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We make a systematic study of the cosmological dynamics for a number of f�R� gravity theories in
Palatini formalism, using phase space analysis as well as numerical simulations. Considering homoge-
neous and isotropic models, we find a number of interesting results: (i) models based on theories of the
type (a) f�R� � R� �=Rn and (b) f�R� � R� � lnR� �, unlike the metric formalism, are capable of
producing the sequence of radiation-dominated, matter-dominated, and de Sitter periods, and (ii) models
based on theories of the type (c) f�R� � R� �Rm � �=Rn can produce early as well as late accelerating
phases but an early inflationary epoch does not seem to be compatible with the presence of a subsequent
radiation-dominated era. Thus, for the classes of models considered here, we have been unable to find the
sequence of all four dynamical epochs required to account for the complete cosmological dynamics, even
though three out of four phases are possible. We also place observational constraints on these models
using the recently released supernovae data by the Supernova Legacy Survey as well as the baryon
acoustic oscillation peak in the Sloan Digital Sky Survey luminous red galaxy sample and the cosmic
microwave background shift parameter. The best-fit values are found to be n � 0:027, � � 4:63 for the
models based on (a) and � � 0:11, � � 4:62 for the models based on (b), neither of which are
significantly preferred over the �CDM model. Moreover, the logarithmic term alone is not capable of
explaining the late acceleration. The models based on (c) are also consistent with the data with suitable
choices of their parameters. We also find that some of the models for which the radiation-dominated epoch
is absent prior to the matter-dominated era also fit the data. The reason for this apparent contradiction is
that the combination of the data considered here does not place stringent enough constraints on the
cosmological evolution prior to the decoupling epoch, which highlights the importance of our combined
theoretical-observational approach to constrain models.
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I. INTRODUCTION
Recent high-precision observations by the Wilkinson

microwave anisotropy probe (WMAP), together with other
cosmic microwave background (CMB) and high redshift
surveys have produced a wealth of information regarding
the early Universe. The analysis of the resulting data has
provided strong evidence for the core predictions of the
inflationary cosmology, including the almost spatial flat-
ness of the Universe [1,2]. Furthermore, these observations
coupled with the low redshift supernovae surveys [3–7]
and observations of large scale structure [8,9] and baryon
acoustic oscillations [10] suggest that the Universe is at
present undergoing a phase of accelerated expansion (see
Refs. [11,12] for reviews). Thus a ‘‘standard’’ model of
cosmology has emerged which is characterized by four
distinct phases: accelerated expansions at both early and
late times, mediated by radiation-dominated and matter-
dominated eras. The central question in cosmology at

present is, therefore, how to successfully account for these
distinct dynamical phases in the history of the Universe,
and, in particular, whether they can all be realized simul-
taneously within a single theoretical framework, motivated
by a fundamental theory of quantum gravity.

A number of scenarios have been proposed to account
for these dynamical modes of behavior. These fall into two
categories: (i) those involving the introduction of exotic
matter sources, and (ii) those introducing changes to the
gravitational sector of general relativity. Among the latter
are f�R� gravity theories, which involve nonlinear general-
izations to the (linear) Hilbert action. Nonlinear modifica-
tions are expected to be present in the effective action of
the gravitational field when string/M-theory corrections are
considered [13–16].

A great deal of effort has recently gone into the study of
such theories. An important reason for this interest has
been the demonstration that generalized Lagrangians of
this type—which include negative as well as positive
powers of the curvature scalar—can lead to accelerating
phases both at early [17] and late [18,19] times in the
history of the Universe (see also Ref. [20]).
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In deriving the Einstein field equations from the Hilbert
action, the variations are taken with respect to the metric
coefficients, while the connections are assumed to be the
Christoffel symbols defined in terms of the metric. An
alternative procedure—the so-called Palatini approach,
originally considered by Einstein himself—is to treat
both the metric and the (affine) connections as independent
variables and perform the variations with respect to both.
In the case of linear Hilbert action both approaches pro-
duce identical results, as long as the energy-momentum
tensor does not depend on the connection [21]. This, how-
ever, is not the case once the gravitational Lagrangian is
allowed to be nonlinear. In that case, the two methods of
variation produce different field equations with nontrivial
differences in the resulting dynamics.

Performing variations of nonlinear actions using the
metric approach results in field equations that are fourth
order; which makes them difficult to deal with in practice.
Furthermore, within this framework, models based on
theories of the type f�R� � R� �=Rn have difficulties
passing the solar system tests [22] and having the correct
Newtonian limit [23]. In addition, such theories suffer
gravitational instabilities as discussed in Ref. [24]. Also
recent studies have found that these theories are not able to
produce a standard matter-dominated era followed by an
accelerated expansion [25,26]. Finally, models based on
theories of the type f�R� � R� �Rm � �=Rn have been
shown to have difficulties in satisfying the set of con-
straints coming from early and late-time acceleration, big
bang nucleosynthesis, and fifth-force experiments [27].
(See Refs. [28] for other works concerning the metric
formalism.)

Variations using the Palatini approach [29,30], however,
result in second order field equations which are different
from the ones derived in the metric approach. While it is
still an open problem to clarify whether the f�R� theories in
Palatini formalism are free from gravitational instabilities
[31–34] and whether they satisfy the solar system tests and
have the correct Newtonian limit [30,35–41], the Palatini
formalism can allow a possibility to realize a successful
cosmological evolution of radiation, matter, and acceler-
ated epochs. Here we shall concentrate on the Palatini
approach and consider a number of families of f�R� theo-
ries recently put forward in the literature. These theories
have been the focus of a great deal of interest recently with
a number of studies attempting to determine their viability
as cosmological theories, both theoretically [23,42–45]
and observationally [46]. Despite these efforts, it is still
fair to say that cosmological dynamics of models based on
such theories is not fully understood. Of particular interest
is the number of dynamical phases such models are capable
of admitting, among the four phases required for strict
cosmological viability, namely, early and late accelerating
phases mediated by radiation-dominated and matter-
dominated epochs. Especially it is important to determine

whether they are capable of allowing all four phases re-
quired for cosmological evolution. We should note that the
idea that such theories should be capable of successfully
accounting for all four phases is clearly a maximal de-
mand. It would still be of great interest if such theories
could successfully account for a sequence of such phases,
such as the first or the last three phases. For example, the
presence of the last 3 phases could distinguish these
from the corresponding theories based on the metric for-
malism [25]. Also observational constraints have so far
only been obtained for the models based on the theories of
the type f�R� � R� �=Rn. Such constraints need to be
also studied for other theories considered in this context in
the literature.

Here in order to determine the cosmological viability of
models based on f�R� theories in Palatini formalism, we
shall employ a two pronged approach. Considering homo-
geneous and isotropic settings, we shall first provide au-
tonomous equations applicable to any f�R� gravity theory.
We shall then make a systematic and detailed phase space
analysis of a number of families of f�R� theories. This
provides a clear understanding of the dynamical modes of
behavior which are admitted by these theories, and, in
particular, whether these theories possess early and late
accelerating phases which are mediated by the radiation-
dominated and matter-dominated eras, respectively. The
existence of these phases is a necessary but not sufficient
condition for cosmological viability of such theories. To be
cosmologically viable, it is also necessary that the subset of
parameters in these theories that allows these phases to
exist are also compatible with observations [47]. We con-
strain these parameters for a number of families of f�R�
theories using the data from recent observations, including
recently released supernovae data by the Supernova
Legacy Survey [7] as well as the baryon acoustic oscilla-
tion peak in the Sloan Digital Sky Survey (SDSS) luminous
red galaxy sample [10] and the CMB shift parameter [1,2].

The plan of the paper is as follows. In Sec. II we give a
brief account of the Palatini formalism and provide the
basic equations for general f�R� theories. We also intro-
duce new variables which allow these equations to be
written as autonomous dynamical systems. In Sec. III we
proceed to study the cosmological dynamics for a number
of classes of f�R� theories. Particular emphasis will be
placed on finding cases which can allow the largest number
of dynamical phases required in the cosmological evolu-
tion. In Sec. IV we obtain observational constraints on
these theories. This allows further constraints to be placed
on the parameters of these theories. Finally we conclude in
Sec. V.

II. f�R� THEORIES IN PALATINI FORMALISM
AND AUTONOMOUS EQUATIONS

We consider the classes of theories given by the gener-
alized action
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f�R� �Lm �Lr

�
; (1)

where f is a differentiable function of the Ricci scalar R,
Lm and Lr are the Lagrangians of the pressureless dust and
radiation, respectively, � � 8�G, and G is the gravita-
tional constant. Motivated by recent observations, we shall
study the cosmological dynamics in these theories for a flat
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) back-
ground,

 d s2 � �dt2 � a2�t�dx2; (2)

where a�t� is the scale factor and t is the cosmic time.
As was mentioned above, in Palatini formalism the

metric and the affine connections are treated as indepen-
dent variables with respect to which the action is varied. A
generalized Ricci scalar is defined by R � g��R����̂�,
where a generalized Ricci tensor R����̂� is written in terms
of the connection:

 R����̂� � �̂���;� � �̂���;� � �̂����̂��� � �̂����̂���: (3)

Varying the action (1) with respect to the metric g��
gives (see e.g. Ref. [23])

 FR�� �
1
2fg�� � �T��; (4)

where F � @f=@R and T�� is given by

 T�� � �
2�������
�g
p

��Lm �Lr�

�g��
: (5)

By expressing the generalized Ricci tensor R����̂� in
terms of the Ricci tensor R���g� associated with the metric
g�� and covariant derivatives r� of the function f asso-
ciated with the Levi-Civita connection of the metric, we
obtain the generalized Friedmann equation [29]

 6F
�
H �

_F
2F

�
2
� f � ��	m � 2	r�; (6)

where a dot denotes differentiation with respect to t and
H � _a=a is the Hubble parameter. Here we take into
account the contribution of pressureless dust and radiation
whose energy densities are given by 	m and 	r, respec-
tively. These satisfy the conservation equation [48]

 _	m � 3H	m � 0; (7)

 _	 r � 4H	r � 0: (8)

Contracting Eq. (4), and recalling that the trace of the
radiative fluid vanishes, gives

 FR� 2f � ��	m: (9)

Using Eqs. (6)–(9) we obtain

 

_R �
3�H	m
F0R� F

� �3H
FR� 2f
F0R� F

; (10)

where a prime denotes a derivative with respect to R.
Combining Eqs. (6) and (10) we find

 H2 �
2��	m � 	r� � FR� f

6F

; (11)

where

 
 �
�

1�
3

2

F0�FR� 2f�
F�F0R� F�

�
2
: (12)

In the case of the Hilbert action with f � R, Eq. (11)
reduces to the standard Friedmann equation: H2 �
��	m � 	r�=3.

To obtain a clear picture of possible dynamical regimes
admitted by these theories, we shall make a detailed study
of a number of families of f�R� theories of the type (1),
using phase space analysis. It is convenient to express these
systems as autonomous systems by introducing the follow-
ing dimensionless variables:

 y1 �
FR� f

6F
H2 ; y2 �
�	r

3F
H2 : (13)

In terms of these variables the constraint equation (11)
becomes

 

�	m
3F
H2 � 1� y1 � y2: (14)

Differentiating Eq. (11) and using Eqs. (6)–(11), we obtain

 2
_H

H2 � �3� 3y1 � y2 �
_F

HF
�

_

H

�

_FR

6F
H3 : (15)

Now using variables (13) together with Eqs. (14) and
(15), we can derive the corresponding evolution equations
for the variables y1 and y2 thus:

 

dy1

dN
� y1�3� 3y1 � y2 � C�R��1� y1��; (16)

 

dy2

dN
� y2��1� 3y1 � y2 � C�R�y1�; (17)

where N � lna and

 C�R� �
R _F

H�FR� f�
� �3

�FR� 2f�F0R
�FR� f��F0R� F�

: (18)

We note that the following constraint equation also holds:

 

FR� 2f
FR� f

� �
1� y1 � y2

2y1
; (19)

which shows that R and thus C�R� can in principle be
expressed in terms of variables y1 and y2.

The behaviors of the variables y1 and y2 depend on the
behavior of the function C�R�. In particular, the divergence
of C�R� can prevent y1 and y2 from reaching equilibrium,
as we shall see in the next section. To proceed here we shall
assume that C�R� is well behaved. In that case an important
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step in understanding the dynamics of such systems is to
look at their equilibrium points/invariant sets and their
stabilities. The fixed points �y1; y2� satisfy dy1=dN � 0 �
dy2=dN. In this case [even when C�R� depends on R, but
excluding the cases C�R� � �3, �4], we obtain the fol-
lowing fixed points:

(i) Pr: �y1; y2� � �0; 1�, [We shall discuss this case fur-
ther below.]

(ii) Pm: �y1; y2� � �0; 0�,
(iii) Pd: �y1; y2� � �1; 0�.
If C�R� � �3, as is the case with the model f�R� / Rn

(n � 1, 2), we obtain (a) �y1; y2� � �0; 1� and
(b) �y1; y2� � �y

�c�
1 ; 0�, where y�c�1 is a constant. When

C�R� � �4, the fixed points are given by
(a) �y1; y2� � �0; 0�, (b) �y1; y2� � �1; 0�, and
(c) �y1; y2� � �y

�c�
1 ; 1� y

�c�
1 �. Note that in both of these

cases the latter points in fact correspond to a line of (rather
than isolated) fixed points.

The stability of the fixed points in the 2-dimensional
phase space �y1; y2� can then be studied by linearizing the
equations and obtaining the eigenvalues of the correspond-
ing Jacobian matrices calculated at each equilibrium point
[49]. Assuming that dC=dy1 and dC=dy2 remain bounded,
we find the following eigenvalues for the above fixed
points:

(i) Pr: ��1; �2� � �4� C�R�; 1�,
(ii) Pm: ��1; �2� � �3� C�R�;�1�,
(iii) Pd: ��1; �2� � ��3� C�R�;�4� C�R��.
In the following we shall also find it useful to define an

effective equation of state (EOS), weff , which is related to
the Hubble parameter via _H=H2 � ��3=2��1� weff�.
Using Eq. (15) we find

 weff � �y1 �
1

3
y2 �

_F
3HF

�
_


3H

�

_FR

18F
H3 : (20)

Once the fixed points of the system are obtained, one can
evaluate the corresponding effective equation of state by
using this relation.

III. COSMOLOGICAL DYNAMICS FOR MODELS
BASED ON f�R� THEORIES

In this section we shall use the above formalism to study
a number of families of f�R� theories, recently considered
in the literature.

A. f�R� � R��

The simplest model not ruled out by observations is the
�CDM model. To start with, therefore, it is instructive to
consider this model in this context, as it represents the
asymptotic state in a number of cases considered below.
The Lagrangian in this case is given by

 f�R� � R��; (21)

which givesC�R� � 0. Equations (16) and (17) then reduce

to

 

dy1

dN
� y1�3� 3y1 � y2�; (22)

 

dy2

dN
� y2��1� 3y1 � y2�; (23)

with fixed points given by

 Pr: �y1; y2� � �0; 1�; Pm: �y1; y2� � �0; 0�;

Pd: �y1; y2� � �1; 0�:
(24)

The corresponding eigenvalues can be evaluated to be

 Pr: ��1; �2� � �1; 4�; Pm: ��1; �2� � �3;�1�;

Pd: ��1; �2� � ��3;�4�:
(25)

Thus, the fixed points Pr, Pm, and Pd correspond to an
unstable node, a saddle point, and a stable node, respec-
tively. From Eq. (20) the effective equation of state is in
this case given by weff � �y1 � y2=3. This then leads to
weff � 1=3, 0, and �1 for the three points given in
Eq. (24), indicating radiation-dominated, matter-
dominated, and de Sitter phases, respectively. We have
confirmed that this sequence of behaviors does indeed
occur by directly solving the autonomous equations (22)
and (23).

The �CDM model corresponds to f�R� � R��, in
which case C�R� vanishes because F0 � 0. Equation (18)
shows that C�R� also vanishes when

 FR� 2f � 0; (26)

provided that other terms in the expression of C�R� do not
exhibit divergent behavior. When C�R� ! 0, the system
possesses the fixed points Pr, Pm, and Pd. In principle, the
nature of the point Pd depends on the nature of the theory
under study, i.e. the system (16) and (17). If the last terms
in these equations vanish sufficiently fast as C�R� ! 0,
then Pd corresponds to a de Sitter solution which is a stable
node since its eigenvalues are given by ��1; �2� �
��3;�4�. If, on the other hand, these terms fall slower
than 1=N, then they can contribute to the evolution of y1

and y2 and the point Pd may be different from a de Sitter
point. We note, however, that for all the theories considered
in this paper Pd corresponds to a de Sitter point.

B. f�R� theories with the sum of power-law terms

The families of models we shall consider in this section
belong to the classes of theories given by

 f�R� � R� �Rm � �=Rn; (27)

where m and n are real constants with the same sign and �
and � have dimensions �mass�2�1�m� and �mass�2�n�1�,

STÉPHANE FAY, REZA TAVAKOL, AND SHINJI TSUJIKAWA PHYSICAL REVIEW D 75, 063509 (2007)

063509-4



respectively. Such theories have been considered with the
hope of explaining both the early and the late accelerating
phases in the Universe [23,32,35,36]. In this subsection, we
shall make a detailed study of models based on such
theories in order to determine whether they admit viable
cosmological models, with both early and late time accel-
eration phases. In this case Eq. (19) becomes

 

1� �m� 2��Rm�1 � �n� 2��R�n�1

�m� 1��Rm�1 � �n� 1��R�n�1
�

1� y1 � y2

2y1
;

(28)

which in principle allows R to be expressed in terms of y1

and y2, at least implicitly. The function C�R� is given by

 C�R� � �3
�1� �m� 2��Rm�1 � �n� 2��R�n�1��m�m� 1��Rm � n�n� 1��R�n�

�1�m�m� 2��Rm�1 � n�n� 2��R�n�1���m� 1��Rm � �n� 1��R�n�
: (29)

Before proceeding, some comments are in order con-
cerning the variables y1 and y2. From the expression for
Hubble function (11), one can observe that if FR� f > 0
then one requires 6F
 > 0, as otherwise H2 would be
negative. Assuming (see below) that at late times
Eq. (27) tends to R� �=Rn, then FR� f ! �1�
n��R�n which is thus positive since observations (see
Sec. IVA) require n >�1 and �> 0. Hence, at late times
y1 and y2 are positive and, from Eq. (14), their sum must be
smaller than 1, as otherwise 	m would be negative.
Similarly assuming (see below) that at early times
Eq. (27) tends to R� �Rm, then we have FR� f ! �m�
1��Rm. To obtain an early time inflation, we need m> 1
(as we shall see below). Moreover, for the action to remain
positive at early times, we require �> 0 which implies
f > 0. Therefore FR� f is again positive. Thus, y1 and y2

are positive also at early times, with a sum which is smaller
than 1 for physical reasons. This indicates that, at both
early and late times, variables y1 and y2 can be treated as
normalized.

1. Limiting behaviors

To study the full behavior of the theories of the type (27)
it is useful to first consider the limiting cases where one of
the nonlinear terms in the action will dominate. We shall
consider these cases separately.

(I) The � � 0 case.
In this case (27) reduces to

 f�R� � R� �=Rn; (30)

and C�R� becomes

 C�R� � 3n
R1�n � �2� n��

R1�n � n�2� n��
; (31)

which allows R to be expressed in terms of y1 and y2 thus:

 R1�n �
��3y1 � n�y1 � y2 � 1� � y2 � 1�

2y1
: (32)

The critical points in this case are given by
(i) Pr: �y1; y2� � �0; 1�.

Since the numerator and the denominator of Eq. (32)

tend to zero as one approaches Pr, care must be taken
in this case. We therefore split the analysis into three
parts:

(1) Pr1: This point corresponds to �=R1�n 	 1
and C! 3n. The eigenvalues in this case are
given by ��1; �2� � �3n� 4; 1� with weff �
1=3.

(2) Pr2: This point corresponds to �=R1�n 
 1
and C! �3. The eigenvalues in this case are
given by ��1; �2� � �1; 1� with weff �
�2=3� 1=n.

(3) Pr3: R1�n ! constant. This case, however,
does not occur since then y1 
 y2 � 1 (the
reasoning would still remain the same if y1 is
of the same order of magnitude as 1� y2)
which would imply that Rn�1 should tend to
��3� n�=2. But from Eq. (14), one can de-
duce that �	m ’ ��FR� f�=2 and from
Eq. (9) that �	m � �FR� 2f. Hence, this
would imply ��FR� f�=2 ’ �FR� 2f
which is not possible.

(ii) Pm: �y1; y2� � �0; 0�.
In this case C! 3n, ��1; �2� � �3�n� 1�;�1� and
weff � 0.

(iii) Pd: �y1; y2� � �1; 0�.
In this case R is a nonzero constant satisfying
R1�n � �2� n�� with C � 0, ��1; �2� �
��3;�4�, and weff � �1. This de Sitter point ex-
ists for n >�2 provided that R> 0 and �> 0.

(iv) P: �y1; y2� � ��
n�1
n�3 ; 0�.

In this case C � 3n, ��1; �2� � �1� 1=n;�1�, and
weff � �1� 1=n.
This fixed point is, however, not relevant in the
asymptotic regimes that we shall consider. This is
because with observationally motivated parameters
(see below) n�1

n�3 > 0 which thus implies y1 < 0.
However, we have shown that for late and early
times 0< y1 < 1.

A summary of fixed points in this case together with
their stability properties is given in Table I. An inspection
of this table shows that the sequence of radiation (Pr1),
matter (Pm), and de Sitter acceleration (Pd) can be realized
for n >�1.
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(II) The � � 0 case.
In this case (27) reduces to

 f�R� � R� �Rm: (33)

The fixed points in this model can be obtained from the
previous case by simply taking n! �m and �! ��.
Hence, depending on the energy region the fixed points can
be summarized as follows.

(1) High energy points (�Rm�1 
 1)
(1a) Pr2: �y1; y2� � �0; 1�, weff � �2=3� 1=m and
��1; �2� � �1; 1�.
(1b) P: �y1; y2� � ��

1�m
3�m ; 0�, weff � �1� 1=m

and ��1; �2� � �1� 1=m;�1�.
(2) Low energy points (�Rm�1 	 1)

(2a) Pr1: �y1; y2� � �0; 1�, weff � 1=3 and
��1; �2� � �4� 3m; 1�.
(2b) Pm: �y1; y2� � �0; 0�, weff � 0 and ��1; �2� �
�3�1�m�;�1�.

(3) de Sitter point [�Rm�1 � 1=�m� 2�]
(3) Pd: �y1; y2� � �1; 0�, weff � �1 and ��1; �2� �
��3;�4�.

Note that the case m � 2 requires a separate analysis since
this corresponds to C � �6 independent of R [see
Eq. (31)]. We shall return to this case below. The fixed
points and their properties for this case are summarized in
Table II.

One can in principle consider the fixed points in Tables I
and II as, respectively, being relevant at the future and the
past, respectively. Using the above asymptotic information,

we shall now consider families of theories of this type
separately.

2. Theories of type f�R� � R� �=Rn

In the metric approach, models based on theories of this
type were considered in Refs. [18,19] as ways of producing
a late-time acceleration of the Universe. In addition to the
difficulties such theories face (as discussed in the
Introduction), they have recently been shown to be unable
to produce a standard matter-dominated era followed by an
accelerated expanding phase for n > 0 [25]. Using the
Palatini approach, however, such theories can be shown
to be able to give rise to such a standard matter-dominated
phase, as we shall see below.

To proceed we shall, for the sake of compatibility with
the observational constraints obtained in the following
sections, confine ourselves to the cases with n >�1 and
�> 0. In such cases, Table I shows that Pr1 is an unstable
node (source), Pm is a saddle, and Pd is a stable node.
Numerical simulations confirm that such theories indeed
admit the 3 postinflationary phases, namely, radiation-
dominated, matter-dominated, and de Sitter phases (see
Fig. 1). The point P can never be reached because, for
the considered range of n, one can show that the positive
variable y1 is an increasing function of time, i.e. dy1=dN >
0 [50]. The point P, however, occurs for y1 � 0 and, hence,

TABLE II. Fixed points and their natures for models based on
theories of the type f�R� � R� �Rm. The existence of the Pd
point here assumes that �> 0. For negative � the symbol ‘‘� � �’’
in the Table should be replaced by Stable and vice versa.

m Pr1 Pr2 Pm Pd P

2<m Saddle Unstable Stable Stable Saddle
4=3<m< 2 Saddle Unstable Stable � � � Saddle
1<m< 4=3 Unstable Unstable Stable � � � Saddle
0<m< 1 Unstable Unstable Saddle � � � Stable
m< 0 Unstable Unstable Saddle � � � Saddle
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FIG. 1. Evolutions of the variables y1 and y2 for the model
f�R� � R� �=Rn with n � 0:02, together with the effective
equation of state weff . Initial conditions were chosen to be y1 �
10�40 and y2 � 1–10�5. This demonstrates that the sequence of
(Pr1) radiation-dominated (weff � 1=3), (Pm) matter-dominated
(weff � 0), and (Pd) de Sitter acceleration (weff � �1) eras
occur for these models.

TABLE I. Fixed points and their natures for models based on
theories of the type f�R� � R� �=Rn. The existence of the Pd
point here assumes that �> 0. For negative � the symbol ‘‘� � �’’
in the Table should be replaced by ‘‘Stable’’ and vice versa.

n Pr1 Pr2 Pm Pd P

n <�2 Saddle Unstable Stable � � � Saddle
�2< n<�4=3 Saddle Unstable Stable Stable Saddle
�4=3< n<�1 Unstable Unstable Stable Stable Saddle
�1< n< 0 Unstable Unstable Saddle Stable Stable
n > 0 Unstable Unstable Saddle Stable Saddle
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can never be reached except by taking y1 < 0 which is
unphysical since it implies a negative H2.

The initial value of the ratio r � y1�0�=y2�0� plays an
important role in determining the duration of the matter-
dominated phase. This ratio is related to cosmological
parameters such as the present value of �m that will be
constrained by observations in the next section. For the
existence of a prolonged matter-dominated epoch, we re-
quire the condition r	 1. In this case the smaller the value
of r the longer will be the matter-dominated phase. For
large enough values of r, the solutions directly approach
the stable de Sitter point Pd after the end of the radiation-
dominated era.

3. Theories of type f�R� � R� �Rm � �=Rn

In this section, we shall employ the above asymptotic
analysis to study the dynamics of the generalized theories
of this type. In particular, we shall give a detailed argument
which indicates that, under some general assumptions, an
initial inflationary phase cannot be followed by a radiation
phase.

We shall proceed by looking at the early and late dy-
namics separately. In this connection it is important to
decide which phases can be considered to be produced
by the early and late time approximations f�R� �
R� �Rm and f�R� � R� �=Rn, respectively. We note
that in the discussion below we shall at times divide the
‘‘early’’ phase into high-energy (�Rm�1 
 1) and low-
energy (�Rm�1 	 1) regimes. To proceed, we start by
assuming that the early time approximation covers infla-
tion and radiation-dominated phases and the late time
approximation covers the matter-dominated and dark en-
ergy phases. Thus, our analysis does not cover the epochs
where the two nonlinear terms are comparable. Such
epochs can occur between early and late times or at late
times. Nevertheless our assumption regarding early times
should still be valid since R should be large in such
regimes. Also, observations still require that n >�1 and
�> 0.

Table II shows that to have an inflationary stage fol-
lowed by a radiation-dominated phase we must have m>
4=3, since this is the only way to obtain a saddle radiation
phase Pr1 (which would be required to obtain an exit from
this phase). The de Sitter point Pd exists form> 2, but one
cannot use this fixed point for inflation followed by the
radiation era because Pd is a stable attractor which does not
admit the exit from inflation. The inflationary epoch can
only come from the point Pr2 with m> 3 or point P with
m> 3=2, in order to ensure that weff <�1=3.

Let us consider the case m> 2. Taking into account the
fact that Pr2 is in a high energy region (�Rm�1 
 1), the
possible trajectory in this case is Pr2 ! P! Pd, since Pr1
and Pm are in the low energy region. All points Pr2, P, and
Pd correspond to inflationary solutions for m> 3, whereas
Pr2 is not an inflationary solution for 2<m< 3. In neither

case do we have a successful exit from the de Sitter epoch
Pd to the radiation phase.

When 4=3<m< 2, it is possible to have the sequence:
(i) Pr2 ! P! Pm, or (ii) Pr2 ! Pr1 ! Pm. Note that Pr2
corresponds to a nonstandard evolution with �1=6<
weff < 1=12. When m> 3=2 the point P leads to an accel-
erated expansion, but the case (i) is not viable because of
the absence of the radiation era after inflation. Similarly,
the case (ii) can be ruled out since it does not possess an
inflationary phase. Now since both P and Pr1 are saddle
points, we may ask whether the sequence Pr2 ! P!
Pr1 ! Pm can occur. To study this possibility, we pro-
ceeded numerically and solved the autonomous equations
for a range of initial conditions close to y1 � 0 and y2 � 1
and a range of model parameters. Despite extensive nu-
merical searches, we were unable to find a radiation-
dominated phase between the de Sitter and matter epochs.
Figure 2 gives a typical example of such simulations
showing the evolution of the variables y1 and y2 together
with weff . Clearly, the radiation epoch is absent between
the de Sitter and matter epochs. The sequence
(i) Pr2 ! P! Pm is, however, realized as expected, which
is finally followed by a de Sitter universe as the �=Rn term
becomes important. Thus, the models with 3=2<m< 2
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FIG. 2. Evolution of y1 and y2 together with the effective
equation of state weff for the model f�R� � R� �Rm � �=Rn

with m � 1:9, n � 1, � � 1, � � 10�60. The initial conditions
are y1 � 1:71� 10�6 and y2 � 1–2:09� 10�6. The system
starts from a nonstandard radiation-type phase (corresponding
to the Pr2 point with weff � �2=3� 1=m � �0:14) followed
by an inflationary phase (corresponding to the P point with
weff � �1� 1=m � �0:47) and then followed by a matter-
dominated phase (corresponding to the Pm point with weff �
0). The system finally approaches a de Sitter point Pd because of
the presence of the �=Rn term.
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seem to be unable to produce an initial inflationary phase
leading to a radiation-dominated epoch.

The above discussion indicates that the assumption m>
3=2, which is necessary for an early-time acceleration
phase to occur, is incompatible with the subsequent
radiation-dominated phase.

To complete this analysis, we also consider the range
where 1<m< 4=3. In this case there are two possible
sequences: (i) Pr2 ! P! Pm and (ii) Pr1 ! Pm. In the
case (i) the system starts from a nonstandard high energy
phase Pr2 (�Rm�1 
 1), which is followed by a noninfla-
tionary phase P. Since neither an inflationary phase nor a
radiation-dominated epoch exist, the sequence (i) is there-
fore not cosmologically viable. In the case (ii) the system
starts from a low-energy radiation-dominated phase
(�Rm�1 	 1) and is followed by a matter-dominated
epoch. As long as the term �=Rn becomes important at
late times, the sequence (ii) is followed by a de Sitter point.
Thus the case (ii) can at least account for the last three
phases required in cosmology. When 0<m< 1 it is also
possible to have the sequence Pr1 ! Pm ! Pd.

Finally, we shall consider the case where the term �Rm

is comparable to R around the present epoch. This corre-
sponds to a large coupling � and is suggested by the
likelihood analysis considerations of the model parameters
in the next section. When 0<m< 1 this case is similar to
the one for the model f�R� � R� �=Rn with�1< n< 0.
If m> 1 this corresponds to a nonstandard cosmological
evolution with�Rm 
 R in the past, which can be realized
for a very large coupling �. To complement the discussion
above, we shall also briefly consider this case. To start
with, let us consider the case m � 2. Since �Rm�1 
 1
prior to the dark energy epoch, the fixed points correspond
to either (i) Pr2 with an EOS weff � �2=3� 1=m, eigen-
values ��1; �2� � �1; 1� or (ii) Pwith an EOSweff � �1�
1=m, eigenvalues ��1; �2� � �1� 1=m;�1�. Since we are
considering the case m> 1, we have (i) weff < 1=3 and
(ii) weff < 0. This shows that the radiation-dominated
phase is not realized unlessm is unity (i.e. Einstein gravity)

We shall consider the case m � 2 in the next subsection.

4. The special case m � 2

To conclude our consideration of theories of the type
(27), we shall consider the special case of these theories
with m � 2, which have recently attracted some attention
in the literature [51].

(A) Theories of the type f�R� � R� �R2

In this case we have C � �6. The critical points, eigen-
values, and the effective EOS are

(i) Pr: �y1; y2� � �0; 1�, ��1; �2� � ��2; 1�.
We note that in this case weff is undefined, as can be
seen from Eq. (A7) in the Appendix. This, however,
does not play an important role in the reasoning
below, as we shall see.

(ii) Pm � �0; 0�, ��1; �2� � ��3;�1�, weff � 0.

This matter point exists only in the region �R	 1
because of the relation �R � 2y1=�1� y1 � y2�.

(iii) Pd � �1; 0�, ��1; �2� � �2; 3�, weff � 0.
This point exists only in the region �R
 1.

An important feature of this model is that the fixed point
Pd in this case is an unstable node mimicking a dust
universe. Depending upon whether the radiation (y1 	
y2) or the dark energy (y2 	 y1) dominates initially, the
Universe starts with the EOS of matter (Pd) or radiation
(Pr) and ends in a matter era (Pm) which is a stable node.
Before reaching the final attractor Pm, there can exist a
time N � Ns such that y1 � �1� y2�=3. In particular, this
always occurs when y1 > 1=3 at early times, as would be
expected in a universe dominated by dark energy. In this
case, the EOS diverges at Ns as we see from Eq. (A7) in the
Appendix. Note that when y1 � �1� y2�=3, the scalar
curvature is regular (�R � 1) with finite y1 and y2, indi-
cating that there is no physical singularity, despite the
singular behavior of the effective EOS. This can be under-
stood by recalling that the weff so defined is just a mathe-
matical construction for f�R� theories.

(B) Theories of the type f�R� � R� �R2 � �=R
Let us consider the case in which the terms �R2 and

�=R are important for early and late times, respectively.
Then as long as �> 0 and �> 0, it is possible to have the
sequence Pd ! Pr ! Pm followed by a de Sitter point Pd
which appears because of the presence of the term �=R.
However, since Pr corresponds to a divergent EOS, we do
not have a standard radiation-dominated epoch in this
model.

Let us next consider the case in which the signs of � and
� are different, say �> 0 and �< 0. We will encounter
this situation when we carry out a likelihood analysis of
model parameters in the next section. Then it can happen
that C�R� diverges as R approaches either ��2�=��1=3 or�����������
�3�
p

. In this case, the effective EOS diverges and
dy1=dN approaches �1. For the model parameters con-
strained by observations the divergence occurs at R �
��2�=��1=3 before reaching R �

�����������
�3�
p

, since in that
case ��2�=��1=3 >

�����������
�3�
p

. We also note that the
radiation-dominated phase is absent in this case as well if
we go back to the past.

This provides an example of what can happen when
C�R� diverges, which may also occur for other values of
�m; n�.

C. Theories of type f�R� � R�� lnR� �

Finally we shall consider theories of the type [42,52]

 f�R� � R� � lnR� �: (34)

For these theories Eqs. (18) and (19) give

 C�R� � 3�
R� �� 2� lnR� 2�
��� � lnR� ���R� 2��

; (35)

and
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R� �� 2� lnR� 2�
�� � lnR� �

�
1� y1 � y2

2y1
: (36)

These imply C! 0 in the limit R! 1 and C! �3 in the
limit R! 0. We also note that assuming the denominator
in (35) is nonzero, then C � 0 for a constant R satisfying
R� �� 2� lnR� 2� � 0. Using the constraint equation
(36), the critical points can be found to be

(1) Pr: �y1; y2� � �0; 1�.
(a) Pr1: R! 1 and C! 0. The eigenvalues are

given by ��1; �2� � �4; 1� with weff � 1=3.
(b) Pr2: R! 0 with C! �3. The eigenvalues

are given by ��1; �2� � �1; 1� with weff !
�1.

(2) Pm: �y1; y2� � �0; 0�.
R! 1, C! 0, ��1; �2� � �3;�1� and weff � 0.

(3) Pd: �y1; y2� � �1; 0�.
C � 0, ��1; �2� � ��3;�4� and weff � �1, with R
behaving as a constant near the critical point.

(4) P: �y1; y2� � ��1=3; 0�.
R! 0, C � �3, ��1; �2� � �0;�1� and weff !
�1.

From the above discussion it is clear that one can obtain
the sequence of radiation-dominated (Pr1), matter-
dominated (Pm), and de Sitter (Pd) eras. We have checked
numerically that this sequence indeed occurs. Note that the
points Pr2 and P are irrelevant to realistic cosmology, since
the system approaches the stable de Sitter point Pd with a
constant R before reaching R! 0.

IV. CONFRONTING f�R� GRAVITY MODELS
WITH OBSERVATIONAL DATA

The detailed phase space analysis given in the previous
section provides a clear picture of the possible dynamical
modes of behavior that can occur for models based on these
theories. These analyses demonstrate that none of the
theories considered here can produce all four phases re-
quired for cosmological evolution. They, however, show
that a subset of these theories is capable of producing the
last three phases, i.e. radiation-dominated, matter-
dominated, and late time accelerating phases. As was
mentioned above, the occurrence of these phases is a
necessary but not a sufficient condition for cosmological
viability of such theories. To be cosmologically viable, it is
also necessary that the subset of parameters in these theo-
ries that allow these phases to exist are also compatible
with observations.

In this section we shall study this observational com-
patibility by confronting models based on these theories
with observational data. To proceed, we rewrite Eqs. (9)–
(11), using the redshift parameter z � a0=a� 1 and em-
ploying the expressions 	m � 	m0�1� z�3 and 	r �
	r0�1� z�4 to obtain

 FR� 2f � �3H2
0�m0�1� z�

3; (37)

 

dR
dz
� �

9H2
0�m0�1� z�2

F0R� F
; (38)

 

H2

H2
0

�
3�m0�1� z�3 � 6�r0�1� z�4 � f=H2

0

6F�1�
9H2

0F
0�m0�1�z�3

2F�F0R�F� �
2

; (39)

where �m0 � �	m0=3H2
0 and �r0 � �	r0=3H2

0 and a sub-
script 0 denotes evaluation at the present time. From
Eqs. (37) and (38), one can express R in terms of z for a
given f�R�model. Equation (39) can then be used to obtain
the Hubble parameter in terms of z.

We note that for a given f�R� theory sourced by cold
dark matter, �m0 is uniquely determined once units are
chosen such that H0 � 1 [46]. If radiation is also present,
then both H0 and �r0 need to be specified in order to
determine �m0 uniquely. In the following, we choose
�r0 � 5� 10�5 and H0 � 1 (see below).

To constrain f�R�models, we shall use three sets of data:
(I) The first year data set from the Supernova Legacy

Survey (SNLS) [7] with 71 new supernovae below
z � 1:01, together with another 44 low z supernovae
already available, i.e. a total of 115 SNe.

(II) The baryon acoustic oscillation peak (BAO) re-
cently detected in the correlation function of lumi-
nous red galaxies (LRG) in the Sloan Digital Sky
Survey [10]. This peak corresponds to the first
acoustic peak at recombination and is determined
by the sound horizon. The observed scale of the
peak effectively constrains the quantity

 A0:35 � DV�0:35�

����������������
�m0H2

0

q
0:35

� 0:469
 0:017;

(40)

where z � 0:35 is the typical LRG redshift and
DV�z� is the comoving angular diameter distance
defined as
 

DV�z� �
�
DM�z�

2 z
H�z�

�
1=3
;

with DM �
Z z

0

dz
H
:

(41)

(III) The CMB shift parameter. This constraint is de-
fined by

 R1089 �
����������������
�m0H2

0

q Z 1089

0

dz
H
� 1:716
 0:062;

(42)

which is a measure of the distance between z � 0
and z � 1089. It relates the angular diameter dis-
tance to the last scattering surface with the angular
scale of the first acoustic peak. An important fea-
ture of this parameter is that it is model indepen-
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dent and insensitive to perturbations [53]. To be
able to use it one has to have a standard matter-
dominated era at decoupling.

For the goodness of fit we employ the standard �2

minimization, defined by

 �2 �
Xn
i�1

�mobs
i �m

th
i �

2

�2
i

;

where n is the number of data points and mobs
i and mth

i are,
respectively, the observed and the theoretical magnitudes
calculated from the model. We shall marginalize the
Hubble constant by defining as usual a new �2:

 �� 2 � �2 ln
Z �1
�1

e��
2=2d �M;

where �M � M� 5 ln�H0� � 25 and M is the magnitude
zero point offset. After some algebraic manipulations and
defining

 A �
X115

p�1

�mobs
i � 5 ln�Dl��

2

�2
i

;

B �
X115

p�1

mobs
i � 5 ln�Dl�

�2
i

; C �
X115

p�1

1

�2
i

;

(43)

we obtain

 �� 2 � A�
B2

C
� ln

C
2�

: (44)

Finally, we note that the BAO and the CMB shift parameter
do not depend on the Hubble constant. Having only one
measure point in each case, these tests can be used in the
same way as priors.

In what follows, we shall proceed to place observational
constraints on the models discussed in the previous section.
Our choice of units such that H0 � 1 is consistent with
marginalization over H0, similar to the choice made in the
literature [46].

A. Theories of the type f�R� � R� �=Rn

We shall first consider theories of the type

 f�R� � R� �=Rn: (45)

As we already demonstrated in the previous section, one
can obtain in this case a sequence of radiation-dominated,
matter-dominated, and acceleration phases provided that
n >�1.

Recently Amarzguioui et al. [46] have found that mod-
els of this kind are compatible with the supernova ‘‘Gold’’
data set from Riess et al. [6] together with the BAO
constraint (40) and the CMB constraint (42), subject to
constraints on the values of the parameters � and n. In their
combined analysis the best-fit model was found to be � �
3:6 and n � �0:09. Here we extend this work by employ-
ing the more recent first year SNLS data as well as taking

into account the presence of radiation. In Fig. 3 we show
observational contour plots at the 68% and 95% confidence
levels obtained from the SNLS data only.

In this case the best-fit value (smallest �2) is found to be
�2 � 116:55 with � � 12:5 and n � 0:6. This is consis-
tent with the results obtained in Ref. [46], namely � �
10:0 and n � 0:51 and with the results obtained in the
previous section according to which the transition from
the matter-dominated era to the de Sitter era occurs for n >
�1. As n gets closer to �1, it is difficult to realize a late-
time acceleration phase since the model (45) approaches
Einstein gravity.

If we further include constraints from BAO and CMB,
the likelihood parameter space is reduced significantly as
seen from Fig. 4, with narrower ranges of the allowed
values of n and � lying in the intervals n 2
��0:23; 0:42� and � 2 �2:73; 10:6� at the 95% confidence
level. This difference is mainly due to the fact that the BAO
data better constrains the cold dark matter parameter than
the SN data alone. The best-fit values are found to be � �
4:63 and n � 0:027 with �2 � 116:69.

Note that the �CDM model corresponding to � � 4:38
and n � 0 lies in the 68% confidence level. In Fig. 5, we
have plotted the evolution of weff for the best-fit case. This
shows that the models in agreement with the data undergo a
transition from a radiation-dominated to a matter-
dominated epoch followed by an acceleration phase which
in the future asymptotically approaches a de Sitter solution.
This is a nice realization of the trajectories that follow the
sequence Pr1 ! Pm ! Pd described in the previous
section.

 

FIG. 3. The 68.3% and 95.4% confidence levels for the model
based on the theory f�R� � R� �=Rn, constrained by SNLS
data only.
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B. Theories of the type f�R� � R��Rm � �=Rn

We next consider theories of the type

 f�R� � R� �Rm � �=Rn: (46)

In the previous section we showed that an initial infla-
tionary phase (requiring m> 3=2) does not seem to be
compatible with a subsequent radiation-dominated epoch.
However, dropping the requirement of an inflationary
phase, such theories can produce the last 3 phases, namely,
radiation-dominated, matter-dominated, and late accelera-

tion epochs, provided the radiation-dominated era starts in
the �Rm�1 	 1 regime. If the term �Rm becomes smaller
than �=Rn prior to the decoupling epoch, observational
constraints on the models based on (46) are similar to those
on the models based on (45), i.e., n 2 ��0:23; 0:42� and
� 2 �2:73; 10:6� at the 2� level.

When m � 2 we also showed separately in Sec. III B 4
that the radiation-dominated epoch does not exist. To study
the observational constraints in such cases, we have carried
out a likelihood analysis for the model f�R� � R� �R2 �
�=R considered in Ref. [51]. Note that the four parameters
�, �,m, and n cannot be constrained at the same time with
the observations used here, so we have chosen special
values for m and n. With these choices, we have found
that the model is compatible with the observational data
subject to the parameter constraints � 2 �2:30; 3:29� and
� 2 ��0:012;�0:004� (see Fig. 6). However, there is no
radiation-dominated stage prior to the matter-dominated
era, as is seen in Fig. 7 which gives a plot of the evolution
of weff in the best-fit case (� � 2:69 and � � �0:008).

When �> 0 and �< 0 we have already shown in
Sec. III B 4 that a singularity appears for weff . In fact
Fig. 7 shows that the de Sitter solution is not the late-
time attractor since there is a singularity in the future
(around z��0:27) where weff becomes (positive) infinite
(and the Hubble parameter H ! 0) after a short transient
period during which it is smaller than �1=3.

The above discussion demonstrates the necessity of the
theoretical considerations in the previous section. Using
the observational data alone, we would obtain the mislead-
ing result that the above model is consistent with observa-
tions despite the absence of the radiation-dominated era.
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FIG. 5. Evolution of the effective equation of state weff , for the
model based on the theory f�R� � R� �=Rn, with the best-fit
value � � 4:63 and n � 0:027. For very large z, weff � 1=3,
which then decreases and approaches 0 at redshift of a few tens.
The accelerated expansion occurs around z � 1 after which weff

becomes smaller than �1=3. In the future, weff asymptotically
approaches �1.
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FIG. 4. The 68.3% and 95.4% confidence levels for the model
based on the theory f�R� � R� �=Rn, constrained by SNLS,
BAO, and CMB data.
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FIG. 6. The 68.3% and 95.4% confidence levels for the model
f�R� � R� �R2 � �=R constrained by SNLS, BAO, and CMB
data.
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This is due to the fact that the observations we have
considered do not probe the radiation-dominated phase.

So far we have considered the cases with m> 1. We
have also checked that the sequence of radiation-
dominated, matter-dominated, and de Sitter eras can be
realized for 0<m< 1, although in this case the initial
inflationary epoch is absent. One can perform a likelihood
analysis by taking several values of m and n which exist in
the regions 0<m< 1 and 0< n< 1, while allowing �
and � to vary. Interestingly, there are values of �m; n� in
these ranges which fit the observational data. Table III
shows the best-fitting model parameters for some values
of the parametersm and n. For this range of parameters, the
best-fitting values of � and � are always found to be
negative and positive, respectively. As n is increased we
find that the magnitudes of � and � both increase, while
the former still remaining negative. The increase in the
amplitudes of � and � tends to compensate for the de-
crease in the 1=Rn term. On the other hand, asm increases,
the amplitude of � decreases (while still remaining nega-
tive) while that of � increases. These effects have the
consequence of minimizing the contribution of Rm relative
to 1=Rn. We also did not find the divergence of weff in such
cases. Note that from the Table III the case with n � 0:8
and m � 0:8 can produce late-time acceleration. This pro-
vides an example of a case where the two nonlinear terms

are comparable and necessary to produce the acceleration
at late times. There would be no late-time acceleration if a
single term is chosen with such an exponent.

C. Theories of the type f�R� � R� � lnR� �

Finally we consider theories of the type

 f�R� � R� � lnR� �; (47)

where � and � are dimensionless constants.
The combined constraints from the SNLS, BAO, and

CMB data confine the allowed values of � and � to the
ranges � 2 ��1; 1:86� and � 2 ��0:96; 8:16�, respec-
tively (see Fig. 8). The best-fit model corresponds to � �
0:11 and � � 4:62 with �2 � 116:69. These values are not
too different from the �CDM model with � � 0 and � �
4:38, indicating that the model is not significantly preferred
over the �CDM model.

Note that the case � � 0 is excluded by the data. This
therefore shows that the lnR term alone cannot drive the
late-time acceleration; one still requires a cosmological
constant. Thus based on the observational constraints con-

TABLE III. The best-fitting values of the parameters ��2; �; �;�m0� for the models based on theories f�R� � R� �Rm � �=Rn

with some particular values of �m; n�.

m � 0:1 m � 0:5 m � 0:8

n � 0:1 �116:68;�1:33; 3:37; 0:27� �116:64;�0:22; 4:66; 0:27� �116:61;�0:08; 4:90; 0:27�
n � 0:3 �116:64;�2:47; 2:54; 0:27� �116:84;�0:45; 5:95; 0:27� �116:76;�0:24; 6:15; 0:27�
n � 0:5 �116:64;�2:85; 2:56; 0:27� �116:63;�0:82; 6:36; 0:27� � � �

n � 0:8 �116:99;�2:85; 4:71; 0:28� �116:76;�1:03; 9:16; 0:28� �118:29;�0:47; 12:4; 0:28�
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FIG. 8. 68.3% and 95.4% confidence level for the theory
f�R� � R� � lnR� � constrained by SNLS, BAO, and CMB
data. The models without a cosmological constant (� � 0) are
excluded by the data.
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FIG. 7. Evolution of weff for the model R� �R2 � �=R with
the best-fit value � � 2:69 and � � �0:008. There is no
radiation-dominated epoch prior to the matter-dominated era
(weff � 0). Although weff can be smaller than �1=3 around
the present epoch, the late-time evolution does not correspond
to a de Sitter universe.
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sidered here, only strong theoretical reasons would moti-
vate the consideration of theories of this type.

V. CONCLUSIONS

We have made a detailed and systematic study of a
number of families of f�R� theories in Palatini formalism,
using phase space analysis, extensive numerical simula-
tions as well as observational constraints from recent data.
These theories have been recently put forward in the
literature in order to explain the different dynamical phases
in the evolution of the Universe, in particular the early
and/or late acceleration epochs deduced from recent
observations.

Considering the FLRW setting, we have expressed the
evolution equations as an autonomous dynamical system in
the form of Eqs. (16) and (17). The �CDM model corre-
sponds to a case where the expression C�R� given by
Eq. (18) vanishes. Models, based on f�R� theories, in
which the variable C�R� asymptotically approaches 0, are
able to give rise to a de Sitter expansion with constant R
at late times. This includes the models based on theories
of the type (a) f�R� � R� �=Rn, (b) f�R� � R�
�Rm � �=Rn, and (c) f�R� � R� � lnR� �. We have
carried out a detailed analysis of the cosmological evolu-
tion for such models by studying their fixed points and their
stabilities against perturbations.

For models based on theories of the type f�R� � R�
�=Rn, we have shown that the sequence of radiation-
dominated, matter-dominated, and de Sitter eras is in fact
realized for n >�1. This is a stark contrast to the corre-
sponding theories of metric formalism for which it is
difficult to realize such a sequence [25].

Considering models based on theories of the type
f�R� � R� �Rm � �=Rn, we have found that while
they are capable of producing early as well as late accel-
erating phases an early inflationary epoch does not seem to
be followed by a standard radiation-dominated era. When
m> 2, the de Sitter point is stable, which prohibits an exit
from the inflationary phase. Inflationary solutions can also
be obtained for 3=2<m< 2 (for �> 0), but in that case
they directly exit into a matter-dominated phase which in
turn leads to a late-time accelerating phase. For 0<m<
4=3, the radiation fixed point is unstable, which makes it
possible to have the sequence of radiation-dominated,
matter-dominated, and de Sitter phases without a preced-
ing inflationary epoch. For 4=3<m< 3=2, inflation is not
possible and radiation, which is a saddle point, can only be
preceded by a nonaccelerated phase such as Pr2 or an
unknown phase not satisfying our late and early time
assumptions.

We have also placed observational constraints on the
parameters of these models, employing the recently re-
leased supernovae data by the Supernova Legacy Survey
as well as the baryon acoustic oscillation peak in the SDSS
luminous red galaxy sample and the CMB shift parameter.

We have found that both classes of models are in agree-
ment with the observations with appropriate choices of
their parameters. For models based on theories of the
type f�R� � R� �=Rn, the best-fit values were found to
be � � 4:63 and n � 0:027. This is consistent with the
results obtained by Amarzguioui et al. [46], who used the
supernova ‘‘Gold’’ data rather than the SNLS without
taking into account the radiation.

For the models based on theories of the type f�R� �
R� �Rm � �=Rn, it is not possible to constrain all four
parameters simultaneously. Concentrating on the special
class of theories f�R� � R� �R2 � �=R studied in litera-
ture, we have found that they are compatible with the data
subject to parameter constraints � 2 �2:30; 3:29� and � 2
��0:012;�0:004�. Despite this agreement we have found,
using a phase space analysis, that such cases do not seem to
produce a radiation-dominated era prior to the matter-
dominated epoch, thus making them cosmologically unac-
ceptable. The reason for this apparent contradiction is that
the combination of the SN, SDSS, and the CMB shift
parameter considered here does not provide constraints
on early phases of the Universe prior to the decoupling
epoch. We have also checked that a sequence of radiation-
dominated, matter-dominated, and de Sitter phases be-
comes possible for models based on theories of the type
f�R� � R� �Rm � �=Rn when 0<m< 1, in agreement
with the data.

Finally, we have studied the compatibility of theories of
the type f�R� � R� � lnR� � with observations. Again
we have found that such models are compatible with ob-
servations with appropriate choices of their parameters.
However, the logarithmic term on its own is unable to
explain the late-time acceleration consistent with
observations.

In summary, we have found that using Palatini formal-
ism it is possible to produce models based on the classes of
theories considered here, which possess the sequence of
radiation-dominated, matter-dominated, and late-time ac-
celeration phases consistent with observations. However,
we have been unable to find the sequence of all four phases
required for a complete explanation of the cosmic dynam-
ics. It will also be interesting to investigate whether these
models can pass the local gravity test and are free from
gravitational instabilities.

ACKNOWLEDGMENTS

S. F. is supported by the European Union (Contract
No. MEIF-CT-2005-515028). S. T. is supported by JSPS
(Grant No. 30318802).

APPENDIX

In this Appendix we shall give the expression of weff for
the model f�R� � R� �Rm � �=Rn. We shall write the
various terms in the expression for weff in Eq. (20).
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Using the relation (10), we obtain

 

_R
HR
� �3

1� �m� 2��Rm�1 � �n� 2��R�n�1

1�m�m� 2��Rm�1 � n�n� 2��R�n�1 ;

(A1)

which allows the third term in Eq. (20) to be written as

 

_F
3HF

�
_R

HR
m�m� 1��Rm�1 � n�n� 1��R�n�1

3�1�m�Rm�1 � n�R�n�1�
:

(A2)

Defining the variable 
 as

 
 �
3F0�FR� 2f�
2F�F0R� F�

�
3�m�m� 1��Rm�1 � n�n� 1��R�n�1���1� �m� 2��Rm�1 � �n� 2��R�n�1�

2�1�m�Rm�1 � n�R�n�1���1�m�m� 2��Rm�1 � n�n� 2��R�n�1�
; (A3)

allows the fourth term in Eq. (20) to be expressed as
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� �
2

3



1� 


_R
HR

�
m�m� 1�2�Rm�1 � n�n� 1�2�R�n�1

m�m� 1��Rm�1 � n�n� 1��R�n�1 �
�m� 2��m� 1��Rm�1 � �n� 1��n� 2��R�n�1

1� �m� 2��Rm�1 � �n� 2��R�n�1

�
m�m� 1��Rm�1 � n�n� 1��R�n�1

1�m�Rm�1 � n�R�n�1 �
m�m� 1��m� 2��Rm�1 � n�n� 1��n� 2��R�n�1

1�m�m� 2��Rm�1 � n�n� 2��R�n�1

�
: (A4)

Finally, the last term in Eq. (20) is given by

 

_FR

18F
H3
�
m�m� 1��Rm�1 � n�n� 1��R�n�1

3��m� 1��Rm�1 � �n� 1��R�n�1�
y1

_R
HR

: (A5)

Note that from Eq. (28) R is a function of y1 and y2, which in turn implies thatweff is also a function of y1 and y2, albeit of a
very complicated form.

Despite this complexity, however, the expression forweff reduces to a fairly simple form for specific cases. For example,
when m � 2 and � � 0, we find

 weff � y1 �
1

3
y2 �

2�R�2� �R�
�1� 2�R��1� �R�

: (A6)

Now since from Eq. (28) �R � 2y1=�1� y1 � y2� in this case, weff is expressed in terms of y1 and y2 thus

 weff � y1 �
1

3
y2 �

8y1�1� y2�

�1� 3y1 � y2��1� 3y1 � y2�
: (A7)
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