
These two collaborations draw, on the basis of numerical
studies, very different conclusions about the measured
mass variance in spheres and two-point correlation func-
tion of the IC of cosmological NBS.

In cosmology the IC of NBS are invariably studied only
in reciprocal space, simply because it is the natural one for
the description of cosmological models at early times. In
the first of these papers [19] the authors examined instead
IC in real space, through a numerical study of the IC of
some large cosmological simulations performed by the
Virgo consortium [46]. Their finding was, very surpris-
ingly, that the measured and theoretical values of both
the mass variance in spheres and the two-point correlation
function did not match. In [20] the same analysis was
repeated by a different set of authors, and an error in the
normalization in [19] of the theoretical variance was iden-
tified. Correcting for this error the authors concluded that
the agreement between the measured and theoretical prop-
erties was good for the variance, while the authors of [19],
in a reply [21], argued that the agreement was still very
poor. For the two-point correlation function the results of
both sets of authors agreed, showing an estimated correla-

tion function qualitatively and quantitatively different to
the expected one. The two sets of authors gave a quite
different interpretation to this discrepancy: in [19] it was
attributed to a probable systematic difference between the
two quantities due to the underlying correlation in the
‘‘preinitial’’ configuration, while [20] argued that it was
more likely simply due to statistical noise of the estimator.
In a further article [22] the second authors analyzed these
same quantities in the IC of another set of cosmological
simulations, and arrive at the same conclusions as in [20]
concerning both quantities.

For what concerns the mass variance we have seen that
the degree of agreement between the theoretical and mea-
sured variance depends on the normalization of the model,
i.e., on the initial redshift of the simulation. Neither col-
laboration has studied the dependence of their conclusions
on this crucial parameter, nor identified it as relevant. Thus
the conclusions of [20,22] about the reliability in general of
the representation of the input mass variance by the IC are,
strictly, incorrect. However, their conclusion that the rep-
resentation of this quantity is good for the specific set of IC
considered—normalized at an amplitude which is typical
in practice in cosmological simulations—is correct. That
is the agreement they observe in a modest range (see e.g.
the figure 3 in [22]), from a few times the interparticle
distance to a scale approaching the box size, at which finite
size effects start to play a role, is real (rather than purely
accidental as is implicitly suggested by [19,21]). However
the dominant lattice term can clearly be identified at
smaller scales, and it is evident in view of our discussion
that the range of agreement will decrease (and ultimately
disappear) if one considers the same model with a lower
normalization.

For the two-point correlation function, we have seen that
the degree of agreement depends not only on the amplitude
of the input model, but also on the details of the spatial
smoothing in the estimator. Again neither collaboration has
pinpointed explicitly the importance of this consideration
in evaluating the faithfulness of the representation. The
authors of [19,21]), however, are correct when they argue
that the difference observed is a systematic one, and that
the oscillating behavior observed is due to the correlations
in the underlying preinitial (lattice or glass) configuration.
In attributing the difference to ‘‘noise’’ the other group is
incorrect, insofar as such noise would be a finite size effect
which should disappear in the ensemble average. However,
noise can of course play a crucial role in a finite sample in
hiding the underlying signal in the regime in which it may,
in principle, approximate well the theoretical model.

C. Physical relevance of results on IC

We have considered in this paper solely the question of
the accuracy with which the standard algorithm for gen-
erating IC for cosmological NBS represents the theoretical
correlation properties. This question is essentially interest-
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ing insofar as it is relevant to the question addressed by the
series of articles of which this is the first: the quantification
of the differences between the results of evolved N-body
simulations and the corresponding theoretical quantities.
This question will be addressed fully in the subsequent
papers, and we limit ourselves now to a partial discussion
of the physical relevance of our findings.

The most important result from a practical point of view
is that, at linear order in the theoretical density perturba-
tions, there is a contribution to the PS of the IC additional
to the theoretical PS. This is a source for gravitational
structure formation through the Poisson equation, which
in a given simulation cannot be separated from the theo-
retical term. Indeed we note that the linearity of this term in
the amplitude of the relative displacements means that, if
the early time evolution follows the Zeldovich approxima-
tion, this term is amplified linearly, just like the theoretical
term. On the other hand, it contributes significantly only
above the Nyquist frequency, and therefore, given that
gravity tends to transfer power very efficiently from large
to small scales (see, e.g., [47]), one would expect its effects
to be washed out over time. However if one wishes to
quantify precisely discreteness effects, our quantification
of this leading discreteness contribution in the IC is an
important first step.

In quantifying such effects it is important also to first
understand the recovery of the continuum limit. Our results
here, as we will now discuss, actually are quite informative
in this respect. Let us consider the limit in which one
recovers exactly the properties of the theoretical continuum
model. Given an input theoretical model for a cosmologi-
cal NBS, we introduce two parameters with the standard
method of discretization we have discussed here23: ‘, the
lattice spacing in physical units, and the initial redshift zi
(which fixes the amplitude A of the input PS, with A! 0 as
zi ! 1).

The continuum limit should evidently correspond to
taking ‘! 0 (and thus kN ! 1). Let us consider first
taking ‘! 0 at fixed zi. This corresponds in our analysis
above to working at fixed amplitude of the PS. Our results
above tell us that the representation of the PS is good
provided we satisfy the condition Eq. (31) for the validity
of the perturbative expansion. This quantity in fact con-
verges to zero for kN 
 kc, and so the criterion for good
agreement in k space for all k is simply �2

th�kc� � 1. This
agreement becomes arbitrarily good as we take zi ! 1
(i.e. zi ! 0). Likewise in real space, it follows from
Eq. (49) that we converge towards an arbitrarily good
representation of the mass variance when the limit is taken
in this way. The same is true of the two-point correlation

function. Thus the correlation properties of the discretized
IC converge exactly to the continuum IC.

Our results concerning the differences in real space
quantities concern the limit zi ! 1, at fixed ‘. We have
seen that there is, in this case, no convergence towards the
continuum model. Thus, in the IC, the order of the limits in
‘ and zi cannot be interchanged. It will be shown in the
companion paper [23], that the same noncommutativity of
the limits is observed in the evolved systems. This in fact is
just a specific example of a well-known fact about the
validity of continuum Vlasov dynamics to describe a sys-
tem with long range interactions [4,5]. In this context it is
known and well documented in certain systems that the
continuum limit is approached as N ! 1 keeping the time
of evolution fixed, while taking the time to infinity first one
diverges from the collisionless limit (see, e.g., [48]).
Lowering the initial amplitude of a NBS increases the
time of evolution (up to a given time), and thus the behav-
ior we are inferring from the analysis of the IC corresponds
to this same one.

These comments on the continuum limit are also of
practical relevance, as they tell us how one should study
convergence to this limit numerically (in order to under-
stand the precision of results). It follows from what we
have just discussed that it is best to keep zi fixed as the
particle density is increased. Further the continuum limit
can only be defined clearly in the presence of a cutoff in the
input PS, with the continuum limit being approached when
the interparticle distance is decreased well below the in-
verse of this scale. In most of the numerical studies in the
literature on discreteness in cosmological NBS these points
have not been taken into account.24 Indeed we note that the
very widely used standard software package COSMICS for
generating IC [39] fixes automatically the initial redshift of
the simulation when the physical particle density is given,
rather than leaving it as a free parameter, making such
controlled tests difficult. Indeed if no cutoff is imposed in
the input PS, the criterion used to fix the redshift makes it
increase with the particle density. These points will be
further discussed in forthcoming work.

We recall finally that our results on the limitations of the
use of the algorithm for very blue spectra are of relevance
to some studies in the literature of gravitational evolution
from such spectra. Specifically we note their usefulness in
understanding quantitatively results in [24,25]. These stud-
ies consider gravitational N body simulations (in two and
three dimensions, respectively) starting from IC generated
on a lattice using the standard algorithm discussed here,
taking input theoretical PS with vanishing initial power in
some range of small k: in [24] a top-hat PS is used, while in
[25] a Gaussian centered on a chosen wave number. In both

23In reality there is of course also the box size L, which we have
taken in our study to be infinite. The finite particle number N is
given by �L=‘�3.

24An exception is some of the cited work of Melott et al.. Some
sets of simulations are compared in which only the particle
density is varied, keeping both the initial amplitude and the
cutoff in the input PS fixed in units of the box size.
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cases our results show that there is a term proportional to k4

induced at small k already in the IC, which will dominate
at small k. The explicit expression for this term, which
arises at second order in the expansion of the continuum
piece Pc�k� of the full PS, is given in Eq. (A14). In [24] the
dominant contribution from the k4 term in the IC at small k
is observed numerically, and indeed the authors relate it (as
discussed in Sec. III F above) to Zeldovich’s argument
about ‘‘minimal power.’’ In [25], on the other hand, the
k4 term is seen (and observed, as expected, to grow with an
amplification proportional to the square of the linear
growth factor) only after some time. The authors describe
in this case the k4 tail as ‘‘generated’’ by the dynamical
evolution, which is evidently not quite accurate as the term
is in fact present (albeit at lower amplitude) already in
the IC.
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APPENDIX A: PROPERTIES OF THE EXPANSION
OF Pc�k�

In this appendix we study in more detail the perturbative
expansion used in the paper of Pc�k�, Eq. (25a).

To simplify our analysis we will take the function dij�r�
[defined in Eq. (20)] to be diagonal and isotropic, i.e.,
dij�r� � d�r��ij. This allows us to obtain simple analytical
results, which are exact in one dimension and which we
expect to be valid only with minor modifications in three
dimensions.

Expanding Eq. (25a) in powers of d�r� we have

 Pc�k� �
X1
m�1

��k2�m
Z
Rd
ddre�ik�r�d�r�	m: (A1)

We will suppose a theoretical PS in the form of Eq. (29)
(and assume that gij�k� � �ijg�k� � �ijPth�k�=k2)

1. Case �d < n <�d� 2

We can work in this case without the UV cutoff in the
PS, since d�r� is well defined without it [cf. Eqs. (20)].
Their evaluation gives

 d�r� � �
A
�

��n� 1� sin
�
n�
2

�
r1�n �d � 1	 (A2)

 �
1

�2 ��n� sin
�

3n�
2

�
r�1�n �d � 3	: (A3)

The integrals in (A1) are then divergent as r! 1, but

defined in the sense of distributions. Evaluating them we
obtain

 Pc�k� �
X1
m�1

P�m�c �k� �
X1
m�1

Amamkm�n�d��d; (A4)

where
 

am � �A
2��m

m!
sin
�

1

2
m��n� 1�

�
��1�m�mn�

�

�
��n� 1� sin

�
n�
2

��
m

�d � 1	 (A5)

 

� A
22�m�1�2m

m!
��2�m�1� n�� sin

�
1

2
m�n� 1��

�

�

�
��n� sin

�
n�
2

��
m

�d � 3	: (A6)

We note that the expansion (A4) is in fact an asymptotic
expansion, i.e., it is strictly divergent, but if an appropriate
finite number of terms are taken, for any given k, it ap-
proximates closely the well defined function Eq. (25a).
This behavior is shown in Fig. 16, in which is plotted the
ratio of the series (A4) summed up to the mth term, and
Pc�k�. We see that for the ratio first converges to unity asm
increases, but then diverges at progressively smaller k for
m> 30.
Pth�k� is well approximated by Pc�k� if

 Akn 
 A2a2k2�n�d��d; (A7)

i.e., for

 Aa2k
n�d � 1: (A8)

It can be checked using Eqs. (A5) or (A6) that am=am�1 is
of order unity for small m, so that Eq. (A8) corresponds to
the criterion Eq. (31) given in the paper. Note that we can
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FIG. 16. Ratio of the series (A4) summed up to the mth term to
the exact (numerically evaluated) Pc�k�. We observe that there is
first clear convergence (i.e. approach to unity) as m increases,
and then divergence at larger values of m.
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rewrite Eq. (A8) in terms of the variance of mass in spheres
of the theoretical fluctuations, using the approximation
(e.g. [37,38]):

 �2�R� � bkdPth�k�jk�R�1 ; (A9)

where the coefficient b is of order unity. The condition for
faithful representation of the PS of the input model at wave
number k can thus be written:

 �2�R�jk�R�1 � 1: (A10)

2. The case �d� 2 < n <1

In this case we must include the UV cutoff in the PS, in
order that d�r� be well defined. The latter is then not a
simple power-law at all scales as in the precedent case, and
we are unable to compute analytically the terms of the
series (A1). We can, however, compute very simply the
first corrections to Pth�k�. Since g�0� is finite (for �d�
2< n<1), we can rewrite Eq. (A1) as

 Pc�k� � e�k
2g�0�

Z
Rd
ddre�ik�r�ek

2g�r� � 1�; (A11)

where we have used the identity [29]:

 �2��d��k� � �2��de�k
2g�0���k� � e�k

2g�0�
Z
ddre�ik�r:

(A12)

Expanding first the exponential containing g�r� in
Eq. (A11) we obtain
 

Pc�k� � e�k
2g�0� �

�
k2 ~g�k� � k4

Z
Rd
ddr�g�r�	2e�ik�r

�O�k6�g�r�	3�
�
: (A13)

Expansion of the exponential prefactor then gives

 Pc�k� ’ Pth�k� � k
4

�Z
Rd
ddr�g�r�	2e�ik�r � g�0�~g�k�

�
:

(A14)

By dimensional analysis one can see that the integral in
Eq. (A14) scales as �c1 � c2kd�2n�4�, where c1 and c2 are
nonzero constants. For the range of index n considered it
follows that:

(i) For �d� 2< n< 2, the dominant correction to Pth

comes from the term / g�0�~g�k� and therefore:

 Pc�k� ’ k
2 ~g�k� � k4g�0�~g�k�: (A15)

It follows that the condition for a faithful represen-
tation of the theoretical PS (Pth�k� � k2g�k�) is

 g�0�k2 � 1; (A16)

which corresponds to the condition Eq. (31). For a
sharply cutoff theoretical PS

 Pth�k� �
�
Akn for k � kc;
0 otherwise;

(A17)

one has

 g�0� �
Akn�1

c

��n� 1�
�d � 1	 (A18)

 �
Akn�1

c

2�2�n� 1�
�d � 3	: (A19)

Dropping the numerical factors, for simplicity, the
condition Eq. (A16) can be written as

 �2
th�k� �

�
k
kc

�
n�1

�d � 1	 (A20)

 

�
k
kc

�
n�1

�d � 3	: (A21)

Since we are considering the case n >�d� 2 here,
this means that Eq. (A16) is, for k < kc, a more
restrictive criterion than that found in the previous
case. However, since �2

th�k� is a monotonically in-
creasing function of k up to kc, the two conditions
are essentially equivalent in cosmological NBS, in
which one generically imposes a cutoff around kN.
We note further that the condition is then also
equivalent to

 �2�R�jkN�R�1 � 1; (A22)

which is equivalent to (A10) (since �2�R� is in this
case also a monotonically decreasing function of R).

(ii) For 2< n< 4 the main correction comes from the
integral in Eq. (A14):

 Pc�k� ’ k
2 ~g�k� �

1

2
k4
Z
ddr�g�r�	2e�ik�r: (A23)

For the sharply cutoff theoretical PS of Eq. (A17),
the integral can be evaluated analytically in the limit
k! 0. This gives

 Pc�k� ’ Ak
n � A2 k

4

2�
k2n�3
c

2n� 3
�d � 1	 (A24)

 ’ Akn � A2 k4

2�2

k2n�1
c

2n� 1
�d � 3	: (A25)

Up to numerical factors of order unity the leading
correction is the same as in the previous case, and
thus the same criteria apply for the validity of the
perturbative expansion as in the previous case.

(iii) For n > 4 the resulting PS is dominated by the k4

correction. The full expression for Pc�k� therefore
does not approximate Pth�k� at sufficiently small k.
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APPENDIX B: DISCRETENESS CORRECTIONS TO
THE PS

We analyze further in this appendix the full expansion to
all orders of the exact discreteness correction in the PS
Eq. (25b). Then for the specific case of an input PS with
�d < n <�d� 2, and no UV cutoff, we can evaluate the
expression analytically in one dimension. This gives, in
particular, an analytic expression for the coefficient of the
leading contribution, proportional to k2 and allows a pre-
cise determination of the range of k in which this term is
subdominant with respect to the input PS.

Expanding the exponential in Eq. (25b) we have

 �Pd�k� 
 Pd�k� � Pin�k�

�
X1
m�1

��k2�m
Z
Rd
ddre�ik�r�d�x�	m�in�r�: (B1)

which can be rewritten as

 �Pd�k� �
1

�2��d
X1
m�1

��k�2m
Z
Rd
ddqD�m��q�Pin�q� k�

(B2)

where

 D�m��k� :� FT��d�x�m	; (B3)

where FT denotes the FT as defined in Eq. (6). For a
preinitial simple cubic lattice this gives

 �Pd�k� �
X1
m�1

��k�2m
X
q�0

D�m��q� k� (B4)

where

 q � kNn; (B5)

and n are triple integers. The smallest q in the sum (B4) is
the Nyquist frequency, so that the leading term at small k is
the one we discussed in Sec. III D, proportional to k2.

In one dimension all the terms in the series (B4) may be
calculated analytically, for the case �d < n <�d� 2
without a UV cutoff. The leading k2 term is

 Pd�k� � 2Akn�2
N ��2� n�k2 �O�k3�: (B6)

We can then estimate the scale k up to which this term is
subdominant compared to the input spectrum:

 k & �2��2� n��1=n�2kN: (B7)

We note that this scale is independent of the amplitude of
the PS (and for n � �1=2, k & 4:2kN). This result is
completely in line with the numerical calculations of the

contributions of these terms for various other cases pre-
sented in Sec. III D.

APPENDIX C: ANALYTICAL RESULTS IN ONE
DIMENSION

In this appendix we give some simplified analytic ex-
pressions for the exact PS, mass variance and two-point
correlation function in one dimension. We have made use
of these expressions in our numerical study of various input
PS in Sec. V.

We recall first the correlation properties of a simple
cubic lattice (in d dimensions for generality) which we
will take as the ‘‘preinitial’’ distribution in what follows.
For the reduced two-point correlation function one has

 

~� lat�r1; r2� � h��r���r0�i � 1 �
X
l

��r1 � r2 � l� � 1;

(C1)

where l is a generic displacement vector of the lattice. The
expression Eq. (33) is simply the Fourier transform of this
expression.

Let us now consider the case of one dimension. To
compute the variance we use its expression as a function
of the PS (see [38]):

 �2�R� �
1

2�

Z �1
�1

dk
�
sin�kR�
kR

�
2
P�k� (C2)

or, equivalently, as a function of the correlation function:

 

�2�R� �
1

8R2

Z �1
�1

dx~��x���2x��x� � �x� 2R���x� 2R�

� �x� 2R���x� 2R�	; (C3)

where ��x� is the Heaviside function. Using Eqs. (C2) or
(C3) with (33) or (C1) respectively, we obtain the follow-
ing result for the variance of a lattice with grid spacing
equal to unity :

 �2
lat�R� �

X�1
m��1;�0

�
sin�2�mR�

2�mR

�
2
: (C4)

As anticipated in the previous section we obtain the same
limiting behavior of the variance at large scales as for a
homogeneous and isotropic distribution with PS P�k� � kn

and n > 1, i.e., �2�R� � 1=Rd�1 with d � 1.
We now compute an expression for the PS directly from

(24), for the case of a one-dimensional system and a
‘‘preinitial’’ lattice configuration. Using Eq. (C1) and re-
arranging terms we obtain:
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 P�k� � exp��k2g�0��
X�1

�1;l�0

��k� 2�l�

�
X�1
l��1

e�ikl�exp��k2d�l��� � exp��k2g�0��	;

(C5)

where d�x� 
 g�0� � g�x�. The first term on the right hand
side of Eq. (C5) contains all the divergent terms in the PS.
The second term is a regular function of k which has the
behavior P�k� � k2g�k� at small k if g�k� � k� with �< 0
and P�k� � k2 if �> 0, unless

P
�1
l��1 g�l� � 0, in which

case P�k� � k2g�k� also for �> 0.
Performing a Fourier transform of Eq. (24) we obtain the

correlation function in the form
 

~��x� �
1

2�

Z �1
�1

dx0
����������
�
d�x0�

r
e��x�x

0�2=4d�x0��1� ~�in�x0�� � 1:

(C6)

Note that in the limit that no displacements are applied (i.e.
d�x� ! 0), the argument of the integral is ��x� x0�. Thus
we recover explicitly for small displacements ~��x� ’
~�in�x� � . . . . Substituting Eq. (C1) in Eq. (C6) we then
obtain the result for the specific case of a ‘‘preinitial’’
lattice configuration:

 

~��x� � �1�
X�1
l��1

��������������
1

4�d�l�

s
e��x�l�

2=4d�l�: (C7)

To obtain the variance we use the same procedure. Using,

for example, Eq. (C2) with Eq. (24) we get:
 

�2�R� � �1�
1

4
����
�
p

R2

Z �1
�1

dx�1� ~�in�x��
���������
d�x�

p
� �h�x; 2R� � h�x;�2R� � 2h�x; 0�	

�
1

8R2

Z �1
�1

dx�1� ~�in�x��

� ��2f�x; x� � f�x� 2R; x� � f�x� 2R; x�	

(C8)

where

 f�x; y� � xerf
�

x

2
���������
d�y�

p �
; h�x; y� � e��x�y�

2=4d�x�:

(C9)

Expanding at small d�x� it is possible to obtain also ex-
plicitly an expression of the form �2�R� � �2

lat�R� � . . . .
In the specific case of an initial lattice distribution the
variance can be written:
 

�2�R� � �1�
1

4
����
�
p

R2

X�1
l��1

��������
d�l�

p
� �h�l; 2R� � h�l;�2R� � 2h�l; 0�	

�
1

8R2

X�1
l��1

��2f�l; l� � f�l� 2R; l�

� f�l� 2R; l�	: (C10)
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