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We study the dynamics of colliding domain walls including self-gravity. The initial data is set up by
applying a Bogomol’nyi-Prasad-Sommerfield (BPS) domain wall in five-dimensional supergravity, and
we evolve the system determining the final outcome of collisions. After a collision, a spacelike curvature
singularity covered by a horizon is formed in the bulk, resulting in a black brane with trapped domain
walls. This is a generic consequence of collisions, except for nonrelativistic weak field cases, in which the
walls pass through one another or multiple bounces take place without singularity formation. These results
show that incorporating the self-gravity drastically changes a naive picture of colliding branes.
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I. INTRODUCTION

It is known that primordial black holes and domain walls
may have been produced in the early Universe through the
physical process of the collapse of cosmological density
perturbations and the series of phase transitions during the
cooling phase of the Universe. On the other hand, black
holes and domain walls (also known as branes) also play an
important role in string theory as fundamental constituents.
In addition, according to M theory, branes are of particular
relevance to cosmology: branes are free to move in a bulk
space, and they may approach and collide, causing the big
bang/crunch or an inflation on branes [1].

In view of the phenomenological relevance, understand-
ing how the domain walls/branes interact dynamically is an
important problem, and more knowledge in this area could
help in clarifying many issues regarding the early
Universe. In the past few years much attention has been
paid to understanding the dynamics of domain walls and
bubbles (e.g., [2–4]). In particular, the interaction between
black holes and domain walls has been the subject of
study. Nevertheless, even more fundamental processes
like collision, recoil, and reconnection of branes are less
understood.

The collision and recoil of domain walls in the cosmo-
logical context described above was studied in [2], where a
reheating mechanism via particle productions was dis-
cussed within a toy model. In this paper, we consider the
problem from a different perspective. The collision of
domain walls/branes is a violent phenomenon, and, as
partially observed in our previous study, a spacetime sin-
gularity might appear through a collision. If this is the case,
a low-energy description of colliding branes breaks down
at some point, implying a complete loss of predictability,
without the complete theory of quantum gravity.

We investigate the process of collision using a
Bogomol’nyi-Prasad-Sommerfield (BPS) domain wall in

five-dimensional supergravity, and our main goal is to
determine the final outcome of the kink-antikink collisions
including self-gravity. As we will see, singularity forma-
tion is a generic consequence of collisions. However, the
singularity is spacelike and hidden inside the horizon. The
horizon extends in a spatially flat direction along the brane
so that a black brane is produced through the collision. To
clarify and to provide further examples of black brane
production, we will also study collisions using another
model of domain walls.

II. BRANE DYNAMICS

A. Model of wall collisions

The system we intend to study consists of two domain
walls that are initially located far away from each other.
The initial data for such a configuration is constructed by
superposing domain wall solutions in an appropriate man-
ner. As a model of a domain wall, we consider a gravita-
tionally interacting scalar field of the Lagrangian
L � R

2�2 �
1
2r

a�ra�� V. The following solution of 5D
Einstein equations represents a single domain wall
(Model I), which has a spatially flat direction in three
dimensions d~x2

3,
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where !0 � 3� 4a2L2, !1 � �8aL2, !2 � �3� 4L2.
There are three unfixed parameters, i.e., wall thickness �,
amplitude L of scalar field, and the position r0 of the kink’s
core. We will hereafter take �2 � 1. We will call this
domain wall solution the kink solution (for a < 0). The*Electronic address: takamizu_at_gravity.phys.waseda.ac.jp
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antikink solution is defined by the reflecting r-coordinate
in the above solution.

In the limit of r! �1, the scalar field asymptotes
constants, and the scalar potential plays the role of the
cosmological constant � � �2V in the limit

 � � �
8L4

3�2 �1� a sign�r��2r!�1: (2)

The domain wall for jaj< 1 gives a warp factor decreasing
for both infinities of an extra dimension, and the cases of
jaj � 1 become the wall solutions interpolating between
anti-de Sitter (AdS) and flat Minkowski vacua. For jaj> 1,
the warp factor decreases in one direction, and increases in
the other. This domain wall can be embedded into the five-
dimensional supergravity coupled with hypermultiplets as
an exact BPS domain wall [5]. After integrating out irrele-
vant fields with canonical normalization, the above solu-
tion is found to be identical to the exact BPS solution in [5].

We shall restrict our analysis to collisions along a
r-direction, preserving the symmetry along the homoge-
neous ~x3-directions. Even with this simplification, such a
setup is of relevance in a number of physical situations.
The initial data for such a collision can be obtained as
follows. First of all, we introduce a new coordinate z by
z �

R
dre�U and work on the conformal gauge,

 ds2 � e2A�t;z���dt2 � dz2� � e2B�t;z�d~x2: (3)

Then the above single static wall is boosted along the fifth
direction z, and we obtain a wall moving with constant
velocity � [2].

To discuss collisions of two moving domain walls, we
set a kink solution at z � �z0 and an antikink solution at
z � z0, which are separated by a large distance and ap-
proach each other with the same (or different) speed �.
Such superposition and matching of the metric and scalar
field at the center is possible for jaj � 1, and sufficiently
smooth initial data that satisfies the constraint equations at
the initial time can be obtained, as long as the spatial
separation between the two walls is much larger than the
thickness of walls. Therefore, we take jaj � 1 throughout
this paper. Obviously, we set A � B and velocity _A � _B at
the outset, and the initial values of _� and _A are given by the
above construction. During the evolutions, the Neumann
boundary conditions are imposed at the outer boundaries.
The asymptotics of the scalar field is � / ��jzj=

������������
6=j�j

p
�

1��3=2L2
, and the metric behaves eA / ��jzj=

������������
6=j�j

p
�

1��1 as jzj ! 1, where � � 1=
���������������
1� �2

p
is the Lorentz

factor. The kink and antikink solutions are characterized
by their own width and amplitude, ��K; LK� and ��A; LA�,
respectively. Therefore, we have three types of unfixed
parameters for the initial setup; �, L, and �.

Using a fourth-order accurate finite difference code, we
have solved the system numerically and evaluated the
constraints at each time step for various families of initial
data. The overall picture does not depend on a specific

choice of the parameters. Some examples of numerical
results are reported in Fig. 1, in which the time evolutions
of energy density

 � �
e�2A

2
��@t��

2 � �@z��
2� � V (4)

in ft; zg-flame are shown. In all these cases, the two walls
with initial velocity �0 � 0:4 collide at z � 0 and t 	 31.
Figure 1(a) describes the symmetric collision of two iden-
tical walls. In this case, the walls pass through one another
so that the initial kink solution at z < 0 goes to z > 0. (The
kink and antikink solutions are distinguished by their
relative field values at the center and infinity z � �1.)
The energy density of the wall, i.e. the wall’s tension,
increases during this process. This would be caused by
the fact that the induced universe on the walls are contract-
ing during the process, with _B< 0. After the collision, a
sharp peak of density appears at the collision point z � 0,
and it implies an emergence of singularity. In fact, the
curvature diverges rapidly at the point, whereas the curva-
ture on the wall remains finite and small at the moment
(Fig. 2). Here our criterion of curvature singularity is that
the Kretschmann scalar exceeds RabcdRabcd > 106. At the
time t 	 42 of singularity formation, the energy density
localized at z � 0 is 1.2 times bigger than those on the
walls, and a portion of energy is stored in this small region,
which will be inside an event horizon, as we see below.

This basic picture of collision holds for other cases. For
the asymmetric collisions, such as two walls with different
width, amplitude, and/or speeds, the emergence of singu-
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FIG. 1 (color online). Energy density � on t � const: surfaces:
(a) collision of two identical walls at the center, (b) collision of
two walls with different thickness, and (c) two walls with
different amplitude. The sharp peaks represent the domain walls,
and the arrows show the directions of a wall’s velocity. For (b)
and (c), all the unspecified parameters are the same as those in
(a).
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larity is still a generic feature. Figures 1(b) and 1(c) show
examples of collisions in which different thickness or
amplitude of scalar field are taken for the two walls,
without changing other parameters. Among these cases,
Fig. 1(b) shows that one of the walls recoils at the collision,
due to the larger momentum of one of the walls: the initial
kink solution at z � �30 in Fig. 1(b) goes to z > 0 after
the collision, while the antikink at z � �30 bounds back.
Interestingly, in these asymmetric collisions, the curvature
singularities appear off the collision point. For Figs. 1(b)
and 1(c), they are at z � �2:4 and z � �1:2, respectively.

For the wide range of initial parameters, the emergence
of singularity is the generic consequence. However, as
expected and discussed below, the singularity does not
appear for L
 1 and/or �0 
 1 for fixed �. In such
‘‘nonrelativistic’’ cases, the two walls just pass through,
and the final configurations of fields are well described
by the boosted walls, as we applied for the initial
configurations.

B. Horizon formation

The next task at hand is to confirm the nature of singu-
larity. In numerical investigations of singularity formation
and global structure of the spacetime, null coordinates are
useful to prevent the singularity from corrupting the rest of
the spacetime. In these coordinates, horizons are not par-
ticularly special and we can follow the collision all the way
to the singularity even when a horizon appears through a
collision. We evolve the colliding walls in the double-null
coordinates (e.g., [6–8]),

 ds2 � �2e2Adudv� e2Bd ~x2; (5)

where
���
2
p
u � �t� z�,

���
2
p
v � �t� z�. In this gauge, the

Einstein equations and the dynamical equation for a scalar
field are split into three dynamical and two constraint
equations.

Let us first focus on the symmetric collision in Fig. 1(a).
The corresponding evolution in the null coordinates is
described in Fig. 3. It shows that the curvature singularity
is spacelike, approaching u or v � const lines at late times,
which corresponds to the event horizon. This result is very
generic, and we have observed similar results for the wide
range of initial data (velocity, etc.). This system has homo-
geneous 3-spatial directions, and so the horizon also ex-
tends in these directions. This means that a black brane is
produced by the collision of walls, so that this collision
provides the dynamical mechanism of generating black
branes in higher dimensions.

Another interesting feature is that after the collision the
walls are trapped around the surface of the horizon. The
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FIG. 3 (color online). (a) and (b) show the numerical results in
the null coordinates, corresponding to Fig. 1(a) and 1(b), re-
spectively. Dotted lines with arrows describe the orbit of walls.
Thick lines are u, v-axes, and dotted straight lines show u; v �
const:, to which the spacelike singularity asymptotes. The posi-
tion of a wall is defined by its maximum energy density. (c)
Time variation of the (kink) wall’s speed. Irrespective of the
initial speed, the final speed after the collision goes to unity.
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corresponding to the simulations in Fig. 1.
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FIG. 4 (color online). Schematic conformal diagrams for a
single domain wall that asymptotes to AdS (Minkowski) as z!
1 (z! 0) (left) and for colliding walls, producing a black brane
(right).
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final speeds of walls asymptote to the speed of light
[Fig. 3(c)], irrespective of the initial velocity. The bulk
outside the two walls is not exactly AdS, but asymptotes to
it. Because of this behavior, the walls are pulled outside,
accelerating in the directions. A schematic picture of a
conformal diagram is given in Fig. 4

Another example corresponding to the asymmetric col-
lision in Fig. 1(b) is shown in Fig. 3(b). Even in this
asymmetric collision, the event horizon forms from the
point where the spacelike singularity appears. An interest-
ing difference is that the kink wall escapes from the
horizon, and only the antikink wall is trapped nearby.

C. Model II

The initial data discussed so far is based on the single
BPS domain wall. There is another simple model in which
collisions of walls can be tested. It is the model used in the
previous work [2],

 U � �
2L2

3
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log�cosh�r=��� �

tanh2�r=��
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; (6)
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where W � � 1
9
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3
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3 � ���
3
p
L
�� 2

3 . The basic property

of the wall is quite similar to the wall in the previous
sections; the bulk in r > 0 asymptotes to the Minkowski
spacetimes, while the spacetime in r < 0 asymptotes to the
AdS, recovering (2). This single domain wall solution is
found simply by extending the four-dimensional solution
in [9].

It is interesting to study various aspects of the wall
collisions in this model and compare them with the pre-
vious model. We have performed many simulations and
confirmed that all phenomena observed in the previous
sections, such as the singularity and horizon formation,
hold with qualitatively similar behaviors. A basic excep-
tion is that in this model the walls bounce back after the
collision, contrary to the case in Model I. Thus the causal
structures of such a collision look like Fig. 3(a), but kink
and antikink profiles are exchanged after a collision. This
difference comes from the nonlinear interaction through
the dynamics of collision.

Such details of model dependence become more signifi-
cant for weak field cases in which no singularity appears.
In Fig. 5, we compare the difference of the two models by
showing the orbits of a wall after the symmetric collisions
for various values of L. For Model I, the spacelike singu-
larity appears for L * 0:1, and the walls asymptote to the
null lines, as discussed above. On the other hand, for L &

0:1, the velocity of the wall becomes timelike with constant

speed after the collisions, and no singularity appears. In
fact, the final configurations of scalar fields are well ap-
proximated by superposing boosted walls, so that the two
walls just pass through one another in these cases. Note
that if the initial velocity is increased the horizon appears
even for smaller L.

For Model II, multiple collisions take place for L
 1
(Fig. 5). For L � 0:01, the collision takes place 2 times,
and then the wall bounces back with constant velocity. This
behavior is compatible with and typical in the nongravitat-
ing system of the previous study [2]. As L increases, the
two walls gravitate toward one another and multiple boun-
ces take place (e.g., L � 0:045). The marginal value of L is
L � 0:05 in Fig. 5, in which the gravitational attractive
force and the repulsive force due to the outer AdS region
are in balance. Therefore, a quasistatic configuration of
two walls is realized after the collision.

III. SUMMARY AND DISCUSSION

We have considered a system of colliding domain walls,
whose initial data is set up based on a single BPS domain
wall, and found that the role of gravity at the collision is
significant in that it can drastically change the picture of
‘‘silent’’ collisions without self-gravity, as observed also in
colliding (impulsive) gravitational waves [10]. The main
result of our study is that horizon formation is a generic
phenomena in the collision of walls. In the nonrelativistic
cases, such as L
 1 and/or �
 1, silent collisions with-
out singularity and horizon are realized, but such cases are
very limited and unlikely in an early universe of
braneworlds.

The local interaction and dynamics at the collision
depends on which model we are looking at. For Model I,
the domain walls can pass through one another, while in
Model II they bounce at the collision and go back.
However, the basic feature of horizon formation does not
change in these models, and we have concluded that the
horizon formation (and singularity behind it) is a generic
consequence of kink-antikink collisions. The horizon has
three homogeneous spatial directions, so that a black three-
brane is produced by such a collision. The bulk outside the
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two walls is approximated by the AdS, and then we look at
the created black hole as it sits on the AdS. In the pure AdS,
a possible black hole is a topological black hole, which has
a flat three-dimensional hypersurface with vanishing cur-
vature. The end state of the present scenario would be this
type of black hole (Fig. 4), although the field fills the bulk
outside the horizon. Here, a further interesting possibility
comes from the fact that a spatially homogeneous horizon
suffers from Gregory-Laflamme instability in general. The
end state of this instability has not been clearly understood
so far, and the horizon may break up, resulting in multiple
black holes that are stuck on the walls [11]. Furthermore,
during this process, a good deal of energy will be radiated
away by gravitational waves, and they remain as primor-
dial gravitational wave backgrounds. Thus this possibility
provides a new way of producing primordial black holes
and gravitational waves in an early universe with higher
dimensional bulk filled by walls/branes. This scenario is
analogous to the bubble collisions in a four-dimensional
inflationary universe [12].

There are several interesting directions, which may be
pursued on the basis of these results and/or by relaxing

several conditions. One of such issue is a study of the
effects and roles of other fields in supergravity, a subject
set aside in our analysis. Other fields contained in the
hypermultiplets will be excited (or thermalized) during
the collisions, and analyzing them should provide many
cosmological insights into braneworld cosmologies [13].
Furthermore, there is one most important question left to
answer: To what extent is the production of black holes/
branes generic in a class of more generic theory and con-
text, such as collisions of different types of walls with an
arbitrary incident angle. We foresee no major obstacle in
anticipating that horizon formation would be suppressed.
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