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Presented in this paper is the description of a Markov chain Monte Carlo (MCMC) routine for
conducting coherent parameter estimation for interferometric gravitational wave observations of an
inspiral of binary compact objects using multiple detectors. Data from several interferometers are
processed, and all nine parameters (ignoring spin) associated with the binary system are inferred,
including the distance to the source, the masses, and the location on the sky. The data is matched with
time-domain inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in amplitude. We
designed and tuned an MCMC sampler so that it is able to efficiently find the posterior mode(s) in the
parameter space and perform the stochastic integration necessary for inference within a Bayesian
framework. Our routine could be implemented as part of an inspiral detection pipeline for a world-
wide network of detectors. Examples are given for simulated signals and data as seen by the LIGO and
Virgo detectors operating at their design sensitivity.
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L. INTRODUCTION

The era of gravitational wave astronomy is now close
upon us as numerous interferometric detectors are operat-
ing. The Laser Interferometer Gravitational Wave Ob-
servatory (LIGO) [1-3] has now reached its target sensi-
tivity, and there is the hope that a detection could come at
any time [4]. Around the globe a world-wide network of
detectors is coming online; Virgo in Italy [5-7], GEO in
Germany [8,9], and TAMA in Japan [10,11] are operating
alongside LIGO in the quest for gravity wave detection.
These ground based laser interferometers are sensitive to
gravitational radiation in the frequency band from 40 Hz
up to 8 kHz.

Coalescing binaries containing neutron stars or black
holes promise to be one of the cleanest and most probable
sources of detectable radiation [12]. Observation of inspi-
ral events could provide important information on the
structure of neutron stars [13,14]. Even cosmological in-
formation can be extracted from the observation of inspiral
events [15—-19]. The characteristics of radiation in the post-
Newtonian regime will provide insight into highly non-
linear general relativistic effects, such as the observation of
the formation of a Kerr black hole as the binary system
decays [18,20,21]. The LIGO Scientific Collaboration
(LSC) has been actively searching for binary inspiral
events [22,23], as well as conducting searches in coinci-
dence with TAMA [24]. Using the data from LIGO’s S2
run, it was possible to set an upper limit on the neutron star
coalescence rate of less than 50 per year per Milky Way
equivalent galaxy [23]. The LSC has also conducted
searches for binary inspiral signals from primordial black
holes (0.2—-1.0M,,) in the halo of our galaxy [25], plus more
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massive black hole systems where component masses are
in the 3-20M,, range [26].

Bayesian inferential methods provide a means to use
data from interferometric gravitational wave detectors in
order to extract the parameters of a binary inspiral event.
Markov chain Monte Carlo (MCMC) methods are a power-
ful computation technique for parameter estimation within
this framework; they are especially useful in applications
where the number of parameters is large [27]. Nice de-
scriptions of the positive aspects of a Bayesian analysis of
scientific and astrophysical data are provided in [28—30].
In previous work we have developed MCMC routines for
extracting five parameters associated with a binary inspiral
event from data generated by a single interferometric
detector [31-33]. Our MCMC code took data from a single
interferometer, Fourier transformed it into the frequency
domain, and then compared the result with 2.0 post-
Newtonian (PN) stationary phase templates [34]. One of
the new methods that we implement in this current study,
presented in this paper, is an MCMC routine that takes
time-domain interferometric data, and compares it to time-
domain templates that are 2.5 PN in phase, and 2.0 PN in
amplitude; a trivial modification of the code (though not
implemented in the study presented here) is to extend the
accuracy of the signal waveforms to 3.5 PN in phase and
2.5 PN in amplitude [35-39]. A critical task for a world-
wide gravity wave detection network will be to not only
detect a binary inspiral signal, but to say where it came
from. For this purpose the LSC has developed a coherent
binary inspiral search pipeline [40—42]. Coherent binary
search pipelines and methods are also being developed
within the Virgo collaboration [43] and TAMA [44].
Along similar lines, we have developed a coherent
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MCMC parameter estimation routine, and in this present
paper we describe it and provide results from a test on
simulated data. The simulations involve binary neutron star
inspirals observed by three well-separated interferometers:
the 4 km LIGO detectors at Hanford, WA and Livingston,
LA, plus the 3 km Virgo detector in Cascina, Pisa, Italy.
The synthetic data for the LIGO and Virgo detectors has
Gaussian noise with power spectral densities (PSD) that
match their target sensitivities [45,46]. The MCMC code
takes data from several interferometers, and estimates the
two individual masses, time and phase at coalescence,
distance to source, gravity wave polarization angle, angle
of inclination of the binary system’s orbital plane, and sky
position in right ascension and declination. The additional
parameters of polarization, inclination angle, and sky lo-
cation can only be estimated accurately when data from
more than one interferometer are considered; they also
greatly inflate the parameter space and therefore compli-
cate the analysis. MCMC methods have also been tested in
a similar context to recover the nine parameters of a binary
black hole coalescence in LISA data [47]. However, the
problem setting is different (due to the different instru-
ment, longer observation period, lower frequencies being
investigated, and the 2.0 PN phase model), and MCMC
techniques were employed rather for optimization than
for integration; the MCMC was also only applied on a
subset of the parameters, while others were solved for
analytically.

The organization of this paper is as follows. After a brief
introduction to the analysis problem we describe our ap-
proach alongside more detail on the applied model in
Sec. II. Section III provides practical directions how we
implemented MCMC methods in order to analyze data
within the described framework. Section IV eventually
illustrates results of applications of our code to simulated
data. We conclude the paper with a discussion and outlook
in Sec. V.

II. ANALYSIS STRATEGY AND MODELLING

A. Measuring gravitational waves

In an inspiralling binary system, the two companions
orbit around their center of mass with decreasing orbital
distance and period, until the system eventually collapses.
The gravitational radiation emitted by the system exhibits a
“chirp” form, that is, an oscillation of increasing fre-
quency and amplitude. A laser interferometer is sensitive
to space distortions along the directions of its two orthogo-
nal arms, as it monitors the phase difference between the
two laser beams that travel along the arms. A gravitational
wave is a quadrupole wave that is characterized by its
direction of travel, polarization angle, and its two polar-
ization amplitudes. Its effect on a laser interferometer’s
measurements then is a linear combination of the effects
associated with the two polarizations, depending on the
orientation of the interferometer with respect to the passing
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wave. Actual measurements, of course, are also exposed to
noise.

Measurements of a binary inspiral’s chirp signal by a
single interferometer will not be sufficient to infer all of the
parameters that determine the signal’s waveform and the
interferometer’s response. Measurements from several
separate interferometers will, in general, be required to
derive (for example) the wave’s direction of travel by
matching possible mutual orientations as well as different
arrival times of the signals at the different sites. Combining
measurements from several interferometers will also en-
hance sensitivity and signal-to-noise ratio [40].

B. The Bayesian approach

We apply a Bayesian approach to this inferential prob-
lem, that is, the term “‘probability” is used in a broader
sense than in the more common “‘frequentist” interpreta-
tion [30,48,49]. Probability calculus here is applied to
process and infer states of incomplete information that
are reflected by probability distributions, and that are con-
ditional on prior knowledge and/or the data at hand. This
allows one to treat unknown parameters as random varia-
bles that follow a prior distribution representing the re-
searcher’s pre-experimental knowledge and uncertainty.
The gain in information through observation of data then
follows in a straight-forward fashion through the applica-
tion of Bayes’ theorem, yielding the posterior distribution
of the parameters. The posterior distribution, which is
essentially the product of the parameters’ prior distribution
and the likelihood of the data, then poses the basis for
inference [50].

Inference through the posterior distribution usually in-
volves the solution of integrals, since one is typically
interested in figures such as the marginal (posterior) ex-
pectations of individual parameters, marginal (posterior)
densities, or (posterior) probabilities of certain events,
which are derived from the posterior distribution by inte-
grating over the parameter space. In many cases when
analytic integration is not possible, numerical methods
are employed, usually (pseudo-) stochastic techniques
like Markov chain Monte Carlo (MCMC) methods that
simulate random draws from the posterior ditribution, then
allowing one to approximate the desired integrals by sam-
ple statistics [27,50].

C. Parameters

The waveform that is measured at a certain interferome-
ter depends on the characteristics of the inspiral event as
well as the orientation of the source relative to the inter-
ferometer. The nine “‘global” parameters determining the
response of Earth-bound interferometers are:

individual masses (m;, my, € R*; m; = m,),

luminosity distance (d; € R™),

inclination angle (¢ € [0, 7]),

coalescence phase (¢ € [0, 27]),
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coalescence time at geocenter (¢, € R),

declination (6 € [— %, Z]),

right ascension (a € [0, 27]) and

polarization (¢ € [0, 7]),
the latter four of which affect the measurement at the /-th
detector in terms of the “local’” parameters

local coalescence time (tﬁl) ER),

altitude (9 € [0, 7)),

azimuth (o) € [0, 277]) and

polarization () € [0, 7]).
These ‘““local” parameters are derived from the locations/
orientations of the source and the individual interferome-
ters with respect to each other. For more specific definitions
and conventions see e.g. [51]. In the following we will refer
to the two parameter sets as the global parameter vector

0® = (mly er dLy L, ¢0’ t(;r 8) «, ¢)) (la)

and the local parameter vector
00 = (my, my, dp, 1, o, 1, 9D, o0, D) (1b)

with respect to a specific interferometer /. Not all of the
above parameters will usually be of primary interest; es-
pecially coalescence phase ¢, polarization ¢ or inclina-
tion ¢ might be regarded as nuisance parameters.

D. Network likelihood

An interferometer’s data output z is assumed to be the
sum of the actual signal s(@), depending on the true pa-
rameters #, and (interferometer-specific) colored noise.
The (real-valued) data z and signal waveform s(6) enter
the likelihood function in terms of their (complex-valued)
Fourier transforms 7 and 5(#), the noise is specified
through its power spectral density (PSD) S,. The like-
lihood function for a specific interferometer / then is (up
to a normalizing constant) proportional to the following
expression

LD(eD) o exp<—2v/;)oo 12/) _558:; 0(1))|2df> (2)

[52]. For actual data, discretized and measured over a finite
interval of length §,, it is computed as the sum of squared
and normalized differences between the Fourier transforms
of the observed signal (Z) and the signal template (5(6))
over the discrete set of Fourier frequencies {(i X Ay): i, =

i =iy}

data template
Orad) =2 L |F2i X Af) = (i X Ay, 6D))?
L I 0] _“ ’
(67) = exp| == > S, XA,
—

r =i,

noise PSD
(3

where iy X A, and iy X A, are the lower and upper
bounds of the examined frequency range. Note that,
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although not labeled as such here, data z, noise spectrum
S,, etc. are specific for the different interferometers I.
Assuming that noise is independent across different inter-
ferometers, the network likelihood then is the product of
the individual interferometer likelihoods

L(6®) =T L"), 4)
1

E. Prior specification

The prior information is specified in a straight-forward
fashion for the “geometrical’” parameters that determine
the location and orientation of the inspiral event. A priori,
the event is assumed to be equally likely across all possible
directions; this leads to a uniform prior for the right ascen-
sion «, and a prior density

f(8) = 3cos(8) &)

that is proportional to the circumference of the correspond-
ing ““circle of latitude’ for the declination §. Analogously,
the prior density of the inclination ¢ is

f(o) = 3sin(v), (6)

and the remaining parameters, polarization ¢ and coales-
cence phase ¢, have uniform priors. The prior specifica-
tions for these parameters may also be regarded as
Maximum Entropy choices [49,53].

The coalescence time . is assumed to be known in
advance up to a certain accuracy through preprocessing
of the data [22,54,55]; for now we set its prior to be
uniform across =5 ms around the true value, which of
course is known for simulated data.

The joint prior of the remaining parameters, masses m,
m, and luminosity distance d;, is set in order to reflect the
distribution of parameters given the event has been de-
tected in the first place. Initially, the prior for the two
inspiral companions’ individual masses is assumed to be
uniform between 0.6 and 3.0M,, (solar masses: My = 2 X
10°° kg), which effectively covers the range of values
expected for neutron stars. The prior for d; is derived
from the assumption that inspirals happen uniformly across
space, so that P(d, < x) = x. So far, this leads to an
improper distribution (that has an infinite integral). But
inspiral signals obviously cannot originate from arbitrarily
great distances, since at some point their signals become
too faint to be detected. We incorporated this restriction by
taking into consideration the detection probability D,
which we assume to depend on the signal’s amplitude,
which is roughly proportional to

ﬂt(ml,mz,dL>=1n( Vi ) %

dp(my + m,)'/6
neglecting for simplicity the effects of orientation parame-

ters (A is actually the logarithmic amplitude) [33]. We
could have set a threshold amplitude below which inspirals
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would be assumed undetectable, but favored a ‘“‘smoother”
transition that does not explicitly apply zero probability to
parts of the parameter space. Instead we model the depen-
dence between signal amplitude and detection probability
using a (sigmoidal) logistic function of the form

1

D S
ab () 1 + exp(*39)

(®)
whose parameters a and b are set so that D, ,(xy) =1 — p
and D,,(x;) = p, for some upper and lower reference
points x;; and x;, and some 0 < p < 0.5 (e.g. p :=0.1).
So xy; denotes the amplitude at which the detection proba-
bility reaches 1 — p, and x; is the amplitude at which the
probability falls below p. In order to fit D through these
points, its parameters are set to

Xy T XL

XLty o
: 3 and b: 2111(%' )

So the density of the resulting (proper) prior distribution of
individual masses and distance is

f(my, my, dp) = ¢ X di X D, ,(A(my, my,dp)) (10)

for some normalizing constant ¢ € R* [33]. For the ex-
amples shown here, we set xy := A(2.0M,, 2.0M,,
45 Mpc), x; = A(2.0Mg, 2.0M,, 50 Mpc) and p =
0.1, so an optimally oriented 2.0-2.0M,, inspiral is as-
sumed to be detectable out to 45 and 50 Mpc with proba-
bilities of 90% and 10%, respectively.

As a “‘side effect” of this prior definition, larger masses
have a greater prior probability, since inspirals involving
large masses may originate from farther distances while
low-mass inspirals need to be close in order to be observ-
able at all. This feature is also known as the Malmquist
effect; incorporating it into the prior will compensate for
selection bias that would otherwise affect the results
[56,57]. The definition of priors, especially for coalescence
time 7., individual masses m; and m, and their relation to
the luminosity distance d;, and possibly also for the sky
location (8, a), may be refined at a later stage when e.g.
some substantiated knowledge is available about the per-
formance of the upstream detection pipeline, which might
provide rough estimates of some of the parameters together
with the detection [22,54,55]. For now we aim for simple
and general formulations.

III. IMPLEMENTATION
A. General

In order to analyze data in terms of the above frame-
work, we implemented an MCMC sampler in C that is
supposed to both find the global mode(s) of the posterior
distribution and then “explore” the distribution, i.e. simu-
late random draws from the posterior. Data is imported
from the Frame format using the Frame Library [58]. Prior
to the analysis, the data is filtered and downsampled by a
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factor of 4 [59,60]. (Pseudo-) random number generation
within the MCMC sampler was implemented using
Randlib [61].

The MCMC sampler writes only every 25th of the drawn
samples to a text file, in order to reduce the effects of
subsequently correlated samples, and also to keep the
data volume at a reasonable level. The MCMC output
then is imported into R, a statistical software, for eventual
analysis [62].

The marginal densities that are shown in this paper are
kernel density estimates [63]. Two-dimensional densities
are illustrated by greyscale plots (with darker areas corre-
sponding to greater densities), and in addition the contour
line enclosing the most probable region (accumulating
95% probability) is shown.

B. Likelihood implementation

In order to compute the coherent network-likelihood,
first the individual interferometer-likelihoods need to be
determined. The primary “ingredients” for the
interferometer-likelihood are

the Fourier-transform of the data Z,

the noise spectrum S,

the “local” parameter set #) and

the (Fourier-transformed) signal template §(6")),
the first two of which only need to be determined once at
the very beginning of the analysis, while the latter two (in
general) need to be recomputed for each likelihood
evaluation.

For all (discrete) Fourier-transformations we use the
freely available FFTW library [64]. The noise spectrum
is estimated from a section of data that is disjoint from the
actually analyzed data set [65]. In order to minimize un-
desirable leakage effects, the data is “windowed” before
Fourier-transformation; using a Hann window for spectrum
estimation, and a Tukey window for data and template
transformations [66].

Internally, along with the noise spectra, data Fourier
transforms etc. corresponding to each of the interferome-
ters 1, a set of vectors defining the interferometer’s location
and orientation is stored. This allows to derive the
interferometer-specific parameters (local coalescence
time 1, altitude 97, azimuth ¢® and polarization ¢!)
with respect to the galactic and Earth coordinate systems
from the global parameter vector #® via vector operations
like rotations, orthogonal projections, etc. [67—69].

C. Time-domain waveform generation

Template waveforms §(#) are generated in the time-
domain and then (numerically) Fourier transformed to
the frequency-domain. Here we used waveform approxi-
mations that are 2.5 PN in phase and 2.0 PN in amplitude.
The rather complex expressions for these are omitted here
and can be found in [51]. We preferred working in the time-
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domain, since frequency-domain templates might intro-
duce discrepancies because they are exact analytic
Fourier transforms of the “‘parametric’’ waveforms, while
the actual data is of finite extent and affected by leakage
introduced through the numerical discrete Fourier trans-
formation. When using time-domain templates and Fourier
transforming these, the resulting frequency-domain tem-
plates are the more accurate match to the Fourier-
transformed data. Another advantage of generating tem-
plates in the time-domain is the availability of a wider
range of signal waveforms; the extension to higher PN
approximations (e.g. 3.5 PN phase and 2.5 PN amplitude
[35-39]) or the consideration of additional parameters
(e.g. spin effects [70]) would be straight forward to
implement.

D. MCMC implementation

In order to enhance the MCMC sampler’s performance
we applied reparametrizations to some of the parameters.
The individual masses (m;, m,) are highly correlated in
their posterior distribution [18], making sampling from the
original parameters extremely difficult. Re-expressing the
masses in terms of chirp mass m, and the (symmetric)
mass ratio 7, where

(mymy)3/3 myni,

= ——= _  and == 12
(my + )15 Ty 1P

c
yields a posterior that is much easier to sample from. We
then reparametrized the luminosity distance from d; to
In(d; ), which implicitly yields an unbounded parameter
space and proposal step widths that are proportional to the
current distance d;. Declination & and inclination ¢ were
transformed to sin(8) and cos(¢), which leads to uniform
prior distributions over the new parameters.

The MCMC algorithm was implemented as a
Metropolis-sampler [27,50] that was extended to a parallel
tempering algorithm. The idea of tempering is to consider a
smoothed (“‘tempered’”) version of the actual objective
function (here the posterior distribution), or, analogously,
do its exploration (optimization, MCMC sampling,...)
following “relaxed” rules. In optimization contexts, the
tempering is often faded out over time, the result being a
“simulated annealing’’ algorithm, which starts off at a high
temperature in order to find the global mode amongst other
minor modes, but eventually ends up optimizing the origi-
nal objective function. Parallel tempering is a special case
of the “Metropolis-coupled MCMC” (MCMCMC) algo-
rithm, in which several ‘“‘tempered” chains are run in
parallel, each having a different (constant) temperature.
So the tempering does not vary over time, but instead is
realized across parallel chains, with additional proposals
allowing for swapping between chains. Instead of sampling
from the regular posterior distribution with density func-
tion f (which is essentially the product of prior 77 and
likelihood L: f(6) o 7(6) L(0)), the tempered chains sam-
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ple from a modified distribution
fr(0) < m(0) L), (13)

where 7 = 1 denotes the “‘temperature’’, and for which in
the extreme cases 7 = 1 and 7 — oo the tempered distri-
bution fr equals posterior and prior, respectively. Chains
running at higher temperatures can be considered as sam-
pling from a “relaxed” or ““widened” posterior which is
then used as proposal distribution (through the swapping
between chains) for “cooler’” chains, thus improving both
convergence and mixing. The draws from the ‘“coolest”
chain with T = 1 are the only ones that are eventually used
for posterior inference.

The starting values for the sampler are determined using
importance resampling [50]. In a simplified setting of the
problem (considering only 5 parameters and one interfer-
ometer [33]), this was sufficient to yield reasonable poste-
rior samples that were close enough to the main mode so
the sampler then converged reliably and fast. Because of
the much larger parameter space and the computationally
more expensive likelihood, ensuring convergence through
good starting values is not feasible any more. Instead,
convergence is now supported through the use of parallel
tempering, which enables the sampler to cross gaps be-
tween (local) modes and eventually find the posterior’s
global mode(s).

As proposal distribution for the MCMC sampler we used
a multivariate Student’s t-distribution with 3 degrees of
freedom. In addition to these ‘“‘regular’” proposals, some-
times draws from the prior are proposed for some parame-
ters in order to enhance convergence, or steps to ‘“‘related”
parts of the parameter space, like a step from phase ¢ to
¢y = 7, which corresponds to an (almost) equally likely
parameter combination if the two masses are (almost)
equal. Proposals like these are valid as long as a certain
symmetry is maintained, i.e. every proposed step is as
likely as the reverse step; otherwise one would need to
switch to a Metropolis-Hastings sampler that is able to
account for asymmetric steps [27,50].

E. Signal-to-noise ratios

The signal-to-noise ratios (SNR) stated in subsequent
sections are defined as follows. The interferometer-specific
SNR of a certain signal s(6®) received at interferometer /
and embedded in noise with spectral density S, is defined
as

00 | § (1y]2
9(1)=2\/ﬁ 7”(];’?]())' af (14)

[32]. We computed it—in analogy to Eq. (3)—over the
same frequency range that is relevant for the likelihood.
The network SNR then is defined as
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Onetwork = Z(Q(”)z (15)
1

IV. EXAMPLE APPLICATION USING SIMULATED
DATA

[18].

A. Overview

In the following two sections we will illustrate results
generated by our MCMC implementation on simulated
data. Firstly, in Sec. IV B the evidence on parameters in
the measured data is illustrated for one simulated signal by
looking at the results of an MCMC run in detail. In the
following Sec. IV C the effect of varying signal properties
on the evidence in the data is demonstrated and some
peculiarities are pointed out. The posterior distributions
of parameters are compared across simulated signals that
are observed at different distances (and with that, SNRs),
but which are otherwise identical. While the individual
SNRs (at each interferometer) for each of these examples
are similar, a more extreme example with an almost zero
SNR at one of the interferometers is considered as well.

B. Recovering the inspiral’s parameters

We simulated an inspiral event that is measured at three
interferometer sites, namely, Hanford (LHO), Livingston
(LLO) and Pisa (V). Because of their different noise char-
acteristics, the frequency ranges of the likelihoods were set
to 30—1600 Hz for the Virgo observatory, and 40—1600 Hz
for the other two LIGO interferometers (cp. Equation (3)).

PHYSICAL REVIEW D 75, 062004 (2007)

The amount of data to consider was set to be the 40 seconds
before coalescence for Virgo, and 20 s for the other two.
This matches the time an inspiral of this kind spends
emitting radiation within the above frequency ranges, and
would in a realistic search need to be set either with respect
to worst-case considerations, or based on prior information
supplied by the detection pipeline. The original sampling
rates of the data were 20000 Hz (V) and 16384 Hz (LHO,
LLO), and the signals were superimposed with Gaussian
noise matching the corresponding interferometer’s design
sensitivities [45,46]. The example inspiral had parameter
values of d; = 10 Mpc for the distance and masses of
m; = 1.5M, and m, =2.0Mg (chirp mass m, =
1.505Mg, mass ratio n = 0.245). The resulting SNRs at
the three interferometer sites are: LHO: 16.4, LLO: 21.2
and V: 12.6 (network SNR: 29.6).

Six parallel MCMC chains were run within the parallel
tempering scheme. With this amount of data the MCMC
code generated some 80 samples per minute on a 3.2 GHz
Pentium desktop PC, so considering the parallel chains
(six) and the thinned output (every 25th), an actual poste-
rior sample is generated every 113 seconds. The first chain
of the parallel tempering MCMC sampler converged after
some 75000 iterations, after ““thinning out” of the samples
and discarding the burn-in phase, the resulting posterior
sample size was 12500 samples.

Figure 1 shows marginal posterior densities of the nine
parameters for our example problem, and Table I lists some
numerical posterior estimates. Although correlations be-
tween parameters are already greatly reduced through the
reparametrization, some correlation still remains. Figure 2
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FIG. 1.

coalescence phase ¢ (rad) polarisation angle vy (rad)

Marginal posterior densities of the inspiral’s parameters for our example problem. Dashed lines indicate the true values.
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TABLE I.

PHYSICAL REVIEW D 75, 062004 (2007)

Some key figures summarizing the marginal posterior distributions of individual parameters, where meaningful. Mean and

median characterize the distributions’ centers. Given the observed (simulated) data, the parameters fall within the central posterior
intervals with 95% probability. The true parameter values used to generate the data are shown as well.

Mean Median 95% c.p.i. True Unit
m, 1.5044 1.5044 [1.5039, 1.5048] 1.5047 M,
n 0.2418 0.2417 [0.2380, 0.2460] 0.2449
t, 12.3445 12.3445 [12.3440, 12.3450] 12.3450 s
dy 8.89 8.29 [6.25, 13.1] 10.00 Mpc
0 —29.76° —29.77° [ —30.74°, —28.84°] —29.00°
a 17h45.0/ 17h44.9' [17742.17, 17P48.9'] 17045.0/
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FIG. 2. Marginal joint posterior distributions of two pairs of parameters. Dashed lines indicate the true values.

illustrates correlations between two such pairs of parame-
ters, one can see that the ‘““‘new”” mass parameters m,. and 7
are still dependent (though orders of magnitude less than
m; and m, were), and also that the uncertainty in the
luminosity distance d; is tied to the uncertainty in the
inclination angle ¢, since these two parameters can com-
pensate or mimic each other’s effect to a certain degree.

Distributions of other variables derived from the pa-
rameters could be investigated, their distributions then
depending on the joint distribution of the involved parame-
ters [33]. Examples would be the individual masses (m;,
m,), or the total mass m, = m; + m,; the distribution of m,
is narrower than those of both m; and m,, due to their
negative correlation (cp. Table I).

C. Results for varying signal characteristics

We performed additional runs with varying settings of
the ‘““true” parameters of the simulated signal. As one
would expect, the precision of parameter estimation is
proportional to the signal’s strength; Table II shows the
standard deviations of some of the parameters’ posterior

distributions. The posterior is narrowest for a close-by
inspiral of high masses, and gets wider for both lower
mass or greater distance.

These results are in agreement with earlier estimates of
the accuracy to be expected from such parameter estimates
[18]. The great difference in relative accuracies of parame-
ters related to phase evolution (like chirp mass m,. and

reduced mass u = 22— 4y versus those affectin
K my+m, t

the signal’s amplitude (like distance d; ) is confirmed, and
the correlation between m,. and u is verified as well.

At decreasing SNRs, certain parameters cannot be de-
termined unambiguously any more. One example is the
inclination angle ¢, which still has a “well-behaving”
posterior distribution at 10 Mpc distance (see Fi. 2). For
a weaker signal originating from 30 Mpc distance, the
distribution then turns bimodal (Fig. 3). The “‘orientation”
of the inclination angle is not clear any more, the result
being two roughly equally likely ““mirror image’’ solutions
with P(¢ <Z) = 1 = P(. > 7). Note that the two solutions
¢t and 7 — ¢ correspond to opposite orbital directions
(clockwise/counterclockwise), as seen from Earth, which
might be of minor interest anyway.
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TABLE II. Individual and total SNRs for different signals, and some characteristics of the resulting posterior distributions. The
accuracy of some of the parameters is illustrated by the posterior standard deviations for (8, «), t., d;, m. and u (percentages refer to
the true value). The correlation coefficient for m. and p shows the (posterior) interdependence between the two parameters. Our
results are consistent with those presented in [18].
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Masses Distance Signal-to-noise ratios Posterior standard deviations
mi-my dy LHO LLO \% Network (6, a)* t, dy m, M Cor(m,, u)
1.5-2.0M, 10 Mpc 16.4 21.2 12.6 29.6 0011rad 026ms 20% 0016% 0.35% 0.95
1.5-2.0M, 20 Mpc 8.2 10.6 6.3 14.8 0030rad 049 ms 25% 0031% 0.69% 0.94
1.5-2.0M, 30 Mpc 5.5 7.1 4.2 9.9 0207rad 1.04ms 25% 0.074% 1.33% 091
2.0-2.0M, 10 Mpc 18.4 239 14.1 333 0.008 rad  0.14 ms 14%  0.009%  0.14% 0.80
2.0-2.0M, 20 Mpc 9.2 11.9 7.1 16.7 0.017 rad  0.28 ms 18%  0.014%  0.23% 0.73
2.0-2.0M, 30 Mpc 6.1 8.0 4.7 11.1 0026 rad 042ms 21% 0021% 0.37% 0.78
spherical standard deviation [71]
I : ] :
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FIG. 3. At greater distance the ‘““orientation” of the inclination angle ¢ cannot be resolved any more, both directions are roughly
equally likely (P(c <7) = 1 = P(. > 7)). At the same time, with the lower SNR the sky location’s posterior turns multimodal. (Dashed

2
lines indicate the true values.)

The sky location’s posterior also exhibits multiple
modes for this weaker signal (Fig. 3). This illustrates
some potential pitfalls of Maximum-Likelihood (ML) or
Maximum-a-Posteriori (MAP) methods; these would ad-
vise picking the highest of the several modes, which might
just be the narrowest one, but not necessarily the most
likely. If one then proceeded by extrapolating the curvature
at that mode and deriving error bounds from the Fisher
Information matrix, the resulting estimates might not
only be far off, but also associated with overestimated
accuracies.

We also tried MCMC runs with a modified prior setting;
we extended the prior for the coalescence time ¢, from its
original range of £5 ms around the true value to =27 ms,
allowing for an additional margin of 22 ms, which is the
time it takes a gravitational wave to travel from Earth’s
surface to its center. This setting reflects the case where the
inspiral detection pipeline received triggers from less than
three interferometer sites, so the signal’s arrival time at the

geocenter could not be estimated to greater accuracy in
advance. The MCMC algorithm is still able to find the
mode in the enlarged time parameter range, but takes more
iterations to converge.

One scenario in which such an approach would be
necessary is when the SNR for one of the interferometers
is almost zero. In such a case the data from the interfer-
ometer under consideration also would not (directly) con-
tribute to the estimation of phase- and frequency-related
parameters, but would still carry information about
amplitude-related parameters—by implicitly “ruling
out” those parameter combinations that would have re-
sulted in a response at that interferometer. Figure 4 shows
the sky location posteriors for such a signal, a 1.5-2.0M,
inspiral at 10 Mpc distance, where the SNRs at the three
interferometer sites are: LHO: 9.6, LLO: 13.9, V: 0.18
(network: 16.9). Including the data from the third interfer-
ometer (with almost zero SNR) into the analysis still yields
a much more accurate estimate of the sky location.
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FIG. 4. Even if the SNR at one of the interferometers is almost zero, it still contributes to estimates’ accuracies—the posterior is
much narrower if its data is included (left plot) than if it is omitted (right plot). (Dashed lines indicate the true values.)

TABLE IIl. Relative accuracies of different parameters (in
analogy to Table II) when considering/not considering the
Virgo data (where the example situation is such that the SNR
is nearly zero).

Virgo data . .. (6, @) t, dr m, M
...Included 0.071rad 081 ms 21% 0.023% 0.33%
...Excluded 0.150 rad 238 ms 23% 0.022% 0.31%

Table III compares the resulting parameter accuracies of
these two settings. The posteriors for sky location (8, )
and coalescence time ., which are closely related, are
much narrower when the Virgo data is considered in the
analysis, while estimates of the rather phase- and
frequency-related parameters m,. and w do not gain from
the additional information.

On the one hand, not only a high (total) SNR is desirable
but also one that is rather “evenly spread” over different
interferometers. On the other hand even a near-zero SNR at
one of the interferometers does not make its measurement
useless. Inference on different parameters will be affected
to different degrees by such an unbalanced SNR
arrangement.

V. DISCUSSION

We have developed a new MCMC program for estimat-
ing the nine parameters associated with an inspiral of
compact binary objects from the data coming from a net-
work of gravitational wave interferometers. The determi-
nation of the sky location of the source is an important
consequence of the procedure. Numerous new features
have been implemented in this binary inspiral MCMC.
The MCMC uses waveform approximations that are
2.5 PN in phase and 2.0 PN in amplitude [51] (and by the
time of final submission of this paper a version using

waveforms that are 3.5 PN in phase and 2.5 PN in ampli-
tude [35—39] was running as well). The data from multiple
interferometers (two or more) are coherently analyzed in
order to produce posterior probability distributions for all
nine parameters.

Advanced MCMC techniques were implemented in our
program in order to maximize the efficiency of converging
to the correct parameter values in the large, 9-dimensional,
parameter space. The initial parameter values for the sam-
pler were determined using importance resampling [50].
We recently extended (though not with the results pre-
sented in this paper) the parallel tempering algorithm to
an Evolutionary MCMC algorithm [72]. This MCMC va-
riety implements proposals that are motivated by genetic
algorithms [73], and so recombinations of parameter
samples from different MCMC chains are used as pro-
posals in order to improve convergence and mixing.

Another current related research effort is the application
of a version of this MCMC code to burst waveforms. This
problem is by orders of magnitude computationally less
expensive, due to the much shorter duration of the signals.
But it appears that on the other hand convergence, i.e.
finding the main posterior mode in the parameter space,
still poses a major problem. The theoretical background of
the various potential burst sources is rather vague, so
realistic waveforms and sensible specifications of parame-
trizations and priors also need to be identified. The results
of this study on the MCMC parameter estimation of burst
signals using the coherent analysis of multi-interferometer
data will be presented in a forthcoming publication.

We are also extending the MCMC techniques used in
this study to the application of data analysis for LISA
detection of binary inspiral signals. While our present
program coherently analyzes data from multiple ground
based interferometers, we have found it is a straight-
forward extension of the code so that we can coherently
analyze the time delay interferometry data from LISA.
These results are also forthcoming.
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Presently LIGO is at its target sensitivity. Virgo is fast
approaching its design sensitivity. Using the LIGO-Virgo
network it will be possible to observe neutron star binary
inspirals out to a distance of 35 Mpc [45,46]. A detection of
such an inspiral could occur at any time [4]. As displayed
in this paper, our MCMC routine is capable of coherently
analyzing the data from the multiple interferometers, and
then using it to estimate the nine parameters associated
with such a signal.
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