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We work out and discuss the Minkowski version of fractional analytic perturbation theory for QCD
observables, recently developed and presented by us for the Euclidean region. The original analytic
approach to QCD, initiated by Shirkov and Solovtsov, is summarized and relations to other proposals to
achieve an analytic strong coupling are pointed out. The developed framework is applied to the Higgs
boson decay into a b �b pair, using recent results for the massless correlator of two quark scalar currents in
the MS scheme. We present calculations for the decay width within the Minkowski version of fractional
analytic perturbation theory including those non-power-series contributions that correspond to the
O��3

s�-terms, also taking into account evolution effects of the running coupling and the b-quark-mass
renormalization. Comparisons with previous results within standard QCD perturbation theory are
performed and the differences are pointed out. The interplay between effects originating from the
analyticity requirement and the analytic continuation from the spacelike to the timelike region and those
due to the evolution of the heavy-quark mass is addressed, highlighting the differences from the
conventional QCD perturbation theory.
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I. INTRODUCTION

QCD perturbation theory in the spacelike (Euclidean)
domain is based on a power-series expansion in terms of
the running (effective) coupling �s�Q2� (Q2 � �q2 > 0),
which in one-loop order reads

 �s�Q
2� �

4�
b0
a�L� �

4�
b0

1

L
(1.1)

with b0 � 11� 2
3Nf, L � ln�Q2=�2�, where �2 � �2

QCD,
and with the ‘‘normalized’’ coupling a�L� satisfying the
renormalization-group equation

 

da�L�
dL

� �a2�1� c1a� c2a2 . . .�: (1.2)

Here c1 � b1=b
2
0 and c2 � b2=b

3
0 are auxiliary expansion

parameters (see Appendix A and also Section III in
Ref. [1]). The one-loop solution of this equation suffers
from an artificial singularity at L � 0, called the Landau
pole. This prevents the application of perturbative QCD in
the low-momentum spacelike regime with the effect that
hadronic quantities, calculated at the partonic level in
terms of a power-series expansion in the running coupling,
are not well defined. Besides, from the theoretical point of
view, such ghost singularities contradict causality render-
ing a spectral Källén-Lehmann representation meaning-
less. On the other hand, in the timelike, Minkowski,

region (q2 > 0) the definition of the running coupling turns
out to be difficult. The origin of the problem is that the
QCD perturbative expansion cannot be defined in a direct
way in this domain.

Many efforts have been made since the early days of
QCD to define an appropriate coupling parameter in
Minkowski space in order to describe crucial timelike
processes like the e�e� annihilation into hadrons, quark-
onium and �-lepton decays into hadrons, etc. Most of these
attempts—see, for instance, [2–4]—were based on the
analytic continuation of the strong coupling from the deep
Euclidean region, where perturbative QCD calculations are
safely performed, to the Minkowski space, where physical
measurements are carried out. Over the years, it became
clear that, in the infrared (IR), the strong coupling may
reach a stable fixed point and cease to increase. This
behavior would imply that color forces may saturate at
this low-momentum scale meaning that gluons decouple
from quarks because they ‘‘see’’ them as a whole, i.e., in a
quasicolorless configuration. Cornwall [5] studied, within
a vortex-condensate formalism, the formation of a mass
gap, or effective gluon mass, that prevents the strong
coupling from becoming infinite at the Landau pole.
Similar attempts were undertaken by other authors in sub-
sequent years [6–8] using different techniques, but basing
their arguments on the gluon acquiring an effective mass
that works like an IR regulator in the low-momentum
region. It was shown in [9] that this version of the IR-
protected strong coupling can be related to the Sudakov
factor for the nonemission of soft gluons, in the sense that
gluons with wavelengths above some characteristic (non-
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perturbative) length scale cannot resolve individual quarks
because these segregate into a colorless mock-hadron state.

In separate parallel developments, Radyushkin [10], and
Krasnikov and Pivovarov [11] have obtained analytic ex-
pressions for the one-loop running coupling (and its
powers) directly in Minkowski space using an integral
transformation from the spacelike to the timelike regime
reverse to that for the Adler D function (for more details,
we refer the interested reader to [12–14]). This sort of
analytic coupling in the timelike region was rediscovered
in the context of the resummation of fermion bubbles by
Beneke and Braun [15] and also by Ball, Beneke, and
Braun in [16], the latter work in connection with tech-
niques and applications to the � hadronic width.

A systematic approach, termed analytic perturbation
theory (APT), has emerged in the last decade from studies
initiated by Shirkov and Solovtsov [17,18]. The main
quantity of this framework is the spectral density with
the aid of which an analytic running coupling is defined
in the Euclidean region using a spectral representation. The
same spectral density can be used to define the running
coupling in the timelike region having recourse to the
dispersion relation for the Adler function [19,20]. These
integral transformations, called R̂ and D̂ operations (see
next section), coincide with those invented in [10,11] and
provide the possibility to define simultaneously an analytic
running coupling in both Euclidean and Minkowski space.
Meanwhile this analytic approach has been extended be-
yond the one-loop level [20,21] and important techniques
for numerical calculations have been developed [22–27].
The approach has already been applied to the calculation of
several hadronic quantities, important examples being the
inclusive decay of a � lepton into hadrons [28–30], the
momentum scale and scheme dependence of the Bjorken
[31] and the Gross-Llewellyn Smith sum rule [32], �
decays into hadrons [33], etc. Moreover, it has been ex-
tended to processes like the ���! � transition form
factor [34,35] and the pion’s electromagnetic form
factor at the next-to-leading order (NLO) of QCD pertur-
bation theory [34–36], processes that contain more than a
single perturbative scale, accounting also for Sudakov
suppression.

Overall, this analytic approach (for some review see
[12,37,38]) does provide a quite reliable description of
hadronic quantities in QCD, though there is also criticism
[39] and alternative proposals and views of how to avert
singularities in the running coupling [13,40–53]—in par-
ticular concerning the deep IR region Q2 � �2, where
eventually the presence of a nonvanishing hadronic mass
may become important [54]. It also suffers severe limita-
tions in concept and application to processes beyond the
leading order (LO) of QCD perturbation theory because it
assumes that the only quantities that have to be analytic in
the complex Q2 plane are the running coupling and its
integer powers. But it was shown in [55–60] that typical

three-point functions, like the electromagnetic or pion-
photon transition form factor, at the NLO level of pertur-
bative QCD, and beyond, contain typical logarithms de-
pending on an additional scale that serves as a factorization
or evolution scale. These logarithms, though not affecting
the Landau singularity, do contribute to the spectral den-
sity. This has led Karanikas and Stefanis (KS) [61,62] to
extend the concept of analyticity (the dispersion relations)
from the level of the coupling and its powers to the level of
QCD hadronic amplitudes as a whole. This generalized
encompassing version of the analyticity requirement de-
mands that all terms that may contribute to the spectral
density, i.e., affect the discontinuity across the cut along
the negative real axis�1<Q2 < 0, must be included into
the ‘‘analytization’’ procedure. The implementation of the
KS analyticity postulate entails the extension of the origi-
nal APT to noninteger (fractional) powers of the running
coupling, which, in particular, encompasses the logarithms
of the factorization (evolution) scale just mentioned.

In this context it is worth emphasizing that fractional
powers of the strong coupling were considered implicitly
in [63].1 The systematic development of the fractional
analytic perturbation theory (FAPT) for QCD in
Euclidean space was recently carried out in [1] (see also
[66] for a brief introduction) and was applied in [67] to the
factorized part of the pion’s electromagnetic form factor
that epitomizes three-point functions in perturbative QCD.
The pivotal advantage of this scheme is the diminished
sensitivity of the perturbative result on the factorization
scale that parallels the strong renormalization-scheme in-
dependence, already established within APT at the NLO
level with respect to the same observable, in the exhaustive
in-depth analysis of [36] (an abridged version of which is
given in [68]—see also [69–71]). The aim of the present
investigation is to extend this analytic framework to the
Minkowski space twining the two regions, spacelike and
timelike, for any real index and any argument of the
couplings and creating a new calculational paradigm for
applications to hadronic observables in QCD perturbation
theory. The formal discussion of the main characteristics of
FAPT in Minkowski space (for which we use the abbre-
viation MFAPT) is carried out for two- and three-loop
running-coupling parameters, investigating also the con-
vergence properties of this type of expansion. To assess the
consequences of MFAPT for observables and elaborate on
its advantages in detail, it is best to study a quantity at a
high-loop order of perturbation theory. To this end, we
consider the correlator of two scalar bottom-quark cur-
rents, whose imaginary part RS�s� is directly proportional
to the decay width of a scalar Higgs boson to a bottom-
antibottom pair. Considerable progress has been achieved

1It is interesting to recall here early attempts to study a spectral
density amounting to fractional indices of the coupling in QED
[64]. Such a spectral density was reinvented later within QCD by
Oehme [65].
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with respect to this quantity during the last few years,
mainly thanks to the efforts of Chetyrkin and collaborators
[72–74]. In the present investigation we will provide esti-
mates for RS�s� within multiloop MFAPT, using exclu-
sively the MS scheme, and compare them with previous
various results within conventional perturbative QCD up to
the order O��4

s�. The evolution effects due to the running
of the strong coupling and the heavy-quark mass will be
calculated up to three loops, borrowing the corresponding
four-loop expansion coefficient for the Adler function from
[74]. We emphasize in this context that our investigation is
mainly meant to expose the conceptual advantages of the
method, rather than to be used as a phenomenological tool
for this quantity.

The paper is organized as follows. In Sec. II we provide
a mini-review of the main features of APT, starting with the
Euclidean region and completing the section with a dis-
cussion of the Minkowski domain. Though this material is
mostly based on previously published works, its presenta-
tion here for any real coupling power is new and has not
appeared before in the literature. Section III is devoted to
the generalization and extension of FAPT [1] to timelike
momenta, giving rise to MFAPT. In this section we present
our main theoretical results and provide the reader with
explicit (but approximate) two-loop expressions for the
analytic powers of the timelike coupling. Similar formal
expressions for any (higher) loop can be derived along
these lines, with the three-loop case being outlined in
Appendixes A, B, and C. We close the discussion by giving
analysis of the convergence properties of the perturbative
expansion within our analytic scheme. Section IV contains
an application of our framework on the correlator of two
scalar currents of b quarks and the Higgs boson decay into
a bottom-antibottom pair, presenting estimates for the
width (actually for the quantity RS) of this process for
different orders of the perturbative expansion, as specified
above, and comparing our results with those obtained with
the standard perturbative QCD expansion. Emphasis is put
on the inherent advantage of our method to include into the
analytic Minkowski couplings the crucial contributions
stemming from the resummed �2-terms owing to the ana-
lytic continuation. Our conclusions are drawn in Sec. V,
where we also compile the benchmarks of FAPT in both the
Euclidean and the Minkowski regions. Important technical
details are collected in four appendixes.

II. CONCEPTUAL ESSENTIALS OF ANALYTIC
PERTURBATION THEORY

Here we introduce the main theoretical elements of APT,
basing our considerations on [37,75], the aim being to
provide a comprehensive mini-review of the subject and
equip the reader with all knowledge necessary for the
extension to fractional powers in Minkowski space in
Sec. III. As mentioned in the Introduction, the initial
motivation to invent new couplings was the desire to

interrelate the Adler D function,

 D�Q2; �2� �
X
n

dn�Q2=�2��ns ��2� ���!�2�Q2

D�Q2�

�
X
n

dn�
n
s �Q

2�; (2.1)

calculable in the Euclidean domain, and the quantity
Re�e� � ��e�e� ! hadrons�=��e�e� ! �����,

 R�s;�2� �
X
m

rm�s=�
2��ms ��

2� ���!�2�s
R�s� �

X
m

rm�
m
s �s�;

(2.2)

which is measured in the Minkowski region. Both quanti-
ties are considered in standard QCD perturbation theory,
demanding that the couplings satisfy the renormalization-
group (RG) equation. In minimal-subtraction renormaliza-
tion schemes the coefficients dn � dn�1�, rm � rm�1�, en-
tering, respectively, the right-hand side (r.h.s.) of Eqs. (2.1)
and (2.2), are numerical constants. The functions D and R
can be related to each other via a dispersion relation
without any reference to perturbation theory. However,
employing a perturbative expansion on the left-hand side
of Eqs. (2.1) and (2.2), one obtains, in fact, a relation
between the powers of ln�s=�2� and ln�Q2=�2� in the
coefficients rm�s=�2� and dn�Q2=�2�, while the powers
of �s��2� reveal themselves as numerical parameters.
Upon setting �2 � Q2 on the r.h.s. of Eq. (2.1) [or �2 �
s in Eq. (2.2)], the coefficients dn (analogously rn) become
constants, whereas the coupling powers �ns �Q2� [equiva-
lently, �ms �s�] are part of the integral transformations (see
below). But, if these coupling parameters are the standard
running ones, then this connection fails at any loop order
because of the Landau singularity in Euclidean space.
Questions arise as to whether analytic versions of both
types of couplings may exist for which the above expres-
sions could be connected. We shall see in the next step how
this goal can, indeed, be achieved using non-power-series
(functional) expansions within APT [12,14,18–
20,37,38,75,76].

The analytic images of the powers of the normalized
running coupling, cf. Eq. (1.1), in Euclidean space can be
defined by the formal linear operation AE:

 A E	a
n
�l�
 �A�l�

n with A�l�
n �Q2� �

Z 1
0

��l�n ���

��Q2 d�;

(2.3)

where the spectral density is defined as

 ��l�n ��� �
1

�
Im	an

�l�����
: (2.4)

The power (index) n denotes here only integer values,
whereas the loop order is indicated by l in parentheses.
We will show later that these relations are valid also for
fractional powers (indices) �.
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Analogously, the analytic images of the normalized
running coupling in Minkowski space are defined by
means of another linear operation, AM, viz.,

 A M	a
n
�l�
 � A�l�n with A�l�n �s� �

Z 1
s

��l�n ���
�

d�:

(2.5)

These analytization operations can be represented by the
following two integral transformations:

(i) D̂ from the timelike region to the spacelike region,

 D̂	A�l�n 
 �A�l�
n with

A�l�
n �Q2� � Q2

Z 1
0

A�l�n ���

���Q2�2
d�

(2.6)

and
(ii) R̂ for the inverse transformation (adopting the termi-

nology of Shirkov; see, for instance, [12,14,77]),

 R̂	A�l�
n 
 � A�l�n with

A�l�n �s� �
Z �s�i"
�s�i"

A�l�
n ���
�

d�;
(2.7)

where the last integral is evaluated along the contour
shown in Fig. 1. Note that these operations are connected
to each other by the relation

 D̂ R̂ � R̂ D̂ � 1; (2.8)

valid for the whole set fAn;Ang and at any loop order.
The operations AE and AM, which define, respectively,

the analytic running couplings in the Euclidean (spacelike)
and in the Minkowski (timelike) regions, are displayed
graphically in Fig. 2. The logic of analytization enables a
similar outcome with respect to the expansion of QCD
amplitudes (depending on a single momentum scale Q2)
and their continuation from Euclidean to Minkowski space.
As an example, consider the Adler function D on the r.h.s.
of Eq. (2.1), which is expanded in terms of �ns �Q2�. The
operation AE, applied to D�Q2� along the right arrow in
Fig. 2(a), maps it on a non-power-series expansion [12,75]
in the Euclidean region, termed DA, i.e.,

 

D�Q2� �
X
n

dna
n
�l��Q

2� ) AE	D
 �DA with

DA�Q2� �
X
n

dnA
�l�
n �Q2�:

(2.9)

Subsequently, one can apply the R̂ operation, given by
Eq. (2.7) [bottom line in Fig. 2(a)], to obtain the quantity
R in the Minkowski region:

 R̂	DA
 �R with R�s� �
X
n

dnAn�s�: (2.10)

On the other hand, the same expression for R�s� (in
Minkowski space) can be obtained following the left arrow
in Fig. 2(a) by making use of the AM operation. This leads
to the same analytic image of R�s�:
 

D�Q2� �
X
n

dnan�l��Q
2� ) AM	D
 �R with

R�s� �
X
n

dnAn�s�:
(2.11)

The generalized concept of imposing analyticity to the
QCD amplitude as a whole [61,62] allows us to perform
the analytization of any fractional (real) power of the
coupling and—even more important—invoke the analyti-
zation concept on more complicated expressions that con-
tain products of powers of the strong coupling times
logarithms of a second perturbative scale, like the factori-
zation or evolution scale—for an illustration see Fig. 2(c),
and for details see Appendix C. Then, all of the previous

 

− s +

Q2-plane

− s −

FIG. 1. Integration contour for the R̂ operation in Eq. (2.7).

 

PT

α(l)
s (Q2)

n

AM AE

(l)
n (s) (l)

n (Q2)
D̂

R̂ = D̂ − 1

(a) APT

PT

α(l)
s (Q2)

ν

AM AE

(l)
ν (s) (l)

ν (Q2)
D̂

R̂ = D̂ − 1

(b) FAPT

PT

α(l)
s (Q2)

ν
ln (Q2/ Λ2)

AM AE

(l)
ν (s) (l)

ν (Q2)
D̂

R̂ = D̂ − 1

(c) FAPT

FIG. 2. Implementation of analyticity in APT [(a)] and in
FAPT [(b) and (c)]. The index n in APT is restricted to integer
values only, while in FAPT � can assume any real value,
enabling the analytization of expressions like those shown in
(c) and presented in Appendix C.
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results, exposed via Eqs. (2.3), (2.4), (2.5), (2.6), (2.7), and
(2.8), can be generalized to hold for any fractional index
(power) �, giving rise to the vector spaces fA�g, fA�g that
possess the property of index differentiation.

Let us now turn our attention to the spectral density. At
the one-loop level, we can derive by a straightforward
calculation, based on Eqs. (1.1) and (2.4), a closed-form
expression for the spectral density; namely,2

 ��1�� ��� �
1

�
sin��’��

	�2 � L2
�

�=2
;

’� � arccos
�

L��������������������
L2
� � �

2
p �

; L� � ln��=�2�:
(2.12)

Then, the one-loop couplings A�1�
1 and A�1�1 can be derived

by substituting ��1�1 into Eqs. (2.3) and (2.5) to get [18]

 A �1�
1 �Q

2� �
1

L
�

1

eL � 1
(2.13)

and [20]

 A �1�
1 �s� �

1

�
arccos

�
Ls������������������

L2
s � �2

p �
(2.14)

with

 L � ln�Q2=�2�; Ls � ln�s=�2�: (2.15)

From these equations we infer that analytization (AE) in
the Euclidean case amounts to the subtraction (at the one-
loop level) of the Landau pole, whereas in the Minkowski
space the analogous operation (AM) means summation of
�2-terms in all orders of the expansion. To generate two-
loop expressions for the analytic couplings, one can make
use of the Lambert function, as shown by Magradze in
[22]. Still higher loops can be obtained via an approximate
form of the spectral density and numerical integration [75].
It follows from this summarized exposition that the diffi-
culties encountered with ghost singularities in the
Euclidean strong coupling can be eliminated on account
of causality (‘‘spectrality’’ [75]) and RG invariance.
Hence, from the point of view of the analytic approach,
the Landau-pole remover (and analogously the compensa-
tion of singularities in higher loops) is not introduced by
hand but ensues naturally as a corollary within the formal-
ism without appealing to any nonperturbative physics as
the origin of power corrections. Nevertheless, one may
include into the spectral density power corrections of the
form �M2=Q2�n, with M being, for example, a constituent
quark mass, attempting to incorporate this way some non-
perturbative effects. Such analytization approaches, fol-
lowing, however, different incentives, have been
proposed in [51,52].

III. MINKOWSKI VERSION OF FRACTIONAL
ANALYTIC PERTURBATION THEORY

Before studying the detailed procedure of the analytic
continuation to Minkowski space, let us first make some
important remarks about the strategy on how to generalize
the approach in order to include noninteger (fractional)
indices �. Appealing to our detailed discussion in [1], we
note that it is not obvious how the direct way for the
analytic continuation of the coupling powers in terms of
Eq. (2.3) can provide explicit analytic expressions.
Therefore, to achieve this goal we have used instead in
[1] another method, based on the Laplace representation,
which will be exposed in the next subsection. However, the
situation in Minkowski space is different because of the
absence of ghost singularities. In that case it turns out to be
possible to employ the dispersion-relation techniques
[cf. Eq. (2.5)] in order to obtain analytic expressions in
the timelike regime that are valid for any real index �.
Indeed, using Eq. (2.12), we find in one-loop order

 A �1�
� �s� �

Z 1
s

d�
�
��1�� ���

�
1

�

Z 1
Ls
dL

sin	� arccos�L=
���������������������
�L2 � �2�

p
�


��2 � L2��=2
:

(3.1)

This integral can be evaluated explicitly and provides the
result

 A �1�
� �s� �

sin	��� 1� arccos�Ls=
���������������������
�L2

s � �2�
p

�


���� 1��L2
s � �

2����1�=2
(3.2)

that is completely determined by elementary functions
[1,66]. Taking the limit �! 1 in the above equation, one
readily obtains Eq. (2.14) for A�1�1 , while taking � � 0 one
finds A�1�0 � 1.

Let us consider now the spectral density ��l�� ��� beyond
the leading-order approximation. At the l-loop level,
��l�� ��� can always be presented in the same form as for
the leading-order one, given by Eq. (2.12), i.e.,

 ��l�� ��� �
1

�
Im	a��l�����
 �

sin	�’�l����


��R�l������
(3.3)

keeping in mind, however, that the phase ’�l� and the radial
part R�l� now acquire a multiloop content. Suffice it to
mention here that an explicit two-loop expression for the
spectral density is derived in Appendix B, notably,
Eq. (B7). In the same appendix we show that this expres-
sion, though approximate, is very close to the exact, but
numerical, one. To be more specific, one should, strictly
speaking, deal with the imaginary part of the appropriate
branch of the Lambert functionW�1 (see [22]) owing to the
fact that the exact solution of the two-loop RG equation
[given in Appendix A by Eqs. (A4) and (A6)] can be2An analogous expression for QED can be found in [64].

FRACTIONAL ANALYTIC PERTURBATION THEORY IN . . . PHYSICAL REVIEW D 75, 056005 (2007)

056005-5



expressed in terms of this function. To complete the ex-
posed procedure, one should substitute the displayed spec-
tral density into Eq. (2.5) and perform the integration.
Recently, Magradze [23,27] has published closed-form
expressions for A�2�1 , A�2�2 at the two-loop level by means
of the W1 Lambert function. The dark side of this latter
procedure is that it does not lend itself to an analytic
evaluation of explicit expressions for A�2�� �Ls� for frac-
tional indices, but yields (after integration) only numerical
values. Beyond the two-loop level, explicit results are
difficult to obtain. Numerical values of the quantities An
and An for n � 1, 2, 3 at the three-loop level were given by
Kourashev and Magradze in [24]. Very recently, Shirkov
and Zayakin [33] have constructed a simple one-parameter
model to emulate the first three (n � 1; 2; 3) analytic cou-
plings at the three-loop level, both in the Euclidean and the
Minkowski regions, that claims an acceptable accuracy for
practical purposes.

A. Simultaneous derivation of FAPT in the Euclidean
and Minkowski regions at the one-loop level

In this subsection, we consider timelike and spacelike
couplings in mutual comparison, exclusively in the one-
loop approximation, omitting for this reason the loop label
(l). The generalization to higher loops will be presented in
Sec. III C. Let us start the derivation of the (M)FAPT
analytic couplings fA��k�;A��k�g, with k being a loga-
rithm of a momentum (or energy) scale, by employing the
Laplace-representation approach of [1]. It is useful to recall
at this point that the initial sets fAng, fAng have been
constructed for integer values of the index and constitute
vector spaces [1]. Being able to create the elements A�,
A� for any real �, one can complete the vector spaces
fA�g, fA�g, making it possible to apply other linear op-
erations to these spaces, e.g., differentiation with respect to
the index �.

It is important to appreciate that the generalization of all
APT couplings to fractional (real) values can be performed
within a single mold. To this end, we apply a differential-
type RG equation, like (1.2), and, following [1,75], we first
write

 

an�k�
An�k�
An�k�

0@ 1A � 1

�n� 1�!

�
�
d
dk

�
n�1 a1�k�

A1�k�
A1�k�

0B@
1CA; (3.4)

where the evaluation of the couplings an (standard, n:
power) and An (analytic, n: index) in the spacelike region
proceeds with k � L � ln�Q2=�2�, while their counter-
parts in the timelike region, An, are calculated with the
aid of k � Ls � ln�s=�2�.

To facilitate the transition to fractional index values, it is
instrumental to employ the Laplace representation of both
types of couplings—the analytic, An�l�, An�l�, and the
conventional ones, an�L�—and define for k > 0

 

an�k�
An�k�
An�k�

0@ 1A � Z 1
0
e�kt

~an�t�
~An�t�
~An�t�

0@ 1Adt

�
Z 1

0
e�kt

tn�1

��n�

~a1�t�
~A1�t�
~A1�t�

0@ 1Adt: (3.5)

To derive the last equation, we have used in Eq. (3.4) the
one-loop RG equation. The key element in converting the
APT couplings to the set fAn�k�;An�k�g, valid for any
index �, is the relation

 

~a��t�
~A��t�
~A��t�

0@ 1A�def t��1

����

~a1�t�
~A1�t�
~A1�t�

0@ 1A (3.6)

that generalizes Eq. (3.5). From this, it is evident that
~a1�t� � 1. The explicit expression for ~A1�t�—worked
out before in [1]—and that for the timelike coupling
~A1�t� can be written as follows:

 

~a1�t�
~A1�t�
~A1�t�

0@ 1A � t��1

����

1
1�

P
1
m�1 	�t�m�

sin��t�=��t�

0@ 1A: (3.7)

Note that the first term in the Euclidean analytic coupling
(second line in the above equations) stems from the usual
QCD term 1=L, whereas the 	-function term is related to
the Landau-pole remover [second term in Eq. (2.13)]. To
reveal the particular features of the Laplace-conjugate
images of these couplings, we show them graphically in
Fig. 3. One sees from this figure that the Laplace conjugate
of the conventional (normalized) coupling corresponds to a
straight line at unity, while the analogous expression for the
Euclidean coupling is represented by a Dirac comb (blue
line) and the Minkowski one is a smooth and oscillating
function (red line) dying out with t.

Though we have initially assumed that k > 0 and � > 0,
these Laplace conjugates generate, in turn, the following

 

0 1 2 3 4 5
-1

-0.5

0

0.5

1

t

˜
1(t)

˜
1(t)

FIG. 3 (color online). Illustration of the Laplace images of the
one-loop analytic couplings in Euclidean � ~A1�t�� and in
Minkowski space �~A1�t��.
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images that can be analytically extended to any real �, L,
and L� [we display again the loop label (l � 1) explicitly
for the sake of comparison later on]:

 a��1� �
1

L�
; (3.8)

 A �1�
� �L� �

1

L�
�
F�e�L; 1� ��

����
; (3.9)

 A �1�
� �Ls� �

sin	��� 1� arccos�Ls=
���������������������
�L2

s � �2�
p

�


���� 1��L2
s � �

2����1�=2
; (3.10)

where the Dirac comb gives rise to the transcendental
Lerch function, F�z; �� [78], that serves as a Landau-pole
remover for any �, and the oscillating curve amounts to
elementary functions, confirming the result given in
Eq. (3.2). The last expression is a new result of the present
analysis and has been derived by taking recourse to the last
entry of Eq. (3.7). It is worth emphasizing that A�1�

� �L� and
A�1�� �Ls� are entire functions of their corresponding
arguments.

B. Properties of timelike vs spacelike couplings for any
real index �

1. From inspection of the relations (2.6) and (2.7), and
recalling that asymptotically as L! 1 both analytic cou-
plings, A��L� and A��Ls�, tend to the same standard
coupling a��L�, one may ask about the mutual behavior
of these couplings for finite values of their arguments.
Despite the asymptotic symmetry of the couplings, for
finite arguments this symmetry is distorted [19,20], albeit
the couplings are equal at the origin, i.e., for Q2 � s! 0,
or equivalently, L � Ls ! �1. This ‘‘distorting-mirror’’
effect [19,20] is an interesting property of the analytic
couplings and was originally established for integer powers
of the coupling. It is symbolically expressed through the
operation

 A �l�
� �Q2� � D̂	A�l�� �s�
 (3.11)

[see Eq. (2.6)], which we now generalize to be valid for any
real index �. Its content may become evident from the
following expressions for L � Ls � 0:

 A��0� �
sin	��� 1��=2


��� 1���
: A1�0� �

1

2
;

A2�0� �
1

�2 ; A3�0� � 0; A4�0� � �
1

3�4 ;

(3.12)

 A 1=2�0� �

���
2
p

�1=2
; A5=2�0� �

���
2
p

3�5=2
;

A7=2�0� � �

���
2
p

5�7=2
;

(3.13)

 

A��0� � �

�1� ��

����
: A1�0� �

1

2
;

A2�0� �
1

12
; A3�0� � 0; A4�0� � �

1

720
;

(3.14)

 A 1=2�0� �
�
�12�

�1=2
; A5=2�0� �


�52�

4�5=2
;

A7=2�0� � �

�72�

8�7=2
;

(3.15)

where 
��� is the Riemann 
 function. These couplings are
interrelated by the equation

 A ��0� �
�
��� 1�
���

2��1

�
A��0� (3.16)

with the coefficient in the brackets providing a quantitative
measure for the magnitude of the distortion for any � 2 R.
For a graphic illustration of the ‘‘distorted-mirror symme-
try’’ effect, we refer the interested reader to [14,19,77].

2. As we have shown in [1] for the Euclidean couplings,
the parameters A�� play the role of the ‘‘inverse powers’’
of A1 that may be considered as the images of a��s . This
property extends also to the Minkowski region, so that the
set fA��;A��g corresponds to analytic images of a�� in
Euclidean and Minkowski space, respectively, for arbi-
trary � values. This allows us to demonstrate the
‘‘distorted-mirror’’ effect in analytic form as follows:

 

A0�Ls� � 1; A�1�Ls� � Ls; A�2�Ls� � L2
s � �

2=3; A�3�Ls� � Ls�L
2
s � �

2�; . . . ;

A0�L� � 1; A�1�L� � L; A�2�L� � L2; A�3�L� � L3; . . . : (3.17)

Note that the expressions for A�n, given by Eq. (3.17), can
be linked to A�n, in analogy to (3.11), by means of the
transformation

 A�n�Q
2� � D̂	A�n�s�
: (3.18)

[See Eq. (19) in [73] for an earlier implicit derivation of

these expressions, employing transformation (2.6) in terms
of the powers of Ls (or in terms of A�n�s� in our notation)].
A useful all-order formula to analytically continue loga-
rithms under the D̂ transformation (see item 3 in
Appendix B) has been presented in [63].

3. Moreover, the analytic couplings in both regions
�Q2; s�, or equivalently, �L; Ls�, have the following sym-
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metry (respectively, asymptotic) properties:
 

Am�Ls� � ��1�mAm��Ls�;

Am�L� � ��1�mAm��L� for m � 2; m 2 N;

Am��1� �Am��1� � 	m;1;

Am�1� �Am�1� � 0 for m 2 N: (3.19)

To reveal the details of behavior of the generalized analytic
couplings A��Ls� and A��L� and make the above state-
ments more transparent, we illustrate them in Fig. 4 in
terms of two graphics, which display the rate of change of
these functions with respect to the index � and the argu-
ment L. Inspection of this figure in conjunction with
Eq. (3.19) also provides information about how the zeros
of the couplings occur.

C. Extension to higher loops and convergence of FAPT
in the Minkowski vs the Euclidean regions

The last topic of this section is to extend our results to
higher loops and to discuss the convergence properties of
FAPT in the timelike region. In the following exposition,
we shall employ, for the sake of simplicity, a special
notation for the derivatives with respect to the index � 2
R of the nonpower expansion and define

 D k A�
A�

� �
�

dk

d�k
A�
A�

� �
: (3.20)

In our previous paper [1] we have obtained an expansion of
the two-loop analytic coupling A�2�

� �L� in terms of the
one-loop analytic coupling A�1�

� �L� [see Eq. (3.29) in [1]].
Because of the linearity of this expression in A�1�

� �L�, we
can immediately rewrite it for timelike couplings—see
Appendix C, Eqs. (C2a) and (C2b)—by virtue of
Eq. (C1) to obtain the two-loop result
 

A�2�1 � A�1�1 � c1�DA�1���2 � c
2
1	D

2 �D� 1
A�1���3

� c3
1	D

3 � 5
2D

2 � 2D� 1
2
A

�1�
��4

�O�D4A�1���5�; (3.21)

where we employed the auxiliary expansion parameter
c1 � b1=b

2
0.

Next, we test the quality of the two-loop expansion of
the analytic-coupling images of a�2� and �a�2��2 in the
Minkowski region in comparison with the Euclidean one
(refraining from displaying the latter because it is com-
pletely analogous—see Appendix C). In doing so, we
define the following quantities for � � 1 and � � 2:

(i) NNLO, i.e., retaining terms up to order c2
1,

 

�3�A1� �
A�1�1 � c1DA�1���2� c

2
1�D

2�D� 1�A�1���3

A�2�1

� 1; (3.22)

(ii) N3LO, i.e., retaining terms up to order c3
1,

 �4�A1� � �3�A1�

�
c3

1�D
3 � 5

2D
2 � 2D� 1

2�A
�1�
��4

A�2�1

;

(3.23)

(iii) N4LO, i.e., retaining terms up to order c4
1

[cf. Eq. (3.26c)],
 

A�2�;MFAPT
2 � A�1�2 � 2c1DA�1���3

� c2
1�3D

2 � 2D� 2�A�1���4

� c3
1�4D

3 � 7D2 � 6D� 1�A�1���5

� c4
1

�
5D4 �

47

3
D3 � 8D2

� 11D�
10

3

�
A�1���6 (3.24)

with analogous expressions for �3�A�� and �4�A��,
obtained by using the evident substitution A!A.

Figure 5 illustrates the convergence quality of the FAPT
expansion in the spacelike and the timelike regions in
terms of the quantities �n, defined above, that encapsulate
the deviation of our approximations from the exact results.
In addition, we consider the auxiliary quantity �it-2 (dotted
black line) for the spacelike (L) and the timelike (Ls)
regions, defined by the respective expressions
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FIG. 4 (color online). Comparison of the Minkowski (left panel) and the Euclidean (right panel) analytic couplings, A��k � Ls� and
A��k � L�, respectively, for incremental changes of the index � in the range 2 to 3.
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�it-2�A�� �
A�2�it-2

� �A�2�
�

A�2�
�

;

�it-2�A�� �
A�2�it-2
� �A�2��

A�2��
;

(3.25)

which, as one sees, result from replacing the exact spectral
density [cf. (B8)] by its second iteration (details are rele-
gated to Appendix B).

From Fig. 5 one observes that the convergence of A�2�
1

and A�2�1 at the N3LO of the expansion in the auxiliary

parameter c1 is sufficiently accurate. In the Euclidean case
(left panel), the errors—defined by �FAPT

3 �A1� (dashed
red line) and �FAPT

4 �A1� (solid blue line)—induced by the
non-power-series expansion are by a factor of 2 less than
those in the Minkowski case (right panel): �MFAPT

3 �A1�
(dashed red line) and �MFAPT

4 �A1� (solid blue line). The
largest error results around L � Ls � 0, but already for
jLj> 2 the uncertainty is less than a few per mil, rendering
the convergence of the expansion highly reliable. Deriving
the two-loop explicit expression

 

A�2�� � A�1�� � c1�DA�1���1 � c
2
1�
�
�� 1

2!
D2 �D� 1

�
A�1���2 (3.26a)

� c3
1�
�
��� 1���� 2�

3!
D3 �

2�� 3

2
D2 � �1� ��D�

1

2

�
A�1���3 (3.26b)

� c4
1�
�
��� 1���� 2���� 3�

4!
D4 �

3�2 � 12�� 11

6
D3 �

�2 � 2�
2

D2 �
3�� 5

2
D�

3�� 4

6

�
A�1���4

�O�D5A�1���5�; (3.26c)

which is extended to the three-loop order of the running
coupling in Appendix C [Eqs. (C2a)–(C2c)], a similar
quality of convergence can be established for any desired
fractional value of the index �.

In Fig. 6 we show the results of the exact and the
approximate calculations of A�2�;FAPT

2 �L� and

A�2�;MFAPT
2 �Ls�. This figure also includes the results (de-

noted by the symbol �) obtained before by Magradze [25].
One observes that the agreement between his numerical
estimates and our more elaborated calculations is excel-
lent. We take the opportunity to remark that our opposite
statements in [1], notably Fig. 4, were incorrect owing to
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0.08
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(2)
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FIG. 6 (color online). (a): The dashed red line corresponds to A�2�;FAPT
2 �L�, computed analytically via Eqs. (C2a)–(C2c) (for c2 �

0), whereas the solid green line represents the exact expression for A�2�
2 �L�, cf. Eqs. (2.3) and (B8). (b): The dashed red line denotes

A�2�;MFAPT
2 �Ls�, computed analytically via Eq. (B11), whereas the solid green line represents the exact result for A�2�2 �Ls�, given by

Eq. (B11). On both panels, we also indicate by � the results of Magradze, presented in [25,26].
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FIG. 5 (color online). (a): The dashed red line corresponds to �3�A1�, whereas the solid blue line represents �4�A1�. (b): The
dashed red line denotes �3�A1� and the solid blue line �4�A1�. The dotted black line indicates �it-2�A1� (left panel) and �it-2�A1�
(right panel).
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an error in our code. This bug has now been eliminated, so
that Magradze’s numerical results are fully supported by
our calculation of the exact expressions for both analytic
images A�2�

2 and A�2�2 .
In concluding this section, it is worth listing the advan-

tages of our calculation: (i) a good convergence of the non-
power-series expansion, (ii) full control over the region in
Ls (correspondingly, L), in which the maximum uncer-
tainty occurs, making possible systematic improvements,
and (iii) most important for practical applications, a con-
siderably reduced uncertainty level of the expansion in the
physically interesting region, say, beyond 1 GeV (which
corresponds to L � 2), of only a few per mil.

IV. SCALAR CORRELATOR AND HIGGS BOSON
DECAY INTO HADRONS IN MFAPT

To bring out the contrast with the original APT and
effect the advantages and the utility of the (M)FAPT ma-
chinery with regard to the conventional perturbative ex-
pansion, we consider in this section the decay width of the
Higgs boson into a bottom-antibottom pair, ��H! b �b�,
using a multiloop approximation. We stress in this context
again that, though there are no ghost singularities in the
Minkowski space owing to the strong coupling, the ana-
lytic continuation from the spacelike to the timelike region
entails so-called ‘‘kinematical’’ �2-terms (see, for in-
stance, [74]) that can amount to pretty large contributions
as the order of the perturbative expansion increases. Hence,
even at high energies, relevant for the Higgs decay, the
inclusion of these terms to all orders of the perturbative
expansion is mandatory, albeit a difficult task. It is exactly
this issue that singles out the utility of MFAPT because,
within such a perturbative approach, the analytic couplings
contain all the aforementioned �2-terms inherently by
construction.

Our calculation of ��H! b �b� via RS will be carried out
in the MS scheme and will include the evolution of both the
coupling and the b-quark mass. Special attention will be
given below to the origin of the �s corrections in order to
distinguish between the loop expansion and the loop evo-
lution. In the following, we will compare our results with
those obtained in the MS scheme in Refs. [63,72–74],
where the notation as � �s=� (called ‘‘couplant’’) was
extensively used. For the sake of a better presentation of
our results in comparison with the existing ones, just
mentioned, it is useful to introduce the following abbre-
viation:

 	as�s�
an � a�l�� �s� �
�

4

b0

�
�
A�l�� �s�: (4.1)

A. Standard perturbation-theory analysis of RS

The Higgs boson decay into a bottom-antibottom pair
can be expressed in QCD by means of the correlator

 ��Q2� � �4��2i
Z
dxeiqxh0jT	JS

b�x�J
S
b�0�
j0i

of two quark scalar (S) currents in terms of the disconti-
nuity of its imaginary part [79], i.e., RS�s� � Im���s�
i��=�2�s�, so that the width reads

 ��H! b �b� �
GF

4
���
2
p
�
MHm

2
b�MH�RS�s � M2

H�: (4.2)

Above,Q2 � �q2 and JS
b �

��b�b is the scalar current for
bottom quarks with mass mb, coupled to the scalar Higgs
boson with mass MH. Direct multiloop calculations are
usually performed in the Euclidean (spacelike) region for
the corresponding Adler function DS [63,72,74], where
QCD perturbation theory works. Hence, we write

 

~D S�Q
2;�2� � 3m2

b�Q
2�

�
1�

X
n�1

dn�Q
2=�2�ans ��

2�

�
;

(4.3)

using, as announced above, the notation as � �s=�.
Connecting to our discussion in Sec. II below Eq. (2.2),
and adjusting to the scalar case, we now write the results of
the ‘‘standard machinery’’ (see, for instance, [73]):

 

~R S�s� � ~RS�s; s� � 3m2
b�s�

�
1�

X
n�1

rnans �s�
�
: (4.4)

The coefficients rn contain characteristic ‘‘�2-terms’’ due
to the (integral) transformation R̂ of the powers of the
logarithms appearing in ~DS [cf. Eq. (4.3)], as it was dis-
cussed in the beginning of Sec. II. Recall that, in the case of
~RS�s�, these logarithms stem from two different sources:
one is the running of �s in ~DS, in analogy to Eq. (2.2), and
the other is related to the evolution of m2

b�Q
2�. Therefore,

the coefficients rn in (4.4) appear to be related to (a) the
coefficients dn in (2.2), the latter being directly calculable
in Euclidean space, and (b) a combination of the mass
anomalous dimension �i and the �-function coefficients
bj, multiplied by ‘‘�2 powers’’ [63,72,73]. It turns out that
the influence of these �2-terms can be substantial, as the
following quite recent result, derived in [74], demonstrates:
 

	3m2
b

�1 ~RS�1�5:667as�a

2
s	51:57�15:63

�Nf�1:907�0:548�
�a3
s	648:7�484:6

�Nf�63:74�37:97��N2
f�0:929�0:67�


�a4
s	9470:8�9431:4�Nf�1454:3�1233:4�

�N2
f�54:78�45:10��N3

f�0:454�0:433�
:

(4.5)

For emphasis, we have underlined the contributions of
those �2-terms which originate from the analytic continu-
ation. As one can readily verify, the total amount of these
terms is of the order of the original coefficients dn, in
particular, as regards the coefficient d4. This makes it
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apparent that such terms have to be taken into account in all
orders of the perturbative expansion. We stress that this is
exactly the advantage provided by the analytic machinery,
developed here and in [1], and this conceptual advantage
arises naturally without any additional optimization proce-
dure. Indeed, in FAPT we do not need to expand the
renormalization factors into a truncated series of loga-
rithms; instead we can transform them ‘‘as a whole’’ by
means of the AM operation.

To complete the presentation of the standard analysis, let
us display the final result at the O�a4

s�, taken from
Ref. [74]:
 

	3m2
b

�1 ~RS � 1� 5:6668as � 29:147a2

s � 41:758a3
s

� 825:7a4
s (4.6)

 � 1� 0:2075� 0:0391� 0:0020� 0:001 48: (4.7)

Note that in Eq. (4.7) as � as�M
2
H� � 0:0366 is chosen,

which corresponds to the Higgs boson mass MH �
120 GeV.

B. FAPT analysis of ~RS

We now turn our attention to effects related to the
renormalization of the bottom-quark mass. For the running
mass m�l��Q2�, in the l-loop approximation, one has the
following general solution of the RG equation:

 m2
�l��Q

2� � m2
�l���

2� exp
�

2
Z as�Q2�=4

as��2�=4

�m�x�
��x�

dx
�

(4.8)

 � m2
�l���

2�
	as�Q

2�
�0f�l��as�Q
2��

	as��
2�
�0f�l��as��

2��
; (4.9)

where

 �0 � 2
�0

b0
(4.10)

and the function f�l��as�, given by

 f�l��as� � exp
�

2
Z as=4

0

�
��l�m �x�

��l��x�
�
�0x

b0x2

�
dx
�
; (4.11)

accumulates the effects of the second- and higher-loop
evolution of m2

�l��Q
2� with Q2. In the one-loop approxima-

tion (l � 1), f�l��as� is set by definition equal to unity. On
the other hand, for l � 2 and l � 3 we obtain
 

f�2��as� � 	1� 	1as

�1 with 	1 �

b1

4b0
�
c1b0

4
;

�1 � 2
�
�1

b1
�
�0

b0

�
(4.12)

and

 f�3��as� � 	1� 	1as � 	2a
2
s

�20

� exp
�
�21 arccos

�
1� 	1as=2�����������������������������������

1� 	1as � 	2a2
s

p ��
(4.13a)

with

 	2 �
b2

16b0
; �20 �

�
�2

b2
�
�0

b0

�
;

�21 �
�2b1������������������������

4b2b0 � b
2
1

q �
�2

b2
� 2

�1

b1
�
�0

b0

�
:

(4.13b)

Introducing the RG-invariant quantity m̂�l� (see, e.g.,
[63,80]),

 m̂ �l� � m�l���
2�f	as��

2�
�0f�l��as��
2��g�1=2; (4.14)

one can rewrite Eq. (4.9) in the form

 m2
�l��Q

2� � m̂2
�l�	as�Q

2�
�0f�l��as�Q2��; (4.15)

where the expansion of f�l��x� at the three-loop order is
given by

 f�l��as� � 1� as
b1

2b0

�
�1

b1
�
�0

b0

�
� a2

s
b2

1

16b2
0

�
�0

b0
�
�1

b1

� 2
�
�0

b0
�
�1

b1

�
2
�
b0b2

b2
1

�
�2

b2
�
�0

b0

��
�O�a3

s�;

(4.16)

which is in one-to-one correspondence with Eq. (15) found
by Chetyrkin in [81]. [Note, however, that Chetyrkin ex-

pands instead the expression
�������������
f�l��x�

q
� c�x� and uses dif-

ferent normalizations; viz., ��n � bn=�4nb0� and
��n � �n=�4nb0�.] Keeping in mind the main purpose of
our task, namely, the sequential analytization of D, we
rewrite the RG equation (4.15) in the form of a power
series to get

 m2
�l��Q

2� � m̂2
�l��as�Q

2���0

�
1�

X1
m�1

e�l�m �as�Q2��m
�
;

(4.17)

where the coefficients e�l�m depend implicitly on the RG
parameters via Eq. (4.11). For the simplest case of a two-
loop running, they can be written down explicitly:

 e�2�m �
���1 � 1�

��m� 1����1 �m� 1�
�	1�

m: (4.18)

Substituting Eq. (4.17) for m2
�l��Q

2� into ~DS�Q2� �
~DS�Q

2;Q2� in Eq. (4.3), one finds
 

	3m̂2
b

�1
�l�

~D�l�S �Q
2� � �a�l�s �Q2���0 �

Xl
n�1

dn�a
�l�
s �Q2��n��0

�
X1
m�1

��l�m �a
�l�
s �Q2��m��0 (4.19)
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with

 ��l�m � e�l�m �
Xmin	l;m�1


k�1

dke
�l�
m�k: (4.20)

The effects of mass evolution of the higher orders are
collected in the third term on the r.h.s. of Eq. (4.19) and
have been purportedly separated from the original series
expansion of D (truncated at n � l), the latter being rep-
resented by the second term on the r.h.s. of Eq. (4.19). In
practice, for Q � 2 GeV, i.e., for �s � 0:4, the truncation
at m � l� 4 of the summation (4.17) produces a trunca-
tion error smaller than 0.01%.

To obtain ~RMFAPT
S , we recall the action of the AM opera-

tion in FAPT, as described in Sec. II, and consider the map
of the quantity ~D�l�S �Q

2� in Eq. (4.19) onto the Minkowski
region. Following the analytization procedure illustrated in
Fig. 2, we then obtain

 

~R �l�MFAPT
S � AM	D

�l�
S 


� 3m̂2
�l�

�
a�l��0 �

Xl
n�1

dna�l�n��0
�

X
m�1

��l�m a�l�m��0

�
;

(4.21)

where the superscript l denotes the loop order of the
evolution and, at the same time, fixes the order of the
perturbative expansion of the DS function. The above
expression contains, by means of the coefficients
��l�n �e

�l�
k � and the couplings a�l�n��0

, all RG terms contribut-
ing to this order, while the resummed �2-terms are integral
parts of the analytic couplings by construction.

C. Comparison of different perturbative approaches to
obtain ~RS

We list below the results obtained for the quantity ~RS

using different methods.
(i) Broadhurst, Kataev, and Maxwell (BKM) [63] uti-

lized, within the so-called ‘‘naive non-
Abelianization’’ (NNA) approach, an optimized
power-series expansion, based on the ‘‘contour inte-
gration’’ technique, to compute ~RS. Their estimate,
with one-loop running of as and setting a�l�1�

s � as,
reads (see Sec. 3.3 in [63])3

 

~R �l�1�BKM
S � 3m̂2

�l�1��as�
�0

�
ABKM

0 �as�

�
X
n�1

dnABKM
n �as�

�
; (4.22)

 

ABKM
n �as� �

4

b0�	n

�
1�

�
b0�as

4

�
2
�
�	n=2

�as�n�1

� sin
�
	n arctan

�
b0�as

4

��
; (4.23)

 	n � n� �0 � 1: (4.24)

These new couplings ABKM
n �as� and the whole result

are closely related to our analytic approach at the
one-loop level, as we will show shortly.

(ii) Baikov, Chetyrkin, and Kühn (BChK) [74] have
derived, within the standard perturbative QCD at
the O�a4

s� [c.f. Eq. (4.5)], the following expression:

 

~R �l�4�BChK
S � 3 �m2�s��l�4�

�
1�

X4

n�1

rn�a
�l�4�
s �n

�
:

(4.25)

(iii) Consider now the MFAPT equation (4.21) and recast
it in the form

 

~R �l�MFAPT
S � 3m̂2

�l�

�
a�l��0 �

Xl
n�1

dna�l�n��0

�
Xl�4

m�1

��l�m a�l�m��0

�
(4.26)

 

� 3m̂2
�l�

�
a�l��0 �

Xl
n�1

dn�a
�l�
n��0

�
X4

m�1

e�l�m a�l�n�m��0
�

�
X4

m�1

e�l�m a�l�m��0

�
; (4.27)

where we have truncated the ‘‘evolution series’’ at
m � l� 4, adopting the empirical recipe discussed
after Eq. (4.20). Pay attention that the terms a�l�m��0

contain—by means of the index �0 —all �0- and
b0-terms, and also all �2-terms, while the contribu-
tions of the higher-loop RG-dependent parts are
accumulated in the coefficients ��l�m —see
Eqs. (4.15) and (4.16) and also (4.19) and (4.20)—
in terms of the RG parameters �i and bj.

Equation (4.26) can be considered as a generalization of
the BKM ‘‘contour-improved’’ expansion in Eqs. (4.22),
(4.23), and (4.24). To see this, one should reduce the above
expression to the one-loop case, by setting ��l�m ! 0 and
a�l�� ! a�1�� , with the aim of reproducing the contour-
improved effective coupling in Eq. (4.22). In fact, taking
into account the explicit expression (3.2) for a�1�� , one can
readily find the relation

 a �1�n��0
�

�
4

b0

�
n��0

A�1�n��0
� �as��0An�as� (4.28)

3The couplings as and a� are understood to be functions of s,
i.e., as�s� and a��s�. Note in this context that, in the original
paper of Ref. [63], the authors used the coefficients dNNA

n , which
are the ‘‘all-order’’ coefficients of the expansion of the Adler
function in the Euclidean region, estimated, however, through
the NNA procedure.
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recalling (4.23) and (4.24). This relation establishes the
equivalence between the contour-improved effective cou-
pling and the timelike analytic coupling a�1�� in the one-
loop approximation of MFAPT. The only difference be-
tween ~R�l�1�BKM

S and ~R�l�1�MFAPT
S stems from the summa-

tion in Eq. (4.22), which extends to all known dn
coefficients, i.e., also to those up to n � 4.

In Fig. 7, we display the final results for the quantity
~R�l�MFAPT

S in Eq. (4.26) vs the Higgs mass MH, evaluating it
for the cases of two (l � 2) and three (l � 3) loops, with
the goal of illustrating the effects of the analytization
procedure in comparison with the standard approach. The
solid blue line in both panels of this figure shows the
prediction obtained with MFAPT and a fixed number of
active flavors Nf � 5. One appreciates that this curve lies
only slightly (about 2% for l � 3) above the standard result
~R�l�4�BChK

S , illustrated by the dashed red line. This is mainly
due to the somewhat larger values of the perturbative
coefficients dn within MFAPT relative to the standard
ones, rn. At the same time, the dotted green line, which
corresponds to ~R�l�1�BKM

S , Eq. (4.22), turns out to lie sig-
nificantly higher than the BChK prediction.

In Table I we show for the quantity ~RS�s� a comparison
of the perturbative series evaluated in different expansion
approaches, discussed in the literature and in this work.

One may conclude that the standard perturbation-theory
series and MFAPT show a similar behavior, starting with
the two-loop running. Because the coefficients dn of
MFAPT are larger than the standard ones, rn, due to the
subtraction of the �2-terms in the latter, the fixed-order
MFAPT result for the quantity ~RS�s� appears to be slightly
larger than that of the standard perturbative QCD approach.
However, the coupling parameters of MFAPT, a�, contain
the resummed contribution of an infinite series of�2-terms
that renders them ultimately smaller (for the same value of
�QCD) than the corresponding powers of the standard
coupling, as can be seen from Table II. In order to dem-
onstrate the combined effect of evolving the coefficients
and the heavy-quark mass at different orders of the pertur-
bative expansion, we define the following factors for,
respectively, the standard perturbation theory and for
MFAPT:

 E�l�� �s� � �as�s��
� �

X4

m�1

e�l�n �as�s��
m��; (4.29)

 E �l�� �s� � a��s� �
X4

m�1

e�l�n am���s�: (4.30)

Then Eqs. (4.25) and (4.27) can be rewritten as

TABLE I. Comparison of the perturbative-series convergence in terms of the associated perturbative orders, using for the Higgs
boson mass the value MH � 120 GeV and employing different expansions within the MS scheme: (i) standard perturbative QCD
[73,74], (ii) BKM [63], and (iii) MFAPT at the two- and three-loop levels of evolution with the number of flavors fixed to Nf � 5 and
s � 	120 GeV
2.

Expansion approach used ~RS�s� O�1� O�as� O�a2
s � O�a3

s � O�a4
s �

Standard QCD [74] 27:44 GeV2 80.2% 16.6% 3.1% 0.2% �0:1%
MFAPT ~RS�s� O�a�l��0 � O�a�l�1��0

� O�a�l�2��0
� O�a�l�3��0

� O�a�l�4��0
�

BKM [63]a (MFAPT for l � 1) 31:89 GeV2 74.5% 17.7% 5.3% 1.8% 0.7%
MFAPT for l � 2, this work 27:59 GeV2 79.5% 16.2% 4.3%
MFAPT for l � 3, this work 28:07 GeV2 78.5% 16.1% 4.2% 1.2%

aNote that, in this order of expansion, the analytic couplings in MFAPT, a�, and those in the contour-improved approach [63] coincide,
though the associated coefficients dn and dNNA

n , respectively, are different.
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FIG. 7 (color online). Illustration of the calculation of the perturbative series of the quantity ~RS�M
2
H� in different approaches within

the MS scheme: standard perturbative QCD [73,74] at the loop level l � 4 (dashed red line); BKM estimates, by taking into account
the O��as��0A4�as��-terms [63] (dotted green line); and finally MFAPT from (4.27) for Nf � 5 (solid blue line), displayed for l � 2
(left panel) and l � 3 (right panel).
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~R �l�PT
S � 3m̂2

�l�

�
E�l��0�s� �

Xl
n�1

rnE
�l�
n��0
�s�
�
; (4.31)

 

~R �l�MFAPT
S � 3m̂2

�l�

�
E�l��0�s� �

Xl
n�1

dnE
�l�
n��0
�s�
�
: (4.32)

In order to understand the effect of analytization, we
compare the values of E�l�n��0

�s� with those of E�l�n��0
�s�,

and display their ratio in Table II. Using the entries of
this table, one can easily estimate the relative enhancement
of ~R�3�MFAPT

S with respect to ~R�3�PT
S :

 

~R�3�MFAPT
S

~R�3�PT
S

�
X3

n�0

!n
dn
rn

E�3�n��0
�s�

E�3�n��0
�s�

� 0:801� 0:163� 0:042� 0:015 � 1:021;

(4.33)

 where !n � rnE
�3�
n��0

=
X

i�0;...;3

riE
�3�
i��0

: (4.34)

From this equation, in conjunction with the values of!n
(presented in Table II), we see that the largest enhancement
is provided for n � 3 due to dn=rn � 8:46, amounting to a
1.5% contribution to ~R�3�MFAPT

S out of 2.1% in total.
Evolution, which potentially could reduce this enhance-
ment, because of the inclusion into the analytic coupling of
the resummed �2-terms, notably, E�3�n��0

=E�3�n��0
� 0:91, is

too small to counterbalance it.

V. SUMMARY AND CONCLUSIONS

This report has focused on the implementation of ana-
lyticity of QCD amplitudes both in Euclidean and in
Minkowski space, the theoretical basis being provided by
dispersion relations (to ensure causality) in conjunction
with the renormalization group. The goal of the work
was to elevate analytic perturbation theory—initiated by
Shirkov and Solovtsov [18]—to a calculational paradigm
for perturbative QCD applications, capable of providing
singularity-free expressions for any real power of the
strong coupling. Following the rationale that all quantities
that may contribute to the spectral density should be in-

cluded into the analytization procedure [61,62], we have
expanded the previously developed fractional analytic per-
turbation theory [1] from the spacelike to the timelike
region.

The core issues of the investigation can be summarized
as follows, starting with the benchmarks of the analytic
couplings A�l�

� �L� (spacelike) and A�l�� �Ls� (timelike) of
(M)FAPT for an arbitrary real index �:

(i) fA�l�
� �L�;A

�l�
� �Ls�g is analytic in L (respectively, Ls)

and also in the index � 2 Z; for l � 1, see Eqs. (3.9)
and (3.10); for l � 2, see Sec. III C and also [27] (for
integer indices). This implies the existence of any
index derivative dm

d�m fA
�l�
� �L�;A

�l�
� �Ls�g.

(ii) A�l�
m ��1� � A�l�m ��1� � 	1;m for m 2 N [75] and

A�l�
� ��1� � A�l�� ��1� � 0 for � > 1. This implies

the existence of a universal IR fixed point.
(iii) A�l�� �Ls ! 1� !A�l�

� �L!1� ! a��l��L! 1�
have the correct UV asymptotics, dictated by the
asymptotic freedom of QCD.

(iv) The effect of the distorted-mirror symmetry with
respect to L and Ls is exhibited analytically in terms
of A�l�

� �L� and A�l�� �Ls� for any real �.
(v) The analytization of expressions, like L�l��;m�L� �

AE	�a�l��L���Lm
, L�l��;m�Ls� � AM	�a�l��L���Lm

which amount to ‘‘evolution logarithmic factors’’ in
l-order QCD perturbation theory, typical examples
being logarithms of the factorization scale (appear-
ing beyond the leading-order expansion), and signif-
icantly affecting the precision of perturbative
calculations, becomes possible. Moreover, the insen-
sitivity to the choice of the factorization scale [67]
and a diminished dependence on the adopted renor-
malization scheme and scale setting have been
achieved [36].

The following topics have been given particular atten-
tion:

(1) We have presented a brief historical review of the
analytization technology from early attempts in
QED up to the most recent developments in QCD
perturbation theory and phenomenology (see
Introduction), highlighting the strategy for resolving
the conflict with analyticity in Q2 of QCD ‘‘observ-
ables’’ in the perturbative regime.

(2) In Secs. II and III we have worked out in detail the
theoretical framework to deal with analytic versions
of the strong coupling and its powers for any frac-
tional (real) power, encompassing the spacelike and
also the timelike regions.

(3) We have given closed-form expressions for the
analytic-coupling images at the one-loop level
both in Euclidean and in Minkowski space. We
have also provided explicit but approximate expres-
sions at the two-loop level, which show excellent
agreement with the exact but numerical results in

TABLE II. Comparison of the combined evolution effects on
the ratio of MFAPT to the standard perturbation theory for the
three-loop evolution case, fixing the number of flavors to Nf �
5. For the sake of completeness, we also show the ratios of the
associated perturbative coefficients dn and rn and the approxi-
mate relative weights !n � rnE

�3�
n��0

=
P
i�0;...;3riE

�3�
i��0

of the cor-
responding contributions.

n � 0 n � 1 n � 2 n � 3

	E�3�n��0
=E�3�n��0


s��120 GeV�2 1.00 0.98 0.95 0.91
dn=rn 1.00 1.00 1.44 8.46
Relative weight !n 0.801 0.166 0.031 0.002
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terms of the Lambert function, found before by
Magradze [25]—see Fig. 6. Three-loop (approxi-
mate) results have also been included and the fast
convergence of the non-power-series expansion has
been proved.

(4) The major characteristics (advantages) of this ma-
chinery, studied in Sec. III, are (i) a reduced uncer-
tainty level of only a few per mil in a wide range of
momentum (or energy) values, starting just above
1 GeV, (ii) the high quality of the non-power-series
expansion, evidenced by providing trustworthy ana-
lytic expressions for the strong coupling and its
powers at the one-, two-, and three-loop levels that
are singularity-free in the spacelike region and re-
sum the �2-terms (induced by analytic continu-
ation) to all orders in the timelike domain.

(5) The relevance of the developed framework for prac-
tical purposes in Minkowski space has been effected
in Sec. IV by applying it to the decay of a scalar
Higgs boson to a b �b pair, this task serving as a
proof-of-the-concept calculation. Specifically, we
estimated the quantity RS at the four-loop level of
the perturbative expansion (i.e., up to the coefficient
d3), having recourse to the coefficients and anoma-
lous dimensions calculated by Chetyrkin and col-
laborators in [72,73]. The main advantage of
MFAPT here is that the coupling parameters A�

inherently include the resummed contribution of
an infinite series of those �2-terms originating
from the analytic continuation from Euclidean to
Minkowski space. Technically, we could have also
included the next correction, associated with the
coefficient d4, but this would not be worth the effort,
given that the expected contribution would be about
0.5%.

In conclusion, we think that the analytic approach to
QCD perturbation theory in the form advocated here has
indeed been rather successful both in the spacelike and in
the timelike regions for the particular processes we have
discussed in this work and elsewhere [1,36,67]. The devel-
oped full-fledged machinery may improve our understand-
ing of key issues of QCD reactions from the poorly
understood low-momentum (spacelike) domain, where
the Landau singularities are a serious obstacle in standard
perturbative QCD (based on power-series expansions) up
to the high-energy (timelike) region of several GeV. In
conjunction with high-loop calculations in the latter case,
the �2-terms, entailed by analytic continuation, can sig-
nificantly change the result in higher orders. A greater
challenge, however, is to include in the approach gluon
resummation and power corrections analytically, beyond
the attempts in [1,61], with the aim of unraveling the
analytic structure of the involved amplitudes in the whole
momentum (energy) range. Work in this direction is cur-
rently in progress.
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APPENDIX A: TWO-LOOP RENORMALIZATION-
GROUP SOLUTIONS FOR THE COUPLING

1. The expansion of the � function is given by the r.h.s.
of the equation

 

d
dL

�
�s
4�

�
� �

�
�s
4�

�

� �b0

�
�s
4�

�
2
� b1

�
�s
4�

�
3
� b2

�
�s
4�

�
4
� . . . ;

(A1)

where L � ln��2=�2� and

 b0 �
11

3
CA �

4

3
TRNf;

b1 �
34

3
C2

A �

�
4CF �

20

3
CA

�
TRNf;

b2 �
2857

54
C3

A � 2C2
FTRNf �

205

9
CFCATRNf

�
1415

27
C2

ATRNf �
44

9
CF�TRNf�2

�
158

27
CA�TRNf�2;

(A2)

with CF � �N
2
c � 1�=2Nc � 4=3, CA � Nc � 3, TR �

1=2, and Nf denoting the number of active flavors. The
corresponding three-loop RG equation for the coupling
a � b0�=�4�� is
 

da�3�
dL
� �a2

�3�	1� c1a�3� � c2a2
�3�
 with c1 �

b1

b2
0

;

c2 �
b2

b3
0

: (A3)

The solution of this RG equation at the two-loop level
(c2 � 0) assumes the form

 

1

a�2�
� c1 ln

�
a�2�

1� c1a�2�

�
� L: (A4)

The exact solution of Eq. (A4) can be expressed in terms of
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the Lambert function W�z� [82] (see also [22,23]), defined
by

 z � W�z�eW�z�: (A5)

This solution has the form

 a�2��L� � �
1

c1

1

1�W�1�z�L��
; (A6)

where z�L� � �1=c1� exp��1� i�� L=c1� and the
branches of the multivalued function W are denoted by
Wk, k � 0;
1; . . . . A review of the properties of this

special function can be found in [82]; see also [22] for a
special emphasis on the problem considered here.

2. The expansion of the solution of Eq. (A3), i.e., a�3��L�,
in terms of a � 1=L, while retaining terms of order a4,
yields
 

a�3� � a� a2c1 lna�1� � a3	c2
1�ln

2a� lna� 1� � c2


� a4	c3
1�ln

3a� 5
2ln

2a� 2 lna� 1
2� � 3c2c1 lna


�O�a5ln4a�: (A7)

For any power � of the coupling, we have the final three-
loop expression

 

�a�3��� � a� � c1�a��1 lna�
�
c2

1

�
�� 1

2!
ln2a� lna� 1

�
� c2

�
�a��2 � c3

1�a
��3

�
��� 1���� 2�

3!
ln3a�

2�� 3

2
ln2a

� ��� 1� lna�
1

2

�
� c1c2���� 2�a��3 lna� c4

1�a
��4

�
��� 1���� 2���� 3�

4!
ln4a�

3�2 � 12�� 11

6
ln3a

�
�2 � 2�

2
ln2a�

3�� 5

2
lna�

3�� 4

6

�
� c2�a

��4

�
��� 4�c2

3�� 7

6
� c2

1��� 2�
�
�� 3

2
ln2a� lna� 1

��
�O�a��5ln5a�: (A8)

Note that the two-loop expansion can be immediately
obtained from Eq. (A8) by setting c2 � 0.

3. For completeness, we also present here the expansion
of the product 	a�2�
�L in terms of a that can be obtained
(in the two-loop approximation) from Eq. (A4):

 �a�2��
�L � �a�2��

��1 � �a�2��
�c1 ln

� a�2�
1� c1a�2�

�
: (A9)

Expanding the logarithmic term ln�1� c1a�2��, while re-
taining terms of order a��1

�2� , a�
�2� ln�a�2��, a

��1
�2� , a��2

�2� , we get

 �a�2���L � �a�2����1 � c1�a�2��� lna�2� � c2
1a

��1
�2�

�
c3

1

2
a��2
�2� �O�a��3

�2� � (A10)

and, finally, expanding the coupling a�2� in terms of a �
a�1�,
 

�a�2��
�L � a��1 � c1�a

� lna� c2
1�a

��1

�
�� 1

2
ln2�a�

� ln�a� � 1
�
�O�a��3ln3a� (A11)

in accordance with Eq. (A8). An analogous expression can
be constructed for the three-loop case:

 

�a�3���L � a��1 � c1�a� lna�
�
c2

1

�
�� 1

2!
ln2a� lna� 1

�
� c2

�
�a��1 � c3

1�a
��2

�
��� 1���� 2�

3!
ln3a�

2�� 3

2
ln2a

� ��� 1� lna�
1

2

�
� c1c2���� 2�a��2 lna� c4

1�a
��3

�
��� 1���� 2���� 3�

4!
ln4a�

3�2 � 12�� 11

6
ln3a

�
�2 � 2�

2
ln2a�

3�� 5

2
lna�

3�� 4

6

�
� c2�a

��3

�
��� 4�c2

3�� 7

6
� c2

1��� 2�
�
�� 3

2
ln2a� lna� 1

��
�O�a��4ln5a�: (A12)

4. We consider here the solution of the renormalization-group equation in the so-called Pade modification of the three-
loop approximation in QCD [24,26], where the � function of Eq. (A1) is given by

 ��3-P�

�
�s
4�

�
� �b0

�
�s
4�

�
2
�

1�
b1��s=�4���

b0�1� b2�s=�4b1���

�
: (A13)
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The corresponding three-loop RG equation (A3) is modi-
fied to read

 

da�3-P�

dL
� �a2

�3-P�

�
1�

c1a�3-P�

1� �c2=c1�a�3-P�

�
: (A14)

The solution of this RG equation assumes the form

 

1

a�3-P�
� c1 ln

�
a�3-P�

1� �c1 � c2=c1�a�3-P�

�
� L; (A15)

which is very similar to Eq. (A4). For this reason, the exact
solution of Eq. (A15) can also be given in terms of the
Lambert function W�z�. The solution is

 a�3-P��L� � �
1

c1

1

1� c2=c
2
1 �W�1�z

�3-P��L��
; (A16)

where z�3-P��L� � �1=c1� exp	�1� i�� c2=c
2
1 � L=c1
.

The relative accuracy of this solution, as compared with
the original Eq. (A3) solved numerically, is better than 1%
for L � 7 (and better than 0.5% for L � 9).

APPENDIX B: SPECTRAL DENSITY AT HIGHER-
LOOP LEVEL

1. We consider here the spectral density ����� beyond
the one-loop approximation. At the l-loop level, ��l�� ��� can
always be presented in the same form as for the leading
order, given in Eq. (2.12), i.e.,

 ��l�� ��� �
1

�
Im	a�

�l�����
 �
1

�

sin	�’�l����


�R�l�����
� ; (B1)

where now the phase ’�l� and the radial part R�l� have a
multiloop content. At the two-loop level, one has to con-
sider the imaginary part of the Lambert function W�1

[cf. Eq. (A6)]; see later discussion. We consider first the
known second-order iterative solution of Eq. (A4) that
provides, with sufficient accuracy, the following result:

 

1

a�2��L�
!

1

ait-2
�2� �L�

� L� c1 ln	L� c1 � c1 ln�L� c1�
:

(B2)

For the approximate solution ait-2
�2� , we have

 Rit-2
�2� ��� �

�������������������������������������������������������������������������������������������������������������������������������
	L� � c1 lnR���
2 �

�
�� c1 arccos

�
L� � c1 � c1 lnr���

R���

��
2

s
; (B3)

 ’it-2
�2� ��� � arccos

�
L� � c1 lnR���

Rit-2
�2� ���

�
; (B4)

where

 R��� �
�������������������������������������������������������������������������������������
	L� � c1 � c1 lnr���
2 � 	�� c1
���


2
q

;

(B5)

 

r��� �
�����������������������������������
	L� � c1


2 � �2
q

; 
��� � arccos
�
L� � c1

r���

�
(B6)

with L� � ln��=�2�. The spectral density

 ��l�2�it-2
��1 ��� �

1

�

sin�’it-2
�2� ����

Rit-2
�2� ���

; (B7)

with the phase ’it-2
�2� ��� and the radial part Rit-2

�2� ��� from
Eqs. (B3)–(B6), appears to be very close to the exact but
numerical result for ��2�1 ���, based on the Lambert function
W�1—see, e.g., [37].

Specifically, one can use the symbolic program
MATHEMATICA,4 or MAPLE 7, which both recognize the
Lambert function, to carry out these integrations using
the spectral density [27]

 ��2�m ��� �
1

�
Im

�
�1

c1�1�W�1�z���

�
m
; (B8)

where z� � c�1
1 exp��L�=c1 � 1� i��. We present the

approximate expression ��2�it-2
1 �L�� (dashed red line) in

comparison with the exact expression ��2�1 �L�� (solid
blue line) in Fig. 8.

2. It is worth noting here that explicit expressions for the
analytic images of the integer powers of the couplings in
the Minkowski region

 A �2�
n �Ls� �

Z 1
Ls
��2�n ���dL� (B9)

have been obtained before by Magradze [27], using the
properties of the Lambert function; notably,

 A �2�
1 �Ls� � 1�

1

�
Im	lnW1�zs�
; (B10)

 A �2�
2 �Ls� �

1

c1�
Im

�
lnW1�zs�

1�W1�zs�

�
; (B11)

 

A�2�n�2�Ls� � �
1

c1

�
A�2�n�1�Ls� �

1

n
d

dLs
A�2�n �Ls�


for n � 1: (B12)

3. For the Pade modification of the three-loop approxi-
mation, the corresponding spectral densities are defined

4In versions 3, 4, and 5 of MATHEMATICA the function Wk�z� is
denoted by the name ProductLog	k; z
.
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through Eq. (A16),

 ��3-P�
m ��� �

1

�
Im

�
�1

c1�1� c2=c
2
1 �W�1�z

�3-P��L����

�
m
:

(B13)

The following explicit expression for the analytic image of
the coupling in the Minkowski region

 A �3-P�
1 �Ls� �

1

�

�
��

c2
1

c2
1 � c2

Im	lnW1�zs�


�
c2

c2
1 � c2

Im
�

ln
�
1�

c2

c2
1

�W1�zs�
���
(B14)

with zs � z�3-P��Ls� has been obtained before by Magradze
[23]. The relative accuracy of this solution, as compared
with the numerical integration of the original, non-Pade-
modified, spectral density ��3�1 ���, is better than 0.25% for
L � 2.

4. A useful formula to relate arbitrary powers of loga-
rithms by means of the dispersion relation (2.6) has been
presented in [63]; viz.,

 Q2
Z 1

0

ds

�s�Q2�2

�
�2

s

�
	
�

�	
sin��	�

�
�2

Q2

�
	
: (B15)

APPENDIX C: ANALYTIZATION OF POWERS OF
THE COUPLING MULTIPLIED BY LOGARITHMS

1. Here we derive the analytization of powers, �a�2���,
and more complicated expressions that contain powers of
the running coupling multiplied by logarithms, making use
of the property

 	a� ln�a�
an �

�
d
d�
a�
�

an
�
def d
d�

A� �DA�; (C1)

supplemented by Eqs. (A7) and (A8). In this way we obtain
(c1 � b1=b

2
0, c2 � b2=b

3
0)
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� c2��� 2�D

�
A�1�

��3
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2
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6

�
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1c2��� 2�

�
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��4
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0@ 1A�: (C2c)

2. The images of the coupling accompanied by logarithms of the momentum, i.e., �a�2���L, in accordance with
Eq. (A10), are

 

L�

L�

 !
�

AE

AM

 !
	�a�2���L
 �

A�2�
��1

A�2���1

0@ 1A� c1D
A�2�

�

A�2��
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� c2
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��1

A�2���1

0@ 1A� c3
1

2

A�2�
��2

A�2���2

0@ 1A�O�A�2�
��3�: (C3)

Following Eq. (A12), this leads to
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FIG. 8 (color online). The dashed red line corresponds, on the left panel, to the first running-coupling iteration, entering the spectral
density, ��2�-it-1

1 �L�� [see Eqs. (B12)–(B14) in [1]], and, on the right panel, to the second running-coupling iteration, ��2�-it -2
��1 �L��,

while the solid blue line on both panels corresponds to the exact spectral density ��2�1 �L��; see Eq. (B8). For the sake of a better
comparison, the displayed region of L� is chosen in the vicinity of the maximum difference of these two curves.
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(C4)

APPENDIX D: REPRESENTATION OF THE D FUNCTION

1. The first three coefficients d1, d2, d3 for the DS function of two scalar quark currents,

 DS�Q
2� � 3m2

b�Q
2�

�
1�

X
n>0

dn

�
�s�Q2�

�

�
n
�
; (D1)

have been calculated in [72] and read
 

d1 � CF

�
17

4

�
; (D2a)

d2 � C2
F

�
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9

4

�3�

�
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�
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�
; (D2b)

d3 � C3
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The result for d4 was obtained quite recently in [74],
 

d4 � N3
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2. The coefficients �i determine the expansion of the quark-mass anomalous dimension in analogous manner as Eq. (A1)
does with respect to the expansion of the � function; viz.,

 

d
dL

ln�m�L�� � �
X
i�0

�i

�
�s�L�

4�

�
i�1
; (D3)

with the following expressions (see [81]),

 �0 � 3CF; (D4)
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where 
��� denotes the Riemann 
 function.

[1] A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys.
Rev. D 72, 074014 (2005); 72, 119908(E) (2005).

[2] M. R. Pennington and G. G. Ross, Phys. Lett. 102B, 167
(1981).

[3] M. R. Pennington, R. G. Roberts, and G. G. Ross, Nucl.
Phys. B242, 69 (1984).

[4] R. Marshall, Z. Phys. C 43, 595 (1989).
[5] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[6] G. Parisi and R. Petronzio, Nucl. Phys. B154, 427 (1979).
[7] M. B. Gay Ducati, F. Halzen, and A. A. Natale, Phys. Rev.

D 48, 2324 (1993).
[8] A. C. Mattingly and P. M. Stevenson, Phys. Rev. Lett. 69,

1320 (1992).
[9] N. G. Stefanis, Eur. Phys. J. direct C 7, 1 (1999).

[10] A. V. Radyushkin, Dubna Report No. JINR-E2-82-159,
1982; JINR Rapid Commun. 4[78], 96 (1996).

[11] N. V. Krasnikov and A. A. Pivovarov, Phys. Lett. 116B,
168 (1982).

[12] D. V. Shirkov, Theor. Math. Phys. (Engl. Transl.) 127, 409
(2001).

[13] A. P. Bakulev, A. V. Radyushkin, and N. G. Stefanis, Phys.
Rev. D 62, 113001 (2000).

[14] D. V. Shirkov, Eur. Phys. J. C 22, 331 (2001).
[15] M. Beneke and V. M. Braun, Phys. Lett. B 348, 513

(1995).
[16] P. Ball, M. Beneke, and V. M. Braun, Nucl. Phys. B452,

563 (1995).
[17] D. V. Shirkov and I. L. Solovtsov, JINR Rapid Commun.

2[76], 5 (1996).
[18] D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. 79,

1209 (1997).
[19] K. A. Milton and I. L. Solovtsov, Phys. Rev. D 55, 5295

(1997).
[20] K. A. Milton and O. P. Solovtsova, Phys. Rev. D 57, 5402

(1998).
[21] I. L. Solovtsov and D. V. Shirkov, Phys. Lett. B 442, 344

(1998).
[22] B. A. Magradze, Int. J. Mod. Phys. A 15, 2715 (2000).
[23] B. A. Magradze, Dubna Report No. E2-2000-222, 2000

(unpublished).
[24] D. S. Kourashev and B. A. Magradze, hep-ph/ 0104142.
[25] B. A. Magradze, Report No. RMI-2003-55, 2003 (unpub-

lished).
[26] D. S. Kourashev and B. A. Magradze , Teor. Mat. Fiz. 135,

95 (2003) [Theor. Math. Phys. 135 , 531 (2003)].
[27] B. A. Magradze, Few-Body Syst. 40, 71 (2006).
[28] H. F. Jones and I. L. Solovtsov, Phys. Lett. B 349, 519

(1995).

[29] K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys.
Lett. B 415, 104 (1997).

[30] K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, and V. I.
Yasnov, Eur. Phys. J. C 14, 495 (2000).

[31] K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys.
Lett. B 439, 421 (1998).

[32] K. A. Milton, I. L. Solovtsov, and O. P. Solovtsova, Phys.
Rev. D 60, 016001 (1999).

[33] D. V. Shirkov and A. V. Zayakin, hep-ph/0512325.
[34] N. G. Stefanis, W. Schroers, and H.-C. Kim, Phys. Lett. B

449, 299 (1999).
[35] N. G. Stefanis, W. Schroers, and H.-C. Kim, Eur. Phys. J.

C 18, 137 (2000).
[36] A. P. Bakulev, K. Passek-Kumerički, W. Schroers, and
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