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We explore the possibility that the observed baryon asymmetry of the Universe is the result of an earlier
phase transition in which an extended gauge sector breaks down into the SU�3�C � SU�2�L �U�1�Y of
the standard model. Our proto-typical example is the topflavor model, in which there is a separate SU�2�1
for the third generation from the SU�2�2 felt by the first two generations. We show that the breakdown of
SU�2�1 � SU�2�2 ! SU�2�L results in lepton number being asymmetrically distributed throughout the
three families, and provided the SM electroweak phase transition is not strongly first order, results in a
nonzero baryon number, which for parameter choices that can be explored at the LHC may explain the
observed baryon asymmetry.
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I. INTRODUCTION

The origin of the observed baryon asymmetry of the
Universe is one of the most fundamental open questions in
particle physics and cosmology. Numerically, the baryon-
to-entropy ratio is

 �B �
nB
s
� 9:2�0:6

�0:4 � 10�11; (1)

where nB � nb � n �b and s are the baryon number
density and entropy, respectively. Famously, Sakharov
has shown [1] that in order to generate a baryon asymmetry
in an initially baryon-symmetric universe, there must be
(1) baryon number (B) violation; (2) C and CP violation;
and (3) a departure from thermal equilibrium. These re-
quirements, especially in light of null results obtained by
experimental searches for B violation (for example, proton
decay), are difficult to realize in the framework of an
electroweak (EW) scale model, prompting attention to
high scale mechanisms such as grand unified theory baryo-
genesis [2–5], leptogenesis [6,7], and the Affleck-Dine
scenario [8]. Such mechanisms can be viable but are diffi-
cult to test experimentally.

However, the standard model (SM) already contains a
way to reconcile large baryon number violation at the
EW scale with the lack of experimental evidence for
such interactions at low scales. As noted by Kuzmin,
Rubakov, and Shaposhnikov [9], the baryon number vio-
lation induced by sphaleron transitions between two differ-
ent N-vacua of the SU�2�L electroweak interaction are
unsuppressed at temperatures larger than the EW scale
but are so highly suppressed at low energies as to be
essentially irrelevant. This idea of electroweak baryogen-
esis (EWBG) [10] is very attractive and could have been

realized within the SM. EWBG makes very specific de-
mands of the electroweak symmetry-breaking (EWSB)
sector of the theory and leads to observable consequences
at future colliders. For example, the need for B-violating
interactions to be out of equilibrium at the time of the
phase transition requires that the electroweak phase tran-
sition is strongly first order, with

 

h��Tc�i
Tc

* 1: (2)

This in turn puts constraints on the Higgs potential and
demands a small Higgs quartic (and hence Higgs mass).

Electroweak baryogenesis in the SM is thus ruled out;
the LEP-II bound on the SM Higgs mass [11], mSM

h *

115 GeV, is incompatible with the requirement that the
sphaleron processes be out of equilibrium at the phase
transition, Eq. (2). While this renders the SM itself unable
to produce the asymmetry, it illustrates the fact that experi-
ments at the TeV scale are able to directly probe EWBG.
Extensions of the SM which include new physics at the EW
scale1 can in fact reopen the possibility of EW baryo-
genesis by introducing additional bosonic fields [16–20]
as in the minimal supersymmetric standard model (MSSM)
[21–28] or fermions strongly coupled to the Higgs [29,30].
Eventually, future colliders such as the Large Hardron
Collider (LHC) and possibly International Linear
Collider will unravel the nature of EWSB and should
provide a better understanding as to the nature of the
electroweak phase transition (EWPT). If it proves first
order, this will be a crucial piece of indirect evidence for
EWBG. If it does not, it will raise the interesting question,
does the idea of electroweak baryogenesis have to be
abandoned?
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1In addition to new fields, a greatly increased Hubble expan-
sion [12–15] can reopen some of the Higgs mass parameter
space. Such models usually require the very fast Hubble expan-
sion to only happen close to the electroweak scale.
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While the lack of a first order EWPT would strongly
disfavor electroweak baryogenesis, it may be that the basic
picture of baryon number violating processes arising from
nonperturbative gauge theory dynamics, impotent at low
energies but unsuppressed at the TeV scale, can survive.
Since many extensions of the SM predict the existence of
new non-Abelian gauge symmetries at the TeV scale, it
may be that some theories already addressing unrelated
problems may in fact contain the ingredients necessary for
‘‘electroweak style’’ baryogenesis. A new gauge group G
could break down somewhere above the EWPT, and gen-
erate an asymmetry through its own strongly first order
phase transition.

This is a novel idea but one which is not entirely
straightforward to realize in a realistic setting. Below this
new phase transition, the theory is still SU�2�L �U�1�Y
symmetric, and the usual EW sphalerons are unsuppressed.
They will try to wash out any generated baryon asymmetry
unless B� L � 0. In principle, one could arrange the
representations of the SM matter under the new gauge
symmetry G such that B� L is not preserved due to the
nonzero mixed anomaly G-G-U�1�B�L, but this kind of
nonuniversal assignment of representations is also some-
what delicate. The requirement that G-G-U�1�Y gauge
anomalies cancel will in general require more chiral fer-
mions charged under G and the SM. Thus, we will not
consider this possibility in detail. Instead, we employ a
more subtle mechanism in which G acts only on the third
generation fermions, and thus B� L is conserved (within a
generation). The breakdown ofG can thus be accompanied
by production of an asymmetry among the third family
quarks and leptons. Baryon number will quickly equilibri-
ate among the three families because of the large quark
masses and mixings, but each lepton family number will
remain distinct because of the tiny neutrino masses. Above
the EWPT, the EW sphalerons will result in B � 0 and
L1 � L2 � �L3=2 � 0. Provided the EW sphalerons are
in equilibrium during the EWPT, as the fermion masses
turn on from EWSB, a nonzero (though diluted) baryon
number will result [31,32]. So in fact this mechanism
requires that the EWPT not be strongly first order.

The outline of this paper is as follows. In Sec. II, we
review how a baryon asymmetry can be generated even
when B� L � 0, provided there is a nonzero asymmetry
in the third family lepton number, and how this eventually
translates into a baryon asymmetry after the EWPT. We
apply this mechanism to the ‘‘topflavor’’ model [33] which
is known to contain nonperturbative interactions which
violate baryon and lepton number in the third family
[34]. In fact, we find that it is possible to generate a baryon
asymmetry of the right magnitude. The topflavor model,
phase transition, CP violating sources, diffusion equations,
and calculated baryon number density are considered in
Sec. III. Our results show that the right baryon number
density can be generated for parameters that would render

this model testable at the LHC. In Sec. IV we present our
conclusions.

II. B FROM A FAMILY ASYMMETRIC
DISTRIBUTION OF L

In this section we review the mechanism by which an
initial condition that has B � L � 0 can nonetheless result
in a nonzero baryon number density provided L1 � L2 �
�L3=2 � 0 [31,32]. We will show how the specific ex-
ample of the topflavor model can generate these initial
conditions through the nonperturbative dynamics of its
phase transition (in a very similar way to that in which
baryon number is generated in a traditional EWBG sce-
nario) in Sec. III. Thus, for now we assume that the initial
phase transition has generated L3 � B � � and L1 �
L2 � 0. The unsuppressed EW sphalerons will rapidly
evolve this into a state with B � L � 0 but L1 � L2 �
��=3 and L3 � �2�=3. We now study what happens as
the Universe moves through the EWPT and show that the
nonzero � lepton mass will result in B� 10�6�. Our
discussion closely follows that of Ref. [32].

The smallness of observed neutrino masses indicates
that lepton number violation is out of equilibrium at the
EW scale. Thus, each lepton flavor has a separate chemical
potential �i with i � 1, 2, 3. This is in contrast to baryons,
because the large quark masses and mixings keep baryon
flavor violation in equilibrium, and thus the quarks are
described by a single chemical potential �. We consider
the SM matter consisting of three families each of which
consists of two quarks (an up-type and down-type) with
masses mqi , a charged lepton of mass mli and a neutrino
which for our purposes can be approximated as massless.
The free energy per unit volume for the system in equilib-
rium at temperature T is given by

 F � 6
X6

i�1

F�mqi ; �� �
X3

i�1

	2F�mli ; �i� � F�0; �i�
; (3)

where the SU�2�L gauge interactions maintain equilibrium
between the charged lepton and its neutrino and the up- and
down-type quarks of a given generation. The free energy
density for a (single helicity of a) fermion of mass m and
chemical potential � is given by
 

F�m;�� � �T
Z d3K

�2��3
	ln�1� e��E���=T�

� ln�1� e��E���=T�
; (4)

where Ki is the spatial momentum of the fermion, and E ��������������������
K2
i �m

2
q

is its energy. At high temperatures, T � m;�,
this may be approximated as

 F�m;�� � F�m; 0� �
1

12
�2T2

�
1�

3

2�2

m2

T2

�
: (5)
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The (individual) leptonic and baryonic number densities
may written

 Li �
d
d�i
	2F�mi;�i� � F�0; �i�
 � �

1

2
�iT2�i; (6)

 B � 2
d
d�

X6

i�1

	F�mqi ; ��
 � �
1

3
�T2�; (7)

where

 � � 6�
3

2�2

X6

i�1

m2
qi

T2 ; �i � 1�
1

�2

m2
li

T2 : (8)

Electroweak Sphaleron transitions violate
P
Li and B,

but preserve the three combinations �i � Li � B=3. In
terms of the chemical potentials these are

 �i � Li �
1

3
B �

�T2

9
��

�iT2

2
�i: (9)

We can invert the above relations to obtain each�i in terms
of the quark chemical potential �, temperature T, and the
conserved value of the corresponding �i. Effectively, the
EW sphalerons convert nine quarks and one lepton of each
family into nothing. In thermal equilibrium, this leads to
the relation � � �

P
i�i=9. Using this fact, together with

the three conservation equations, Eq. (9) allows us to
express the quark chemical potential in terms of the values
of the �i,

 � �
�

2

T2

X3

i�1

�i

�i

��
9�

2

9

X3

i�1

�
�i

�
�1
; (10)

which can be combined with Eq. (6) to obtain the final
baryon number density [31]

 B �

8<:
4
13 �B� L� B� L � 0

� 4
13�2

PN
i�1 �i

m2
li

T2 B� L � 0:
(11)

The first of these results is the familiar relationship appli-
cable to theories that directly generate a nonzero B� L
(such as leptogenesis) and indicates that in such theories
primordial B cannot be completely washed out, and a
primordial L will be converted into B by EW sphalerons.
The second result shows how in a theory with B � L � 0
but the individual �i nonzero, the turn-on of the charged
lepton masses will also generate a nonzero B. In the
scenario we are considering, with initially B � 0 and L3 �
2�=3, and taking the freeze-out temperature to be the close
to the EW scale, the resulting baryon number is diluted to
about B� 10�6� [9,31,32].

Since the dilution factor plays a relevant role in our
work, let us expand on its origin: To compute the above
quoted dilution factor, we have assumed a second order
phase electroweak phase transition. Under this condition,
the sphaleron processes will remain in equilibrium until the
weak spahleron rate is of the order of the expansion rate of

the Universe. The departure from equilibrium therefore
occurs at the freeze-out temperature TF, such that
v�TF�=TF ’ 1. Using the relation m��T� ’ h�=

���
2
p
v�T�,

and the condition v�TF�=TF � 1, we get that the final
baryon number is approximately given by

 B ’ �
4

13�2 �
h2
�

2
’ �1:6� 10�6�: (12)

III. LEPTON NUMBER GENERATION IN THE
TOPFLAVOR MODEL

A. The topflavor model

The gauge extension of the SM that we consider is based
on the gauge group SU�3�c � SU�2�1 � SU�2�2 �U�1�Y .
While the SU�3�c and U�1�Y subgroups remain the same as
those of the SM, the SU�2�L group of SM is expanded to a
larger SU�2�1 � SU�2�2 in a flavor dependent way. The
fermion content of the model is identical to SM. Under the
new SU�2�1 and SU�2�2 groups, the doublets of the third
generation transform as doublets under SU�2�1 and singlets
under SU�2�2, while the first and second generation dou-
blets are singlets of SU�2�1 and doublets of SU�2�2. Thus,
their SU�2�1 � SU�2�2 �U�1�Y quantum numbers are
 

Q3 � �2; 1�1=6; Q1;2 � �1; 2�1=6;

L3 � �2; 1��1=2; L1;2 � �1; 2��1=2:
(13)

After symmetry breaking, the standard model SU�2�L
group emerges as the unbroken diagonal subgroup of
SU�2�1 � SU�2�2. The corresponding SU�2�L gauge cou-
pling is

 gL �
g1g2�����������������
g2

1 � g
2
2

q : (14)

This relation implies that when one of the gauge couplings
becomes large, the other one approaches gL from above,
and thus both g1 and g2 are necessarily larger than gL.
Thus, a convenient parameterization is given by

 g1 �
gL

sin�
; g2 �

gL
cos�

; (15)

in terms of an angle �. We will use a simplified notation
s � sin� and c � cos� below.

The symmetry breaking of the extended gauge group,
SU�2�1 � SU�2�2 to the SM weak gauge group SU�2�L is
accomplished by introducing a vacuum expectation value
(VEV) to a scalar field �, which transforms as a bidoublet
�2; 2� under the extended gauge group transformations.
After the SU�2�1 � SU�2�2 breaking, � can be decom-
posed under the residual diagonal SU�2�L symmetry into
a complex singlet � and a complex triplet � (half of which
is eaten by the Z0 and W0s),
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 � �
1

2
�� �3

���
2
p
�����

2
p
�� �� �3

 !
: (16)

We introduce the scalar potential,
 

V� � m2j�j2 � 	j����j2 � 	0j�j4

� ��1
2D���� � ~	����j�j2 � H:c:�; (17)

where D and ~	 are complex parameters and we use a
notation that suppresses the gauge indices: ���� �
�a �b�c �d
ac
 �b �d and j�j2 � Tr��y��. For appropriate
choices of parameters, this potential results in the VEV,

 h�i �ki �
1
2u0ei�0�i �k: (18)

which will generally be complex, and will be a solution of
the equations

 u2
0 �

De2i�0 �De�2i�0 �m2

	� 	0 � ~	e2i�0 � ~	e�2i�0
; (19)

 �0 � �
1

4
acos Re

�
�2D � ~	u2

0

�2D� ~	u2
0

�
: (20)

Choosing some representative parameters, taking m �
200 GeV, D � 5� 105ei GeV2, and 	 � 	0 � ~	 �
0:05, we obtain a zero-temperature VEV described by u0 ’
2:7 TeV and �0 ’ �0:7. This particular set of parameters
has been chosen with small quartic interactions in order to
have a first order phase transition, with the dimensionful
quantities arranged such that the SU�2� � SU�2� breaking
scale is of order TeV. Precision electroweak constraints
have been extensively considered in the literature [33] and
typically require u0 � a few TeV. Requiring that the ex-
tended instantons of the strongly coupled SU�2� do not
mediate unacceptably large proton decay [34] further re-
quires the gauge couplings to satisfy sin2� * 0:2. We will
illustrate our results with the representative point chosen
above, and s2 � 0:4, in order to be consistent with all
constraints.

The fermion doublets of either SU�2�1 or SU�2�2 trans-
form as doublets under SU�2�L. In addition, there is a
SU�2�L triplet of heavy gauge bosons from the breaking.
We denote the neutral and charged heavy gauge bosons as
Z0 and W0�. Their masses are degenerate and given by

 MW 0� � MZ0 � �g2
1 � g

2
2�u

2 �
g2
L

s2c2 u
2: (21)

At the electroweak scale, v ’ 174 GeV, the remaining
SU�2�L �U�1�Y electroweak symmetry is broken to
U�1�em as in the SM. This is accomplished by giving a
VEV to one or more Higgs boson doublets. There are two
possible representations for the Higgs boson under SU�2�1
or SU�2�2, either �2; 1��1=2 or �1; 2��1=2. We will focus on
the first case (sometimes called the heavy case) as it
motivates the large third family fermion masses as they
are the only family whose Yukawa interactions are

SU�2�1 � SU�2�2 gauge invariant. In a nonsupersymmetric
theory, a single Y � �1=2 Higgs doublet Hu suffices, but
our results are largely unchanged if we generalize to a Y �
�1=2 pair of doublets, Hu, Hd instead. In order to connect
more easily with the supersymmetric case, we consider the
case with two Higgs doublets below.

The Yukawa couplings for the first two generations can
be generated by adding an additional ‘‘spectator’’ Higgs-
like doublet H0u (in a supersymmetric theory it would be a
pair of doublets includingH0d) charged under SU�2�2. They
couple to the first two generations via Yukawa couplings
and mix (slightly) with the regular Higgs(es) via interac-
tions such as A1Hu�H0d. The small Yukawa couplings for
the first two generations can be naturally obtained from the
small mixing angle between H0 and H. The full set of this
kind of gauge-invariant �-H-H0 interactions between
Higgs(es), spectator Higgs(es), and � include

 A1Hu�H0d � H:c; A2Hd�H0u � H:c;

A01Hu�yH0d � H:c; A02Hd�yH0u � H:c;

c2�
H0u�Hyu � H:c; c1�

0H0u�yHyu � H:c;

c1�H0d�Hyd � H:c; c2�
0H0d�yHyd � H:c:

(22)

These interactions will be important below, because they
(indirectly) drive the topflavor phase transition’s produc-
tion of L3.

B. The phase transition

The details of the SU�2�1 � SU�2�2 ! SU�2�L phase
transition depend on the finite temperature effective poten-
tial. In order to generate a baryon asymmetry in the top-
flavor model, the processes which violate baryon and
lepton number must be out of equilibrium at the time of
the phase transition. We are interested in the regime where
g1 � g2, for which we can approximate the sphalerons
associated with the SU�2�1 � SU�2�2 symmetry breaking
as purely arising from SU�2�1. Their rate

 �sph ’ 
u7

T6
exp	�Esph=T
; (23)

(with Esph � 4�u=g1 and  a dimensionless parameter of
order one [35]) must be much less than the Hubble expan-
sion, H� g1=2

 T2=mPl. Assuming � 1, g � 100, and
uc * Tc � TeV, this requires

 

uc
g1Tc

* 2:5; (24)

and for s2 � 0:4, we should have2 uc=Tc * 2:5.

2Note that such a strong first order phase transition may
provide a strong signature in gravitational waves [36–40] de-
tectable at the planned space interferometer, LISA. We will
pursue this idea in a separate paper [41].
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The potential for �, Eq. (17), can be expanded to
 

V0��� �
1

2
m2j�j2 �

	� 	0

4
j�j4

�

�
�

1

2
D�2 �

~	
4
�2j�2j � H:c:

�
; (25)

where for brevity we have not shown the terms involving
the triplet component �. At one loop, there are both
temperature-dependent and temperature-independent cor-
rections to the potential,

 V�u; �; T� � V0�u; �; 0� � V1�u; �; 0� � V1�u; �; T�: (26)

We consider the limit where the gauge couplings of the
SU�2�’s are much larger than that of the � self-interactions
	 and thus approximate the complete one-loop corrections
by those from the gauge bosons, Z0 and W0. We renormal-
ize parameters according to a scheme that absorbs the
correction to the position of the zero-temperature mini-
mum and find

 V1�u; �; 0� �
9

64�2

�
g2
L

s2c2

�
2
u2

�
u2

�
log
u2

u2
0

�
3

2

�
� 2u2

0

�
;

(27)

and finite temperatue correction

 V1�u; �; T� �
giT

4

2�2 I
�
mi���
T

�
; (28)

with

 

I
�
mi���
T

�
�
Z 1

0
dx � x2flog�1� e�

����������������������������
x2�g2u2=�s2c2T2�
p

�

� log�1� e�x�g; (29)

where gi � 9. The Debye screening effect on the longitu-
dinal modes of massive gauge bosons is neglected because
their corrections g1T is small compared to their masses
induced by the Higgs vev [42]. Note that the one-loop
corrections from the gauge sector depend only on the
magnitude of the VEV u and not on its phase.

For the sample parameters chosen above, m �
200 GeV, D � 5� 105ei GeV2, 	 � 	0 � ~	 � 0:05,
and s2 � 0:4, we find that the critical temperature for these
parameters is Tc ’ 840 GeV, and the VEV at Tc is de-
scribed by uc ’ 2:7 TeV, �c ’ �0:7, indicating a first
order phase transition that is easily strong enough. In
Fig. 1 we plot the effective potential for several choices
of temperature.

1. Bubble profile and evolution

At Tc, the rate for nucleation of bubbles with h�i � 0
becomes large, and the bubbles expand to fill the Universe
with the true vacuum. In this subsection we make some
rough estimates of the properties of the nucleated bubbles,
which are pertinent to the eventual generation of baryon
asymmetry as they provide the out-of-equilibrium dynam-
ics which results in lepton number being unequally distrib-
uted throughout the three generations. We will simplify the
treatment by considering the phase transition as a quasie-
quilibrium process such that the temperature is varying
slowly enough that the properties of the nucleating bubbles
can be obtained by studying fixed temperature solutions at
T ’ Tc.

Assuming that the nucleated bubbles have spherical
symmetry [43], the Euclidean action of the configuration
becomes3

 S3�T� � 4�
Z
drr2f�rh�i�2 � V�h�i; Tc�g; (30)

where h�i is a function of radius r that describes the
configuration. The transitions will be predominantly me-
diated by the solutions which minimize this action, given
by the solutions of the equations,

 

d2u

dr2
�

2

r
du
dr
�
�V
�u

; u2

�
d2�

dr2 �
2

r
d�
dr

�
�
�V
��

; (31)

subject to the boundary conditions,

 

du
dr

��������r�0
� 0; ujr!1 � 0;

d�
dr

��������r�0
� 0;

�jr!1 � �u�0:

(32)
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FIG. 1 (color online). The effective potential as a function of
the magnitude of the VEV for three different choices of tem-
perature. The phase of the VEV at each point is chosen as the
solution of the equations of motion for that value of the magni-
tude.

3We use the O�3� approximation since the nucleation tem-
perature Tn ’ Tc > 1=�2R�.
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These coupled differential equations are somewhat diffi-
cult to solve. Instead of looking for detailed solutions, we
will use an ansatz for the profile and a variational approach
to determine the parameters that describe it. We write the
solutions in the form of two ‘‘kinks’’ with the proper
asymptotic behavior,

 u�r� �
uc
2
	1� tanh���r� R��
;

��r� � �u�0 �
�c � �u�0

2
	1� tanh���r� R��
;

(33)

where the radius of the bubble is �R and the width of the
bubble wall is �1=�. In addition to imposing the form of
the solution, we also assume that the bubble width is the
same for u and for � (which we expect to be approximately
true). We determine � numerically by plugging the solu-
tions of Eq. (33) into the action Eq. (30) and finding the
value of � which minimizes the action. For our standard
parameter choice we find �� T=2 and Lw � 1=�� 2=T.
The profiles are plotted in Fig. 2. We expect that for large
bubbles, the details will become independent of R, which
in fact proves to be true.

Under our quasiequilibrium assumption, the expansion
of the bubble is driven by the fact that the gauge bosons
acquire masses inside the bubble, and thus the free energy
is minimized for large bubbles [42,44]. By analogy with
the SM EW phase transition, we estimate the bubble wall
velocity vw � 0:05, though we find that our final results are
very insensitive to the precise value of vw.

C. Diffusion equations in the topflavor model

We now compute the prediction for the L3 generated
during the transition in which the topflavor model breaks

down to the SM. The underlying picture is similar to the
standard EWBG picture in the SM (or MSSM). The bubble
of true vacuum is expanding and generates chiral charge
through the CP-violating interaction of the plasma with the
bubble wall. In the specific case of topflavor, the particles
which interact strongly with the wall are the Higgses,
through the interactions in Eq. (22). These charges diffuse
freely in the unbroken phase and are converted into B and
L3 by a combination of the Yukawa interactions and the
unsuppressed sphalerons. As they pass into the broken
phase, they are frozen.

In the limit g1 � g2, we neglect the SU�2�2 sphalerons
associated with the first two families. The quark Yukawa
interactions and the QCD instantons, together with the fact
that all of the quarks diffuse at approximately the same
rate, allows us to constrain the light quark densities in
terms of the right-handed bottom density b,

 Q1L � Q2L � �2UR � �2DR � �2SR � �2CR

� �2b: (34)

Thus, the species whose densities we will track are the left-
handed top and bottom doublet, Q � tL � bL, the right-
handed top t � tR, the right-handed bottom b � bR, the
left-handed lepton doublet L3 � �L � ��, and the Higgs
h � �h�u � h0

u � h�d � h
0
d�. We assume that the H-H0-�

interactions Eq. (22) are fast enough such that the spectator
HiggsesH0 are kept in equilibrium with the Higgs, and thus
� � 0, h0 � �h0�u � h00u � h0�d � h

00
d � � h, and we do not

include the densities � and h0 in the diffusion equations.
For relativistic particles near equilibrium, we can write the
number densities in terms of a chemical potential �i as
ni � ki�iT

2=6 where ki counts the number of degrees of
freedom,

 kQ � 6; kL � 2; kt � kb � 3; kh � 8:

(35)

The diffusion equations will contain the interactions
which are fast compared to the time scales at which the
elements of the plasma are diffusing, �i � Di=vw, where
vw � 0:05 is the speed of the bubble wall’s expansion and
Di is a diffusion coefficient which characterizes the inter-
actions with the background plasma. Typically, one ex-
pects DQ � Dt � Db ’ 6=T and DL ’ Dh ’ 110=T [45].
Thus, we consider the processes characterized by rate � *

�Q. These interactions include the SU�2�1 sphalerons with
rate �1, the QCD instantons with rate �QCD, and the top
quark Yukawa coupling to the Higgs with rate �y. We
continue to assume that the sphalerons associated with
SU�2�2 can be neglected. These rates are estimated to be
equal to [35,46],

 �y ’
27

2
	2
t �S

�
��3�

�2

�
2
T � 7:4 GeV; (36)
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FIG. 2 (color online). The bubble profile at the critical tem-
perature Tc for R � 10 TeV�1.
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 �QCD ’ 160�4
ST � 0:3 GeV; (37)

 �1 ’ 30�1
5T � 0:1 GeV; (38)

where 	t � 1 is the top Yukawa coupling, �S�Tc� � 0:08 is
the strong coupling constant, and 0 � 1 is a dimensionless
coefficient. We have evaluated the rates for s2 � 0:4 and
Tc � 840 GeV, as is appropriate for our example parame-
ter set.

We approximate the bubble as large and thus treat the
problem one-dimensionally, with the z axis perpendicular
to the wall, whose location is at z � 0, with the z > 0 side
in the broken phase. The rates of change of the various
densities are described by the coupled set of equations4

 

vwQ0 �DQQ00 � ��y

�
Q
kQ
�
h
kh
�
t
kt

�

� 6�QCD

�
2
Q
kQ
�
t
kt
� 9

b
kb

�

� 6�1

�
3
Q
kQ
�
L3

kL

�
;

vwt
0 �DQt

00 � ��y

�
�
Q
kQ
�
h
kh
�
t
kt

�

� 3�QCD

�
2
Q
kQ
�
t
kt
� 9

b
kb

�
;

vwh
0 �Dhh

00 � ��y

�
�
Q
kQ
�
h
kh
�
t
kt

�
� �h;

vwb
0 �DQb

00 � 3�QCD

�
2
Q
kQ
�
t
kt
� 9

b
kb

�
;

vwL03 �DLL003 � �2�1

�
3
Q
kQ
�
L3

kL

�
;

(39)

where primes denote derivatives with respect to z and �h is
the CP-violating source for the Higgs induced by the
bubble wall, approximated as a step function,

 �h �
�

~�hu � ~�hd ��Lw < z � 0�
0 �z > 0 or z <�Lw�;

(40)

whose magnitude we estimate below.

D. CP-violating sources from spontaneous CP violation

We consider the CP-violation arising from the sponta-
neous CP-violation associated with the phase of the VEV
h�i. This field couples directly to the EWSB Higgses Hu
and Hd and thus influences their number densities as they
scatter off of the bubble wall. As we saw in Sec. III B, the
phase of h�i varies as one moves from inside the bubble of
true vacuum to the unbroken phase (see i.e. Fig. 2),

 �� � �c � �u�0 � �
1

4
acos

�
�2D � ~	u2

c

�2D� ~	u2
c

�
�

1

2
; (41)

and thus is space-time dependent as the bubble expands.
In computing the value of the CP-violating source �h,

we follow the treatment first introduced by Riotto [47,48]
based on the closed time path (CTP) formalism, which
allows us to capture the main nonequilibrium quantum
effects. The CTP formalism distinguishes fields with argu-
ments on the positive and negative branches of the closed
time path. This doubling of fields leads to six different real-
time propagators; for a generic scalar field �,

 

G>
��x; y� � �ih��x��

y�y�i;

G<
��x; y� � �ih�

y�x���y�i;

Gt
��x; y� � ��x; y�G>

��x; y� � ��y; x�G
<
��x; y�;

G�t
��x; y� � ��x; y�G<

��x; y� � ��y; x�G
>
��x; y�;

(42)

which are conveniently written as a matrix:

 

~G�x; y� �
Gt�x; y� �G<�x; y�
G>�x; y� �G�t�x; y�

� �
: (43)

From the Schwinger-Dyson equations of the path-ordered
two-point functions, one obtains

 @�j
�
� � �

Z
d3z

Z X0

�1
dz0	�

>
��X; z�G

<
��z; X�

�G>
��X; z��

<
��z; X� �G

<
��X; z��

>
��z; X�

� �<
��X; z��

>
��z; X�
: (44)

The leading contribution to the self-energies ~�Hu
�x; y�

and ~�Hd
�x; y� from the interactions of Eq. (22) are (see

Fig. 3)

 

~�Hu
�x; y� � g�x; y� ~GH0u�x; y� � h�x; y�

~GH0d
�x; y�;

~�Hd
�x; y� � ~g�x; y� ~GH0d

�x; y� � ~h�x; y� ~GH0u�x; y�;
(45)

where

 

FIG. 3. Feynman diagrams for the leading contributions to the
self-energies of Hu in the background of a space-time varying
h�i.

4Note that leptons diffuse faster than quarks, and thus the B�
L charge density �Q� t� b�=3� L is not zero locally.
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g�x; y� � m2
uu0 �x�m

2
uu0 �y� � 	c


2��y�x� � c1�0��x�


� 	c2���y� � c1�
0�y�y�
;

h�x; y� � m2
ud0 �x�m

2
ud0 �y� � 	A1��x� � A01�y�x�


� 	A1�y�y� � A01��y�
;

~g�x; y� � m2
dd0 �x�m

2
dd0 �y� � 	c2�

0��x� � c1��y�x�


� 	c2�
0�y�y� � c1���y�
;

~h�x; y� � m2
du0 �x�m

2
du0 �y� � 	A2��x� � A02�y�x�


� 	A2�y�y� � A02��y�
: (46)

The CP-violating part of Eq. (44), evaluated for Hu, is the
imaginary part of Green functions,
 

�hu � �i
Z
d3z

Z X0

�1
dz0f	g�x; z� � g�z; x�


� Im	G>
H0u
�x; z�G<

Hu
�z; x� �G<

H0u
�x; z�G>

Hu
�z; x�


� 	h�x; z� � h�z; x�
 Im	G>
H0d
�x; z�G<

Hu
�z; x�

�G<
H0d
�x; z�G>

Hu
�z; x�
g: (47)

We can express the scalar Green’s function in terms of the
Bose-Einstein distribution and the spectral density of a
scalar field

 G_�x; y� �
Z d4k

�2��4
e�ik��x�y�g_

B �k0; �i���k0; ~k�; (48)

where the equilibrium distribution functions are

 g>B �!;�� � 1� nB�!;�i�; (49)

 g<B �!;�� � nB�!;�i�; (50)

with nB�x� � 1=	exp�x=T� � 1
. The spectral density in
the limit of small decay width is [48]

 ��k0; ~k� � i
�

1

�k0 � i"� i��2 �!2�j ~kj�

�
1

�k0 � i"� i��2 �!2�j ~kj�

�
; (51)

where !2�j ~kj� � ~k2
�M2. The mass M and width � are

the thermal mass and width, respectively.
The coefficients 	g�x; z� � g�z; x�
 and 	h�x; z� �

h�z; x�
 can be calculated to the first order in the expansion
about x � z;

 

g�x; z� � g�z; x� � 2i	jc1�0j2 � jc2�j2


� sin	��x� � ��z�
u�x�u�z�

’ 2i	jc1�0j2 � jc2�j2
�x� z��

� 	@���x�
u
2�x� � � � � : (52)

When these are inserted in Eq. (47), the fact that the
spectral density is isotropic in space implies that only the
time component is nonvanishing, and we can make the
replacements

 g�x; z� � g�z; x� � 2i	jc1�j2 � jc2�j2
�x� z�0


�

�
��
Lw

vw

�
u2�x�; (53)

 h�x; z� � h�z; x� � 2i	jA1j
2 � jA01j

2
�x� z�0

�

�
��
Lw

vw

�
u2�x�; (54)

and thus,

 

~�hu �
�
��
Lw

vw

�
u2�x�f	jc1�0j2 � jc2�j2
IHuH0u

� 	jA1j
2 � jA01j

2
IHuH0d
g; (55)

where

 

IHuH0i
�
Z 1

0
dk

k2

2�2!H0i
!Hu

� f�1� 2 Re	nB�!H0i
� i�H0i�
�I�!Hu

;�Hu
;!H0i

;�H0i �

� �1� 2 Re	nB�!Hu
� i�Hu

�
�I�!H0i
;�H0i ; !Hu

;�Hu
� � 2�Im	nB�!Hu

� i�Hu
�


� Im	nB�!H0i
� i�H0i�
�G�!Hu

;�Hu
; !H0i

;�H0i�g; (56)

and the functions I and G are given by

 I�a; b; c; d� �
1

2

1

	�a� c�2 � �b� d�2

sin
�

2 arctan
a� c
b� d

�
�

1

2

1

	�a� c�2 � �b� d�2

sin
�

2 arctan
a� c
b� d

�
(57)

 G�a; b; c; d� � �
1

2

1

	�a� c�2 � �b� d�2

cos

�
2 arctan

a� c
b� d

�
�

1

2

1

	�a� c�2 � �b� d�2

cos

�
2 arctan

a� c
b� d

�
: (58)
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In exactly the same way, we derive

 

~�hd �
�
��
Lw

vw

�
u2�x�f	jc1�j2 � jc2�0j2
IHdH0d

� 	jA2j
2 � jA02j

2
IHdH0ug: (59)

The overall magnitude of the CP-violating source depends
sensitively on several parameters which have up until now
not played a large role in deriving our ressults. Thus, we
content ourselves with the order of magnitude estimate
based on the sample parameters for the � potential and
bubble wall velocity and profile, and assuming the thermal
masses and widths are roughly TeV, and that the �-H-H0

dimensionful interactions5 are of order TeV. Evaluating
the integrals numerically, we find �h � 0:01 TeV
��=Lwvwu

2
c, which for the choice of sample parameters

described above leads to �h � 109 GeV4 and acquires
nonvanishing values only at the position of the bubble
wall, where the Higgs fields are varying.

The results presented above rely on a method similar to
the one used in Ref. [23] in the minimal supersymmetric
standard model case. Further improvements to this method
were performed in Refs. [25], by considering the all-order
resummation of the Higgs mass insertion effects. The
result was a mild suppression of the results in the case of
degenerate masses, as well as new relevant terms away
from the degenerate mass regime. Furthermore, in
Ref. [26], based on self-consistency arguments, a more
detailed analysis of the relation between the CP-violating
sources and the currents induced by the Higgs fields was
performed, leading to the presence of higher order deriva-
tives in the sources, as first suggested in Ref. [21]. The final
result of these investigations is a suppression of the baryon
asymmetry by a factor of a few in the degenerate mass
regime compared to the one obtained in Ref. [23], as well
as a power-law suppression with the masses when they
move away from the degenerate region.

One of the weaknesses of the above described work is
the lack of a rigorous derivation of the sources for the
diffusion equation. A derivation of the semiclassical forces
in the transport equations by means of the dynamics of the
two-point function in the Schwinger-Keldysh formalism
was performed in Refs. [27,28,49,50]. In particular, in
Ref. [50] a consistent treatment of the fermion mixing
effects was performed, and a careful derivation of the
sources in the diffusion equations was obtained. The final
result was smaller by a factor of a few to an order of
magnitude than the result obtained in Ref. [26] in the
degenerate mass regime, and a stronger than power-law

suppression away from the degenerate case. In our work
we are interested in an order of magnitude estimate of the
result for the baryon asymmetry, and for that purpose the
results of this section are sufficient. However, while an
enhancement of the sources by a factor of a few would be
easy to obtain by a careful choice of the parameters of our
model, an enhancement by several order of magnitudes
would prove very difficult. For these reasons, it would be
interesting to pursue a more general treatment using the
techniques of Ref. [50] to make a detailed exploration of
the full parameter space consistent with the observed
baryon asymmetry.

E. Results

We assemble the results and make a prediction for the
density of lepton number stored in the third family, L3. We
have solved the diffusion equations in two ways; the first is
a brute force numerical solution of the coupled differential
equations, while the second proceeds by making some
simplifying approximations which allow us to determine
an analytic solution to the diffusion equations. Our analytic
solution simplifies the problem by assuming that �y, �QCD

and (for z < 0) �1 are all strong enough that they enforce
near-equilibrium relations among the number densities of
the species participating in the interactions. Thus, we have,

 

Q
kQ
�
h
kh
�
t
kt
�

1

�y
� 0;

2
Q
kQ
�
t
kt
� 9

b
kb
�

1

�QCD
� 0;

(60)

and for z < 0,

 3
Q
kQ
�
L3

kL
�

1

�1
� 0: (61)

Following the treatment of the usual EW case [35], we take
linear combinations of the diffusion Eqs. (39) which are
independent of �y, �QCD, and �1 and use the equilibrium
relations to express the remaining two equations in terms
of Q and h. The result can be expressed as a matrix
differential equation,

 M
Q00

h00

� �
� N

Q0

h0

� �
�
��h

0

� �
; (62)

where we simplify �h as constant for�Lw < z < 0 and M
and N are constant matrices, functions of the D’s, k’s, and
vw,

5The thermal widths of the Higgs and spectator Higgs are
dominated by the trilinear interactions �-H-H0.

BARYOGENESIS FROM AN EARLIER PHASE TRANSITION PHYSICAL REVIEW D 75, 063510 (2007)

063510-9



 M �
DQ�

kb�9kt
9kb
� Dh �DQ�

9kt�kb
9kh
�

�DQ�
9kQ�9kt�kb

9kQ
� �DL�

9kL
kQ
� DQ�

9kt�kb
9kh
�

24 35 � 1

T
� 8

3
225

2
� 28

3 2

" #
;

N � vw

9kt�kb
9kQ

� 9kh�9kt�kb
9kh

9kQ�81kL�9kt�kb
9kQ

kb�9kt
9kh

24 35 � vw
4
9 � 17

12
41
9 � 1

3

" #
:

(63)

We convert Eq. (62) into a first order differential equation
by defining � � 	Q; h
T , H � �0. We solve the equations
separately for z < Lw (region I), �Lw < z < 0 (region II),
and z > 0 (region III) and match � and H across the
boundaries.

In regions I and III, �h � 0, and the solutions are those
of the corresponding homogeneous equation

 HI;III�z� � HH�z�DI;III � exp	�M�1Nz
DI;III; (64)

 �I;III�z� �
Z z

�1
dxHH�x�DI;III � CI;III; (65)

where CI;III and DI;III are vectors specifying the boundary
conditions. The exponential terms grow with z, and thus
the requirement that ��z! �1� ! 0 requires CI � 0 and
the requirement that � remain finite as z! �1 requires
DIII � 0.

In region II, the solutions will be the sum of a homoge-
neous solution with integration constants CII and DII, and a
particular solution,

 HP�z� � �HH�z�
Z z

�Lw
dxH�1

H �x�M
�1 �h

0

� �
: (66)

So,

 HII�z� � HH�z�DII �HP�z�; (67)

 �II�z� �
Z z

�Lw
dxfHH�x�DII �HP�x�g � CII; (68)

and matching this to the solutions in regions I and II
determines DI �DII, and,

 D II �
Z 0

�Lw
dxH�1

H �x�M
�1 �h

0

� �
; (69)

 C II �
Z �Lw
�1

dxHH�x�DII; (70)

 C III �
Z 0

�1
dxHH�x�DII

�
Z 0

�Lw
dx
Z x

�Lw
dyHH�x�H

�1
H �y�M

�1 �h
0

� �
:

(71)

Note that ��z� � CIII for z > 0, so this last expression is in
fact the final densities produced by the phase transition.

Since Lw is small, we can derive an approximate form
based on the limit Lw ! 0. To leading order in Lw, we have

 C III � CII �
Z 0

�1
dxHH�x�DII � �LwN

�1 �h
0

� �
; (72)

where

 D II � LwM�1 �h
0

� �
: (73)

Using the expression for N�1, we find the final lepton
number density

 L3 � �Q � �
12Lw�h
227vw

: (74)

Recalling Eq. (58) that �h / vw=Lw, we find that our final
result is approximately independent of the diffusion con-
stants, the bubble wall velocity, and the bubble wall width,
as long as �1 is fast enough.

Assembling the results, in Fig. 4 we plot the densities
normalized to the entropy, s� 2�2=45gT

3, where g �
100. The densities L3, t, and b are determined using the
relations Eqs. (60) and (61). The wall region is too small

 

-10 -5 0 5 10

-0.0004

-0.0002

-0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

)-1z (GeV

n
 / 

s

3L

h

Rt

3
Q

Rb

FIG. 4 (color online). Particle number densities normalized to
entropy as a function of spatial position z for a bubble whose
wall is at z� 0 and parameters as described in the text. From top
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bR, L3, and tR.
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(2� 10�3 GeV�1) to be visible on the figure. For the
chosen parameters, the ratio of the lepton density to the
entropy density is given by

 L3=s� 10�4; (75)

which results, after the inclusion of the dilution factor,
Eq. (12), in a final baryon asymmetry after the electroweak
phase transition of approximately

 

nB
s
’ 10�10; (76)

exactly as observed. Of course, the particular value is
highly dependent on our choice of parameters, but the
ability of the topflavor model to produce this value is
not; the fact that the order of magnitude comes out cor-
rectly is indicative of the fact that for natural values of
parameters, this model can produce an appropriate baryon
number.

From our numerical integration of the differential equa-
tions, we can relax our equilibrium assumptions and exam-
ine the effect of finite values for the rates, particularly �1.
In Fig. 5 we present the final lepton density as a function of
�1 (artificially assuming that the CP-violating source,
bubble parameters, and critical temperature are un-
changed). For small �1, we see that the final lepton asym-
metry is linearly proportional to �1. In this regime, the
generated Higgs/top number densities are a constant back-
ground source, only a small fraction of which is converted
into leptons by �1. For large �1 instead, the equilibrium

condition is reached and the dependence on �1 saturates.
We see from Fig. 5 that our chosen parameters are just at
the turn-on of this saturation region.

IV. DISCUSSION

We have explored the possibility that the baryon asym-
metry of the Universe might have come from new gauge
dynamics at the TeV scale. The primary impediment to
realizing this idea is the washout by ordinary EW sphaler-
ons, which we have avoided by having new physics which
coupled asymmetrically to the three (lepton) generations.6

In particular, we showed that the topflavor model, with
SU�2�1 � SU�2�2 breaking at the TeV scale, can easily
produce an appropriate baryon asymmetry for natural val-
ues of its parameters.

It is interesting to compare the results obtained in
Eq. (75) with the much smaller ones that are obtained by
similar methods in the MSSM [23]. The difference stems
from three main different factors: First, the magnitude of
�1 is much larger than the EW sphaleron rate �ws ’
10�4 GeV. As shown in Fig. 5, this induces an enhance-
ment of a few orders of magnitude in the final result.
Second, the value of �� ’ 0:2 is 2 orders of magnitude
larger than the typical values of �� ’ O�10�3� obtained in
the MSSM for moderate values of the CP-odd Higgs mass.
Third, in the MSSM there is a suppression proceeding from
the effective cancellation of chiral charges discussed in
Refs. [35,52] that is not present in the model analyzed in
this article.

We expect that the LHC can extensively test this idea.
First, by discovering the SM Higgs boson and searching for
the existence of other elements strongly coupled to it, the
LHC can help construct the picture of the ordinary EW
phase transition as first or second order. This would, for
example, confirm or rule out the MSSM scenario of EW
baryogenesis. Second, by discovering new elements, in the
case of topflavor, the heavy W0 and Z0 bosons with masses
of about 2 TeV and preferred decays into third family
fermions, should be easily discovered at the LHC [53].
Finally, by determining the properties of the new elements,
one may determine whether or not they are viable as a
mechanism of baryogenesis. In the case of topflavor, the
need for a first order phase transition in the breakdown of
SU�2�1 � SU�2�2 is connected to both a small quartic for
the Higgs � and a reasonably strong gauge coupling g1.
The first of these has the dramatic consequence that the
mass of � is well below the symmetry-breaking scale,
m2
� � 	u

2. For the parameters we explore in detail, m� �
600 GeV, making � the lightest of the new particles. It
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FIG. 5 (color online). Lepton number density normalized to
entropy as a function of �1. The dashed line is the bound on �1

from nonobservation of proton decay mediated by instantons,
whereas the dotted line is the bound inferred by requiring that the
broken phase minimum remain the true vacuum at T � 0. The
star indicates the sample parameter point considered in the text.

6A parallel idea, which we chose not to explore in detail, is to
have new physics coupled asymmetrically between quarks and
leptons, as in [51]. Anomaly cancellation is very challenging in
this framework, and the resulting models are therefore somewhat
contrived.
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couples strongly to the Higgs sector and to the new gauge
bosons.

An extended gauge sector at the TeV scale has motiva-
tions from many mysteries in particle physics. In addition,
it allows a much less constrained structure to explore the
idea of baryogenesis through gauge symmetry breaking.
The SM picture arising from the EW breakdown is eco-
nomical but is under assault from the null LEP Higgs
searches, favoring a second order phase transition, and
from the lack of sufficient CP violation to produce enough
asymmetry. Alternatives based on the ordinary EW tran-
sition such as in the MSSM can be viable, but remain
constrained by the Higgs mass, and from the fact that the
new sources of CP violation remain tightly connected to
low energy CP-violating observables. Extended gauge
symmetries can naturally have first order transitions, and
CP violation is further removed from low energy observ-

ables. The primary obstacle is the fact that the EW spha-
lerons will try to erase any generated baryon asymmetry
with B� L � 0, but this is overcome if the SM matter
does not couple universally to the new dynamics.
Ultimately, the LHC will help in resolving this question.
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