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We show that, as a result of nonlinear self-interactions, it is feasible, at least in light of the bounds
coming from terrestrial tests of gravity, measurements of the Casimir force and those constraints imposed
by the physics of compact objects, big-bang nucleosynthesis and measurements of the cosmic microwave
background, for there to exist, in our Universe, one or more scalar fields that couple to matter much more
strongly than gravity does. These scalar fields behave like chameleons: changing their properties to fit
their surroundings. As a result these scalar fields can be not only very strongly coupled to matter, but also
remain relatively light over solar-system scales. These fields could also be detected by a number of future
experiments provided they are properly designed to do so. These results open up an altogether new
window, which might lead to a completely different view of the rôle played by light scalar fields in particle
physics and cosmology.
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I. INTRODUCTION

There is widespread interest in the possibility that, in
addition to the matter described by the standard model of
particle physics, our Universe may be populated by one or
more scalar fields. These are a general feature in high
energy physics beyond the standard model and are often
related to the presence of extra dimensions [1]. The exis-
tence of scalar fields has also been postulated as means to
explain the early and late-time acceleration of the Universe
[2–7]. It is almost always the case that such fields interact
with matter: either due to a direct Lagrangian coupling or
indirectly through a coupling to the Ricci scalar or as the
result of quantum loop corrections [8–12]. If the scalar-
field self-interactions are negligible, then the experimental
bounds on such a field are very strong: requiring it to either
couple to matter much more weakly than gravity does, or to
be very heavy [13–16]. Recently, a novel scenario was
presented by Khoury and Weltman [17] that employed
self-interactions of the scalar-field to avoid the most re-
strictive of the current bounds. In the models that they
proposed, a scalar-field couples to matter with gravitational
strength, in harmony with general expectations from string
theory, while, at the same time, remaining very light on
cosmological scales. In this paper we will go much further
and show, contrary to most expectations, that the scenario
presented in Ref. [17] allows scalar fields, which are very
light on cosmological scales, to couple to matter much

more strongly than gravity does, and yet still satisfy all
of the current experimental and observational constraints.

The cosmological value of such a field evolves over
Hubble time-scales and could potentially cause the late-
time acceleration of our Universe [18]. The crucial feature
that these models possess is that the mass of the scalar field
depends on the local background matter density. On Earth,
where the density is some 1030 times higher than the
cosmological background, the Compton wavelength of
the field is sufficiently small as to satisfy all existing tests
of gravity. In the solar system, where the density is several
orders of magnitude smaller, the Compton wavelength of
the field can be much larger. This means that, in those
models, it is possible for the scalar field to have a mass in
the solar system that is much smaller than was previously
thought allowed. In the cosmos, the field is lighter still and
its energy density evolves slowly over cosmological time-
scales and it could function as an effective cosmological
constant. While the idea of a density-dependent mass term
is not new [19–27], the work presented in Refs. [17,18] is
novel in that the scalar field can couple directly to matter
with gravitational strength. If a scalar-field theory contains
a mechanism by which the scalar field can obtain a mass
that is greater in high-density regions than in sparse
ones, we deem it to possess a chameleon mechanism and
be a chameleon field theory. When referring to chameleon
theories, it is common to refer to the scalar field as the
chameleon.

We start this article by reviewing the main features
of scalar-field theories with a chameleon mechanism.
Afterwards, this paper is divided into roughly two parts:
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in Secs. III, IV, and V we study the behavior of chameleon
theories as field theories, and derive some important re-
sults. From Secs. VI onwards, we combine these results
with a number of experimental and astrophysical limits to
constrain the unknown parameters of these chameleon
theories f�;M; �g. We shall show how the nonlinear ef-
fects, identified in Secs. III, IV, and V, allow for a very large
matter coupling, �, to be compatible with all the available
data. We also note that some laboratory-based tests of
gravity need to be redesigned, if they are to be able to
detect the chameleon. If the design of these experiments
can be adjusted in the required way, and their current
precision maintained of its current level, then a large range
of sub-Planckian chameleon theories could be detected, or
ruled out, in the near future.

In Sec. III, we study how � behaves both inside and
outside an isolated body and derive the conditions that
must hold for such a body to have a thin shell. In this
section, we show how nonlinear effects ensure that the
value that the chameleon takes far away from a body
with a thin shell is independent of the matter coupling,
�. Whilst such �-independence as been noted before for
�4-theory in Ref. [28], this is the first time that it has been
shown to be a generic prediction of a large class of cha-
meleon theories. In Sec. IV we show the internal, micro-
scopic, structure of macroscopic bodies can unexpectedly
alter the macroscopic behavior of the chameleon. Using the
results of Secs. III and IV we are then able to calculate the
�-force between two bodies; this is done in Sec. V. In each
of these sections we take care to note precisely when
linearization of the chameleon field equation is invalid.

Laboratory bounds on chameleon field theories are an-
alyzed in Sec. VI. We focus mainly on the Eöt-Wash
experiment reported in Refs. [29,30], which tests for cor-
rections to the 1=r2 behavior of gravity, and experimental
programmes that measurement the Casimir force [31–33].
We also look at the variety of laboratory and solar-system
based tests for violations of the weak equivalence principle
(WEP) [34–37]. The extent to which proposed satellite-
based searches for WEP violation will aide in the search
for scalar fields with a chameleonlike behavior is consid-
ered in this section. We shall see that for a large range of
values of M and �, laboratory tests of gravity at unable to
place any upper-bound on �.

In Secs. VII and VIII we show how the stability of white
dwarfs and neutron stars, as well as requirements coming
from big-bang nucleosynthesis and the cosmic microwave
background, can be used to bound the parameters of cha-
meleon field theories. We shall see that such considerations
do result in upper bounds on �.

Finally, in Secs. IX and X we collate all of the different
experimental and astrophysical restrictions on chameleon
theories, use them to plot the allowed values of�,M and �,
and discuss our results and their implications.

We include a summary of the main results at the end of
Secs. III, IV, and V for easy reference. This allows

the reader, less interested on the detailed derivation of
the formulae, to follow the whole article. Throughout this
work we take the signature of space-time to be �� ����
and set @ � c � 1; G � 1=M2

pl, where Mpl is the Planck
mass.

II. CHAMELEON FIELD THEORIES

In the theories proposed in Ref. [17], the chameleon
mechanism was realized by giving the scalar field both a
potential, V���, and a coupling to matter, B���=Mpl��;
where � is the local density of matter. We shall say more
about how the functions V and B are defined, and the
meaning of �, below. The potential and the coupling-to-
matter combine to create an effective potential for the
chameleon field: Veff��� � V��� � B���=Mpl��. The
values � takes at the minima of this effective potential
will generally depend on the local density of matter. If at a
minima of Veff we have � � �c, i.e. Veff

;� ��c� � 0, then
the effective ‘‘mass’’ (mc) of small perturbations about �c,
will be given by the second derivative of Veff , i.e. m2

c �

Veff
;����c�. It is usually the case that jV;��j � jB;���j and

so mc will be determined almost entirely by the form of
V��� and the value of �c. If V��� is neither constant,
linear nor quadratic in � then V;����c�, and hence the
mass mc, will depend on �c. Since �c depends on the
background density of matter, the effective mass will also
be density dependent. Such a form for V��� inevitably
results in nonlinear field equations for �.

For a scalar-field theory to be a chameleon theory, the
effective mass of the scalar must increase as the back-
ground density increases. This implies V;�����c�=
V;���c�> 0. It is important to note that it is not necessary
for either V���, or B���=Mpl�, to have any minima them-
selves for the effective potential, Veff , to have minimum. A
sketch of the chameleon mechanism, as described above, is
shown in Figs. 1 and 2. In Fig. 1 the potential is taken to be
of runaway form and has no minimum itself. However, It is
clear from the sketches that Veff does have a minimum, and
that the value � takes at that minimum is density depen-
dent. In Fig. 2 the potential is taken to behave like �4 and
so does have a minimum at� � 0. However, the minimum
of the effective potential, Veff , does not coincide with that
of V. Once again, the minimum of Veff is seen to be density
dependent.

A. The thin-shell effect

This chameleon mechanism often results in macroscopic
bodies developing what is called a ‘‘thin shell.’’ A body is
said to have a thin shell if � is approximately constant
everywhere inside the body apart from in a small region
near the surface of the body. Large (O�1�) changes in the
value of � can and do occur in this surface layer or thin
shell. Inside a body with a thin shell ~r� vanishes every-
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where apart from in a thin surface layer. Since the force
mediated by� is proportional to ~r�, it is only that surface
layer, or thin shell, that both feels and contributes to the
‘‘fifth force’’ mediated by �.

It was noted in Refs. [17,18] that the existence of such a
thin-shell effect allows scalar-field theories with a chame-
leon mechanism to evade the most stringent experimental

constraints on the strength of the field’s coupling to matter.
For example: in the solar system, the chameleon can be
very light thus mediate a long-range force. The limits on
such forces are very tight [34,38]. However, since the
chameleon only couples to a small fraction of the matter
in large bodies i.e. that fraction in the thin shell, the
chameleon force between the Sun and the planets is very

 

φ

Sketch of chameleon mechanism: Low Density Background

V(φ) ∼ φ4

B(β φ / M
pl

)ρ

V
eff

(φ)

Effective minimum
φ = φ

c
(ρ)

Mass of φ near φ
c
 is

small because V
eff

 is
quite flat near φ

c
.

φ

Sketch of chameleon mechanism: High Density Background

V(φ) ∼ φ4

B(β φ/M
pl

)ρ

V
eff

(φ)

Effective minimum
φ = φ

c
(ρ)

Mass of φ near φ
c
 is

large because V
eff

 is
quite steep near φ

c
.

FIG. 2. Sketch of the chameleon mechanism for a potential with a minimum at � � 0: V ��4. The sketch on the left is for a low-
density background, whereas the drawing of the right shows what occurs when there is a high density of matter in the surroundings. We
can clearly see that the position of the effective minimum, �c, and the steepness of the effective potential near that minimum, depends
on the density. A shallow minimum corresponds to a low chameleon mass. The mass of the chameleon near �c can be clearly seen to
grow with the background density of matter.
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FIG. 1. Sketch of the chameleon mechanism for a runaway potential: V ���4. The sketch on the left is for a low-density
background, whereas the drawing of the right shows what occurs when there is a high density of matter in the surroundings. We can
clearly see that the position of the effective minimum, �c, and the steepness of the effective potential near that minimum, depends on
the density. A shallow minimum corresponds to a low chameleon mass. The mass of the chameleon can be clearly seen to grow with
the background density of matter.
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weak. As a result the chameleon has no great effect on
planetary orbits, and the otherwise tight limits on such a
long-range force are evaded [39]. In Sec. III, we will show
that the presence of a thin-shell effect is intimately linked
to nonlinear nature of chameleon field theories.

B. Chameleon-to-matter coupling

When a scalar field,�, couples to a species of matter, the
effect of that coupling is to make the mass, m, of that
species of particles �-dependent. This can happen either at
the classical level (i.e. in the Lagrangian) or a result of
quantum corrections. We parameterize the dependence of
m on � by

 m��� � m0C
�
��
Mpl

�
; (1)

where Mpl is the Planck mass and m0 is just some constant
with units of mass whose definition will depend on one’s
choice of the function C���Mpl

�. � defines the strength of the

coupling of � to matter. We shall say more about the
definition of � below. A �-dependent mass will cause
the rest-mass density of this particle species to be �
dependent, specifically

 ���� � �0C
�
��
Mpl

�
: (2)

The coupling of � to the local energy density of this
particle species is given by: @����=@� which is

 

@����
@�

� B0
�
��
Mpl

�
�����
Mpl

; (3)

where B�x� � lnC�x� and B0�x� � dB�x�=dx. Throughout
this work we will, for simplicity, assume that our chame-
leon field, �, couples to all species of matter in the same
way, however we will keep in mind the fact that, generi-
cally, different species of matter will interact with the
chameleon in different ways. We shall see in Sec. VIII
that, if C, and hence B, are at least approximately the same
for all particle species, then cosmological bounds on cha-
meleon theories will require that j�B0���=Mpl��=Mplj<
0:1 everywhere since the epoch of nucleosynthesis. We
preempt this requirement and use it to justify the lineariza-
tion of B���=Mpl�:

 B
�
��
Mpl

�
� B�0� �

�B0�0��
Mpl

: (4)

For this to be a valid truncation we require
�B00�0�=B0�0����=Mpl 	 1. So long as jB00�0�j<
10jB0�0�j, the cosmological bounds on � will then ensure
that the above truncation of the expansion of B is a valid
one. The only forms of B that are excluded from this

analysis are the ones where jB00�0�j * 10jB0�0�j; we gen-
erally expect B00�0� �O�B0�0��.

Provided B0�0� � 0, we can use the freedom in the
definition of � to set B0�0� � 1. When this is done, �
quantifies the strength of the chameleon-to-matter
coupling.

For example: a particular choice for C that has had some
favor in the literature [17,18] is C � ek�=Mpl for some k. It
follows that B � k�=Mpl, and so we choose � � k which
ensures B0�0� � 1, B00�0� � 0.

We wish to construct our chameleon theories to be
compatible with Einstein’s conception of gravity. By this
we mean that we wish them to display diffeomorphism and
Poincaré invariance at the level of the Lagrangian. A
natural consequence of Poincaré invariance is that the
chameleon couples to matter in a Lorentz invariant fashion.
For a perfect fluid this implies that � will generally couple
to some linear combination of � and the fluid pressure (P)
i.e. ��!P. The simplest way for the chameleon to couple
to matter in a relativistically invariant fashion is for it to
couple to the trace of the energy momentum tensor; in this
case ! � �3. This said, apart from in the early universe
and in very high-density objects such as neutron stars,
P=�	 1, and so the precise value of ! is not of great
importance. Apart from where such an assumption would
be invalid, we will take P=�	 1 and set P � 0.

C. A Lagrangian for chameleon theories

It is possible to couple the chameleon to matter in a
number of different ways, and as such it is possible to
construct many different actions for chameleon theories. A
reasonably general example of how the chameleon can
couple to trace of the energy momentum tensor is given
by following Lagrangian density:

 L �
�������
�g
p

�
�
M2

pl

16�
R�g� �

1

2
@��@��� V���

�
�Lm� �i�; g

�i�
���; (5)

where Lm is the Lagrangian density for normal matter.
This Lagrangian was first proposed in Ref. [39]. The index
i labels the different matter fields, �i�, and their chameleon
coupling. The metrics g�i��� are conformally related to the
Einstein frame metric g�� by g�i��� � �2

�i�g�� where ��i� �

C�i����i��=Mpl�. TheC�i��
� are model-dependent functions
of ��i��=Mpl. The ��i� are chosen so that B0

�i��0� :�

�lnC�i��
0�0� � 1. R�g� is the Ricci-scalar associated

with the Einstein frame metric. For simplicity we will
restrict ourselves to a universal matter coupling i.e. g�i��� �
~g��, C�i� � C and ��i� � �. We define T�� �
�2=

�������
�~g
p

��Lm=�~g��. It follows that T � T��~g�� � ��
3P, where � is the physical energy density and P is the sum
of the principal pressures. In general � and P are
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�-dependent. With respect to this action, the chameleon
field equation is

 ��� � V;���� �
�B0���=Mpl���� 3P�

Mpl
: (6)

As mentioned above, j��=Mplj< 0:1 is required for the
theory to be viable and so it is acceptable to approximate
B0���=Mpl� by B0�0�. We then scale � so that B0�0� � 1.
The requirement, j��=Mplj< 0:1, also ensures that � and
P are independent of� to leading order. The field equation
for � is, therefore,

 ��� � V;���� �
���� 3P�

Mpl
: (7)

The above Lagrangian should not be viewed as specifying
the only way in which � can couple to matter. When one
considers varying constant theories, the matter coupling
often results from quantum loop effects [40]. However,
despite the fact that many different Lagrangians are pos-
sible, it is almost always the case that the field equation for
� takes a form very similar to the one given above.

D. Intrinsic chameleon mass scale

� quantifies the strength of the chameleon coupling.
M� :� Mpl=� can then be viewed as the intrinsic mass
scale of the chameleon. Although precise calculations of
scattering amplitudes fall outside the scope of this work,
we expect that chameleon particles would be produced in
large numbers in particle colliders that operate at energies
of the order of M� or greater.

It is generally seen as ‘‘natural,’’ from the point of view
of string theory, to haveM� � Mpl. When this happens the
chameleon has the same energy-scale as gravity. It has also
been suggested that the chameleon field arises from the
compactification of extra dimensions [1]; if this is the case
then there is no particular reason why the true Planck scale
(i.e. of the whole of space-time including the extra dimen-
sions) should be the same as the effective 4-dimensional
Planck scale defined by Mpl. Indeed having the true Planck
scale being much lower than Mpl has been put forward as a
means by which to solve the Hierarchy problem (e.g. the
ADD scenario [41–43]). In string-theory too, there is no
particularly reason why the string-scale should be the same
as the effective four-dimensional Planck scale. It is also
possible that the chameleon might arise as a result of new
physics with an associated energy scale greater than the
electroweak scale but much less than Mpl. In light of these
considerations it would be pleasant if M� � Mpl=�	
Mpl, say of the GUT scale, or, if we hoped to find traces
of it at the LHC, maybe even the TeV-scale.

A positive detection of a chameleon field with such a
sub-Planckian energy scale could provide us with the first
evidence for new physics beyond the standard model, but
below the Planck scale.

As pleasant as it might be to have M� 	 Mpl, it is
generally agreed that the current experimental bounds on
the existence of light scalar fields rule out this possibility
[13–16]. Indeed, in the absence of a chameleon mechanism
similar to that proposed in Refs. [18,39], bounds on the
violation of the weak equivalence principle (WEP) coming
from lunar laser ranging (LLR), [34,38], limit j�j � 10�5

for a light scalar field. This implies M� � Mpl. If the
Planck scale is supposed to be associated with some fun-
damental maximum energy, such a large value of M�

seems highly unlikely. Even if a (nonchameleon) scalar
field has a mass of the order of 1 mm�1, then we must have
�< 10�1, [29].

One of the major successes of the proposal of chameleon
field by Khoury and Weltman [17,39], was that chameleon
fields can, by attaining a large mass in high-density envi-
ronments such as the Earth, Sun, and Moon, evade the
experimental limits coming from LLR and other laboratory
tests of gravity. In this way, it has been shown the scalar
fields in theories that possess a chameleon mechanism can
couple to matter with the strength of gravity, ��O�1� and
still coexist with the best experimental data currently
available. Even though ��O�1� has been shown to be
possible, �� 1 is still generally assumed to be ruled
out.

In this paper, however, we challenge this assumption and
show that it is indeed feasible for � to be very large.
Moreover M� � MGUT � 1015 GeV or M� � 1 TeV are
allowed. Tantalizingly the experimental precision required
to detect such a sub-Planckian chameleon theory is already
within reach. Large matter couplings are allowed in normal
scalar-field theories but only if the scalar field has a mass
greater than �0:1 mm��1. This is not the case for chame-
leon theories. We shall show that the mass of the chame-
leon in the cosmos, or the solar system, can be, and
generally is, much less than 1 m�1.

E. Initial conditions

Even though the term chameleon field sounds rather
exotic, in a general scalar-field theory with a matter cou-
pling and arbitrary self-interaction potential, there will
generically be some values of � about which the field
theory exhibits a chameleon mechanism. Whether or not
� ends up in such a region will depend on its cosmological
evolution and one’s choice of initial conditions. The im-
portance of initial conditions was discussed in Ref. [18]. In
that paper the potential was chosen to be of runaway form
V / ��n, n > 0. We will review what is required of the
initial conditions for such potentials in Sec. VIII below. We
shall see that the larger � is, the less important the initial
conditions become. We will also see that the stronger the
coupling, the stronger the chameleon mechanism and so
the more likely it becomes that a given scalar-field theory
will display chameleonlike behavior. This is one of the
reasons for wanting to have a large value of �.
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F. The importance of nonlinearities

Chameleon field theories necessarily involve highly
nonlinear self-interaction potentials for the chameleon.
These nonlinearities make analytical solution of the field
equations much more difficult, particularly when the back-
ground matter density is highly inhomogeneous. Most
commentators therefore linearize the equations of chame-
leon theories when studying their behavior in inhomoge-
neous backgrounds [1,44– 46]. Such an approximation
may mislead theoretical investigations and result in erro-
neous conclusions about experiments which probe fifth-
force effects [47]. In this paper we shall show, in detail, that
this linearization procedure is indeed very often invalid.
When the nonlinearities are properly accounted for, we will
see that the chameleon mechanism becomes much
stronger. It is this strengthening of the chameleon mecha-
nism that opens up the possibility of the existence of light
cosmological scalars that couple to matter much more
strongly than gravity (�� 1).

G. The chameleon potential

The key ingredient of a chameleon field theory, in
addition to the chameleon-to-matter coupling, is a non-
linear and nonquadratic self-interaction potential V���. It
has been noted previously that V��� could play the role of
an effective cosmological constant [18]. There are obvi-
ously many choices one could make for V���, and while
we wish to remain suitably general in our study, we must
go some way to specifying V��� if we are to make
progress. One quite general form that has been widely
used in the literature is the Ratra-Peebles potential,
V��� � M4�M=��n [48], where M is some mass scale
and n > 0; chameleon fields have also been studied in
the context of V��� � k�4=4! [49]. In this paper we will
consider both of these types and generalize a little further.
We take

 V��� � �M4�M=��n; (8)

where n can be positive or negative and � > 0. If n � �4
then we can scale M so that without loss of generality
� � 1. When n � �4, M drops out and we have a �4

theory. When n > 0 this is just the Ratra-Pebbles potential.

H. Chameleon field equation

With these assumptions and requirements, the chame-
leon field, �, obeys the following conservation equation:

 ��� � �n�M3

�
M
�

�
n�1
�
����!P�

Mpl
: (9)

For this to be a chameleon field we need the potential
gradient term, V;� � �n�M3�M=��n�1, and the matter-
coupling term, ����!P�=Mpl, to be of opposite signs. It
is usually the case that �> 0 and P=�	 1. If n > 0 we
must therefore have�> 0. In theories with n < 0 we must

have�< 0 and n � �2pwhere p is a positive integer. We
must also require that the effective mass-squared of the
chameleon field, m2

c � V;��, be positive, nonzero and
depend on �. These conditions mean that we must exclude
the region �2 � n � 0. If n � �2, n � �1, or n � 0
then the field equations for � would be linear.

I. Natural values of M and �

When n � �4, one might imagine that our choice of
potential has arisen out of an expansion, for small �M̂=��n,
of another potential W��� � M̂4f��M̂=��n� where f is
some function. We could then write

 W � M̂4f�0� � M̂4f0�0�
�
M̂
�

�
n
; (10)

where M̂ is some mass scale. We define M so that the
second term on the right hand side of the above expression
reads M4�M=��n. The first term on the right hand then
plays the rôle of a cosmological constant M̂4f�0� � ��.
Assuming that both f�0� and f0�0� are O�1�, we would then
have M � M̂ � ����

1=4 � �0:1 mm��1. It is for this rea-
son that one will often find �0:1 mm��1 referred to as a
‘‘natural‘‘ value for M, [18,39]. When n � �4 we natu-
rally expect � � 1=4! [50].

III. ONE BODY PROBLEM

In this section, we consider the perturbation to the
chameleon field generated by a single body embedded in
background of uniform density �b. For simplicity we shall
model the body to be both spherical and of uniform density
�c. This analysis will prove vital when we come to calcu-
late the force between two bodies that is induced by the
chameleon field. We assume space-time to be Minkowski
(at least to leading order) and we also assume that every-
thing is static. Under these assumptions �! �r2 where
r2� � r�2�r2�0�0; �0 � d�=dr. Whilst this problem has
been considered elsewhere in the literature [17,18,39],
most commentators have chosen to linearize the chame-
leon field equation, Eq. (9), before solving it. This lineari-
zation is, however, often invalid. In this section, we begin
by briefly reviewing what occurs when it is appropriate to
linearize Eq. (9), and, in doing so, note where the linear
approximation breaks down. In some cases, even though it
is not possible to construct a linearized theory that is valid
everywhere, we shall demonstrate, using the method of
matched asymptotic expansions, how to construct multiple
linearizations of the field equation, each valid in a different
region, and then match them together to find an asymptotic
approximation to � that is valid everywhere. When this is
possible, the chameleon field, �, will behave as if these
were the solution to a consistent, everywhere valid, linea-
rization of the field equations; for this reason we deem this
method of finding solutions to be the pseudolinear approxi-
mation. If a body is large enough, however, both the linear
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and pseudolinear approximations will fail. We shall see
that, when this happens, � behaves in a truly nonlinear
fashion near the surface of the body. The onset of nonlinear
behavior is related to the emergence of a thin shell in the
body. The linear approximation is discussed in Sec. III A
while the pseudolinear approximation is considered in
Sec. III B. We discuss the nonlinear regime in Sec. III C.

We take the body that we are considering to be spherical
with radius R and uniform density �c. Assuming spherical
symmetry, inside the body (r < R), � obeys

 

d2�

dr2
�

2

r
d�
dr
� �n�M3

�
M
�

�
n�1
�
��c
Mpl

; (11)

and outside the body, (r > R), we have

 

d2�

dr2
�

2

r
d�
dr
� �n�M3

�
M
�

�
n�1
�
��b
Mpl

: (12)

The right hand side of Eq. (11) vanishes when � � �c
where

 �c � M
�

��c
n�MplM

3

�
�1=�n�1�

:

This value of � corresponds to the minimum, of the
effective potential of the chameleon field, inside the
body. Similarly, the right hand side of Eq. (12) vanishes
when � � �b where

 �b � M
�

��b
n�MplM

3

�
�1=�n�1�

:

This value of � corresponds to the minimum, of the
effective potential of the chameleon field, outside the
body. For large r we must have � � �b. Associated with
every value of � is an effective chameleon mass, m����,
which is the mass of small perturbations about that value of
�. This effective mass is given by

 m2
���� � Veff

;����� � n�n� 1��M2

�
M
�

�
n�2

: (13)

We define mc � m���c� and mb � m���b�. We shall see
below that the larger the quantity mcR, the more likely it is
that a body will have a thin shell. In this section we shall
see both why this is so, and precisely how largemcR has to
be for a thin shell to appear. Throughout this section we
will require, as boundary conditions, that

 

d�
dr

��������r�0
� 0 and

d�
dr

��������r�1
� 0:

A. Linear regime

We assume that it is a valid approximation to linearize
the equations of motion for � about the value of � in the
far background,�b. For this to be possible we must require
that certain conditions, which we state below, hold.
Writing � � �b ��1, the linearized field equations are

 

d2�1

dr2
�

2

r
d�1

dr
� �nM3

�
M
�b

�
n�1
�m2

b�1

�
���c � �b�

Mpl
H�R� r� �

��b
Mpl

;

(14)

where H�R� r� is the Heaviside function: H�x� � 1,
x � 0, and H�x� � 0, x < 0. For this linearization of the
potential to be valid we need

 

V;����b��1

V;���b�
< 1:

This translates to j�1=�bj< jn� 1j�1. Also, for this lin-
earization to remain valid as r! 1, we need �1 ! 0,
which implies that

 nM3

�
M
�b

�
n�1
�
��b
Mpl

:

Defining ��c � �c � �b, and solving the field equations,
we find that outside the body (r > R) we have

 �1 �
���c
Mplm2

b

emb�R�r�

mbr

�
tanh�mbR� �mbR

1� tanh�mbR�

�
:

Inside the body (r < R), �1 is given by

 �1 � �
���c
m2
bMpl

�
���c
Mplm

2
b

�1�mbR�e
�mbR sinh�mbr�
mbr

:

The largest value of j�1=�bj occurs at r � 0 and so,
for this linear approximation to be valid, we need: j�1�r �
0�=�bj< jn� 1j�1. This requirement is equivalent to the
statement that

 j�1�mbR�e�mbR � 1j
��c
�b
�

1

2
m2
bR

2 ��c
�b

�
��c
�c

�
�b
�c

�
1=�n�1� �mcR�2

2
< 1:

where ‘‘�’’ means ‘‘asymptotically in the limit
mbR! 0.’’ It is often the case that the background is
much less dense than the body i.e. �b 	 �c. If this is the
case then it is clear, from the above expression, that there
will be a distinct difference between theories with n > 0
and those with n � �4. In theories with n > 0, the lower
the density of the background, the better the linear theory
approximation will hold, whereas when n � �4 the oppo-
site is true. This can be understood by considering the
relation �b / �

�1=�n�1�
b . If n > 0, the smaller �b becomes,

the larger �b will be. It is therefore possible for larger
perturbations in � to be treated consistently in terms of the
linearized theory. If, however, we have that n � �4 then
�b ! 0 as �b ! 0 and the opposite is true.

We can, however, use the method of matched asymptotic
expansions to show that the region where behavior, similar
to that which would be predicted by linearized theory,
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occur is significantly larger than 1 would have guessed
simply by requiring that the linear approximation hold.

The results of this section, as well as those of Secs. III B
and III C, are summarized in Sec. III D below.

B. Pseudolinear regime

The defining approximation of the pseudolinear regime
(for both positive and negative n) is that inside the body:

 

�
�c

��r�

�
n�1
	 1:

This is equivalent to ��c=Mpl � nM3�M=��r��n�1.
When this holds we find �� ���r� inside the body, where
this defines ���r� and

 

1

r

d2�r ���

dr2 �
��c
Mpl

:

It follows that

 �� �� � �0 �
��cr2

6Mpl
:

In this case ‘‘�’’ means ‘‘asymptotically as
��c=��r��n�1 ! 0.’’ Outside the body, we can find a simi-
lar asymptotic approximation:

 �� �� � �0 �
��cR2

2Mpl
�
��cR3

3Mplr
:

For this to be valid we must ensure that the neglected
terms, in the above approximation to �, are small com-
pared to the included ones; this requires that

 

R3

3
�

Z r

0
dr0

Z r0

0
dr00r00

�
�c

���r00�

�
n�1

:

For large r we expect, as we did in the previous section,
that �! �b, and so

 ��� � �b �
Ae�mbr

r
;

which will remain valid whenever Ae�mbr�br	 j1=�n�
1�. We shall refer to �� as the inner approximation to �.
Similarly,� is the outer approximation. So far both A, and
the value of �0, remain unknown constants of integration.
In general, when ��� we will not also have �� ��
(and vice versa). If, however, there is some intermediate
region where both the inner and outer approximations are
simultaneously valid, then we can match both expressions
in that intermediate region and determine both �0 and A
[51,52]. A detailed explanation of the use of matched
asymptotic expansions with respect to cosmological scalar
fields is given in Refs. [53–55].

For the moment we shall assume that such an intermedi-
ate region does exist. We check what is required for this
assumption to hold in Appendix A and present the results
of that analysis below. Given an intermediate region, we
find

 A �
��cR3

3Mpl
; �0 � �b �

��cR2

2Mpl
�
��cmbR3

3Mpl
:

The external field produced by a single body in the pseudo-
linear approximation is

 ���b �
��cR3e�mbr

3Mplr
,

�
�c
�
�b

�c
�
�mcR�2e�mbr

3�n� 1��r=R�
;

(15)

and the field inside the body is given by

 � � �b �
��cR2

2Mpl
�
��cmbR3

3Mpl
�
��cr2

6Mpl
: (16)

In Appendix A, we find that for the pseudolinear approxi-
mation to hold, we must require

 

mcR	 min
�
�17�1=6

�
mc

mb

�
�n�4�=�3�n�2��

;
������������������
2jn� 1j

p ��������
�
mb

mc

�
2=jn�2j

� 1

��������
�
; n <�4; (17a)

mcR	 min
� ���

3
p �

mc

mb

�
�n�4�=�3�n�2��

;
������������������
2jn� 1j

p ��������
�
mc

mb

�
2=jn�2j

� 1

��������
�
; n > 0; (17b)

mcR	 1; n � �4: (17c)

When n � �4, we actually find a slightly different asymp-
totic behavior of � outside the body, precisely

 ���b �

������������������������������������������������������������
1

2��y0 � ln�min�r=R; 1=mb���

s
e�mbr

2r
; (18)

where y0 is an integration constant and

 

�mcR�
3

9
�

��������
3

2y0

s
�

1

3

�
3

2y0

�
3=2
:

The conditions given by Eqs. (17a)–(17c) ensure that the
pseudolinear approximation is everywhere valid. When
these conditions fail, nonlinear effects begin to become
important near the center of the body. As mcR is increased
further the region where nonlinear effects play a rôle
moves out from the center of the body. Eventually, for
large enough mcR, the nonlinear nature of chameleon
potential, V���, is only important in a thin region near
the surface of the body; this is the thin shell. Since the
emergence of such a thin shell is linked to nonlinear effects
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becoming important near the surface of the body, it must be the case that the assumption that � is given by Eq. (15) (or by
Eq. (18) in n � �4 theories) breaks down for some r > R. By this logic, we find, in Appendix A, that a thin shell occurs
when
 

mcR * min
�
�18�1=6

�
mc

mb

�
�n�4�=�3�n�2��

;
������������������
3jn� 1j

p ��������
�
mb

mc

�
2=jn�2j

� 1

��������
�
; n <�4; (19a)

mcR * min
� ���

3
p �

mc

mb

�
�n�4�=�3�n�2��

;
������������������
3jn� 1j

p ��������
�
mb

mc

�
2=jn�2j

� 1

��������
�
; n > 0; (19b)

mcR * 4; n � �4: (19c)

In both Eqs. (17a), (17b), (19a), and (19b) the second term
in the min�
; 
� is almost always smaller than the first when
�b=�c 	 1, mb=mc 	 1. The behavior of � both near
to, and far away from, a body with thin shell is discussed
below in section III C. The results of this section are
summarized in Sec. III D. Note that the thin-shell condi-
tions, Eqs. (19a)–(19c), necessarily imply that mcR� 1.

C. Nonlinear regime

We have just seen, in Eqs. (19a)–(19c), that for non-
linear effects to be important, and the pseudolinear ap-
proximation to fail, we must havemcR� 1. In this regime
the body is, necessarily, very large compared to the length
scale 1=mc. We expect that all perturbations in � will die
off exponentially quickly over a distance of about 1=mc
and, as such, � � �c will be almost constant inside the
body. Any variation in the chameleon field, that does take
place, will occur in a ‘‘thin shell’’ of thickness �R � 1=mc
near the surface of the body. It is clear that mcR� 1
implies �R=R	 1. In this section we will consider both
the behavior of the field close to the surface of the body,
and far from the body.

1. Close to the body

We noted above that mcR� 1 implies �R=R	 1, we
shall demonstrate this is a rigorous fashion below. Given
�R=R	 1, when we consider the evolution of � in the
thin-shell region, we can ignore the curvature of the surface
of the body, to a good approximation.

We therefore treat the surface of the body as being flat,
with outward normal in the direction of the positive x axis.
The surface of the body defined to be at x � 0 (i.e. x �
r� R). Since the shell is thin compared to the scale of the
body, we are interested in physics that occurs over length
scales that are very small compared to the size of the body.
We therefore make the approximation that the body ex-
tends to infinity along the y and z axes and also along the
negative x axis. Given these assumptions, we have that �
evolves according to

 

d2�

dx2
� �n�M3�M=��n�1 � ��c=Mpl:

As a boundary conditions (BCs) we impose that
d�=dx! 0 as x! �1 (i.e. deep inside the body). Let

us define ~� to be the value that � tends to as x! 1. With
these BCs, the first integral of the above equation is

 

1

2

�
d�
dx

�
2
� �M4��M=��n � �M= ~��n� �

��c
Mpl
��� ~��:

(20)

Since ��c=Mpl � �nM3�M=�c�
n�1, it is clear from the

above equation that d�=dx! 0 as x! �1, implies that
~� � �c. In a more realistic scenario in which the body is
not infinite but merely large compared to 1=mc, we find by
integrating Eq. (20) that ~�=�c is related to the width of the
body, which we write as 2R� 2m�1

c , thus

 

� ~�
�c

�
n�1
� 1� exp

�
�

������������
n� 1

2n

s
mcR

�
:

We note that the conditions d�=dx! 0 as x! �1, and
�! �c as x! �1 are in fact equivalent and as such
only represent one boundary condition on �.

Outside of the body, we require that d�=dx! 0 as x!
1. It follows from the field equation for � that this
boundary condition is equivalent to �! �b as x! 1.
We require also that the background has density �b 	 �c.
Assuming that

 

��������d
2�

dx2

���������
��������2

r
d�
dx

��������;
then we can ignore the curvature of the surface of the body
and, in x > 0, we have
 

1

2

�
d�
dx

�
2
� �M4�M=��n��M4�M=�b�

n�
��b
Mpl
����b�;

(21)

where�b is as we have defined above. Our assumption that
jd2�=dx2j � �2=r�d�=dx then requires that
 

2
���
2
p

m����r

������������
n� 1

n

s �
1� �n� 1�

�
�
�b

�
n
� n

�
�
�b

�
n�1

�
1=2
	 1:

Provided the pseudolinear approximation breaks down,
and that the body has a thin shell, we expect that, near
the surface of the body, ��O��c�. It follows that, when-
ever �c � �b, ��=�b�

n 	 1 and ��=�b�
n�1 	 1. The

above condition will therefore be satisfied provided that
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mcR�
�����������������������
8�n� 1�=n

p
; this is generally a weaker condition

than the requirement that the body satisfy the thin-shell
conditions, Eqs. (19a)–(19c). On the surface at x � 0, both
� and d�=dx must be continuous. By comparing the
expressions for d�=dx inside and outside the body we have

 

��0� ��c

�c
�

1

n
:

This result is valid so long as the body is large compared to
m�1
c (more specifically mcR�

�����������������������
8�1� 1=n�

p
) and that the

thin-shell conditions hold.
We now check that we do indeed have a thin shell i.e.

�R	 R. We expect that, near the surface of the body,
almost all variation in � will concentrated into a shell of
thickness �R. We define msurf by
 Z 0

�1
dx
d�
dx
� ��x� 0� ��c � �c=n� msurf

d�
dx
�x� 0�:

m�1
surf is then, approximately, the length scale over which

any variation in � dies off. As it happens, msurf is also the
mass of the chameleon field at x � 0. It follows that �R �
m�1

surf . For this shell to be thin, and for us to be justified in
ignoring the curvature of the surface of the body, we need
�R=R	 1 or equivalently msurfR� 1. We find (assum-
ing �b 	 �c) that

 msurfR �
�

n
n� 1

�
n=2�1

mcR�O�mcR�;

and so msurfR� 1 follows from mcR� 1, and �R�
O�m�1

c �. msurfR� 1 will be automatically satisfied when-
ever the thin-shell conditions Eqs. (19a)–(19c) hold.

Whenever �c � �b, Eq. (21) will, near r � R, be well
approximated by

 

1

2

�
d�
dx

�
2
� �M4�M=��n:

Solving this under the boundary conditions ��x � 0� �
�1� 1=n��c and �=�c ! �b=�c � 0 as x! 1 we find

 

1

m����
�
jn� 2j�r� R����������������������

2n�n� 1�
p �

�
n� 1

n

�
n=2�1 1

mc
: (22)

This approximation will therefore breakdown when
m����r�O�1�, which occurs when r� R�O�R�. We

can see that, if r� R�
���������������������
2n�n� 1�

p
=�jn� 2jmsurf� then

m�, and hence also�, will be independent ofmc and hence
also of �c and � at leading order. Since msurfR� 1, there
will be some region where Eq. (22) is both valid and, to
leading-order, independent of �.

Although, in this approximation, we cannot talk about
what occurs for �r� R� * R, it seems likely, in light of the
behavior seen when �r� R� 	 R, that, whenever r�
1=msurf � 1=mc, the perturbation in �, induced by an
isolated body with thin shell, will be independent of the

matter coupling �. We confirm this expectation in
Sec. III C 2 below.

2. Far field of body with thin shell

We found above that the emergence of a thin shell was
related to nonlinear effects being non-negligible near the
surface of the body. We noted that a thin shell will exist
whenever conditions (19a)–(19c) hold. However, even
when these conditions hold, we do not expect nonlinear
effects to be important far from the surface of the body.
Indeed, for large r we should expect that � takes a func-
tional form similar to that found in the pseudolinear ap-
proximation i.e. as given by Eq. (15) (or Eq. (18) if
n � �4). Although the functional form should be similar,
in order to find the correct behavior, one must replace
(mcR) in Eqs. (15) and (18) by some other quantity C,
say. We show that, to leading order as r! 1, C is inde-
pendent of the matter coupling � and the density of
the central body �. This confirms the expectation of
Sec. III C 1 above. The analysis for n � �4 is slightly
more involved than it is for other values of n. We therefore
consider the n � �4 case separately below and in
Appendix B. The analysis for theories with runaway po-
tentials that become singular at � � 0 (i.e. n > 0 theories)
is much simpler than it is for theories where the potential
has a minimum at � � 0 and which are nonsingular for all
finite � i.e. (n <�4 theories): we therefore consider the
n < 0 and n > 0 cases separately.

Runaway potentials (n > 0)—Away from the surface of
the body we expect that nonlinear effects will be negligible
and as r! 1 we will have

 ����0� � �b �
De�mbr

r
;

for some D where �b and mb are the values of the chame-
leon and its mass in background. It is clear from the field
equations however that r2�<r2��0� and so, given the
boundary conditions at infinity, �<��0� outside the body.
In n > 0 theories there is a singularity of the potential, and
hence also of the field equations, at � � 0. It is clear that
this singularity cannot be reached in any physically accept-
able evolution and so we must always have �> 0, which
in turn implies ��0� > 0 outside the body. The minimum
value of ��0� outside the body occurs at r � R and so we
must have

 D<�be
mbRR:

In most cases of interest mbR	 1 and so we have

 D<�bR:

This upper bound on D defines a critical form for the field
outside the body

 �crit � �b

�
1�

emb�R�r�R
r

�
:
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No matter what occurs inside the body (r < R) we must
have �>�crit outside the body as r! 1. This implies
that

 

��������d�dr
��������< �1�mbr��bemb�R�r�R

r2 <
�bR

r2 ;

as r! 1. Ignoring nonlinear effects, �>�crit is satisfied
by all bodies that satisfy the conditions for the pseudolinear
approximation (Eqs. (17b)) but would be violated, in the
absence of nonlinear effects, by those that satisfy the thin-
shell conditions [Eqs. (19)]. We must therefore conclude
that nonlinear effects near the surface of body with thin-
shells ensure �>�crit is always satisfied as r! 1.
Furthermore, if �� �crit then

 

��������d�dr
��������	 �bR

r2 ;

and it follows from Sec. III B that the pseudolinear ap-
proximation is valid for all r, which further implies that the
body cannot have a thin shell. Thus thin-shelled bodies
must actually have � being only greater less than �crit as
r! 1. We are therefore justified in using �crit to approxi-
mate the far field of a body with a thin shell. In summary:
in n > 0 theories, the far field of a body with a thin shell
has the following form:

 ���b ��bemb�R�r�Rr:

We note that this form, and the arguments with which we
have derived it, do not depend, in any way, on the physics
inside r < R. The critical form of � is determined entirely
by the form of the potential and the background value of�.

Potentials with minimum (n < 0)—For n > 0 theories
the singularity of the potential at � � 0 allowed us to
determine asymptotic form of � outside a body with a
thin shell. In n < 0 theories, however, the potential is well
defined for all finite� and so we cannot play the same trick
as we did above. The n � �4 case is special and treated in
great detail in Appendix B. When n � �4, we find that the
far field of a body with thin shell is given by

 � � �b �
e�mbr

r
�����������������������������������������������������������������
2��1� 4 ln�min�r=R; 1=mbR���

p ��b

�
e�mbr

2r
��������������������������������������������������
2� ln�min�r=R; 1=mbR��

p :

A thin shell is certainly present whenever mcR * 4. For
other negative values of n we use a semianalytical method.
We saw when deriving the thin-shell conditions for n < 0
theories that the background value of � plays only a
negligible rôle since �=�b � 1 near the body and, in
most cases, mbR	 1. Assuming mbR	 1, we simplify
our analysis by setting �b � 0. Far from the body non-
linear effects are sub-leading order and we expect

 ����0� � �
D
r
� o�1=r�:

We now define a new coordinate s �
����������������������
jnjA��n�2�

p
Mr and

u � ��=AM for some constant A. With these definitions
the full field equation for� outside the body (with�b � 0)
becomes

 

1

s2

d
ds

�
s2 du
ds

�
� u�n�1;

and as s! 1:

 u�
DA��n�4�=2������
jnj

p
s
� o�1=s�:

We set An�4 � D2=jnj so that u� 1=s and define t � 1=s
so that the field equations become

 

d2u

dt2
�
u�n�1

t4
: (23)

The asymptotic form of u as r! 1, t! 0, requires that
u�t � 0� � 0 and du=dt�t � 0� � 1 exactly. With these
boundary conditions we numerically evolve Eq. (23) to-
wards larger t (smaller r). As one might expect from such
an elliptic equation, with these boundary conditions, a
singularity occurs at some finite t which we label tmax.
We use our numerical evolutions to determine tmax for each
n. For the evolution of � to remain nonsingular up to the
surface of the body, we need r � R to correspond to a value
of t < tmax. The limiting case is given by t�R� � tmax. This
limiting case determines a critical form for the � field
which occurs when A � Amin where

 Amin � jnt2maxj
1=�n�2��MR�2=�n�2�:

This corresponds to the following critical asymptotic form
for �:

 �crit ��b �

�
tjn�4j
max

jnj

�
1=jn�2j

�MR��n�4�=�n�2� e
�mbr

r
;

where we have reinserted the (almost always negligible)
�b and mb dependence. We use numerical integration to
calculate the value of 	�n� :� tjn�4j

max for different values of
n. Our results are displayed in Table I. Physically accept-
able nonsingular evolution implies that asymptotically
�=�crit < 1. If �=�crit 	 1 then the conditions of the
pseudolinear approximation are satisfied and so the body

TABLE I. Values of 	�n� � tjn�4j
max .

n 	�n�

�12 14.687
�10 10.726
�8 6.803
�6 3.000
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cannot have a thin shell. Thin-shelled bodies must there-
fore almost saturate this bound on� and so�crit provides a
good approximation to the asymptotic behavior � outside
thin-shelled bodies. We note that, as in the n > 0 case, the
existence of a critical form for � depends in no way on the
what occurs inside the body and, as such, is independent of
both � and the density of the body.

Critical behavior—The existent of a critical form for �
when r� R implies that, no matter how massive our
central body, and no matter how strongly it couples to
the chameleon, the perturbation it produces in � for r�
R takes a universal value whenever the thin-shell condi-
tions, Eqs. (19a)–(19c), hold.

When n � �4, the critical form of the far field, depends
only on M, n, R and on the chameleon mass in the back-
ground,mb. When n � �4 the critical form for the far field
depends only on �, R and mb. For all n, the far field is,

crucially, found to be independent of the coupling, �, of
the chameleon to the isolated body. This is one of the main
reasons why �� 1 is not ruled out by current experi-
ments. The larger � becomes, the stronger the chameleon
mechanism and so the easier it is for a given body to have a
thin shell. However, the far field of a body with a thin shell
is independent of�, and so, in stark contrast to what occurs
for linear theories, larger values of � do not result in larger
forces between distant bodies. Defining the mass of our
central body to be M � 4��cR

3=3 we can express this
critical behavior of the far field in terms of an effective
coupling, �eff , defined by

 ���b �
�effMe�mbr

4�Mplr
;

when r� R. Assuming �b=�c 	 1 we find that

 

�eff �
4�Mpl

M

�
	�n�
jnj

�
1=jn�2j

�MR��n�4�=�n�2�; n <�4; (24a)

�eff �
4�Mpl

M
MR

�
n�n� 1�M2

m2
b

�
1=�n�2�

; n > 0; (24b)

�eff�r� �
2�Mpl

M
�2� ln�min�r=R; 1=mbR���

�1=2; n � �4: (24c)

The � independence of �eff was first noted, in the context
of �4 theory, in Ref. [28]. However, the authors were
mostly concerned with region of parameter space �< 1,
�	 1; in our analysis we go further: considering a wider
range of theories and also the possibility that �� 1.
�-independence was also present in the original work of
Khoury and Weltman [17,39] for n > 0 theories. However,
in those works, the � independence together with its
important implications for experiments, was not com-
mented on. Especially those that search for WEP violations
were not considered. As we shall see in Sec. VI below, this
� independence means that if one uses test-bodies with the
same mass and outer dimensions then in chameleon theo-
ries, no matter how much the weak equivalence principle is
violated at a particle level, there will be no violations of
WEP far from the body. Simply because the far field is
totally independence of both the body’s chameleon cou-
pling and its density.

In this work, we have also shown that this � indepen-
dence is a generic feature of all V / ��n chameleon
theories and it is not simply as artifact of the runaway
(n > 0) potentials considered in Refs. [17,39]. Indeed there
are good reasons to believe that similar behavior will be
seen in chameleon theories with other potentials. As we
mentioned in the introduction, the field equations for cha-
meleon theories are necessarily nonlinear. It is well known
that, that in nonlinear theories, the evolution of arbitrary
initial conditions will generically be singular. If one wishes
to avoid singularities then tight constraints on the initial

conditions must be satisfied. When considering the field
outside an isolated body, these conditions will, generally,
require that jd�=drj is smaller than some critical,
r-dependent, value. As a result, there will a critical, or
maximal, form that the field produced by a body can take.
This precisely what we have found for ��n theories. The
form of this critical far field will depend on the nature of
the nonlinear potential, and possibly the coupling of � to
any background matter, but, since we are outside the body,
it cannot depend on the coupling of the chameleon to the
body itself. Again, this is precisely what we have seen for
��n chameleon theories.

We can understand the �-independence, in a slightly
different way, as follows: just outside a thin-shelled body,
the potential term in Eq. (9) is large and negative
(�O����=Mpl�), and it causes � to decay very quickly.
At some point, � will reach a critical value, �crit, that is
small enough so that nonlinearities are no longer impor-
tant. Since this all occurs outside the body, �crit can only
depend on the size of the body, the choice of potential
�M;�; n� and the mass of � in the background, mb. This is
precisely what we have found above.

We have seen above that the far field of a body with thin
shell is independent of the microscopic chameleon-to-
matter coupling, �. This is one of the vital features that
allows theories with �� 1 to coexist with the current
experimental bounds. It is also of great importance when
testing for WEP violations, since any microscopic compo-
sition dependence in � will be invisible in the far field of
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the body. We discuss these issues further in section VI,
where we consider the experimental constraints on �, M,
and � in more detail.

The results of this section are summarized in Sec. III D
below.

D. Summary

We have seen in this section that there are three impor-
tant classes of behavior for � outside an isolated body: the
linear, pseudolinear and nonlinear regimes. In fact,
although the mathematical analysis differs, � behaves in
same way in both the pseudolinear and linear regimes. We
have shown that linear, or pseudolinear, behavior will
occur whenever conditions (17a)–(17c) on mcR hold. As
mcR is increased, conditions (17a)–(17c) will eventually
fail. As mcR is increased still more, a thin-shell forms and
we move into the nonlinear regime. A thin shell will exist

whenever the thin-shell conditions, Eqs. (19a)–(19c), hold;
these are equivalent to mcR > �mcR�eff . We have seen that,
in the nonlinear regime, the far field is independent of the
coupling of the chameleon to the isolated body. The main
results of this section are summarized below.

We have been concerned with a spherical body of uni-
form density �c and radius R. The background has density
�b 	 �c. The chameleon in background (r� R) takes the
value�b and its mass there ismb � m���b�. We also have

 �c � M
�

��c
n�MplM3

�
�1=�n�1�

; mc � m���c�:

1. Linear and pseudolinear behavior

Nonlinear effects are negligible when

 

mcR	 min��18�1=6�mc
mb
��n�4�=�3�n�2��;

������������������
2jn� 1j

p
j�mb
mc
�2=jn�2j � 1j�; n <�4;

mcR	 min�
���
3
p
�mc
mb
��n�4�=�3�n�2��;

������������������
2jn� 1j

p
j�mc
mb
�2=jn�2j � 1j�; n > 0;

mcR	 1; n � �4;

and outside the body, r > R, � behaves like
 

� � �b �
�mcR�

2�cRe
�mbr

3�n� 1�r
; n � �4;

� � �b �

���������������������������������������������������������
1

2�y0 � ln�min�r=R; 1=mb���

s
e�mbr

2r
; n � �4;

where y0 is given by

 

�mcR�3

9
�

��������
3

2y0

s
�

1

3

�
3

2y0

�
3=2
:

When nonlinear effects are negligible a body will certainly not have a thin shell.

2. Bodies with thin shells

A body with have a thin shell when

 

mcR * min��18�1=6�mc
mb
��n�4�=�3�n�2��;

������������������
3jn� 1j

p
j�mb
mc
�2=jn�2j � 1j�; n <�4;

mcR * min�
���
3
p
�mc
mb
��n�4�=�3�n�2��;

������������������
3jn� 1j

p
j�mb
mc
�2=jn�2j � 1j�; n > 0;

mcR * 4; n � �4:

Outside the body there are two regimes of behavior. If �r�
R�=R	 1 and m����=mb � 1 then � is given by

 

1

m����
�
jn� 2j�r� R����������������������

2n�n� 1�
p �

�
n� 1

n

�
n=2�1 1

mc
;

and:

 � � sgn�n�M
�
n�n� 1��M2

m2
����

�
1=�n�2�

:

If, however, �r� R�=R * 1 then

 ���b �
�effMe�mbr

4�Mplr
;
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where M is the mass of the body, and �eff is the effective coupling
 

�eff �
4�Mpl

M

�
	�n�
jnj

�
1=jn�2j

�MR��n�4�=�n�2�; n <�4;

�eff �
4�Mpl

M
MR

�
n�n� 1�M2

m2
b

�
1=�n�2�

; n > 0

�eff�r� �
2�Mpl

M
�2� ln�min�r=R; 1=mbR����1=2; n � �4:

We note that �eff is independent of coupling of the cha-
meleon to the body, and that� is independent of the body’s
mass, M. When �r� R�=R * 1, � only depends on r, R,
M, �, n, and mb.

IV. EFFECTIVE MACROSCOPIC THEORY

Equation (9) defines the microscopic, or particle-level,
field theory for�, whereas in most cases, which we wish to
study, we are interested in the large scale or coarse-grained
behavior of �. In macroscopic bodies the density is ac-
tually strongly peaked near the nuclei of the individual
atoms from which it is formed and these atoms are sepa-
rated from each other by distances much greater than their
radii. Rather than explicitly considering the microscopic
structure of a body, it is standard practice to define an
‘‘averaged’’ field theory that is valid over scales compa-

rable to the body’s size. If our field theory were linear, then
the averaged equations would be the same as the micro-
scopic ones e.g. as in Newtonian gravity. It is important to
note, though, that this is very much a property of linear
theories and is not in general true of nonlinear ones.

Nonlinear effects must therefore be taken into account.
Using similar methods to those that were used in Sec. III
above, we derive an effective theory that describes the
behavior of the course-grained or macroscopic value of
� in a body with thin shell. We will identify the conditions
that are required for linear theory averaging to give accu-
rate results and consider what happens when nonlinear
effects are non-negligible.

In this section, we derive an effective macroscopic the-
ory appropriate for use within bodies that possess a thin
shell and which are made up of small particles, radius R
and mass mp. These particles are separated by an average
distance 2D� R. The average density of the body is �c.
We illustrate this set-up in Fig. 3. A thin shell, in this sense,
means that the average value of � inside a sphere of radius
* D, will be approximately constant,� � �c, everywhere
inside the body apart from in a thin shell close to the
surface of the body. Generally the emergence of a thin
shell is related to a breakdown of linear theory on some
level. The conditions for a body to have a thin shell are
given by Eqs. (19a)–(19c). The outcome of this section
will be to slightly modify these conditions. Precisely, we
will find that there is maximal, or critical, value for the
average chameleon mass, mc. Oddly, this critical, macro-
scopic chameleon mass depends only on the microscopic
properties of the body.

A. Averaging in linear theories

We are concerned with finding an effective theory that
will give correct value of �c. We have defined mc �

m���c�. The microscopic field equations for �, as given
by Eq. (9), are

 ��� � �n�M3

�
M
�

�
n�1
�
��� ~x�
Mpl

;

where the microscopic matter density, �� ~x�, is strongly
peaked about the constituent particles of the macroscopic
body but negligible in the large spaces between them.
Before considering what occurs in a nonlinear theory,
such as the chameleon theories being studied here, we

 

FIG. 3. Illustration of the model for the microscopic structure
of the body considered in this section. The constituent particles
are assumed to be spherical of radius R, mass mp and of uniform
density. They are separated by an average distance 2D. The
average density of the body is defined to be �c.
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will review what would occur in the linear case. For the
field equation to be linear, the potential must be, at worst, a
quadratic in the scalar field �. With the potentials consid-
ered in this paper, a linear theory emerges if n � 0, �1 or
�2. To examine why averaging, or coarse graining, is not
an issue if field equations are linear, and make reference to
what actually occurs in chameleon theories, we shall lin-
earize Eq. (9) about� � �0 for some�0. It is important to
note that we are performing this linearization only for the
purpose of showing what occurs in linear theories; we are
not claiming that a linearization, such as this, is actually
valid. Defining � � �0 ��1, and neglecting nonlinear
terms, we obtain
 

���1 � �n�M
3

�
M
�0

�
n�1
� n�n� 1��M2

�
M
�0

�
n�2

�1

�
��� ~x�
Mpl

: (25)

We will write the averaged, or coarse-grained, value of a
quantity Q� ~x� as hQi� ~x� and define it by

 hQi� ~x� �

R
d3yQ� ~y��� ~x� ~y�R
d3y�� ~x� ~y�

; (26)

where the function �� ~x� ~y� defines the coarse graining
and the integral is over all space. Different choices of �
will result in different coarse-grainings. If we are interested
in averaging over a radius of about D around the point ~x,
then a sensible choice for � would be something like

 �1� ~x� ~y� � e��j ~x� ~yj
2�=D2

;

or

 �2� ~x� ~y� � H�D� j ~x� ~yj�;

where H�x� is the Heaviside function. For the coarse-
graining process to be well defined we must require that,
whatever choice one makes for �, it vanishes sufficiently
quickly as j ~x� ~yj ! 1 that the integrals of Eq. (26) con-
verge. This will usually require ��O�j ~x� ~yj�3� as
j ~x� ~yj ! 1.

Consider the application of the averaging procedure to
the linear field equation given by Eq. (25). It follows from
the assumed properties of � that h��1i � �h�1i and so

 �h�1i � �n�M
3

�
M
�0

�
n�1
� n�n� 1��M2

�
M
�0

�
n�2
h�1i

�
�h�i� ~x�
Mpl

:

This is the averaged field equation for �1. It is clear from
the above expression, that, although the precise definition
of the averaging operator depends on a choice of the
function �, the averaged field equations are independent
of this choice. This independence is a property of linear
theories but it is not, in general, seen in nonlinear ones. The

averaged field equations for a nonlinear theory will, gen-
erally, depend on ones choice of averaging. In this section,
we take our averaging function to be �2 as defined above;
this is equivalent to averaging by volume in a spherical
region of radius D. It is also clear that, for a linear theory,
the averaged field equation for �1 is functionally the same
as the microscopic equation. This, again, would not be true
if nonlinear terms where present in the equations; in gen-
eral

 h�ni � h�in

unless n � 0 or 1 or � is a constant.

B. Averaging in chameleon theories

Our aim, in this section, is to calculate the correct value
of h�i and hm����i inside a body with a thin shell. We
have defined �c � h�i and �c � h�i. Although these
calculations will implicitly depend on our choice of aver-
aging function, our results should also be approximately
equal, at least to an order of magnitude, to those that would
be found using any other sensible choice of coarse-graining
defined over length scales of about D or greater.

If our chameleon theories were linear, we have seen that
we would expect � � ��lin�c where

 ����lin�c � �n�M3

�
M

��lin�c

�
n�1
�
��c
Mpl

;

and so, for ��lin�c � const, we have

 ��lin�c � M
�

��c
n�MplM3

�
�1=�n�1�

:

In Appendix C, we show that, for some values of R, D, and
mp, linearized theory will give the correct value of �c to a

high accuracy i.e. �c � ��lin�c . This happens when there
either exists a consistent, everywhere valid, linearization of
the field equations or we can construct a pseudolinear
approximation along the same lines as was done in
section III B. However, for some values of R, D and mp,
we find that nonlinear effects are unavoidable. When R, D
and mp take such values, we will say that we are in the
nonlinear regime. We find that, just as it did in section III C
above, the nonlinear regime features �-independent criti-
cal behavior. The details of these calculations can be found
in Appendix C.

We define
 

Dc � �n�n� 1���n�1�=�n�4�M�1

�
3�mp

4�Mpljnj

�
�n�2�=�n�4�

;

D �
�
n�n� 1�

MR

�
�n�1�=3

M�1

�
3�mp

4�Mpljnj

�
�n�2�=3

; (27)

and note that D=Dc � �Dc=R��n�1�=3. For the linear ap-
proximation to be valid we need both mcD	 1 and
m2
cD3=2R	 1. This is equivalent to
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Dc 	 D	 D; n <�4

max�Dc;D� 	 D; n > 0:

When n � �4 we require D	 D and

 �12�3=2�1=2

�
3�mp

4�nMpl

�
	 1:

We can see that, for givenmp and R, it is always possible to

find a D such that the linear approximation is valid when
n > 0. However, when n � �4, it is possible that there will
exist no value of D for which the above conditions hold.
Whenever the linear approximation holds we have

 mc � m���
�lin�
c �:

We can construct a pseudolinear approximation when-
ever

 �
Dc

R

�
�n�4�=�n�1�

< 2jn� 1j
�
1�

�
R
D

�
3=jn�1j

�
; n <�4; (28a)

D
Dc

> 1 and
D
D
<
�

2�n� 1�
�
1�

�
R
D

�
3=�n�1�

��
�n�1�=3

; n > 0; (28b)

m���
�lin�
c �D	

�
243

2 ln�D=R�

�
1=6
; n � �4: (28c)

When the pseudolinear approximation holds we again find

 mc � m���
�lin�
c �:

As the interparticle separation, D, is decreased we will eventually reach a point where Eqs. (28a)–(28c) fail to hold.
When this occurs it is because nonlinear effects have become important inside the individual particles that make up the
body. AsD decreases still further these particles will eventually develop thin shells of their own. Nonlinear effects become
important when

 �
Dc

R

�
�n�4�=�n�1�

> 3jn� 1j
�
1�

�
R
D

�
3=jn�1j

�
; n <�4 (29a)

D
D
>
�

3�n� 1�
�
1�

�
R
D

�
3=�n�1�

��
�n�1�=3

; n > 0 (29b)

m���
�lin�
c �D *

�
243

2 ln�D=R�

�
1=6
; n � �4: (29c)

These conditions define the nonlinear regime. Between the
pseudolinear, and fully nonlinear regimes, there is, of
course, some intermediate region, however this has proven
too difficult to analyze analytically. We therefore leave the
detailed analysis of this intermediate behavior to a later
work. This intermediate region is, however, in some sense
small and so we do not believe it to have any great
importance with respect to experimental tests of chame-
leon theories.

When the individual particles develop thin shells, the
�-field external to the particles will be, by the results of
Sec. III, independent of�. This ensures that the chameleon
mass far from the particles is also independent of �.
Therefore, whenever a body falls into the nonlinear regime,
the average chameleon mass will take a critical value,
mc � mcrit

c . This is defined in a similar way to which
�mcR�crit was in Sec. III C, i.e. mcrit

c is the maximal mass
that the chameleon may have when r�O�D� such that,
when the microscopic field equations are integrated,
��c=��n is finite for all r > R. This definition implies a
relationship between mcrit

c , R and D, however it does not

depend on eitherM or �.mcrit
c is also found to depend on n;

this is because n defines precisely how quickly ��c=��
n

blows up. We derive expressions mcrit
c in Appendix C find-

ing:

 mcrit
c �

������������������
3jn� 1j

p
D

�
R
D

�
q�n�=2

S�n�; n � �4

mcrit
c � X=D; n � �4;

(30)

where q�n� � min��n� 4�=�n� 1�; 1�, S�n� � 1 if n > 0
and S�n� � �	�n�=3�1=2jn�1j if n < 0. X is given by

 

3
���
3
p

���������������������
2 ln�D=R�

p � X coshX� sinhX:

We plot mcrit
c D vs ln�D=R� in Fig. 4. For an everyday body

with density similar to water, we approximate R and mp

respectively by the radius and mass of carbon nucleus (say)
and find ln�D=R� � 11, and so mcrit

c � 1:4=D when n �
�4. When n � �4, mcrit

c D	 1 follows from R=D	 1.
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It is interesting to note that, even though mcrit
c is a

macroscopic quantity, it depends entirely on the details
of the microscopic structure of the body i.e. R and D. By
combining the results of this section, we find that the
average mass of the chameleon inside a body with thin
shell that is itself made out of particles is given by

 mc � min
�
M
�
jnj�MplM3

��c

�
�n�2�=�2�n�1��

; mcrit
c �n; R;D�

�
:

When evaluating the thin-shell conditions, Eqs. (19a)–
(19c), it is therefore this value of mc that should be used.

V. FORCE BETWEEN TWO BODIES

In the previous two sections, we have considered how
the chameleon field, �, behaves both inside and outside an
isolated body. In this section we study the form that the
chameleon field takes when two bodies are present, and use
our results to calculate the resultant �-mediated force
between those bodies. The results of this sections will
prove to be especially useful when we come to consider
the constraints on chameleon field theories coming from
experimental tests of gravity in Sec. VI below.

Chameleon field theories, by their very nature, have
highly nonlinear field equations. This nonlinear nature is
especially important when bodies develop thin shells. As a
result of their nonlinear structure, one cannot solve the two
(or many) body problem by simply superimposing the
fields generated by two (or many) isolated bodies, as one
would do for a linear theory.

When the two bodies in question have thin shells, we
shall see that the formula for the �-force is highly depen-
dent on the magnitude of their separation relative to their
respective sizes. We shall first consider the case where the
separation between the two bodies is small compared the
radius of curvature of their surfaces, and second look at the
force between two distant bodies. Finally we will consider
the force between a very small body and a very large body.
We will also look at what occurs when one or both of the
bodies does not have a thin shell.

A. Force between two nearby bodies

We consider the force between two bodies (hereafter
body one and body two) whose surfaces are separated by a
distance d. Both bodies are assumed to satisfy the thin-
shell conditions. The two bodies are taken to be nearby in
the sense that: d	 R1, R2 where R1 and R2 are, respec-
tively, the radii of curvature of the surface of body one and
body two. Since d	 R1, R2 we can ignore the curvature of
the surfaces of bodies to a first approximation. With this
simplification we treat the bodies as being infinite, flat
slabs and take body one to occupy the region x < 0, and
body two the region x > d. We use a subscript 1 to refer to
quantities that are defined for body one: e.g. the density of
body one is �1 and the chameleon mass deep inside body
one is m1, and a subscript 2 for quantities relating to body
two. Additionally a subscript or superscript s is uses to
refer to quantities that are defined on the surfaces of the
two bodies e.g. ms

1 is the chameleon mass of the surface of
body one. Subscript 0 is used two label quantities defined
at that point between body one and body two where
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FIG. 4. Dependence of the critical chameleon mass on D=R. The above plots show how mcritD depends on ln�D=R� for different
values of n. The cases n � �4 and n � �4 are qualitatively different and are therefore shown on separate plots. mcrit is the maximal
mass the chameleon can take inside a thin-shelled body. 2D is the average separation of the particles that comprise that body and R is
the average radius of the constituent particles. Typically we find that ln�D=R� � 11 for bodies with density �� 1–10 g cm�3;
ln�D=R� � 11 is indicated on the plots. Note that when n > 0, mcritD is independent of n. Also note that in �4 theory mcritD�O�1�
whereas for other value of n it is generically much smaller.
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d�=dx � 0. We assume also that the background chame-
leon mass, mb, obeys mbd	 1, we discuss later what
occurs if this is not the case.

We now consider the �-mediated force on body one due
to body two. With the above definitions, and � obeys:

 

d2�

dx2
� V;����

in 0< x< d and

 

d2�

dx2
� V;���� �

��1

Mpl

in x < 0. Integrating these equations we find

 

�
d�
dx

�
2
� 2�V��� � V0�; (31)

in 0< x< d, and in x < 0 we have

 

1

2

�
d�
dx

�
2
� V��� � V1 �

��1����1�

Mpl
:

Matching these expressions at x � 0 we have

 �s
1 ��1 �

Mpl�V1 � V0�

��1
; (32)

If the second body where not present then V0 � 0 and
�s

1 �
��s

1 where

 

�� s
1 ��1 �

MplV1

��1
:

The attractive force per unit area of body one due to body
two is, therefore,

 

F�
A
�
��1

Mpl
j ��s

1 ��
s
1j � V0:

This holds for all V��� not just the ��n potentials consid-
ered in this work. To find V0 we integrate Eq. (31) in the
region 0< x< d and find

 

���
2
p
d �

������
V0

p

jV0;�j

�Z y1

1

dx

W�x�
������������
x� 1
p �

Z y2

1

dx

W�x�
������������
x� 1
p

�
;

(33)

where y1 � Vs1=V0 and y2 � Vs2=V0 and W�x � V=V0� �

V�=V0;�. We evaluate the integrals in the above expression
in two important limits.

1. Limit 1: y1 � Vs1=V0 � 1� �

In this limit we assume V1 � Vs1 � V0, this would occur
if V1 <V2 and d is suitably small. In this limit:

 

Z y1

1

dx

W�x�
������������
x� 1
p � 2

Z �1=2

0

dz

W�1� z2�
� 2�1=2 �O���:

We also define �s
1 ��1 � �s

1
 > 0. With this definition
Eq. (32) becomes:

 �s
1
 �

Mpl�V1 � V
s
1�

��1
�
MplV0�

Mpl

� �s
1
�

Mpl

��

�
�

1

2
�s2

1 m
2
1


2 � V0��O�
3�

�
;

thus

 �s
1
 �

�����������
2V0�

m2
1

s
;

and

 V0 � V1 �
��
Mpl

�����������
2V1�

m2
1

s
�O���:

2. Limit 2: y1 � Vs1=V0 � 1

This limit occurs when either d is suitably large or if
V1 � V2. We take 1=y1 � �	 1. We consider V / ��n

potentials and so W � x1�1=n. In this limit we have:

 

Z y1

1

dx

W�x�
������������
x� 1
p �

Z 1

�
dzz�1=n���1=2��1� z��1=2

� B
�

1

n
�

1

2
;
1

2

�
�

�
2n
n� 2

�
��1=n���1=2�

� . . .

where B�
; 
� is the Beta function. To leading order in � we
have

 �s
1 � �1 �

MplV1

��1
:

We are now in a position to evaluate V0�d� and hence
F�=A. Without loss of generality we take V1 � V2 and
consider three limits:

3. Large separations

If

 m1d;m2d�
2
���
2
p
n

n� 2

�
n

n� 1

�
��n�1�=2

B
�

1

n
�

1

2
;
1

2

�
:

then we have V2 � V1 � V0 and so
 ������

2�
p
jnjM

��������M�0

���������n=2��1
d

� 2B
�

1

n
�

1

2
;
1

2

�
�O��V0=V1�

�1=n���1=2�; �V0=V2�
�1=n���1=2��:

In this limit

 

F�
A
� V0 � �2=�n�2�M4

� ���
2
p
B�1n�

1
2 ;

1
2�

jnjMd

�
2n=�n�2�

� �2=�n�2�KnM
4�Md�2n=�n�2�;

where we have defined
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 Kn �
� ���

2
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B�1n�

1
2 ;

1
2�

jnj

�
2n=�n�2�

:

4. Small separations: m2 � m1

If

 m1d >
�
n� 1

n

���
m2

m1

�
n=�n�2�

�

�
m1

m2

�
n=�n�2�

�
;

m2d	 1

then V2 � V1 � V0 and

 V0 � V1=2
1 V1=2

2
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�
n
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�
V1=2

0 m0d

V1=2
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�
n

n� 1

�
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1 m1d

V1=2
1 � V1=2

2

�
:

The force per area is therefore:

 

F�
A
� V1=2

1 V1=2
2

�
1�

�
n

n� 1

�
V1=2

0 m0d

V1=2
1 � V1=2

2
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� V1=2
1 V1=2

2

�
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�
n

n� 1

�
V1=2

1 m1d

V1=2
1 � V1=2

2

�
:

5. Small separations: m2 � m1

When m2 � m1 it is generally the case that V2 >Vs1 �
V0 >V1. In this case we have:

 

F�
A
� V0

� �n� 1�V1

�
1�

�
m1

m2
�

�
n

n� 1

�
�n�2�=2

�
�n� 2�m1d���������������������

2n�n� 1�
p �

2=�n�2�
�
:

This limit is valid provided that V0 > 0 and Vs1 � V0,
which requires

 

m1

m2
�

�
n

n� 1

�
�n�2�=2 �n� 2�m1d���������������������

2n�n� 1�
p 	 1:

If mbd is not 	 1 then the F�=A given above are further
suppressed by a factor of exp��mbd�.

B. Force between two distant bodies

We shall now consider the force between two bodies,
with thin shells, that are separated by a ‘‘great distance,’’ d.
By ‘‘great distance’’ we mean d� R1, R2, where R1 and
R2 are, respectively, the length scales of body one and body
two. Given that d� R1, R2, then, to a good approxima-
tion, we can consider just the monopole moment of the

field emanating from the two bodies, and model each body
as a sphere with respective radii R1 and R2.

We expect that, outside some thin region close to the
surface of either body, the pseudolinear approximation
(with the field taking its critical value i.e. �mcR� !
�mcR�crit � �mcR�eff) is appropriate to describe the field
of either body. In the region where pseudolinear behavior is
seen, we can safely superimpose the two one body solu-
tions to find the full two body solution.

Close to the surface of body one the mass of the cha-
meleon induced by body one will act to attenuate the
perturbation to the chameleon field created by body two.
This effect can be quite difficult to model correctly. We can
predict the magnitude of the field, however, by noting that
the perturbation to �, induced by body two, near to body
one will be

 ��2 � �
��2�effM2e

�mbd

4�Mpld
:

From the results of Sec. III C, we know that ��2�effM2=Mpl

only depends on the radius of body two and the theory
dependent parameters, M, � and n; �eff is as given in
Eqs. (24a)–(24c); mb is the mass of the chameleon field
in the background i.e. far away from either of the two
bodies. M2 is the mass of body two.

We define the perturbation to � induced by body one
near to body one in a similar manner

 ��1 � �
��1�effM1e

�mbd

4�Mpld
:

From Eqs. (24a)–(24c) we know that ��1 is independent
of� and the mass of body one, M1. The force on body one
due to body two will be proportional to r��2, however,
since this must also be the force on body two due to body
one, it must also be proportional to r��1 evaluated near
body two. From this we can see that the force on one body
due to the other must, up to a possible O�1� factor, be given
by

 F� �
��1�effM1�

�2�
effM2�1�mbd�e

�mbd

�4�Mpl�
2d2 :

The functional dependence of this force on M, n, R1, R2

and � depends on whether n <�4, n � �4 or n > 0. We
consider these three cases separately below. In all cases the
force is found to be independent of �, M1 and M2.

1. Case n <�4

When n <�4, Eq. (24a) gives

 

��1�effM1

4�Mpl

�

�
	�n�
jnj

�
1=jn�2j

�MR1�
�n�4�=�n�2�:

The expression for��2�eff is similar but with 1! 2. The force
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between two spherical bodies, with respective radii R1 and
R2, separated by a distance d� R1, R2, is therefore given
by

 F� �
�
	�n�
jnj

�
2=jn�2j

�
�MR1�

�n�4�=�n�2��MR2�
�n�4�=�n�2��1�mbd�e�mbd

d2 :

(34)

2. Case n > 0

If n > 0 then ��1�eff is given by Eq. (24b) to be

 

��1�effM1

4�Mpl

� MR1

�
n�n� 1�M2

m2
b

�
1=�n�2�

:

Again the expression for ��2�eff is similar. The force between
two distant bodies is therefore found to be

 F� �
�
n�n� 1�M2

m2
b

�
2=�n�2�M2R1R2�1�mbd�e

�mbd

d2 :

(35)

3. Case n � �4

When n � �4,��1;2�eff are given by Eq. (24c) and they are
actually weakly dependent on r. Using Eq. (24c) we find
that

 F� �
�1�mbd�e

�mbd

8�
�������������������������������������
ln�d=R1� ln�d=R2�

p
d2
: (36)

C. Force between a large body and a small body

One subcase that is not included in the above results is
the force between a very large body with radius of curva-
ture R1, and a very small body with radius of curvature R2,
that are separated by an intermediate distance d i.e. R2 �
d� R1. We assume that both bodies have thin shells. In
this case we find a behavior that is half way between the
two cases described above in Secs. VA and V B. The
magnitude of field produced by the large body will be
much greater than that of the small body.

If we ignore the small body and assume that the average
mass of the chameleon in the background obeysmbd	 1,
then the field produced by body one is given by Eq. (22).
Using this equation, we find that
 

d�
dx
�x � d� � �1=�n�2�

�
2

�n� 2�2

�
n=�2�n�2��

�Md��n�4�=�n�2�

� d�2:

The effective coupling of body two to this �-gradient will
be �eff as it is given by Eqs. (24a)–(24c). If mbd * 1 then
this gradient will be, up to an order O�1� coefficient,
attenuated by a factor of �1�mbd� exp��mbd�. The force
between the two bodies is therefore given by
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jnj
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1=jn�2j

�MR2�
�n�4�=�n�2�
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�n� 2�2
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d2 ; n <�4 (37a)

F� � MR2
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n�n� 1�M2

m2
b

�
1=�n�2�

�
2

�n� 2�2

�
n=�2�n�2��

�Md��n�4�=�n�2� �1�mbd�e�mbd

d2 ; n > 0 (37b)

F� �
1

2�
����������������������
2 ln�d=R2�

p �1�mbd�e
�mbd

d2 ; n � �4: (37c)

As before, d is the distance of separation. These formulae
will prove useful when we consider the �-force between
the Earth and a test mass in laboratory tests for WEP
violation in Sec. VI C.

D. Force between bodies without thin shells

If neither of the two bodies have thin shells, � behaves
just like a standard, linear, scalar field with mass mb. The
force between the two bodies, with masses M1 and M2, is
given by

 F� �
�2M1M2�1�mbd�e�mbd

4�M2
pld

2 :

As above, mb is the mass of the chameleon in the back-
ground. If one of the bodies has a thin shell, body one say,

but the other body does not, then the force is given by

 F� �
��1�eff�M1M2�1�mbd�e�mbd

4�d2 ;

whenever d� R1 where R1 is the radius of curvature of
body one and ��1�eff is as given by Eqs. (24). If d	 R1 then

 F� � �1=�n�2�

�
2

�n� 2�2

�
n=�2�n�2��

�Md��n�4�=�n�2�

�
�M2�1�mbd�e�mbd

Mpld2 :

As above, d is the distance of separation.
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E. Summary

In this section we have considered the force that the
chameleon field, �, induces between two bodies, with
masses M1 and M2 and radii R1 and R2, separated by a
distance d. The chameleon mass in the far background is
taken to be mb. When both bodies have thin shells, we
found that, to leading order, the �-force between them is
independent of the matter coupling, �, provided that m1d,
m2d� 1; m1 is the mass that the chameleon has inside
body one, and m2 is similarly defined with respect to body
two. The force between two such bodies is also indepen-
dent M1 and M2 but does in general depend on R1 and R2,
as well as on M, n, and �. The main results of this section
are summarized below.

1. Neither body has a thin shell

 F� �
�2M1M2�1�mbd�e

�mbd

4�M2
pld

2 :

2. Body one has a thin shell, body two does not

If the two bodies are close together (m�1
1 	 d	 R1)

then

 F� � �1=�n�2�

�
2

�n� 2�2

�
n=�2�n�2��
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If the bodies are far apart d� R1 then
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2 ; n > 0;

F� � �2�min�d=R; 1=mbR��
�1=2 �M2�1�mbd�e�mbd

2Mpld2 ; n � �4:

This force is independent of the mass of body one, and the chameleon’s coupling to it.

3. Both bodies have thin shells

If the two bodies of close by and m�1
1 , m�1

2 	 d	 R1, R2 then the force per unit area is
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:

Different formulae for F�=A apply if either m1d < 1 or m2d < 1, these are given at the end of Sec. VA above.
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where 	�n� is given in Table I. If body one is much larger than body two and they are at an intermediate separation: R2,
m�1

1 � d� R1 then
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VI. LABORATORY CONSTRAINTS

The best bounds on corrections to general relativity
come from laboratory experiments such as the Eöt-Wash
experiment [29] and Lunar Laser Ranging tests for WEP
violations [34,38]. At very small distances d & 10 �m, the
best bounds on the strength of any fifth force come from
measurements of the Casimir force.

In this section we will consider, to what extent, the
results of these tests constrain the class of chameleon field
theories considered here. We will find the rather startling
result that �� 1 is not ruled out for chameleon theories.

One of original reasons for studying chameleon theories
with n > 0 potentials, [39], was that the condition for an
object to have a thin shell, Eq. (19b), was found to depend
on the background density of matter. It is clear from
Eq. (19b), that the smaller �b is, the larger mcR must be
for a body to have a thin shell. This property lead the
authors of Ref. [39] to conclude that the thin-shell sup-
pression of the fifth-force associated with � would be
weaker for tests performed in the low-density vacuum of
space �b � 10�25 g cm�3, than it is in the relatively high-
density laboratory vacuum �b � 10�17 g cm�3. As a re-
sult, it is possible that, if the same experimental searches
for WEP violation, which were performed in the laboratory
in Refs. [35–37,56,57], were to be repeated in space, they
would find equivalence principle violation at a level
greater than that already ruled out by the laboratory-based
tests. It is important to note that this is very much a
property of n > 0 theories. It is clear from Eqs. (19a) and
(19c) that, when n � �4, the thin-shell condition, for a
body of density �c, is only very weakly dependent on the
background density of matter when �b 	 �c. As a result,
space-based searches for WEP violation will not detect any
violation at a level that is already ruled by lab-based tests
for n � �4 theories. Planned space-based tests such as
STEP [58], SEE [59], GG [60], and MICROSCOPE [61]
promise a much greater precisions than their lab-based
counterparts. MICROSCOPE is due to be launched in
2007. This improved precision will, in all cases, provide
us with better bounds on chameleon theories.

A. Eöt-Wash experiment

The University of Washington’s Eöt-Wash experiment
[29,30] is designed to search for deviations from the 1=r2

drop-off gravity predicted by general relativity. The ex-
periment uses a rotating torsion balance to measure the
torque on a pendulum. The torque on the pendulum is
induced by an attractor which rotates with a frequency
!. The attractor has 42 equally spaced holes, or ‘‘missing
masses,’’ bored into it. As a result, any torque on the
pendulum, which is produced by the attractor, will have a
characteristic frequency which is some integer multiple of
21!. This characteristic frequency allows any torque due
to background forces to be identified in a straightforward
manner. The torsion balance is configured so as to factor

out any background forces. The attractor is manufactured
so that, if gravity drops off as 1=r2, the torque on the
pendulum vanishes.

The experiment has been run with different separations
between the pendulum and attractor. The Eot-Wash group
recently announced some new results which go a long way
towards better constraining the parameter space of chame-
leon theory [30]. The experiment has been run for separa-
tions, 55 �m � d � 9:53 mm. Both the attractor and
the pendulum are made out of molybdenum with a density
of about �Mb � 10 g cm�3 and are 0.997 mm thick.
Electrostatic forces are shielded by placing a 10 �m thick,
uniform BeCu sheet between the attractor and pendulum.
The density of this sheet is �BeCu � 8:4 g cm�3. The rôle
played by this sheet is crucial when testing for chameleon
fields. If � is large enough, the sheet will itself develop a
thin shell. When this occurs the effect of the sheet is not
only to shield electrostatic forces, but also to block any
chameleon force originating from the attractor.

The force per unit area between the attractor and pen-
dulum plates due to a scalar field with matter coupling �
and constant mass m, where 1=m	 0:997 mm is

 

��������FA
��������� �e�md2�G�2

Mb

m2 ;

where � � �2=4� and d is the separation of the two
plates. The strongest bound on � coming from the Eot-
Wash experiment is �< 2:5� 10�3 for 1=m �
0:4–0:8 mm.

Depending on the values of �, M, and � there are three
possible situations:

(i) The pendulum and the attractor have thin shells, but
the BeCu sheet does not.

(ii) The pendulum, the attractor and the BeCu sheet all
have thin shells.

(iii) Neither the test masses nor the BeCu sheet have
thin shells.

In the first case the �-mediated force per unit area in a
perfect vacuum is given by one of the equations derived in
Sec. VA (depending on the separation d). In reality the
vacuum used in these experiments is not perfect actually
has a pressure of 10�6 Torr which means that the chame-
leon mass in the background, mb, is nonzero and so F�=A
is suppressed by a factor of exp��mbd�. Fortunately how-
ever mbd	 1 for all but the largest �. A further, and far
more important, suppression occurs when the BeCu sheet
has a thin shell. If mBeCu is the chameleon mass inside the
BeCu sheet and dBeCu the sheet’s thickness, the existence
of a thin shell in the electromagnetic shield causes
the chameleon-mediated force between the pendulum
and attractor to be suppressed by a further factor of
exp��mBeCudBeCu�. The thin-shell condition for the BeCu
sheet implies thatmBeCudBeCu � 1, and so this suppression
all but removes any detectable chameleon induced torque
on the pendulum due to the attractor. The BeCu sheet will
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itself produce a force on pendulum but, since the sheet is
uniform, this force will result in no detectable torque. If M
and � take natural values the electromagnetic sheet devel-
ops a thin shell for � * 104: as a result of this the Eot-
Wash experiment can only very weakly constrain large �
theories.

If neither the pendulum or the attractor have thin shells
then we must have mbd	 1 and the chameleon force is
just �2=4� times the gravitational one. Since this force
drops of as 1=r2 it will be undetectable from the point of
view this experiment. In this case, however, � is con-
strained by other experiments such as those that search
for WEP violation [34–38] or those that look for Yukawa
forces with larger ranges [62].

Given all of the considerations mentioned above, we
used the formulae given in section VA to evaluate the
latest Eöt-Wash constraints on the parameter space of
chameleon theories. Our results are shown in Fig. 5. In
these plots the shaded region is allowed by the current
bounds.

When � is small, the chameleon mechanism present in
these theories becomes very weak, and from the point of
view of the Eöt-Wash experiment, � behaves like a normal
(nonchameleon) scalar field. When �� 1, the �-force is
independent of the coupling of the chameleon to attractor
or the pendulum, but does depend on the mass of the
chameleon in the BeCu sheet, mBeCu. The larger mBeCu

is, the weaker the Eöt-Wash constraint becomes. Larger �
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FIG. 5 (color online). Constraints on chameleon theories coming from the Eöt-Wash bounds on deviations from Newton’s law. The
shaded area shows the regions of parameter space that are allowed by the current data. The solid black lines indicate the cases where M
and � take ‘‘natural values‘‘. The dotted-black line indicates when M � M� :� Mpl=� i.e. when the mass scale of the potential is the
same as that of the matter coupling. Other n <�4 theories are similar to the n � �8 case, while the n � 4 plot is typical of what is
allowed for n > 0 theories. The amount of allowed parameter space increases with jnj.
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implies a larger mBeCu, and this is why the allowed region
of parameter space increases as � grows to be very large.

When n � �4, we can see that a natural value of � is
ruled out for 10�1 & � & 104, but is permissible for � *

104. This is entirely due to the that BeCu sheet has a thin
shell, in n � �4 theories with � � 1=4!, whenever � *

104.
It is important to stress that, despite the fact that the Eöt-

Wash experiment is currently unable to detect �� 1, this
is not due to a lack of precision. One pleasant feature, of
the �-independence of the �-force, is that if you can
detect, or rule out, such a force for one value of �� 1,
then you will be able to detect it, or rule out, all such ��
1 theories. If design of the experiment can be altered so that
electrostatic forces are compensated without using a
thin-sheet then the experimental precision already exists
to detect, or rule out, almost all �� 1, �4 theories with
� � 1=4!.

In conclusion, an experiment, along the same lines of the
Eöt-Wash test, could detect, or rule out, the existence of
sub-Planckian, chameleon fields with natural values of M
and � in the near future, provided it is designed to do so.

B. Casimir force experiments

Short distance tests of gravity fail to constrain strongly-
coupled chameleon theories as a result of their use of a thin
metallic sheet to shield electrostatic forces. However, ex-
periments designed to detect the Casimir force between
two objects, control electrostatic effects by inducing an
electrostatic potential difference between the two test
bodies. By varying this potential difference and measuring
the force between the test masses, it is possible to factor out
electrostatic effects. As a result, Casimir force experiments
provide an excellent way in which to bound chameleon
fields where the scalar field is strongly coupled to matter.

Casimir force experiments measure the force per unit
area between two test masses separated by a distance d. It
is generally the case that d is small compared to the
curvature of the surface of the two bodies and so the test
masses can be modeled, to a good approximation, as flat
plates.

In section VA we evaluated the force per unit area
between two flat, thin-shelled slabs with densities �1 and
�2. The Casimir force is between two such plates is

 

FCas

A
�

�2

240d4 :

Whilst a number of experimental measurement of the
Casimir force between two plates have been made, the
most accurate measurements of the Casimir force have
been made using one sphere and one slab as the test bodies.
The sphere is manufactured so that its radius of curvature,
R, is much larger than the minimal distance of separation
d. In this case the total Casimir force between the test
masses is

 FCas � 2�R
�
1

3

�2

240

1

d3

�
� 3:35

�
R

d3

��m�3

cm

�
�dyn:

In all cases, apart from when n � �4 and m1d, m2d� 1,
the chameleon force per area grows more slowly than d�4

as d! 0. When n � �4 and m1d, m2d� 1 we have
F�=A / d

�4. It follows that the larger the separation, d,
used, the better Casimir force searches constrain chame-
leon theories. Additionally, these tests provide the best
bounds when the test masses do have thin shells as this
results in a strongly d dependent chameleon force. Large
test masses are therefore preferable to small ones.

Note that if the background chameleon mass is large
enough that mbd * 1 then F� is suppressed by a factor of
exp��mbd�. The smaller the background density �b is, the
smaller mb become. Since small mb is clearly preferably,
the best bounds come from experiments that use the lowest
pressure laboratory vacuum.

In Ref. [31], Lamoreaux reported the measurement of
the Casimir force using a torsion balance between a sphere,
with radius of curvature 12:5 cm� 0:3 cm and diameter of
4 cm, and a flat plate. The plate was 0.5 cm thick and
2.54 cm in diameter. The apparatus of placed in a vacuum
with a pressure of 10�4 m bar. Distances of separation of
6–60 �m were used and in the region d � 7–10 �m it was
found that

 jFmeasured � Ftheory
Cas j & 1 �dyn:

Another measurement, this time using a microelectrome-
chanical torsional oscillator, was performed by Decca et al.
and reported in Ref. [32]. In this experiment, the sphere
was much smaller than that used by Lamoreaux, being on
296� 2 �m in radius; the plate was made of 3:5 �m
thick, 500� 500 �m2 polysilicon. The smallness of these
test masses means that they will only have thin shells when
� is very large. In the region d � 400 nm–1200 nm,
jFmeasured � Ftheory

Cas j & 7:5� 10�2 �dyn. We show how
these experiments constrain the parameter space of ��n

chameleon theories in Fig. 6. Other Casimir force tests (e.g.
Ref. [33]) are less suited to constraining chameleon theo-
ries such as those considered here. As in the previous plots,
the shaded area is allowed, the solid black line is M�
����

1=4 or � � 1=4!, and the dotted-black line is M �
Mpl=�. We note that Casimir force experiments provide
very tight bounds on � and M when �� 1. A natural
value of � when n � �4 is ruled out for all � � 104.
When this is combined with the latest Eöt-Wash data we
can rule out � � 1=4! for all �> 1. For other n, we see
that we cannot haveMmuch larger than its ‘‘natural’’ value
����

1=4 for large �. If the bounds on extra forces at d�
1–10 �m can be tighten by roughly an order of magnitude
then a natural value of M can be ruled out for all large �.
Casimir force tests are by far the best bounds on M and �
for large �. We note that n � �4 theories are the most
tightly constrained by Casimir force experiments, this is
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not surprising since F�=FCas � const and is >1 in the
region when m1d, m2d� 1 in this model, whereas in all
the other theories F�=FCas decreases as d is made smaller.

More generally, the steeper the potential in a given
theory is, the more slowly F�=A increases as d! 0 and,
as a result, the weaker Casimir force bounds on the theories
parameter space are.

C. WEP violation experiments

The weak equivalence principle (WEP) is the statement
that the (effective) gravitational and inertial mass of a body
are equal. If it is violated then the either the strength of
gravitational force on a body depends on its composition,
or there is a composition dependent ‘‘fifth-force.’’ Since we
believe that gravity is geometric in nature, most commen-

tators, ourselves included, would tend to interpret any
detection of a violation of WEP in terms of the latter
option. The existence of light scalar fields that couple to
matter usually results in WEP violations. As we mentioned
in the introduction of this article, the experimental bounds
on WEP violation are exceeding strong [34–38,56,57,63]
and, at present, they represent the strongest bounds on the
parameters of, nonchameleon, scalar-tensor theories such
as Brans-Dicke theory [13,64]. A number of planned sat-
ellite missions promise to increase the precision to which
we can detect violations of WEP by between 2 to 5 orders
of magnitude [58–61]. The precision that is achievable in
laboratory-based tests also continues to increase at a steady
rate.

Experiments that search for violations of the weak
equivalence principle generally fall into two categories:
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FIG. 6 (color online). Constraints on chameleon theories coming from experimental searches for the Casimir force. The shaded area
shows the regions of parameter space that are allowed by the current data. The solid black lines indicate the cases where M and � take
‘‘natural values.’’ The dotted-black line indicates when M � M� :� Mpl=� i.e. when the mass scale of the potential is the same as that
of the matter coupling. Other n <�4 theories are similar to the n � �8 case, while the n � 4 plot is typical of what is allowed for
n > 0 theories. The amount of allowed parameter space increases with jnj i.e. as the potential becomes steeper.
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laboratory-based experiments, which often employ a modi-
fied torsion balance [35–37] and solar-system tests such as
lunar laser ranging (LLR) [34,35,77,78].

The laboratory-based searches use a modified version of
the Eöt-Wash experiment mentioned above. In these ex-
periments the test masses are manufactured to have differ-
ent compositions. The aim is then to detect, and measure,
any difference in the acceleration of test masses towards an
attractor, which is usually the Earth, the Sun, or the Moon.
In some versions of the experiment a laboratory body is
used as the attractor.

If the test masses have thin shells then the �-force
pulling them towards the Earth is given by Eqs. (37a)–
(37c). The chameleon force towards the Moon or Sun is
given by Eqs. (34)–(36). If the attractor is a laboratory
body then, depending on the separations used, the force is
given by either Eqs. (34)–(36) or by Sec. VA.

We label the mass and radius of the attractor by M3 and
R3 respectively, and take the mass and radius (or size) of
the two test masses to be given by fM1; R1g and fM2; R2g.
We define �13 to be the relative strength, compared to
gravity, of �-force between the attractor (body three) and
the first of the test masses (body one). �23 is defined
similarly as a measure of the �-force between body two
and body three. The difference between the acceleration of
the two test masses towards the attractor is quantified by
the Eötvos parameter �, where

 � �
2j�13 � �23j

j2� �13 � �23j
� j�13 � �23j:

When the test-bodies have thin shells, we found, in Sec. V,
that the �-force is independent of the masses of the test-
bodies, the mass of the attractor and the coupling of the test
masses and attractor to the chameleon. The only property
of the attractor and test bodies, which the �-force does
depend on, is their respective radii. Since the gravitational
force between the test masses and the attractor does depend
on the masses of the bodies, it follows that �13 only
depends on M1, M3, R1, R3, M (or �), mb, and n, where
mb is the chameleon mass in the background. It does not
depend on the chameleon’s coupling to the test mass, �.
The situation with �23 is very similar.

Since the �-force is independent of the coupling, �, any
microscopic composition dependence in � will be hidden

on macroscopic length scales. The only ‘‘composition’’
dependence in �13 is through the masses of the bodies
and their dimensions (R1 and R3).

Taking the third body to be the Earth, the Sun, or the
Moon, experimental searches for WEP violations have, to
date, found that � & 10�13 [35–37]. Future satellite tests
promise to be able to detect violations of WEP at between
the 10�15 [61], and the 10�18 level [58]. It also is claimed
that future laboratory tests will be able to see �� 10�15,
however, while the precision to detect at such a level is
achievable, there are a number of systematic effects that
need to be compensated for, before an accurate measure-
ment can be made.

In most of these searches, although the composition of
the test masses is different, they are manufactured to have
the same mass (M1 �M2) and the same size (R1 � R2).
Therefore, if the test masses have thin shells, we will have
�13 � �23 and so � � 0 identically. As a result, a chame-
leon field will produce no detectable WEP violation in
these experiments. The only implicit dependence of this
result on � is that, the larger the coupling is, the more
likely it is that the test masses will satisfy the thin-shells
conditions.

If one wishes to detect the chameleon using WEP vio-
lations searches, then one must either ensure that test
masses do not satisfy the thin-shell conditions, or that
they have different masses and/or dimensions.

We have just argued that all of the chameleon theories
considered here will automatically satisfy all laboratory
bounds on WEP violation, provided the test masses have
thin shells. This occurs entirely as a result of the design of
those experiments.

Let us consider then a putative experiment, which could
be conducted, that would, in principle, be able to detect the
chameleon through a violation of WEP. In this experiment
the test masses are of different densities (�1 and �2) but of
the same mass, Mtest. Crucially the radii (size) of the two
bodies are taken to be different: R1 and R2. We now
calculate the Eötvos parameter, �, taking the attractor to
be either the Earth, the Sun, or the Moon.

1. Attractor is the Earth

If the attractor is the Earth then we obtain
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where mb is the mass of the chameleon in the background
region between the test masses and the surface of the Earth;
d is the distance between the test masses and the surface of
the Earth. MEarth is the mass of the Earth, and REarth its
radius.

Current experimental precision bounds � & 10�13. We
shall assume that our putative experiment, if conducted,
would find � & 10�13. However, even if this is the case,
we are still only able to recover very weak bounds on
f�;M; �g. The bounds on � are especially weak due to
the �-independence of the �-force whenever the test-
bodies have thin shells. The only real bound on � comes
out of requirement that it be large enough for the test
masses to have thin shells.

For definiteness, we take the test masses to be spherical,
with a mass of Mtest � 10 g. We assume that one of them
is made entirely of copper and the other from aluminum. If
the test masses have thin shells then, even if mbd	 1,
finding �< 10�13 would, when n � �4, only limit

 � * 10�30:

For theories with n <�4, �< 10�13 is easily satisfied
provided that: M< 1010 mm�1. When n > 0, the resultant
bound is on a combination of M and m2

b. The WEP bounds
on the parameter space of n > 0 theories are generally
stronger than those for other n. We plot the effect of these
bounds on the parameter space of our chameleon theories
in Fig. 7.
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FIG. 7 (color online). Constraints on chameleon theories coming from WEP violation searches. The whole of shaded area shows the
regions of parameter space that are allowed by the current data. Future space-based tests could detect the more lightly shaded region.
The solid black lines indicate the cases where M and � take ‘‘natural values.’’ The dotted-black line indicates when M � M� :�
Mpl=� i.e. when the mass scale of the potential is the same as that of the matter coupling. Other n <�4 theories are similar to the
n � �8 case, while the n � 4 plot is typical of what is allowed for n > 0 theories. The amount of allowed parameter space increases
with jnj.
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2. Attractor is the Sun or the Moon

Constraints on chameleon theories can also be found by
considering the differential acceleration of the test masses
towards the Moon or the Sun, rather than towards the
Earth. The analysis for both of these scenarios proceeds
along the much same lines. Since, for the reasons we
explain below, the lunar bound will be by far the stronger,
we will only explicitly consider the case where the third
body is the Moon. In this case, the force between the test

mass and the Moon is given by Eqs. (34)–(36) for n <�4,
n > 0, and n � �4 respectively.

We define mb to be the average chameleon mass in the
region between the Earth and the Moon, and matm to be the
mass of the chameleon in the Earth’s atmosphere; mlab is
the background mass of the chameleon in the laboratory.
Ra is the thickness of the Earth’s atmosphere. d is the
distance of separation between the laboratory apparatus
and the Moon. Evaluating � we find

 � �
�M2

pl�1�mbd�e�mbd�maRa

MMoonMtest

��
3

jnj

�
2=jn�2j

�MRMoon�
�n�4�=�n�2�j�MR1�

�n�4�=�n�2� � �MR2�
�n�4�=�n�2�j; n <�4

(38)

 � �
�M2

pl�1�mbd�e�mbd�maRa

MMoonMtest

��
n�n� 1�M2
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�
2=�n�2�

MRMoonjM�R1 � R2�j; n > 0; (39)

 � �
�M2

pl�1�mbd�e�mbd�maRa

8�MMoonMtest

�
; (40)

 

�������� 1��������������������������������������������
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p �
1��������������������������������������������

ln�d=R2� ln�d=RMoon�
p ��������; (41)

where MMoon is the mass of the Moon and RMoon its radius.
If the Sun is used as the attractor then � is given by a
similar set of equations to those shown above only with
MMoon !MSun and RMoon ! RSun. MSun and RSun are,
respectively, the mass and the radius of the Sun. If the
attractor is taken to have fixed density, then we can see that
� dies off at least as quickly as 1=R2, where R is the radius
of the attractor. It follows that the predicted value �,
induced by chameleon, is always smaller when the Sun is
used as the attractor than when the Moon is. This is because
RSun � RMoon. The predicted values of � have a similar
dependence on the radii of the test masses i.e. dying off at
least as quickly as 1=R2. The corollary of this result is that
if we are unable to detect � in lab-based, micro-gravity
experiments where the radii of the test masses and the
attractor are both of the order of 10 cm, or smaller, then
the �-force between larger (say human-sized) objects
would also be undetectably small. For this reason, in the
context of chameleon theories, measurements of the dif-
ferential acceleration of the Earth and Moon towards the
Sun, e.g. lunar laser ranging [34,38], are not competitive
with the bounds on WEP violation found in laboratory-
based searches.

3. Summary

We show how bounding the Eötvos parameter by �<
10�13, with the attracting body being either the Moon or
the Earth, constrains chameleon theories in Fig. 7. As with
the Eöt-Wash plots: the whole of the shaded area is cur-

rently allowed, while the more lightly shaded area is that
which could be detected by proposed space-based tests of
gravity such as SEE, STEP, GG and MICROSCOPE. It is
claimed [58–61] that these experiments will be able to
detect � down to 10�18. This improved precision is re-
sponsible for most of the increased ability of spaced based
tests to detect a chameleon field. When n > 0, the thin-sell
condition is stronger in the low-density background of
space than it is in the relatively higher density background
of the laboratory; this effect accounts for some of extra
ability that future space-based experiments have to detect
the chameleon. We note that WEP violation searches only
have any real hope of detecting the chameleon field, if M
take a natural value i.e. M� �0:1 mm��1, in n > 0
theories.

D. Discussion

In Fig. 7, we plot how all of the bounds on WEP
violation mentioned in Refs. [34–38], as well as the puta-
tive bound resulting from the modified WEP violation test
we considered above, constrain the parameter space of our
chameleon theories. The Eöt-Wash bounds are shown in
Fig. 5, and the Casimir bounds in Fig. 6 These Eöt-Wash,
Casimir and WEP violation bounds are also included in the
plots of Sec. IX.

It is important to note that, the larger � is, the stronger
the chameleon mechanism becomes. A strong chameleon
mechanism results in larger chameleon masses, and larger
chameleon masses in turn result in weaker chameleon-
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mediated forces. A stronger chameleon mechanism also
increases the likelihood of the test masses, used in these
experiments, having thin shells. Large values of � cannot
therefore be detected at present by the Eöt-Wash and WEP
tests, if � and M take natural values. If the matter coupling
is very small, �	 1, then the chameleon mechanism is
very weak and � behaves as a normal (nonchameleon)
scalar field. The current precision of laboratory tests of
gravity prevent them from seeing even nonchameleon
theories with �< 10�5. Experiments that search for the
Casimir force are better able to detect large � theories
primarily due to the way in which they cancel electrostatic
forces. The ��O�1� region is, however, currently inac-
cessible to Casimir force experiments.

Casimir force experiments provide upper bounds on 1=�
and M but do not directly rule out large �. Upper bounds
on � do arise, however, from astrophysical considerations.
It so happens that for � & 1020, these astrophysical con-
straints are weaker than those coming from Casimir force
searches, however they are important since they constrain
how the chameleon field can behave in much lower (and
higher) density backgrounds than those that are easily
accessible in the laboratory, and thus effectively probe a
different region of the chameleon potential. These bounds
are discussed in Secs. VII and VIII below.

In conclusion: contrary to most expectations laboratory
tests of gravity do not rule out scalar-field theories with a
large matter couplings, �� 1, provided that they have a
strong enough chameleon mechanism. When n � �4, a
natural value of � is ruled out for all � � �2=4�< 10�2,
and even ��O�1� requires �� 107, i.e. �� 1013. When
n � �4, large � theories with natural values of M are
allowed for all n � �6. Chameleon theories, with natural
values of M, could well be detected or ruled out by a
number of future experiments provided they are properly
designed to do so.

VII. IMPLICATIONS FOR COMPACT BODIES

In this section we will consider the effect that the fifth
force associated with the chameleon field has upon the
physics of compact bodies such as white dwarfs and neu-
tron stars. In the preceding analysis, we have shown that
the �-force is only comparable in strength to gravity over
very small scales. In neutron stars and white dwarfs, how-
ever, the average interparticle separations are very small,
about 10�13 cm and 10�10 cm respectively, and the phys-
ics of such compact objects can therefore be very sensitive
to additional forces that only become important on small
scales. The stability of white dwarf and neutron stars
involves a delicate balancing act between the degeneracy
of, respectively, electrons or neutrons and the effect of
gravity. If the presence of the chameleon field were to alter
this balance significantly, one might find oneself predicting
that such compact objects are always unstable. If chame-
leon theories were to make such a prediction, for some

values of the parameters f�;M; �g, then we could, obvi-
ously, rule out those parameter choices. As well as the issue
of stability, we must also consider potential astrophysical
observables such as the Chandrasekar mass limit, and the
mass-radius relationship.

In 1930, Chandrasekar made the important discovery
that white dwarfs had a maximum mass �1:4M�,
[65,66]. The precise value depends on the composition of
the star. A similar maximum mass was found for neutron
stars by Landau [67]. It was additionally noted that the
mass, Mstar, of a white dwarf or neutron star would depend
on its radius, R, in a very special manner. This is the mass-
radius relationship. It is possible to extrapolate both Mstar

and R from astronomical data, for example, see Refs. [68–
70]. In all of those works, and others like them, the mass-
radius relationship, as predicted by General Relativity, has
been found to be in good agreement with the data. It is,
therefore, important that the addition of a chameleon field
should not greatly alter this relationship. The quoted 1
error bars on most of the determinations of Mstar and R are
between about 3 and 10% of the central value. It would
certainly be fair to say then that any new theory, which
predicts deviations in the value ofMstar�R� from the general
relativity (GR) value of less than about 10%, is consistent
with all current data. Much greater deviations, are however
ruled out. We shall use this criterion to bound the parame-
ters of our chameleon theories.

We first consider how the presence of a chameleon alters
the Chandrasekar mass limit and the mass-radius relation
for both white dwarfs and neutron stars. Our analysis
proceeds along the same lines as that presented in
Ref. [71]. We will start by considering a white dwarf and
then note how our results carry over to neutron stars. We
suppose that the white dwarf contains N electrons. Charge
neutrality then implies that there are N protons. There will
also be neutrons present (approximately N of them) but for
this calculation we will merely group the protons and
neutrons together into N nucleons where each nucleon
contains one proton. We denote the mass of a nucleon by
mu and take it to be the atomic mass unit, mu � 1:661�
10�24 g. White dwarfs are kept from collapsing by the
pressure of degenerate electrons, while their gravitational
potential comes almost entirely from the nucleons (as
mu � me). We model the white dwarf as being at zero
temperature. If should be noted that we are not interested,
so much, in accurately determining the mass-radius rela-
tionship or Chandrasekar mass limit, as we are in seeing to
what extent they deviate from the general relativistic form.

In the limiting cases of nonrelativistic, � � 5=3, and
relativistic, � � 4=3, behavior, the equation of state for the
electrons can be written in polytropic form:

 P � K��

with K a constant. For relativistic electrons:
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 K �
31=3�2=3

4

1

m4=3
u �5=3

e

;

where �e � 2 is the chemical potential for the electrons in
the white dwarf [71]. We require that the white dwarf be in
hydrostatic equilibrium. Ignoring general relativistic cor-
rections, this implies

 

~rP � �� ~r�N �
�� ~r�
Mpl

;

where the last term is the additional element that comes
from the chameleon field. �N is the Newtonian gravita-
tional potential: r2�N � 4��=M2

pl. In most realistic sce-
narios the density inside the white dwarf will only change
very slowly over length scales comparable to the inverse
chameleon mass. We can therefore take

 ��x� � M
�MplM

3n�

��� ~x�

�
1=�n�1�

;

to hold inside the white dwarf. It is standard practice,
[71,72], to solve for hydrostatic equilibrium by minimizing
an appropriately chosen energy functional. In the absence
of a chameleon field this is

 

�E � U�W;

where W is the gravitational potential energy

 W � �
Z
d3x

1

2
�N�;

and U is the internal energy of the white dwarf. It is shown
in Ref. [71] that when one perturbs the density in such a
way that the total mass is conserved (�� � � ~r 
 �� ~�� for
some vector field ~�) we have

 � �E � �U� �W �
Z
� ~rP� � ~r�N� 
 ~�d3x:

It follows that � �E vanishes for a star in hydrostatic equi-
librium. To solve for hydrostatic equilibrium in the pres-
ence of a chameleon field, we need to minimize the
following energy functional:

 E � �E�W� � U�W �W�;

where

 W� �
n� 1

n

Z
d3x

��
Mpl

�:

To see that this is the correct expression we consider �W�:

 �W� �
n� 1

n

Z
d3x

������
Mpl

�
Z
d3x

��
Mpl

��

� �
Z
d3x

��
Mpl

~r 
 �� ~�� �
Z
d3x

�
�� ~r�
Mpl

�

 �:

With this definition �E � 0 is seen to be equivalent to
requiring hydrostatic equilibrium:

 �E �
Z �

~rP� � ~r�N �
�� ~r�
Mpl

�

 ~�d3x � 0:

A. The mass-radius relation

Schematically we have W� /
n�1
n ��h�i=Mpl�Mstar

where h::i indicates an average and Mstar � muN is the
mass of the star. We note that W� � �

�1=�n�1�, and that it
is negative for n � �4 and positive for n > 0. To study the
effect of the chameleon upon the Chandrasekar mass limit,
and the mass-radius relationship, we assume that the den-
sity of the white dwarf is uniform. Whilst this is not at all
accurate, it is sufficient to see when the chameleon does, or
does not, have a significant effect. Also, while not being
accurate, this approximation still gives the mass-limit and
mass-radius relationship up to an O�1� factor. This said, we
shall consider a more accurate model later when we look at
general relativistic corrections. The total internal energy of
the white dwarf is given by

 U � N��p2
F �m

2
e�

1=2 � Nme�> 0;

where pF � N1=3=R is the Fermi momentum of degenerate
electrons [71,72]. For W we find

 W � �
3m2

uN
2

5M2
plR

:

Evaluating W� in this approximation yields

 W� � ��
n� 1

n
�����
Mpl

muN:

We have included a numerical factor �� in the definition of
W� given above. Although in the uniform density approxi-
mation we have �� � 1, we chosen to leave �� in the
above equation so that our results can be more easily
reassessed in light of the more accurate evaluation of W�

performed in Appendix D. The total energy is then

 E�R� � N��N2=3=R2 �m2
e�

1=2 � Nme� �
3m2

uN2

5M2
plR

� ��
n� 1

n
�����muN

Mpl
;

and � / 1=R3. We will have equilibrium when
dE�R�=dR � 0 which implies
 

N1=3

�N2=3 �m2
eR

2�1=2
�

3m2
uN2=3

5M2
pl

�
3��
jnj

�������������Mpl

��������muRN
�1=3:

We note that the term on the left-hand side of the above
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expression is always less than 1, and that both terms on the
right hand side are positive definite. This implies that there
is a maximal value of N. This maximal value is found by
setting the left-hand side to 1 and solving for N. Because
both terms on the right hand side are positive definite, the
maximum value of N, with a chameleon field present, will
be less than or equal to the value it takes in pure general
relativity. We can see that, both with an without a chame-
leon, we have

 N <Nmax �

�5M2
pl

3m2
u

�
3=2
:

Following what was done for the braneworld corrections to
gravity in Ref. [72] we define:

 R0 � N1=3=me;

and x � R=R0. We also define �0 � 3muN=4�R3
0 �

3mum
3
e=4�, and Y � �N=Nmax�

2=3. Hydrostatic equilib-
rium, dE=dR � 0, is therefore equivalent to

 

1��������������
1� x2
p � Y �

3��
jnj

������������0�

Mpl

��������mu

me
x�n�4�=�n�1�:

This is the mass-radius relationship for a white-dwarf star.
The Chandrasekar mass-limit follows from setting x � 0.
We can see that it is unchanged by the presence of a
chameleon field. The chameleon field will, however, alter
the mass-radius relationship. We shall assume, and later
require, that the second term on the right hand side, i.e. the
chameleon correction, is small compared to the first.
Solving perturbatively under this assumption we find

 x �

���������������
1

Y2 � 1

s
�

3��
jnj

������������0�

Mpl

��������mu

me

� 1
Y2 � 1��n�4�=�2�n�1��

Y2
���������������
1� Y2
p :

The maximum value of x for relativistic white dwarfs
(pF � me) is x � 1. In order for our assumption that the
effect of the chameleon field could be treated perturba-
tively to be valid, we need

 

3��
jnj

������������0�

Mpl

��������mu

me

��������������
1� x2

p
x�n�4�=�2�n�1�� 	 1:

The right hand side is clearly increasing with x, and so we
evaluate it at x � 1. For corrections to the mass-radius
relationship to be smaller than 10% we must therefore
require

 

3
���
2
p
��
jnj

������������0�

Mpl

��������mu

me
< 0:1:

Evaluating this expression, for a white dwarf, we find

 �5:065� 10�41���

�
3:19�� 108

jnj

�
n=�n�1�

�

�
M

1 mm�1

�
�n�4�=�n�1�

�1=�n�1� < 0:1:

The above expression provides us with an upper-bound on
�. For natural values of M and �, this upper-bound is
strongest for n � �4 theories.

For the corrections to the mass-radius relationship to be
smaller than 10% when n � �4 we need

 �< 6:70��1=4 � 1018:

Alternatively, for the corrections to be smaller than 1% we
require �< 1:19��1=4 � 1018. As the data improves it
might, in future, to be able to limit any such corrections
to being smaller than 0.1%. In this case we would need�<
2:18��1=4 � 1017. In evaluating these limits, we have used
the accurate value for ���n � �4� found in Appendix D:
���n � �4� � 0:58. Despite the fact that these represent
some of the best upper bounds on� for chameleon fields, it
is clear that �� 1 is still allowed. Even if the astronomi-
cal data improves to the point where we can rule out
corrections at the 0.1% level, we would still be unable to
rule out Mpl=� * 1 TeV.

The calculation for a neutron star proceeds along similar
lines. In a neutron star, the neutrons provide both the
degeneracy pressure and the gravitational potential. We
must therefore replace both mu and me by mn. For the
correction for the mass-radius relationship to be less than
10% we must require

 �8:15� 10�51���

�
1:98�� 1018

jnj

�
n=�n�1�

�

�
M

1 mm�1

�
�n�4�=�n�1�

�1=�n�1� < 0:1:

The left-hand side of the above expression is a factor of
�me=mn�

�n�4�=�n�1� smaller than the equivalent expression
for a white dwarf. It follows that, for all n � �4, a weaker
bound on the parameters results. When n � �4 we find the
same bound. In Fig. 8 we have plotted the white-dwarf
bounds on �, M and �. We have, conservatively, assumed
that corrections to the mass-radius relationship are smaller
than 5%. The plots are similar to those done for the Eöt-
Wash and WEP bounds. The whole of the shaded region is
allowed and the plots for other theories with n <�4 are
similar to those with n � �8. Similarly, the plots for other
n > 0 theories looks much the same as the n � 4 plot does.

These white-dwarf bounds are included in the plots of
Sec. IX, where all the bounds on these chameleon theories
are collated.
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B. General relativistic stability

We have already derived conditions for the effect of the
chameleon to be small compared to that of the Newtonian
potential and thus produce only a negligible change to the
mass-radius relation. It also is necessary to consider how
the inclusion of a chameleon affects the stability of white
dwarfs and neutron stars. This requires the inclusion of
general relativistic effects.

A compact body in hydrostatic equilibrium (dE=dR �
0) will be stable against small perturbations whenever
d2E=dR2 > 0, i.e. we are at a minima of the energy. For
a proof of this result see Refs. [71,72]. The onset of
instability occurs when d2E=dR2 � 0. For Newtonian

gravity this occurs when the star becomes relativistic i.e.
� � 4=3. Ignoring general relativistic effects but including
chameleon effects we find that d2E=dR2 is given by

 

d2E

dR2
� �

2

R
dE
dR
�
N4=3

R2

�
N1=3m2

eR
2

�N2=3 �m2
eR2�3=2

�

�
n� 4

n� 1

�

�
3��
jnj

�������������Mpl

��������muN�1=3R
�
:

When dE=dR � 0, the contribution from the chameleon
field to the right hand side of this equation is positive. It
follows that the effect of the chameleon field is to increase
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FIG. 8 (color online). Constraints on chameleon theories coming from white dwarfs and neutron stars. The shaded area shows the
regions of parameter space that are allowed assuming that any alterations to the white-dwarf mass-radius relationship are at the 5%
level or smaller and that the chameleon only induces changes that are smaller than 10% in the maximum white-dwarf density, �crit.
Neutron star bounds are not competitive with the white-dwarf constraints. The solid black lines indicate the cases where M and � take
‘‘natural values.’’ The dotted-black line indicates when M � M� :� Mpl=� i.e. when the mass scale of the potential is the same as that
of the matter coupling. Other n <�4 theories are similar to the n � �8 case, while the n � 4 plot is typical of what is allowed for
n > 0 theories. The amount of allowed parameter space increases with jnj.
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the stability of white dwarfs and neutron stars i.e. it makes
d2E=dR2 more positive.

It is well known [71] that general relativity alters the
stability of white dwarfs and neutrons stars. When GR
effects are included gravity is generally stronger. As a
result, it tends to have a destabilizing effect on configura-
tions that are stable when studied in Newtonian physics. In
the absence of chameleon corrections, but including GR
effects (assuming GMstar=R	 1) the criterion for stability
is roughly

 �� 4=3> �
Mstar

RM2
pl

;

where ��O�1� [71].
Whilst GR destabilizes white-dwarf stars, we have just

noted that the chameleon force acts to stabilize them. In
this section we will see how the leading-order general
relativistic effects balance out against the chameleon force,
and study their cumulative effect on the stability of com-
pact objects. The assumption that general relativistic ef-
fects are small means that these results will be more
accurate for white dwarfs than they will for neutron stars.
A full derivation of the potential energies associated with
the leading-order general relativistic effects can be found
in Ref. [71]. For the sake of brevity we shall not repeat that
analysis here but merely quote the results.

We shall assume that the electrons in the white dwarfs
are approximately relativistic and so satisfy P � K�4=3.
We shall also assume spherical symmetry. Just as we do in
Appendix D, we evaluate the different contributions to the
energy of the white dwarf under the assumption that the
fluid satisfies the Newtonian equation of hydrostatic equi-
librium at leading order. We then solve the resulting Lane-
Emden equation for P numerically. This procedure is valid
if one only wishes, as we do, to calculate the GR and
chameleon field corrections to leading order.

The internal energy of a n � 3 polytrope is

 U � k1K�
1=3
c muN;

and the gravitational potential of the star is given by

 W � �k2�
1=3
c M�2

pl �muN�5=3;

where k1 and k2 are found in Ref. [71] to be (for � � 4=3):

 k1 � 1:755 79; k2 � 0:639 001:

In addition to the correction coming from general relativity
(which we will consider shortly) we also need to account
for the fact that the electrons are not entirely relativistic. At
leading order, this gives the following correction to the
internal energy

 �U � k3m
2
e=��emu�

2=3muN�
�1=3
c ;

where k3 � 0:519723 [71]. Finally, the leading-order gen-
eral relativistic contribution to the energy is found to be of
the form

 �WGR � �k4M
�4
pl �muN�

7=3�2=3
c ;

where k4 � 0:918294 [71]. Including the effect of the
chameleon, the energy of the white dwarf is given by

 E � U�W � �U� �WGR �W�:

We define B � k1K, C � k2M
�2
pl , D � k3m

2
e=m

2=3
u and

F � k4M
�4
pl . We also define H � ��=jnjj����c� �

M�1
pl j�

1=�n�1�
c . As defined, H is actually independent of

�c. With these definitions, the energy is extremized when

 

dE
d�c
� 1

3�BMstar � CM
5=3
star ��

�2=3
c � 1

3DMstar�
�4=3
c

� 2
3FM

7=3
star�

�1=3
c �HMstar�

��n�2�=�n�1�
c � 0:

At leading order, we drop the terms proportional to D, F,
and H and recover the standard Chandrasekar limit for the
mass of a white dwarf:

 Mstar �

�
A
B

�
3=2
� 1:457

�
�e

2

�
�2
M�;

where M� is the mass of the Sun. Instability begins to
occur when d2E=d2�c � 0 which, given that dE=d�c � 0,
is equivalent to

 

2

3
D��4=3

c �
2

3
FM4=3

star�
�1=3
c �

n� 4

n� 1
H���n�2�=�n�1�

c � 0:

(42)

Solving this equation for �c gives a critical density, �crit, at
which instability occurs. We find that, for all n � �4, there
will be a chameleon induced correction to �crit. When n �

�4, we must either have n � �6 or n > 0 and so then
�n� 2�=�n� 1�> 4=5> 1=3. This observation means
that Eq. (42) still has solutions. The effect of the chame-
leon is to raise the value of �crit. Even in pure General
Relativity it turns out that this critical density is so high that
it will only be important for white dwarfs in which the core
is 4He, [71]. In all other cases, except for that where the
core is 12C, �crit is greater than the neutronization thresh-
old, and so such high-density white dwarfs will not occur.
In the case of carbon white dwarfs, the central density is in
fact limited by pyconuclear reactions [71]. Since the addi-
tion of a chameleon field raises �crit, this change can only
be potentially important for Helium white dwarfs.
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If the effect of the chameleon is small then, at leading
order, �crit � CB2=DA2 � 2:65� 1010 g cm�3 for 4He
stars. The leading-order chameleon correction to �crit is

 

��crit

�crit
�

3�n� 4�

2�n� 1�

����2mu�
2=3�1=3

crit

jnjm2
ek3

�������������crit�

Mpl

��������
� 1:33� 10�44 �n� 4�

�n� 2�
��

�
1:22�� 1012

jnj

�
n=�n�1�

�

�
M

1 mm�1

�
�n�4�=�n�1�

: (43)

If we wish to require that the presence of a chameleon do
little to alter the stability properties of white dwarfs in
general relativity, we will need ��crit=�crit 	 1. This gives
us another upper bound on �. In general, however, it is not
competitive with the white-dwarf mass-radius relation
bound on �. The requirement ��crit=�crit < 0:1 is included
in the plots of Fig. 8.

C. Discussion

It should be noted that, in this section, the bounds that
have been derived on � have been found under the as-
sumption that the chameleon field couples to relativistic
matter in the same way as it does to normal matter i.e. it
just couples to the rest-mass energy density of matter. As
we noted in the introduction, however, it is usually the case
that the chameleon in fact couples to some linear combi-
nation of the energy density and the pressure, e.g., ��
!P. In the simplest models ! � �3. The total energy
density, �tot, of the star with equation of state P � K��

0
is given by

 �tot � �0 �
P

�� 1
� �0 � pP;

where �0 is the rest-mass energy density and � � 1� 1=p.
In calculations presented above, we have implicitly as-
sumed that �tot �!P � �0 � �p�!�P � �0. The
bounds that we have derived come from the sector where
the matter in the star is relativistic i.e. p � 3. If the
chameleon couples to matter through the trace of the
energy momentum tensor i.e. ! � �3 then we do, in
fact, have �tot � �0, just as we have assumed.

In the nonrelativistic case, P	 �0, and so �tot �!P �
�0 is always true. Even in the relativistic case, since
P=� � K�1=3

0 	 1 for white dwarfs, and P=� � K�1=3
0 �

O�1� for neutron stars, we always have P & O���, and so
different values of ! will only alter our bounds by at most
an O�1� quantity. There is one caveat: if! is chosen so that
�tot �!P can become negative, then the n > 0 chameleon
field theories will cease to display chameleon behavior.
This would immediately rule them out for all � * 1.

VIII. COSMOLOGICAL AND OTHER
ASTROPHYSICAL BOUNDS

A. Nucleosynthesis and the cosmic microwave
background

The compact object bounds present above constrain a
chameleon field behaves in very high-density backgrounds
whereas cosmological bounds on chameleon theories con-
strain how the behavior of the chameleon field in low-
density backgrounds. We have assumed that the chameleon
couples to the energy density and pressure of matter in the
combination:

 ��!P:

In the radiation era P � 3�. Provided then that ��1�
!=3�> 0, i.e. !>�3, and � is large enough, the chame-
leon will simply stay at the minima of its effective poten-
tial, which is itself slowly evolving over time. For this to be
the case it is required that

 j��cj 	

�����������1�!=3�

Mpl

��������;
where �c is the value of � at its effective minima

 �c � M
� M3Mpl�n

���1�!=3�

�
1=�n�1�

;

and so

 ��c � � ��c � 3H _�c � �
4�n� 5�

�n� 1�2
H2�c

� �
4�n� 5�

�n� 1�2

�
8�

3�2�1�!=3�

��
��c

Mpl

�

�

�
���1�!=3�

Mpl

�
; (44)

where we have used H2 � 8��=3M2
pl and _� � �4H� as

appropriate for the radiation era.
We shall show below that we must require that

j��c=Mplj< 0:1 since the epoch of nucleosynthesis.
When � * 1, it follows from Eq. (45) that this requirement
is enough to ensure that j��cj 	 ���1�!=3�=Mpl pro-
vided that !>�3.

The simplest, and perhaps the most natural way, for the
chameleon to interact with matter in a relativistically in-
variant fashion, however, is for it to couple to the trace of
the energy momentum tensor i.e. ! � �3. When ! � �3
the above analysis does not apply. The strongest bounds on
the parameters of chameleon theories arise in ! � �3
case.

When ! � �3 we must evaluate �� 3P. Although
� � 3P in the radiation era, �� 3P is not identically
zero. Following Ref. [18], we find, for each particle
species i:
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 �i � 3Pi �
45

�4

H2M2
pl

8�
gi

g�T�
��mi=T�;

where g �
P

bosonsg
boson
i �Ti=T�4 � �7=8�

P
fermions �

gfermion
i �Ti=T�4 is the standard expression for the total

number of relativistic degrees of freedom; gi and Ti are,
respectively, the degrees of freedom and temperature of the
ith particle species. The function � is defined by

 ��x� � x2
Z 1
x
du

����������������
u2 � x2
p

eu � 1

with the � sign for fermions and the � for bosons. This
function goes like x2 when x	 1 and e�x when x� 1,
but it is O�1� when x�O�1�. The case ��O�1� and
n > 0 was analyzed very thoroughly in Ref. [18]. We
will therefore restrict ourselves to looking at the n � �4
cases. We will also consider, for all n, what new features
emerge when we take�� 1. In both cases we will see that
theories with n � �4 and/or �� 1 are much less suscep-
tible to different initial conditions than those with n > 0
and ��O�1�.

We consider the cases n � �4 and n > 0 separately
below. Before we do so, we note some similarities between
the two cases. Whatever the sign of n, the effective poten-
tial will have a minima at

 �min�T� � M
�MplM

3n�

��̂�T�

�
1=�n�1�

;

where we define

 �̂�T� �
X
i

��i � 3Pi�:

From the form of �i � 3Pi, it is clear that �̂ will be
dominated by the heaviest particle species that satisfies
mi & T. When mi 	 T, � / �mi=T�2 and so the largest
value of mi dominates, whereas the contribution from
species with mi � T are exponentially suppressed. The
function ��mi=T� is peaked near mi=T � 1.

If the chameleon is not at �min, and ��min=��n�1 	 1,
then this peak will result in the value of � being ‘‘kicked’’
towards �min�T�. We label the distance that � moves due
to this ‘‘kick’’ by ����i where

 ����i � �
�giMpl

8�g�mi�

7
8
1

� �
:

The 7=8 is for fermions and the 1 for bosons. This formula
is valid so long as j�min�T� ��j> j��ij i.e. so long as
the kick is not large enough to move � to its minimum.

The largest jump of this sort will occur for the smallest
value of gi=g. It will therefore occur when electrons
decouple from equilibrium at T � 0:5 MeV. If, however,
j���min�T�j is smaller in magnitude than this above
quantity, then ����i � �min ��. Whether or not � will
stay at �min�T�, as it evolves with time, will depend on the
mass of the chameleon at�min�T�. Ifm2

� � H2 then it will

stay at the minimum. Otherwise it will tend to slowly
evolve towards values of � for which ��min=��

n�1 < 1.
If ��min=��n�1 > 1 then � will very quickly (in under

one Hubble time) roll down the potential. It will either
overshoot �min, or if the mass of the chameleon at �min is
large enough, stick at �min. We can therefore assume that
our initial conditions are such that, in the far past, � is
either at �min or ��min=��

n�1 < 1.

1. Case n � �4

We note that when n � �4, before any jump, we have
�min=� > 1 and so j�min ��j � j�minj. It follows that

 

�min�T � mi�

����i
�

45�n� 1�

�4

H2�T � mi�

m2
���min�

:

This seems to suggest that, if ����i is large enough to
move � to �min�T�, then we will necessarily have
m2
���min�>H2, and so � will stay at �min�T� in the

subsequent evolution. However, this is not quite the case.
As T drops below mi, the ith species decouples and its
energy density decreases exponentially. This causes �̂, and
consequently m���min�T��, to decrease quickly. Roughly,
�̂ shortly after decoupling will be a factor of �mj=mi�

2

smaller than it was before, where the jth species is the most
massive species of particle obeying mj < mi.

If � reaches �min�T � mi� with the ith kick, then as T
decreases the chameleon will roll quickly down to the
potential towards�min�T < mi�; j�min�T < mi�=�min�T �
mi�j< 1. For � to stick at �min, for mj < T <mi, and not
overshoot it, we need
 

H2�T�

m2
���min�T��

�

�
T
mi

�
2n=�n�1�

�
mi

mj

�
�2�n�2��=�n�1�

�
H2�mi�

m2
���min�mi��

	 1:

Since T < mi in this region, and n=�n� 1�> 0, it is suffi-
cient to require:

 

�
mi

mj

�
�2�n�2��=�n�1� H2�mi�

m2
���min�mi��

	 1:

We know that m� / �
�n�2�=�n�1� and so the above condi-

tion is more likely to be satisfied for larger values of� than
for smaller ones.

We note that, even when � � �min, we cannot have
�=�min � 1. If this were the case initially, when � �
�i say, then the gradient in the � potential would be very
steep and in one Hubble time�would move a distance ��
where

 

��
�i
���

�
mi

T

�
2
�Mpl

�min

��
�min

�i

�
�n�2�

:
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It is clear from this expression that for � * O�1�, �=�min

will decrease very quickly and pretty soon �=�min & 1.
When � * O�1� it is therefore valid to assume that,

for almost of all of the radiation-era evolution,
��T�=�min�T� & 1. The larger � becomes, the greater
the extent to which this assumption holds true.

The main purpose of the above discussion is to illustrate
that, for theories with n � �4, the late-time behavior of �
will be virtually, independent of one’s choice of initial
conditions. The same is not true, or at least not true to
the same extent, of theories in which n > 0. The corollary
of this result is that j��=Mplj could be very large at the
beginning of the radiation epoch and still be less than 0.1
from the epoch of nucleosynthesis onwards. This would
correspond to the masses of particles during the early
radiation era being very different from the values they
have taken since the epoch of nucleosynthesis until the
present day. The larger � is, the easier it is to support large
changes in the particle masses. This is one reason why
�� 1 is theoretically very interesting. In chameleon
theories with �� 1, the constants of nature that describe
the physics of the very early universe (i.e. prenucleosyn-
thesis) could take very different values from the ones that
they do today. This could have some interesting implica-
tions for baryogenesis at the electroweak scale.

The best radiation-era bounds on�,M, and � come from
big-bang nucleosynthesis (BBN) and the isotropy of the
cosmic microwave background (CMB). As noted in
Ref. [18], a variation in the value of � between now and
the epochs of BBN and recombination would result in a
variation of the particle masses (relative to the Planck
mass) of about

 

���������m
m

����������j��jMpl
:

BBN constrains the particle masses at nucleosynthesis to
be within about 10% of their current values, [18]. This
requires

 j�BBNj & 0:1��1Mpl:

We have argued above that �BBN=�min�TBBN� & 1 and
so the above condition will be satisfied whenever

 j�min�TBBN�j & 0:1��1Mpl:

Nucleosynthesis occurs at temperatures between
0.1 MeV and 1.3 MeV. Since �min�T� decreases with
temperature, we conservatively evaluate the above condi-
tion with TBBN � 2 MeV. At such temperatures the largest
contribution to �̂ will come from the electrons (with
me�today� � 0:511 MeV) and

 �̂ �
geT

2m2
e

24
�
ge�MeV�4

24
;

where ge � 4 (2 from the electrons and 2 from the posi-
trons). The BBN constraint on �, � and M for n � �4 is

therefore

 �jnj
�
1:8�� 106

�jnj

�
n=�n�1�

�
M

1 mm�1

�
�n�4�=�n�2�

& 1:1� 1037:

This is, however, a weaker bound on f�;M; �g than the
white-dwarf mass-radius relation constraint discussed in
Sec. VII above.

Another important restriction on these chameleon theo-
ries comes out of considering the isotropy of the CMB
[73]. As is mentioned in Ref. [18] a difference between the
value of � today and the value it had during the epoch of
recombination would mean that the electron mass at that
epoch differed from its present value �me=me �

���=Mpl. Such a change in me would, in turn, alter the
redshift at which recombination occurred, zrec:

 

���������zrec

zrec

���������
�����������
Mpl

��������:
WMAP bounds zrec to be within 10% of the value that has
been calculated using the present day value of me [18]. We
define �̂rec and �̂BBN to be, respectively, the value that �̂
takes at the recombination and BBN epochs. Now �̂rec �

�today, where �today is the cosmological energy density, and
� / ��1=�n�1�, it follows that j��j � j�recj for n � �4.
�rec is the value of � had during the epoch of recombina-
tion. However, since �̂rec < �̂BBN, we also have
�rec=�BBN < 1, and so this CMB bound is always weaker
than the one coming from BBN. For this reason we do not
evaluate the CMB constraint here.

2. Case n > 0

When we considered theories with n � �4, the analysis
was made easier by the fact that V��� had a minimum. This
allowed us to bound the magnitude of � to be approxi-
mately less than that of�min�T�. However, when n > 0, the
potential is of runaway form and we cannot bound the
magnitude of� in such a way. Many of the issues involved
with n > 0 potentials were discussed very thoroughly in
Ref. [18]. In that work it was assumed that �� 1 and so,
generically m���min� 	 H in the radiation era, due the
fact that �̂	 �. However, if �	 1, it is possible for m�

to be large compared to H.
As with the n � �4 case, it is not necessary to require

that � is at its effective minima during the whole of the
radiation era. All that is really needed is for � be suffi-
ciently close to the minima at the epochs of BBN and
recombination that we are able to satisfy their constraints.
It was shown in Ref. [18] that the total sum of all of the
kicks that occur before BBN will move the chameleon a
distance of approximately: �Mpl. BBN requires that

 j��BBNj � �today ��BBN & 0:1��1Mpl:
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Provided that, at the beginning of the radiation era, �	
�Mpl=8�, then � at BBN will easily satisfy the above
bound provided that ��today=Mpl < 0:1.

The first of these requirements is a statement about
initial conditions. It is clear that the larger � becomes,
the less restrictive this condition is. Indeed for �� 1, it is
quite possible to have had��=Mpl � 0:1O��2� � 1 at the
beginning of the radiation era and still satisfy this bound.
The larger the matter coupling is, the less important the
initial conditions become, and the greater the scope for
large changes in the values of the particle masses and other
constants to have occurred between the pre-BBN universe
and today.

Recombination enforces a similar bound to BBN:

 

�zrec

zrec
�
���today ��rec�

Mpl
& 0:1:

If the requirements on the initial conditions are satisfied,
we will have �today � �rec, �BBN and so, in both cases,
�� � �today. We must therefore require that

 ��today=Mpl & 0:1:

�today / �
�1=�n�1�
c where �c is that part of the cosmologi-

cal energy density of matter that the chameleon couples to.
For the most part, we have, in this paper, assumed that the
chameleon couples to all forms of matter with the same
strength. However, up to now, we have only been con-
cerned with baryonic matter. Even if the chameleon to
baryon coupling is virtually universal, there is not neces-
sarily any reason to expect the chameleon to couple to dark
matter with the same strength. It is possible that the cha-
meleon does not interact with dark matter at all. Since it
clear that �today is a very important quantity when it comes
to bounding n > 0 chameleon theories, it is crucial to know
what fraction of the cosmological energy density the cha-
meleon actually couples to. The smaller �c is, the larger
�today will be. The larger the value of �today, the more
restrictive the resultant bound on f�;M; �g. This implies
that cosmological bounds on a chameleon theory that
couples only to baryonic matter will be stronger than those
on a chameleon that also couples to dark matter. Not
knowing how the chameleon couples to dark matter, we
chose to be cautious, and err on the side of specifying a
bound that is perhaps slightly too tight, rather than too
loose. We therefore work on the assumption that the cha-
meleon only couples to baryonic matter, and so �c �
0:42� 10�30 g cm�3, [73]. Under this assumption, we find

 8:34� 10�3jnj
�
1:93� 10�29�

n

�
n=�n�1�

�

�
M

1 mm�1

�
�n�4�=�n�1�

< 1:

If the chameleon to dark matter coupling is similar in
magnitude to the baryon coupling then �c � 2:54�
10�30 g cm�3 and we have the less restrictive bound:

 1:39� 10�3jnj
�
1:17� 10�28�

n

�
n=�n�1�

�

�
M

1 mm�1

�
�n�4�=�n�1�

< 1:

The bound that we have just found has come about
from the requirement that the particle masses at BBN
and recombination are within 10% of the values they take
in regions of cosmological density i.e. �today �

10�30 g cm�3. However, all cosmological determinations
of the particle masses, and indeed of the other constants of
nature, have come from analysing measurements made in
regions with densities much greater than the cosmological
one. For instance, recent cosmological determinations of
mp=me have employed the absorption and emission
spectra of dust clouds around QSOs [74,75]. These dust
clouds have typical densities of the order of ��
10�25–10�24 g cm�3. If we take �c to be 10�25 g cm�3,
then the BBN and CMB bounds would only require:

 3:52� 10�8jnj
�
4:59� 10�24�

n

�
n=�n�1�

�

�
M

1 mm�1

�
�n�4�=�n�1�

< 1:

3. Summary

We have plotted the BBN and CMB constraints on
f�;M�g in Fig. 9. We have plotted what occurs in the
most restrictive case i.e. when the chameleon couples
only to baryons. The whole of the shaded region is cur-
rently allowed.

Another class of potentially important cosmological
bounds can be derived by employing astronomical bounds
on the allowed variation of the fundamental constants of
nature during the matter era. We discuss this further below.

B. Variation of fundamental constants

Any variation in a chameleon field will lead to a varia-
tion in the masses of the particle species to which the
chameleon couples. This variation is relative to the fixed
Planck mass,Mpl � G�1=2. If the chameleon couples to all
matter particles in the same way, then all the fundamental
particle masses will vary in the same fashion and so their
ratios will remain constant. It is also feasible to construct
theories where a variation in the chameleon leads to a
variation in some other fundamental ‘‘constants‘‘ of nature.
For instance one might propose a theory where the fine-
structure constant, �em, is given by �em � f���=Mpl� for
some function f. If this is the case then, in addition to
bounds on any allowed variation in the particle masses, we
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would also have to apply the whole range of very stringent
bounds on the possible variation of �em mentioned above.

For the purposes of this section, however, we assume
that �em is a true constant. It should be noted that even if
�em does vary with � at the same level as the particle
masses do, the resulting bounds on the parameters of the
theory are only slightly more stringent than those already
found.

The best matter era bounds on the variation of the
particle masses come from measurements of the ratio � �
mp=me [13,74,75]. We shall assume that the chameleon
couples to protons with strength �p and to electrons with
strength �e. The relative change in the proton and electron

masses is then given by

 

�mp

mp
�
�p��

Mpl
;

�me

me
�
�e��
Mpl

:

Without any a priori knowledge about the magnitude, or
sign, of �e � �p it is difficult to derive any bounds on
chameleon theories simply by considering ��=�, where
� � mp=me. The simplest assumption one could make
about the matter coupling, �, is that it is universal i.e.
�p � �e � �. If this is the case then �� � 0 identically.
An alternative, but still very reasonable, assumption about
the chameleon coupling, which would produce �� � 0, is
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FIG. 9 (color online). Constraints on chameleon theories coming from the particle masses at big-bang nucleosynthesis and the
constraints the redshift of recombination. The shaded area shows the regions of parameter space that are allowed by the current data.
The solid black lines indicate the cases where M and � take ‘‘natural values.’’ The dotted-black line indicates when M � M� :�
Mpl=� i.e. when the mass scale of the potential is the same as that of the matter coupling. Other n <�4 theories are similar to the
n � �8 case, while the n � 4 plot is typical of what is allowed for n > 0 theories. The amount of allowed parameter space increases
with jnj. In these plots we have assumed that the chameleon couples only to baryons. Slightly weaker constraints result if the
chameleon additionally couples to dark matter.
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that the chameleon couples to all fundamental particles
with the same universal coupling, �U, but that the QCD
scale, �QCD, is independent of �. When the quark masses
vanish the proton mass is proportional to �QCD. The
masses of the three lightest quarks, mu, md and ms, are
considerably smaller than �QCD and as a result contribute
only a small correction to the proton mass (at approxi-
mately the 10% level). If �QCD is �-independent, we
expect the proton mass to depend only weakly on �,
through the quark masses, and so�p �O��U=10�whereas
�e � �U. Since the mass of the electron is so much
smaller than the proton mass, the coupling of the chame-
leon to baryons is approximately given by �p, and so it is
�p that is constrained by the experiments mentioned in
Secs. VI and VII. However, the BBN and CMB require-
ments constrain �e � �U. A change in � of �� would
therefore induce a change in � of

 

��
�
� �9

���
Mpl

: (45)

As we reported above, the Reinhold et al. [74] result is
consistent with a difference between the laboratory value

of � and the one measured in such a dust cloud at the
3:5 level: ��=� � 2:0� 0:6� 10�5 where �� �
�dust ��lab. It should be noted that in the context of the
chameleon theories considered here �� � �dust ��lab is
always positive and so ��=�< 0 if �p � �e=10 as we
have assumed. Under this assumption, it is not possible to
reproduce the result of Reinhold et al.. If we had alter-
natively assumed that the fundamental particle masses are
true constants but that �QCD is �-dependent, then we
would be able to have ��=� > 0.

We interpret the Reinhold result conservatively i.e. as
limiting any variation in � to be at or below the 2� 10�5

level. We shall also assume that the laboratory experiments
that measure � are performed close enough to the Earth’s
surface that the background value of � for these experi-
ments is approximately the value the chameleon takes
inside the Earth. This last assumption is also a conservative
one i.e. it will result in a tighter bound on the chameleon
theory parameters. Taking the density of Earth to be
�Earth � 5:5 g cm�3 and the density of the dust clouds
from which the absorption spectra come to be �dust �
10�25 g cm�3 we find that we must require

 

2:88� 10�29jnj
�
253�
jnj

�
n=�n�1�

�
M

1 mm�1

�
�n�4�=�n�1�

�1=�n�1� < 1; n � �4

�< 1:42��1=4 � 1019; n � �4;

1:58� 10�3jnj
�
4:59� 10�24�

n

�
n=�n�1�

�
M

1 mm�1

�
�n�4�=�n�1�

< 1; n > 0:

For fixed M and � this places an upper-bound on �. When
n > 0, the bounds coming from varying-� are competitive
with the other cosmological constraints and they provide a
weak upper bound on �. When n � �4, however, the
white-dwarf bounds of Sec. VII still provide the best upper
bound on�. It should be noted that the bounds on f�;M; �g
deduced from measurements of ��=� are highly model-
dependent. For this reason we do not plot them here.

IX. COMBINED BOUNDS ON CHAMELEON
THEORIES

All of the chameleon theories considered in this work
have a two-dimensional parameter space, spanned either
by M and � (n � �4), or by � and � (n � �4). We
combine the constraints found in sections VI, VII, and
VIII to bound the values of � and M (or �) for different
n. We plotted the constraints for n � �8, �6, �4, 14 and
n � 6 in Fig. 10. In these figures we have included all the
bounds coming from the Eöt-Wash experiment, [29,30], as
well as those coming from Casimir force searches, [31,32].
We also include the bounds (labeled Irvine) coming from
another search for Yukawa forces [62]. We also show how
current WEP violation experiments constrain these theo-

ries—i.e. experiments that have actually been done as
opposed to the putative WEP violation experiment de-
scribed in section VI C. The white-dwarf and BBN con-
straints are also included in the plots, however, for these
theories, they are always weaker than those laboratory tests
(when � & 1020). The plots for other n <�4 theories are
very similar to the n � �8 and n � �6 plots, while the
n � 4 and n � 6 cases are representative of n > 0 theories.
In general, the larger jnj is, the larger the region of
allowed parameter space. This is because, in a fixed density
background, the chameleon mass, mc, scales as jn�
1j1=2=jnj1=2�n�1�, and so mc increases with jnj. The larger
mc is, in a given background, the stronger the chameleon
mechanism, and a stronger chameleon mechanism tends to
lead to looser constraints.

We have indicated on each plot how the variety of
different bounds, considered above, combine to constrain
the theory. In each plot, the whole of the shaded area
indicates the allowed values of M and � (or � and �).
Three satellite experiments (SEE [59], STEP [58], and GG
[60]) are currently in the proposal stage, while a fourth one
(MICROSCOPE [61]) will be launched in 2007. These
experiments will be able to detect WEP violations down
to � � 10�18. The more lightly shaded region on the plots
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FIG. 10 (color online). Combined constraints on chameleon theories. The whole of shaded area shows the regions of parameter space
that are allowed by the current data. Future space-based tests could detect the more lightly shaded region. The solid black lines indicate
the cases where M and � take ‘‘natural values‘‘. For n � �4, a natural value for M is required if the chameleon is to be dark energy.
The dotted-black line indicates when M � M� :� Mpl=� i.e. when the mass scale of the potential is the same as that of the matter
coupling. Other n <�4 theories are similar to the n � �6 and n � �8 cases, while the n � 4 and n � 6 plots are typical of what is
allowed for n > 0 theories. The amount of allowed parameter space increases with jnj.
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indicates those regions of parameter space that could be
detected by these experiments—we have assumed that
their WEP violation experiments to be along the lines of
the putative experiment described in Sec. VI C.

In n > 0 theories, the increased precision, promised by
these satellite tests, is not the only advantage that they offer
over their lab-based counterparts. In space, the background
density is much lower than in the laboratory. As a result,
the thin-shell condition, Eq. (19b), is generally more re-
strictive for bodies in the vacuum of space than it is for the
same bodies here on Earth. It is therefore possible for test-
bodies, that had thin shells in the laboratory, to lose them
when they are taken into space [17,18,39]. If such a thing
occurs for the test masses used in the aforementioned
satellite experiments, then it is possible that they might
see WEP violations in space at a level that had previously
been thought ruled out by Earth-based tests i.e. �> 10�13.
This interesting feature of n > 0 chameleon theories was
first noted in Ref. [39]. It is important to stress that this
effect will not occur if � is so large that the satellites
themselves develop thin shells [17,39]. In chameleon theo-
ries where the potential has a minimum, i.e. n � �4, the
thin-shell condition, Eqs. (19a) and (19c), is only weakly
dependent on the background density of matter. As a result,
n � �4 theories will generally be oblivious to the back-
ground in which the experimental tests of it are conducted.
It is for this reason that future space-based tests will be
better able to constrain n > 0 theories than they will n �
�4 ones.

In all of the plots, we show � running from 10�10 to
1020. �< 10�10 will remain invisible to even the best of
the currently proposed space-based tests, and �> 1020

corresponds to Mpl=� < 500 MeV. The region in which
Mpl=� & 200 GeV is, in fact, probably already ruled out.
If � were so large that Mpl=� < 200 GeV, then we would
probably have already seen some trace of the chameleon in
particle colliders. This said, without a quantum theory for
the chameleon it is hard to say how chameleon theories
behave at high energies. A result a detailed calculation of
the chameleon’s effect on scattering amplitudes is not
possible at this stage. A full quantum mechanical treatment
of the chameleon is very much beyond the scope of this
work, but remains one possible area of future study.

The chameleon mass (mc), in a background of fixed
density, scales as �n=�n�1�M��n�4��2�n�1��. As we mentioned
above, the larger mc, is the easier it is to satisfy the thin-
shell conditions, Eqs. (19a)–(19c), and the stronger the
chameleon mechanism becomes. Since �n� 4�=�2�n�
1�� � 0 and n=�n� 1�> 0, for all theories considered
here, the chameleon mechanism becomes stronger asM !
0, or �! 1, and all of the constraints are more easily
satisfied in these limits. It is for this reason that we truncate
our plots for some small M and, when n � �4, for a large
value of �. Values of M that are smaller than those shown,
or values of � that are larger, are still allowed.

The upper limit on M (and lower limit on �) has been
chosen so as to show as much of the allowed parameter
space as possible. When � is very small, the chameleon
mechanism is so weak that, in all cases, � behaves like a
standard (nonchameleon) scalar field. When this happens,
the values ofM and � become unimportant, and the bounds
one finds are on � alone. This transition to nonchameleon
behavior can be seen to occur towards the far left of each of
the plots.

It is clear from Fig. 10 that �� 1 is, rather unexpect-
edly, very much allowed for a large class of chameleon
theories. We can also see that, rather disappointingly,
future space-based searches for WEP violation, or correc-
tions to 1=r2 behavior of Newton’s law, will only have a
small effect in limiting the magnitude of �. If Mpl=��
1 TeV is feasible, pending a detailed calculation of cha-
meleon scattering amplitudes, that chameleon particles
might be produced at the LHC.

The solid black line on each of the plots indicates the
‘‘natural’’ values ofM and � i.e.M� �0:1 mm��1 and � �
1=4!. The Eöt-Wash experiment and measurements of the
Casimir force rule out � � 1=4! in �4, however (except
when n � �6) M� �0:1 mm��1 is allowed for all 104 &

� & 1018. In particular, Mpl=�� 1015 GeV � MGUT, i.e.
the GUT scale, and Mpl=�� 1 TeV are allowed.
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FIG. 12 (color online). Allowed couplings and cosmological force ranges for chameleon theories. The shaded area shows the
allowed parameter space with all current bounds. �cos is the range of the chameleon force in the cosmological background with density
�� 10�29 g cm�3. It is related to the cosmological mass of the chameleon, mcos

c , by �cos � 1=mcos
c . The solid black lines indicate the

cases where M and � take natural values. Plots for theories with n <�4 or n > 0 are similar to the cases n � �8, �6 and n � 4, 6,
respectively.
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FIG. 13 (color online). Allowed couplings and cosmological force ranges for chameleon theories. The shaded area shows the
allowed parameter space with all current bounds. �sol is the range of the chameleon force in the solar system, where the average density
of matter is �� 10�24 g cm�3. It is related to the cosmological mass of the chameleon, msol

c , by �sol � 1=msol
c . The solid black lines

indicate the cases where M and � take natural values. Plots for theories with n <�4 or n > 0 are similar to the cases n � �8,�6 and
n � 4, 6, respectively.
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The dotted-black line indicates the cases where M �
Mpl=� i.e. when there is only one mass scale associated
with the chameleon theory. It is clear, however, that no
such theories are allowed if � & 1020. In all cases we must
require M	 Mpl=�. As noted in Ref. [17,39], this re-
quirement introduces a hierarchy problem in the chame-
leon theory itself. This problem is not, however, present in
�4 (n � �4) theory.

The larger � is the stronger the chameleon mechanism
becomes. A strong chameleon mechanism results in larger
chameleon masses, and larger chameleon masses in turn
result in weaker chameleon-mediated forces. A stronger
chameleon mechanism also increases the likelihood of the
test masses, used in the experiments consider in Sec. VI,
having thin shells. Large values of � cannot, therefore be
detected, at present by the Eöt-Wash and WEP tests, if �
and M take natural values. It is for this reason that, as can
be seen in Fig. 10, the Eöt-Wash experiment and the WEP
violation searches place the greatest constraints on the
parameter space in a region about ��O�1�. Casimir force
tests are much better able to detect large �, but they can
ultimately only place an upper-bound on M or 1=�.

For large �, Casimir force test succeed where the Eöt-
Wash experiment fails because in the former does not use a
thin metal sheet to cancel electrostatic effects. If it were not
for the presence of the BeCu sheet, the Eöt-Wash test
would be able to detect, or rule out, almost all �� 1
theories with M� ����

1=4.
The fact that we can have �� 1, in scalar theories with

a chameleon mechanism, is entirely due to the nonlinear
nature of these theories. Almost all the quoted bounds on
the coupling to matter are for scalar-field theories with
linear field equations. In such theories� evolves according
to

 ��� � m2
c��

��
Mpl

;

where the field’s mass, m, is constant (i.e. not density
dependent). The �-force between two bodies with masses
M1 and M2, which are separated by a distance d, takes
the Yukawa form

 F12 �
�2�1� d=��e�d=�M1M2

M2
pld

2 :

where � � 1=mc is the range of the force. The best limits
of � and � come from WEP violation searches [34–38],
and searches for corrections to the 1=r2 behavior of gravity
[29]. The 95% confidence limits on m and � for such a
linear theory, where the field couples to baryon number, are
plotted in Fig. 11 with the allowed regions shaded and the
excluded regions left white. It is clear that �> 1 is ruled
out for all but the smallest ranges (currently � &

10�4 m � 0:1 mm).

To make the comparison with the linear case more
straightforward, we have replotted the allowed parameter
space for chameleon theories with n � �8,�6,�4, 4 and
n � 6 in terms of its coupling to matter,�, and the range of
the chameleon force cosmologically, �cos, and in the solar
system, �sol, in Figs. 12 and 13. Figure 12 shows the
cosmological range, while �sol is shown in Fig. 13. The
solid black line, in each of these plots, indicates the case
whereM and � take their natural values. We can clearly see
that, in stark contrast to the linear case, chameleon theories
are easily able to accommodate both �� 1 and �� 1 m.
This underlines the extent to which nonlinear scalar-field
theories are different from linear ones, and the important
rôle that is played by the chameleon mechanism.

X. CONCLUSIONS AND DISCUSSION

In this article we have investigated scalar-field theories
in which the field is strongly coupled to matter. In particu-
lar, we have studied the so called chameleon scalar fields.
A scenario presented by Khoury and Weltman [17] that
employed self-interactions of the scalar-field to avoid the
most restrictive of the current bounds on such fields and its
coupling. In the models that they proposed, these fields
would couple to matter with gravitational strength, in
harmony with general expectations from string theory,
while, at the same time, remaining very light on cosmo-
logical scales. In this work we went much further and show,
contrary to most expectations, that the scenario presented
in [17] allows scalar fields, which are very light on cosmo-
logical scales, to couple to matter much more strongly than
gravity does, and yet still satisfy all of the current experi-
mental and observational constraints.

Previous investigations on such scenarios,
[18,28,39,50], noted that an important feature of chame-
leon field theories is that they make unambiguous and
testable predictions for near-future tests of gravity in
space. This is timely as there are currently four satellite
experiments either in the proposal stage or due to be
launched shortly (SEE [59], STEP [58], GG [60], and
MICROSCOPE [61]). A reasonably sized region of the
parameter space of the chameleon theories considered
here will be visible to these missions. Theories with very
large couplings�� 1 will, however, remain undetectable.
The ability of these planned missions to detect large �
theories could, however, be exponentially increased if the
experiments they carry were to be redesigned slightly in
the light of our findings.

Previous studies claimed that typical test masses in the
above satellite experiments do not have a thin shell.
Therefore, the extra force is comparable to their gravita-
tional interaction. The chameleon model hence predicts
that MICROSCOPE, STEP, and GG could measure viola-
tions of the weak equivalence principle that are stronger
than currently allowed by laboratory experiments.
Furthermore, the SEE project could measure an effective

DAVID F. MOTA AND DOUGLAS J. SHAW PHYSICAL REVIEW D 75, 063501 (2007)

063501-44



Newton’s constant different, by order of unity, from that
measured on Earth. We have seen, in this paper, that both of
these features are very much properties of chameleon
theories with runaway (n > 0) potentials. They will
not, in general, occur if the chameleon potential has a
minimum (e.g. n <�4 theories). These features are also
very much associated with a gravitational strength chame-
leon coupling i.e. ��O�1�, and will not occur if �� 1,
or �	 1.

The major result, presented in this work, is that current
experiments do not limit the coupling of the chameleon to
matter,�, to be order O�1� or smaller. Indeed, if we wish to
have a natural value of M in a V / ��1 theory then we
must require � * 104 (or � & 10�3. If �� 1, the test
masses in the planned satellite experiments will still have
thin shells. As such SEE, STEP, GG and MICROSCOPE,
as they are currently proposed, will be unable to detect the
chameleon and place an upper-bound on �.

We have shown that upper bounds on the matter cou-
pling, �, can be derived from astrophysical and cosmo-
logical considerations. Also, if � is very large, of the order
of 1017 or greater, then it might even be possible to detect
the effect on the chameleon on scattering amplitudes in
particle colliders. This possibility is one avenue that re-
quires further in depth study.

We noted in the introduction that �� 1 could be seen
as being pleasant in light of the hierarchy problem [41–
43]. If a chameleon with a large �where detected, it would
imply that new physics emerges at a sub-Planckian energy-
scale: M� � Mpl=�.

A large value of the matter coupling is also preferable to
an order unity value in that it leads to the late-time behavior
of the chameleon being much more weakly dependent on
the initial conditions, than it would be if � & O�1�.

The magnitude of ���� � �1 ��2�=Mpl quantifies
the relative amount by the particle masses differ between
a region where� � �1 and one where� � �2. The larger
the coupling is then, the easier it is for there to have been a
very large difference between the current values of particle
masses, and the values that they had in the very early
universe (i.e. pre-BBN). If the particle masses were very
different from their present values at, say, the epoch of the
electroweak phase transition, then the predictions of elec-
troweak baryogenesis could be significantly altered.

In this paper have taken the chameleon potential to have
a power-law form i.e. V / ��n. This is certainly not the
only class of chameleon potentials that it is possible to
have. In general, any potential that satisfies �V;� < 0,
V;�� > 0 and V;���=V;� > 0 in a region near some � �
�0 will produce a chameleon theory. In fact, a generic
potential might contain many different regions in which
chameleon behavior is displayed. In some of these regions,
the potential may appear to have a runaway form, and so
behave qualitatively as an n > 0 theory. In other regions,
the potential might have a local minimum, leading to n �

�4 type behavior. The existence of the matter coupling
provides one with a mechanism, along the lines of that
considered by Damour and Polyakov [20], by which the
scalar field� can, during the radiation era, be moved into a
region where it behaves like a chameleon field. The larger
� is, the more effective this mechanism becomes. Given
this mechanism, one important avenue for further study is
to see precisely how general late-time chameleon behavior
is of a generic scalar-field theory with a strong coupling to
matter.

In this paper we have avoided the temptation to linearize
the chameleon field equation, Eq. (9), when it is not valid to
do so. We have, instead, combined matched asymptotic
expansions with approximate analytical, and exact numeri-
cal, solution of the full nonlinear equations to study the
behavior of chameleon field theories in more detail.

The main results of this analysis were:
(i) We found the conditions under which a body would

have a thin shell, and noted that the development of a
thin shell is related to the onset of nonlinear
behavior.

(ii) We have shown that the far field of a body with a
thin shell is independent of the coupling strength
�: this is a generic property of all the chameleon
field theories with a power-law potential. This
�-independence was seen, in section VI, to have
important consequences for the design of experi-
ments that search for WEP violations, and was seen
to be vital in allowing theories with �� 1 to be
compatible with the current experimental bounds.
The � independence of the far-field of thin-shelled
bodies was seen to cause the �-force between two
such bodies to be �-independent also.

(iii) For��O�1� the best bounds onM and � currently
come from the Eöt-Wash experiment [29,30] For
�� 1, the best bounds on M and � were found to
come from measurements of the Casimir force.

(iv) Nonlinear effects were shown to limit the magni-
tude of the average chameleon mass in a thin-
shelled body to be smaller than some critical value,
mcrit
c . Intriguingly, mcrit

c is independent of �, M and
�, and depend only on n and the microscopic prop-
erties of the thin-shelled body.

(v) The experimental constraints on the coupling of
chameleon fields to matter are much weaker than
those on nonchameleon fields. In fact when n �

�4, the constraints on large � theories are weaker
than those in which the scalar field couples to matter
with gravitational strength (��O�1�). Almost
paradoxically, strongly-coupled scalar fields are ac-
tually harder to detect than weakly coupled ones.

(vi) Perhaps the most important result, though, is that
the ability of table-top gravity tests to see strongly
coupled, chameleon fields could be exponentially
increased if certain features of their design could be
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adjusted in the appropriate manner. The detection,
or exclusion, of chameleon fields with �� 1 rep-
resents a significant but ultimately, we believe,
achievable challenge to experimentalists. Searches
for large � chameleon fields represent one way in
which table-top tests of gravity could be used to
probe for new physics beyond the standard model.
Whether, or not, chameleon fields actually exist, it
is important to note those areas into which our
current experiments cannot see and, if possible,
design experiments to probe those areas.

We have shown, in this paper, that scalar-field theories
that couple to matter much more strongly than gravity are
not only viable but could well be detected by a number of
future experiments provided they are properly designed to
do so. This result opens up an altogether new window
which might lead to a completely different view of the
rôle played by light scalar fields in particle physics and
cosmology.
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APPENDIX A: PSEUDO-LINEAR REGIME FOR
SINGLE-BODY PROBLEM

In the pseudolinear approximation, we assume that non-
linear effects are, locally, everywhere sub-leading order.
The cumulative, or integrated, effect of the nonlinearities is
not, necessarily small. This means that, while we assume
that there always exists at least one self-consistent lineari-
zation of the field equations about every point, we do not
require there to be a linearization that is everywhere valid.
Instead we aim to contrast two linearizations of the field
equations: the inner and the outer approximations to �.

The inner approximation is intended to be an asymptotic
approximation to the chameleon that is valid both inside an
isolated body, and close to the surface of that body. We take
the isolated body to be spherically symmetric, with uni-
form density �c and radius R. Far from the body, r� R,
the inner approximation will, in general, break down.

The outer approximation is an asymptotic approxima-
tion to � that is valid for large values of r. We require that
it remains valid as r!1. In general the outer approxi-
mation will not be valid for r�O�R�.

The boundary conditions on the evolution of � are

 

d�
dr

��������r�0
� 0;

d�
dr

��������r�1
� 0:

The first of these conditions is defined at r � 0. We will
generally find that only the inner approximation is valid at
r � 0. As a result we cannot apply the r � 0 boundary
condition to the outer approximation. Similarly the r � 1
boundary condition will be applicable to the outer-
approximation but not to the inner one.

Since we cannot directly apply all the boundary con-
ditions to both approximations, there will generally be
undefined constants of integration in both the inner and
outer expansions for �. This ambiguity in both expansions
can, however, be lifted if there exists some intermediate
range of values of r (rout < r< rin say) where both the
inner and outer approximations are valid.

Asymptotic expansions are locally unique [51,52]. Thus,
if both the outer and inner approximation are simulta-
neously valid in some intermediate region, then they
must equal to each other in that region. By appealing to
this fact, we can match the inner and outer approximations
in the intermediate region. In this way, we effectively apply
all of the boundary conditions to both expansions. This
method of matched asymptotic expansions is described in
more detail in Refs. [53,54].

1. Inner approximation

Inside the body, 0 � r � R, the chameleon obeys:

 

d2�

dr2
�

2

r
d�
dr
� �n�M3

�
M3

�

�
n�1
�
��c
Mpl

: (A1)

The inner approximation is defined by the assumption

 n�M3

�
M3

�

�
n�1
	

��c
Mpl

:

Defining

 �c � M
�

��c
n�MplM

3

�
�1=�n�1�

;

we see that the above assumption is equivalent to:

 ��r� :�
�
�c

��r�

�
n�1
	 1:

We define the inner approximation by solving Eq. (A1) for
� as an asymptotic expansion in the small parameter ��0�;
we shall see below that ��r�< ��0� :� �.

Whenever the inner approximation is valid we have

 ���0 �
��cr2

6Mpl
�O���;

where the order � term is

 ���r� �
���c
rMpl

Z r

0
dr0

Z r0

0
dr00r00

�
�0

���r00�

�
n�1

:

We have defined ���r� :� �0 � ��cr
2=6Mpl for r < R.�0

is an undefined constant of integration. It will be found by
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the matching of the inner approximation to the outer one.
For the inner approximation to remain valid inside the body
we need

 

���r�
���r�

	 1:

Outside the body, r > R, � obeys

 

d2�

dr2
�

2

r
d�
dr
� �n�M3

�
M3

�

�
n�1

:

Whenever ��r�< 1, we can solve the above equation in the
inner approximation finding

 �� ���r� ����r�:

Outside the body, r > R, we define ���r� to be

 

���r� � �0 �
��cr

2

2Mpl
�
��cR

3

3Mplr
: (A2)

The order � term,���r�, is given by the same expression as
it was for r < R.

The inner approximation will therefore be valid, both
inside and outside the body, provided that

 

���r�
���r�

	 1:

In general, this requirement will only hold for r less than
some finite value of r, r � rin say. To fix the value of �0,
and properly evaluate the above condition, we must now
consider the outer approximation.

2. Outer approximation

When r is very large, we expect that the presence of the
body should only induce a small perturbation in the value
of �. Assuming that, as r! 1, �! �b, where �b is the
value of� in the background, then the outer approximation
is defined by the assumption j����b�=�bj< 1=jn� 1j.
We may therefore write
 

�n�M3

�
M3

�

�
n�1
��n�M3

�
M3

�b

�
n�1
�m2

b����b�

�O���=�b � 1�2�;

where

 m2
b � �n�n� 1�M2

�
M
�

�
n�2

;

is the mass of the chameleon in the background. The
assumption that j����b�=�bj< 1=jn� 1j is essentially
the same assumption as was made in the linear approxi-
mation in section III A. In the linear approximation, how-
ever, this assumption was required to hold all the way up to
r � 0. All that is required for the pseudolinear approxima-
tion to work, is that the outer approximation be valid for all
r > rout, where rout is any value of r less than rin. This is to

say that, we need there to be some intermediate region
where both the inner and outer approximations are simul-
taneously valid.

Outside of the body � obeys

 

d2�

dr2
�

2

r
d�
dr
� �n�M3

�
M3

�

�
n�1
�
��b
Mpl

:

For the outer approximation to remain valid as fr!
1; �! �bg we need

 n�M3

�
M3

�b

�
n�1
�
��b
Mpl

:

Solving for � in the outer approximation, we find ���

where

 � � �b �
Ae�mbr

r
: (A3)

A is an unknown constant of integration. It will be deter-
mined through the matching procedure.

3. Matching procedure

We assume that there exists an intermediate region,
rout < r < rin, where both the inner and outer approxima-
tions are valid. This region does not need to be very large.
All that is truly needed is for there to exist an open set,
about some point r � d, where both approximations are
valid. We shall consider what is required for such an open
set to exist in section A 4 below. For the moment we shall
assume that it does exist, and evaluate �0 and A. In the
intermediate region we must have

 �� ����;

by the uniqueness of asymptotic expansions. The require-
ment that ��r� 	 1 ensures that mbr	 1 in any inter-
mediate region. Expanding � to leading order in mbr and
equating it to �� we find that

 �0 � �b �
��c
2Mpl

; A �
��c
3Mpl

:

Now that the previously unknown constants of integration,
A and �0, have been found, we can evaluate the conditions
under which an intermediate region actually exists.

4. Conditions for matching

For the inner approximation to be valid we must cer-
tainly require that � ���r � 0�=�c�

��n�1� 	 1. This is
equivalent to

 �mcR�2 	 2jn� 1j���c=�b�1=�n�1� � 1�: (A4)

It is also interesting to note what is required for the pseudo-
linear approximation to be valid outside the body i.e.
without requiring it to be valid for r < R. This gives the
weaker condition:
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 �mcR�2 	 3jn� 1jj��c=�b�1=�n�1� � 1j:

If this weaker condition also fails then, irrespective of what
occurs inside the body, we cannot even have a solution
where �� �� outside of the body. As we show below, the
condition that a body have a thin shell is equivalent to the
requirement that this weaker condition fail to hold.

For an intermediate matching region to exist, there must,
at the very least, exist some d such that, in an open set
about r � d, both the inner and outer approximations are
valid. We must also require that the inner approximation be
valid for all r < d, and that the outer approximation hold
for all r > d.

For the outer approximation to hold for all r > d we
need

 

���������n� 1��� ��b�

�b

��������	 1:

Using A � ��c=3Mpl and Eq. (A3) we can see that this is
equivalent to

 �mcR�2
R
3d
	

�
�c
�b

�
1=�n�1�

: (A5)

Using this condition, we define dmin to be the value of d for
which the left-hand side and right hand side of the above
expression are equal: �mcR�

2R=3dmin � ��b=�c�
�1=�n�1�.

For the outer approximation to be valid at dwe require d >
dmin.

For the inner approximation, �� ��, to hold in the
intermediate region we require that, for all R< r < d:

 

R3

3
�

Z r

0
dr0

Z r0

0
dr00r00

�
�c

���r00�

�
n�1

:

We must also have that ��c= ���r � 0��n�1 i.e. that condi-
tion (A4) holds. Provided that this is the case then, for all r
in �R; d�, we need

 

R3

3
�

Z d

R
dr0

Z d

r0
dr00r00

�
�c

���r00�

�
n�1

: (A6)

If both Eqs. (A4) and (A6) hold then the inner approxima-
tion will be valid for all r < d. We evaluate Eq. (A6)
approximately as follows: For n � �4 we define r � d0

by ����b � �b. For all r in �d0; d� we approximate �� in
the above integral by �b, and for all r in �R; d0� we
approximate �� by � ����b�.

When n > 0, Eq. (A4) implies that �b > � ����b� �
�c and so such no d0 exists. When n > 0 and condition
(A4) holds, we can therefore find a good estimate for the
validity of the pseudolinear regime by setting � � �b in
the above integral. We consider the cases n � �4, n � �4
and n > 0 separately below.

a. Case: n <�4

We shall deal with the subcases d0 � R and d0 >R
separately.

Subcase: d0 � R—The subcase where d0 <R includes
those circumstances where the linear regime is valid (see
Sec. III A). Since we already found, in section III A, how�
behaves when linear approximation holds, we shall only
consider what occurs when the linear approximation fails.
If the linear approximation fails, then the outer approxi-
mation must break down outside the body i.e. dmin=R > 1.

Evaluating Eq. (A6), we find that we must, at the very
least, require that

 

�
dmin

R

�
3 �b
�c
< 1;

which, for all n, is equivalent to

 mcR <
���
3
p �

�c
�b

�
�n�4�=�6�n�1��

;

mcR <
������������������
3jn� 1j

p �
�c
�b

�
1=2jn�1j

:

The second criteria is just the statement that d0 <R. When
�b 	 �c, this latter condition is more restrictive than the
former.

Subcase: d0 >R—From the definition of d0 we find
d0=R � �mcR�

2=�3jn� 1j���c=�b�
1=jn�1j and d0 �

dmin=jn� 1j. It follows that d � dmin > d0. When d0 >
R, an intermediate region will exist so long as

 

3d3

2R3

�b
�c
�

3

�n� 4��n� 3�

�
�mcR�2

3jn� 1j

�
jn�1j

	 1:

The smaller d is, the more likely it is that this condition
will be satisfied; we therefore evaluate the condition at d �
dmin. Both of the terms on the left-hand side are positive,
and so for an intermediate region to exist we must have

 mcR < �18�1=6

�
�c
�b

�
�n�4�=6�n�1�

� 1:6
�
�c
�b

�
�n�4�=6�n�1�

;

mcR <
������������������
3jn� 1j

p �
�n� 4��n� 3�

3

�
1=2jn�1j

:

For n <�4, the second of these conditions is usually
the more restrictive. However, since n <�4 implies n �
�6, this second condition is itself, in general, less restric-
tive than requiring either ��c= ���r � 0��n�1 	 1 or
��c= ���r � R��n�1 	 1.

Conditions—Putting together all of the conditions found
above, we see that, for the pseudolinear approximation to
be valid all the way from r � 1 to r � 0 for n <�4, we
must, at the very least, have
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 mcR <min
�
�18�1=6

�
mc

mb

�
�n�4�=3�n�2�

;
������������������
2jn� 1j

p
j�mb=mc�

2=jn�2j � 1j1=2

�
;

where we have used �c=�b � ��b=�c�
n�1 �

�mc=mb�
2�n�1�=�n�2�.

Thin-shell condition—If the above condition fails to
hold, then it is a sign that nonlinear effects have become
important. However, even when nonlinear effects are im-
portant, we only expect them to be so in a region very close
to the surface of the body itself. In Sec. III C we assumed
that our body had a thin shell and considered the behavior
of the field close to the surface of the body. We found there
to be pronounced nonlinear behavior near the surface of
such bodies. This implies that the pseudolinear approxi-
mation must break down for r > R for bodies with thin

shells. We further found that the assumption that the body
had a thin shell requires

 

�
n

n� 1

�
n=2�1

mcR� 1:

For a body to have a thin shell we must therefore require
that this condition hold and that the pseudolinear approxi-
mation would break down for r > R: these are the thin-
shell conditions. It is almost always the case that the latter
of these two conditions is the more restrictive. In
section III B we found this condition to be:

 �mcR�>min
�
�18�1=6

�
mc

mb

�
�n�4�=3�n�2�

;
������������������
3jn� 1j

p ��������
�
mb

mc

�
1=jn�2j

� 1

��������1=2
�
:

Since this condition implies mcR� 1, it is the thin-shell condition for n < 0 theories.

b. Case: n > 0

The case of n > 0 is actually slightly simpler than the n � �4 one because we cannot have d0 >R. Other than that, the
analysis proceeds in much that same way as it does for the n <�4 case. For this reason, we will not repeat the details of the
calculations here.

Conditions—For the pseudolinear approximation to be valid all the way up to r � 0 we must, at the very least, have

 mcR <min
�
�18�1=6

�
�c
�b

�
�n�4�=�6�n�1��

;
������������������
2�n� 1�

p
j��c=�b�

1=�n�1� � 1j1=2

�
:

When �b 	 �c, the most restrictive bound comes from the second term on the right hand side.
Thin-shell condition—As in n < 0 theories, a body with have a thin shell provided that mcR� 1 and nonlinear effects

are important near the surface of the body which implies that the pseudolinear approximation breaks down outside the
body. This latter condition in fact implies the former and is therefore the thin-shell condition for n > 0 theories. This
condition reads:

 mcR >min
� ���

3
p �

mc

mb

�
�n�4�=6�n�2�

;
������������������
3�n� 1�

p
j�mc=mb�

1=�n�2� � 1j1=2

�
;

where the second term on the right hand side is usually the
more restrictive when �b 	 �c.

c. Case: n � �4

The n � �4 case, i.e. �4 theory, requires a more in-
volved analysis. The reason for this is that, unlike the n <
�4 theories, there does not exist a solution to this theory
where ���A=r as r! 1. If we propose such a leading-
order behavior for the inner approximation, then it can be
easily checked that the next-to-leading-order term dies off
as ln�r�=r, i.e. more slowly than the leading-order one. This
means that, for some finite r, the next-to-leading-order
term will dominate over the leading-order one. When this
happens the inner approximation will break down. It can

also be checked that higher order terms will always die off
more slowly than the terms of lower order. This complica-
tion will only manifest itself, however, when the conditions
for the pseudolinear approximation fail, or almost fail, to
hold i.e. when (mcR) is large.

Inner approximation and matching—To avoid these
difficulties, we shall use a different form for the leading-
order behavior for � when n � �4. We write

 

�
�c
�
�b

�c
�
��r�e�mbr

mcr
:

To leading order in the inner approximation we neglect
terms of O�mbr� and smaller. The field equation for � is
then found to be equivalent to
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d2�

dy2
�
d�
dy
�
�3

3
;

where y � y0 � ln�r=R�. The outer approximation is still
given by ���. To perform the matching we need to
know the large r behavior of the inner approximation, and
the small r behavior of the outer one. Solving for �we find
that

 ��

�����
3

2y

s
:

The next-to-leading correction to � is

 

ln�y�
2

� �����
3

2y

s �
3
:

It is clear that, as we would wish, the next-to-leading-order
term dies off faster than the leading-order one. We shall see
below that, for this approximation to be valid near the
body, we need y0 � 0:634. This approximation also
breaks down whenmbr� 1. Matching the inner and outer
approximations in the same manner as we did before, we
find for r > R

 

�
�c
�
�b

�c
�
��min�r; 1=mb��e

�mbr

mcr
: (A7)

Inside the body, r < R, we assume that, at leading order,
�=�c behaves in the same way as if did for all the other
values of n:

 

�
�c
�
�0

�c
�
�mcR�2r2

6�n� 1�R2 :

By requiring � to be C1 continuous at r � R, we find y0 to
be

 

�mcR�3

9
�

��������
3

2y0

s
�

1

3

� ��������
3

2y0

s �
3

(A8)

and so

 

�0

�c
�
�b

�c
�
�mcR�

2

18
�

1

mcR

��������
3

2y0

s
:

Conditions—For this approximation to be a valid ap-
proximation, we must first require that the next-to-leading-
order correction to � is always small compared to the
leading-order one. This implies

 y0 � 0:508; mcR	 3:13:

We must also require ��r � 0� � �0 	 �c which gives
(assuming �b=�c 	 1):

 y0 � 0:634; mcR	 2:915:

This is the stronger of the two bounds.

When the field equations are solved numerically we find
that the form for � given above is an accurate approxima-
tion whenever mcR < 1.

Critical far field—The form of the far field for bodies
with thin shells in n � �4 theories is examined in
Appendix B below. However, it is interesting to note that,
even in the pseudolinear approximation for n � �4, there
is already the first hint of�-independent behavior in the far
field. When mbr	 1, we found that

 � � �b �
�y0 � ln�r=R���1=2e�mbr

2
������
2�
p

r
:

Thus, when ln�r=R� � y0 (provided mbr	 1), we have,
to leading order:

 ���b �
e�mbr

2
����������������������
2� ln�r=R�

p
r
;

which is manifestly independent of�c and hence also of�.
In n � �4 theories, �-independent critical behavior was
reserved for bodies with thin shells. When n � �4, we can
see that leading order, �-independent behavior in the far
field (r� R) can occur for all y0 i.e. all values of (mcR).
However if �mcR� 	 1, this critical behavior will only be
seen for exponentially large values of r=R. If, however,
mcR * 2 then�will be�-independent at leading order for
all r=R * 10.

APPENDIX B: FAR FIELD IN n � �4 THEORY FOR
A BODY WITH THIN SHELL

Using Eq. (22) and the other results of Sec. III C, we find
that, if a body has a thin shell, then for 0< �r� R�=R	 1
we have

 � �
1

�
������
2�
p
�r� R� � 4

3�c

;

when n � �4. In Appendix A, we saw that, far from the
body and when mbr	 1, we have

 � � �b �
�y0 � ln�r=R���1=2e�mbr

2
������
2�
p

r
:

We can find the value that y0 takes for a thin-shelled body,
and hence determine the behavior of the far field, by
matching the leading-order large r behavior of the first
expression to the leading-order behavior of the second
expression as r! R. This gives

 4y0 � 1) y0 � 1=4:

Numerical simulations show that this tends to be a slight
overestimate of the true far-field. We find therefore that far
from a body with thin shell, the chameleon field is ap-
proximately given by

 � � �b �
�1� 4 ln�r=R���1=2e�mbr������

2�
p

r
:
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Indeed, since we are far from the body, it is almost always
that case that r=R� 1:3 and so 4 ln�r=R� � 1. As a result,
it is usually a very good approximation to take

 ���b �
e�mbr

2
����������������������
2� ln�r=R�

p
r
:

We note that, whenever the pseudolinear approximation
holds, y0 � 1=4 is equivalent, by Eq. (A8), to an effective
value of mcR of �mcR�eff � 4:04. Numerical simulations
confirm that there is pronounced, thin-shell behavior when-
ever mcR * 4. When n � �4, the condition for a body to
have a thin shell is therefore mcR * 4. This condition is
shown to be a sufficient condition for thin-shell behavior in
Sec. III C above.

It is clear that, far from the body, � is independent of
both � and the mass of the body, M. There is a very weak,
log-type, dependence on the radius of the body R. The
strongest parameter dependence is on �. We can use the
form of� given above to define an effective coupling,�eff .
�eff is defined so that

 � � �b �
�eff�r=R�Me�mbr

4�Mplr
:

It follows that, for r * 2R

 �eff �
2�Mpl

M
��������������������������������������������������
2� ln�min�r=R; 1=mbR��

p :

APPENDIX C: EFFECTIVE MACROSCOPIC
THEORY

The analysis of the effective field theory for a macro-
scopic body proceeds along the same lines as the analysis
that was performed to find the field about an isolated body
in Sec. III, and Appendices A and B. A detailed discussion
of precisely what is meant by ‘‘effective,’’ or ‘‘averaged,’’
macroscopic theory is given Sec. IV above. For the pur-
poses of this appendix, our aim is to find the average value
of the chameleon mass inside a body in a thin shell.

We first consider what is required for linearization of the
field equations to be a good approximation. We then in-
troduce a pseudolinear approximation. Finally, we con-
sider what we expect to see when nonlinear effects are
strong. We assume that the macroscopic body has a thin
shell, and is composed of spherical particles of mass mp

and radius R. The average interparticle separation is taken
to be 2D. The average density of the macroscopic body is
�c � 3mp=4�D3. The density of the particles is �p �
3mp=4�R3. We label the average (i.e. volume averaged
over a scale * D) value of � deep inside the body by h�i.
We shall assume that the effect of the other particles, on a
particle at r � 0, is subleading when r	 D. In general,
the surfaces on which d�=dr � 0 will not be spherical, but
their shape will depend on how the different particles are
packed together. It will, however, make the calculation

much simpler, and easier to follow, if we assume that the
field about every particle is approximately spherically
symmetric for 0< r<D, and that at r � D, d�=dr � 0.
We take everything to be approximately symmetric about
r � D. We define ��r � D� � �c; mc � m���c�. We
argue below that h�i � �c, and that the average chame-
leon mass is approximately equal to mc � m���c�. Our
aim therefore is to find �c and mc.

We shall see below that it is possible, for all values of the
parameters fD;Rg, to construct an outer approximation that
is valid near r � D. The outer approximation will be valid
so long as ����c�=�c 	 1=jn� 1j. In the linear re-
gime, this outer approximation will be valid everywhere.
In the pseudolinear and nonlinear regimes, however, the
outer approximation will only be valid for r > dmin where

 dmin �
m2
cD3

3
:

When n � �4, we shall find that R	 D implies that
we always havemcD	 1. When n � �4, R	 D implies
that mcR &

���
3
p

is always true. It follows that �dmin=D�3 	
1. The volume in which the outer approximation holds is

 V out � 4��D3 � d3
min�=3:

Since �dmin=D�
3 	 1, V out � 4�D3=3, i.e., the entire

volume of the region 0< r<D. This means that the
volume averaged value of �, and m����, will be domi-
nated by the value � takes in the outer expansion. Since
� � �c in the outer expansion, and m� � mc, it follows
that h�i � �c and hm�i � mc.

Throughout this appendix, we shall therefore refer to �c
as the average value of�, andmc as the average chameleon
mass. The averaged behavior of �, in a body with a thin
shell, is entirely determined by �c and mc. Our aim of
finding an effective macroscopic theory is therefore
equivalent to calculating �c and mc.

If linear theory holds inside the body then �c � ��lin�c

where

 ��lin�c � M
�

��c
n�MplM3

�
�1=�n�1�

;

We also define

 �p � M
� ��p
n�MplM3

�
�1=�n�1�

:

1. Linear regime

We write � � �c ��1, where j�1=�cj 	 1, and
��r � D� � �c. Linearizing the equations about �0, one
obtains:
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d2��1=�c�

dr2
�

2

r
d��1=�c�

dr
� �

m2
c

n� 1
�m2

c��1=�c�

�
3�Mb

4�R3�c
H�R� r�;

(C1)

and

 

3�Mb

4�R3�c
�

m2
cD

3

�n� 1�R3

�
�c

��lin�c

�
n�1

:

For this linearization of the potential to be valid we need,
just as we did in Sec. III A, j�1=�cj 	 1=jn� 1j. Solving
these equations is straightforward and we find that for r >
R:

 �n� 1�
�1

�c
� 1�

cosh�mc�r�D��D
r

�
sinh�mc�r�D��

mcr
:

Inside the particle, r < R, we have

 �n� 1�
�1

�c
� 1�

D3

R3

�
�c

��lin�c

�
n�1

�
1�

sinh�mcr�R
sinh�mcR�r

�
�
�cosh�mc�R�D��mcD� sinh�mc�R�D��� sinh�mcr�

sinh�mcR�mcr
:

For d�=dr to be continuous at R � d, we need

 

�
�c

��lin�c

�
n�1
�
R3

D3

mcD cosh�mcD� � sinh�mcD�
mcR cosh�mcR� � sinh�mcR�

: (C2)

The largest value of j�1=�cj occurs when r � 0. For this linearization to be valid everywhere we must therefore require

 1�
mcD cosh�mcD� � sinh�mcD�
mcR cosh�mcR� � sinh�mcR�

�
1�

mcR
sinh�mcR�

�
�
�cosh�mc�R�D��mcD� sinh�mc�R�D���

sinh�mcR�
	 1: (C3)

We shall see below that mcR	 1. Given that mcR is small, the left-hand side of the above condition becomes

 

m3
cD

3

2mcR

�
3�sinh�mcD� �mcD cosh�mcD��

m3
cD3

�
� 1� sinh�mcD�mcD� cosh�mcD� �O�mcR�

For this quantity to be small compared with 1, we need
both mcD	 1, which implies mcR	 1, and
m2
cD

3=2R	 1. For all n � �4 we define

 Dc � �n�n� 1���n�1�=�n�4�

�
3�mp

4�Mpljnj

�
�n�2�=�n�4�

; (C4)

 D �
�
n�n� 1�

MR

�
�n�1�=3

�
3�mp

4�Mpljnj

�
�n�2�=3

; (C5)

we note that D=Dc � �Dc=R�
�n�1�=3. With these defini-

tions the requirement that �mcD�
2 	 1 is equivalent to

D� Dc. When n <�4 we needD	 D form2
cD

3=R	
1, whereas when n > 0 we need D� D for the same
condition to hold. Therefore, when n > 0 we need D�
Dc, D, whereas for n <�4 we require Dc 	 D	 D.

When n > 0, no matter what value R takes, there will
always be some range of D for which the linear approxi-
mation holds. If n <�4, however, we must require that
D � Dc for there to exist any value of D for which the
linear approximation is valid. It follows that, for the linear
approximation to be valid for any D (when n <�4) we
need R� Dc, i.e. m���p�R	 1.

When n � �4 we need both D	 D and

 �12�3=2�1=2

�
3�mp

4�nMpl

�
	 1:

This second condition implies both that mcD	 1 and
m���p�R	 1.

We conclude that, for large enough particle separations,
it is always possible to find some region where the linear
approximation holds when n > 0. However, when n � �4
we must also require thatm���p�R	 1 for there to be any
value of D for which the linear approximation is
appropriate.

Whenever the linear approximation holds, it follows
from mcD	 1 and Eq. (C2) that we must have

 �c � ��lin�c , mc � m���
�lin�
c �:

2. Pseudolinear regime

The pseudolinear approximation proceeds in much the
same way as it did in section III B, and Appendix A, for an
isolated body. Near each of the particles we can use the
same inner approximation as was used for a single body.
This is because, near any one particle, the other particles
are sufficiently far away that their effect is very much sub-
leading order.

Inner and outer approximations—The inner approxima-
tion (for n � �4) is, therefore,

 �=�c � ��=�c � A�
m2
cD3

3�n� 1�r

�
�c

��lin�c

�
n�1

;
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where A is to be determined by the matching procedure.
We will deal with the n � �4 case separately later.

Previously, the outer approximation was defined so that
it remained valid as r! 1. In this model, however, we are
assuming that everything is symmetric about r � D, and so
we need only to require that the outer approximation
remain valid up to r � D. Near r � D, we assume that
� � �c and linearize about �c. Requiring that d�=dr �
0 when r � D, we find
 

�=�c � 1�
1

n� 1

�
1�

cosh�mc�r�D��D
r

�
sinh�mc�r�D��

mcr

�
:

The outer approximation, as defined above, is also good for
n � �4.

Matching—For the pseudolinear approximation to work
we need, just as we did in Appendix A, there to exist an
intermediate region where both the inner and outer approx-
imations are simultaneously valid. We will discuss what
conditions this requirement imposes shortly, but, before we
do, we shall assume that such a region does exist, and
match the inner and outer approximations. Matching the
inner and outer approximations we find

 A � 1�
1

1� n
�1� cosh�mcD� �mcD sinh�mcD��;

(C6)

 

�
�c

��lin�c

�
n�1
�

3�cosh�mcD�mcD� sinh�mcD��

�mcD�3
; (C7)

Conditions for matching—For the outer approximation
to remain valid in the intermediate region, where r � d
say, we require that, for all r 2 �d;D�:
 ��������1� cosh�mcD� �mcD sinh�mcD�

�
m2
cD

3

3d
3�cosh�mcd�mcD� sinh�mcD��

�mcD�
3

��������	 1:

This is equivalent to mcD	 1) �c � ��lin�c . We must
also require

 

m2
cD3

3d
	 1:

We define dmin to be the smallest value of d for which the
above condition holds.

For the inner approximation, �� ��, to hold in the
intermediate region, we require that conditions, similar to
those that were found in the isolated body case, hold (see
Sec. III B and Appendix A). Specifically, we require that
for all r in �R; d�

 

R3

3
�

Z d

R
dr0

Z d

r0
dr00r00

� �p

���r00�

�
n�1

: (C8)

We also require that ��c=��r � 0��n�1 	 1. We note that
���lin�c =�p�

n�1 � �p=�c � D3=R3. We consider the sub-
cases n <�4, n > 0 and n � �4 separately.

a. Case n <�4

The analysis proceeds in the same way as it did for an
isolated body in Appendix A. We find that we must require

 m2
cR2 �

�
Dc

R

�
�n�4�=�n�1�

< 2jn� 1j
�
1�

�
R
D

�
3=jn�1j

�
:

If we only wish for the pseudolinear approximation to
remain valid up to r � R, then we must require the weaker
condition ���r � R�=� < 1. This is equivalent to

 m2
cR2 �

�
Dc

R

�
�n�4�=�n�1�

< 3jn� 1j
�
1�

�
R
D

�
3=jn�1j

�
:

Provided that either of these conditions hold, the condi-
tions for the outer approximation to be valid in the inter-
mediate region are automatically satisfied.

Whenever the first of the above requirements holds, the
pseudolinear approximation will give accurate results.

When the latter (and weaker) of the two conditions fails,
we expect pronounced nonlinear behavior near the parti-
cles. When this happens the far field induced by each
particle becomes �-independent. We will discuss how
this affects the values of �c and mc in Sec. C 3 below.
mcD	 1 implies �c � ��lin�c via Eq. (C7). It follows

that mc � m���
�lin��. The resulting macroscopic theory,

therefore, looks precisely like it did in the linear regime.

b. Case n > 0

The analysis for the n > 0 case proceeds in the much
same way as it did for a single body (see Appendix A). For
the outer approximation to hold, we require that

 D=Dc > 1;

which implies mcD	 1. We also need

 

D
D

<
�

2�n� 1�
�
1�

�
R
D

�
3=�n�1�

��
�n�1�=3

:

If we only wish to require that the pseudolinear approxi-
mation hold up to r � R, then we can relax this second
condition to

 

D
D

<
�

3�n� 1�
�
1�

�
R
D

�
3=�n�1�

��
�n�1�=3

:

When the first of the two conditions holds, the pseudolinear
approximation gives accurate results. Whenever the second
condition fails, we expect pronounced nonlinear behavior
near the particles. When this happens, we expect that the
far field (in r� R) will attain a critical form. We discuss
the consequences of this in Sec. C 3 below.
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As in the n <�4 case, when the pseudolinear approxi-
mation holds we have mcD	 1 and so �c � ��lin�c . This
implies mc � m����lin��.

c. Case n � �4

The case of n � �4 is, as it was in the one particle case,
the most complicated to study. However, the analysis pro-
ceeds almost entirely along the same lines as it did in the
one particle case. We find, using the results of Appendix A,
that the field near the particles will behave like

 

�
�c
� A�

����
3
2y

q
R

mcr
; (C9)

where y � y0 � ln�r=R�, and, provided nonlinear effects
are small i.e. y0 * 0:6, we find y0 to be given by

 

�m���p�R�3

9
�

��������
3

2y0

s
�

1

3

� ��������
3

2y0

s �
3
:

When n � �4, we have that m���
lin�D � m���p�R.

Using this, and matching the inner approximation to the
outer one, we find

 A � 1�
1

1� n
�1� cosh�mcD� �mcD sinh�mcD��;

(C10)

 

����������������������������������
3

2�y0 � ln�D=R��

s
� �cosh�mcD�mcD� sinh�mcD��=3:

(C11)

where y�D� � y0 � ln�D=R�.
Whenever nonlinear effects are small we have y0 * 0:6,

which implies

 

� ��������
3

2y0

s �
3
=3	

��������
3

2y0

s

and so

 

��������
3

2y0

s
�
�m���p�R�2

9
�
�m����lin�D��3

9
:

Since y0 > 0:6 implies
������
3

2y0

q
< 1:6 and so it follows

Eq. (C11) that

 �mcD�3 � �m����lin�D��3
����������������������������������

1

1� ln�D=R�=y0

s
:

The above approximation is very accurate when it predicts
mcD< 1, and even when mcD * 1 it gives a good esti-
mate for mcD.

For macroscopic, everyday, bodies with densities of the
order of 1–10 g cm�3, we tend to find ln�D=R� � 11. If
linear theory is to give a good estimate of mc, we need:

 ln�D=R�=y0 	 1) y0 � 11) mc���lin�� 	 1:5:

More generally, linear theory gives a good approximation
to mc whenever

 2�m���
�lin��D�6 ln�D=R�=243	 1:

Therefore, unless D=R is improbably large (D * Re243=2),
we will have we will have mc � m�lin�c whenever m�lin�c D &

1. When mc��
�lin�� * 1:5, we actually move into the a

regime of �-independent, critical behavior, more about
which shall be said below.

d. Summary

When the pseudolinear approximation holds (and
m���

�lin��D & 1), we have found that mc � m���
lin�. As

a result, despite the fact that there does not exist an every-
where valid linearization of the field equations, linear
theory actually gives the correct value of mc, at least to a
good approximation.

3. Nonlinear regime

When the pseudolinear approximation fails it is because
nonlinear effects have become important near the surface
of the particles, and they have developed thin shells of their
own. Far from the particles we expect that the field will
take its critical form as given by Eqs. (24a)–(24c). We can
find the value of�c, in this case, by matching our the outer
approximation for � to the critical form of the far field
around the particles.

When n <�4 we will have critical behavior whenever

 

m2
���p�R

2 �

�
Dc

R

�
�n�4�=�n�1�

> 3jn� 1j
�
1�

�
R
D

�
3=jn�1j

�
:

When this happens the far-field (r� R, r	 D) behavior
of the chameleon takes its critical form. We have found this
to be well approximated by

 �� �� � A�c �

�
	�n�
jnj

�
1=jn�2j

�MR��n�4�=�n�1� 1

r
:

Performing the matching to the outer approximation we
find that
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A � 1�
1

3
�1� cosh�mcD� �mcD sinh�mcD��;�

	�n�
jnj

�
1=jn�2j

�MR��n�4�=�n�2� �
�c

�n� 1�mc
�cosh�mcD�mcD� sinh�mcD��

�
n�MD�3

3

�
M
�c

�
n�1 3�cosh�mcD�mcD� sinh�mcD��

�mcD�3
�
n�MD�3

3

�
M
�c

�
n�1

:

We therefore have that

 m�crit�
c �

������������������
3jn� 1j

p
D

�
R
D

�
�n�4�=�2�n�1��

�
	�n�

3

�
1=�2jn�1j�

:

When n > 0, a similar analysis finds that

 

D
D

>
�

3�n� 1�
�
1�

�
R
D

�
3=�n�1�

��
�n�1�=3

;

and that

 

n�MD�3

3

�
M
�c

�
n�1
� MR

�
n�n� 1�M2

m2
c

�
1=�n�2�

:

We therefore find

 m�crit�
c �

������������������
3jn� 1j

p
D

�
R
D

�
1=2
:

In the n � �4 case, critical behavior will actually
emerge whenever ln�D=R�=y0 * 1. Nonlinear effects are
still responsible for this critical behavior but it is not
necessarily the case that the particle have developed thin
shells. Indeed, the thin-shell condition requires that
m���p�R * 4, whereas critical behavior (for ln�D=R� �
11 as is typical), emerges whenever m���p�R * 1:4.
When the particles do have thin shells, y0 � 1=4 (see

Appendix B) and so critical behavior is seen whenever
D * 1:3R.

We find the �-independent critical mass for n � �4
theories using Eq. (C11) and taking y0 	 ln�D=R�. It
follows that the critical value of mc for n � �4 theories
is given by

 m�crit�
c � X=D;

where X satisfies

 X coshX� sinhX �
3
���
3
p

�������������������
2 ln�r=R�

p :

When ln�D=R� � 11, we find mcrit
c D � 1:4.

4. Summary

In this appendix, we have performed a very detailed
analysis of the way in which the chameleon behaves inside
a body that has a thin shell and which is made up of many
small particles. In this way, we have been able to calculate
the average chameleon mass inside such a body. Despite
the in depth nature of the analysis, our results can be
summarized in a very succinct fashion.

The average mass, mc, of the chameleon field inside a
thin-shelled body of average density �c is

 mc � min
� ���������������������
n�n� 1��

p
M
�

��c
�jnjMplM3

�
�n�2�=�2�n�1��

; m�crit�
c �R;D; n�

�
;

where R is the radius of the particles that make up the body,
and 2D is the average interparticle separation. The critical
mass, m�crit�

c , is given by

 m�crit�
c �

������������������
3jn� 1j

p
D

�
R
D

�
�q�n��=2

S�n�; n � �4;

m�crit�
c � X=D; n � �4;

where q�n� � min��n� 4�=�n� 1�; 1�, S�n� � 1 if n > 0,
S�n� � �	�n�=3�1=2jn�1j if n < 0, and

 X coshX� sinhX �
3
���
3
p

���������������������
2 ln�D=R�

p :

The dependence of m�crit�
c D vs ln�D=R� is shown in Fig. 4.

We can clearly see that D� R implies m�crit�
c D	 1 when

n � �4. When n � �4, m�crit�
c can be seen to be less than���

3
p

whenever ln�D=R� * 2.

APPENDIX D: EVALUATION OF �� FOR WHITE
DWARFS

In this appendix, we evaluate �� for white dwarfs under
a more accurate approximation than that used in Sec. VII.
This accurate evaluation allows for the effect of a chame-
leon on the general relativistic stability of white dwarfs to
be studied in more detail. The effect of the chameleon on
compact objects such as these is considered in Sec. VII.

The chameleon contribution to the energy of the white
dwarf was found, in Sec. VII, to be

 W� �
n� 1

n

Z
d3x

��
Mpl

�:
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For the chameleon theory to be valid, we must require that
the chameleon force is weak compared to gravity inside the
white dwarf. We shall therefore ignore the chameleon
corrections in the behavior of � when evaluating W�,
because they must be sub-leading order. In this way, we
are able to accurately find the leading-order behavior of
W�. By leading order we mean: ignoring general relativ-
istic and chameleon corrections. It is important to stress
that we are not ignoring special relativistic corrections,
which are very important; we are merely assuming that
the only volume force inside the white dwarf is, to leading
order, Newtonian gravity. This approximation is similar to
the one used in Ref. [71] to evaluate the general relativistic
corrections to the energy of the white dwarf.

We shall assume that the polytropic equation of state
P � K�� holds everywhere. We will also approximate the
white dwarf to be spherically symmetric. Defining � �
�c�p and r � a�, hydrostatic equilibrium implies that, to
leading order, � satisfies the Lane-Emden equation [71]:

 

1

�
d
d�
�2 d�

�
� ��p;

where

 a �
��p� 1�KM2

pl�
�1=p�1�
c

4�

�
1=2
:

We define �c to be the density of matter in the center of the
star. The boundary conditions ��0� � 1, �0�0� � 1 follow.
The index p is related to � by � � 1� 1=p. This equation

must be solved numerically. The surface of the star is at
r � R � a�1, which is defined to be the point where � �
0. We will mostly be interested in the case of relativistic
matter, � � 4=3! p � 3. For p � 3 we have �1 �
6:89685. The chameleon potential is then given by

 W� �
n� 1

n
����c�
Mpl

a3�c
Z �1

0
d��2�pn=�n�1�:

We evaluate this integral numerically assuming a relativ-
istic equation of state (i.e. p � 3) and find

 W� �
n� 1

n
��

����c�
Mpl

Mstar;

where Mstar � muN is the mass of the star. The values of
�� are given in Table II. As n! �1 we find �� ! 1.
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