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We consider a model with anomaly-free Abelian gauge axial-vector symmetry, which is intended to
mimic the standard electroweak gauge chiral SU�2�L � U�1�Y theory. Within this model we demonstrate:
(1) Strong Yukawa interactions between massless fermion fields and a massive scalar field carrying the
axial charge generate dynamically the fermion and boson proper self-energies, which are ultraviolet-finite
and chirally noninvariant. (2) Solutions of the underlying Schwinger-Dyson equations found numerically
exhibit a huge amplification of the fermion mass ratios as a response to mild changes of the ratios of the
Yukawa couplings. (3) The ‘‘would-be’’ Nambu-Goldstone boson is a composite of both the fermion and
scalar fields, and it gives rise to the mass of the axial-vector gauge boson. (4) Spontaneous breakdown of
the gauge symmetry further manifests by mass splitting of the complex scalar and by new symmetry-
breaking vertices, generated at one loop. In particular, we work out in detail the cubic vertex of the
Abelian gauge boson.
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I. INTRODUCTION

Use of the general principle of spontaneous breakdown
of continuous symmetry for the SU�2�L �U�1�Y invariant
field theory description of electroweak phenomena is a
necessity. Hard symmetry-breaking mass terms of both
gauge and fermion fields ruin, either directly or by virtue
of the loops, decent high-energy behavior of certain scat-
tering amplitudes.

In this respect the standard ‘‘Higgs’’ realization of spon-
taneous breakdown of the electroweak symmetry deserves
admiration. At the expense of introducing a sector with a
condensing scalar doublet it defines the operational (re-
normalizable, weakly coupled) description of virtually all
electroweak phenomena so far explored.

Because of theoretical drawbacks of the Higgs mecha-
nism there are alternatives and/or generalizations thereof
[1] (and references therein). In the near future the Large
Hadron Collider at CERN will harshly test all of them. The
aim of this paper is to add to the already existing list yet
another realization of spontaneous breakdown of chiral and
gauge symmetry. For clarity we illustrate it on physically
and technically transparent Abelian prototype.
Comparison with the standard Abelian Higgs mechanism
can easily be made at any stage by heart.

The basic idea [2] is simple but subtle: As in the standard
Higgs realization we employ the complex scalar field but
with an ordinary mass term of a complex scalar. Hence, in
accordance with common wisdom there will be no sponta-
neous symmetry breakdown in the scalar sector itself.
Subtle is the nonperturbative self-consistence: The chiral
symmetry-breaking fermion proper self-energy is both

caused and causes the symmetry-breaking scalar proper
self-energy, both solely due to a strong Yukawa interaction.

The subsequent question of whether a massless gauge
field introduced by gauging the U�1� axial symmetry de-
scribes a massless or a massive spin-1 particle is dynamical
and it was in general answered by Schwinger [3]: If, within
a given dynamics, the gauge field polarization tensor de-
velops a massless pole, its residue approximates the gauge
boson mass squared [4]. Both in the Abelian Higgs model
and in the model presented below the massless pole in the
gauge field polarization tensor is due to the ‘‘would-be’’
Nambu-Goldstone (NG) boson of the underlying global
symmetry. While in the Higgs mechanism the NG boson
is preprepared in the elementary scalar field, in our case it
is a composite object of both the fermion and the scalar
fields.

Finally, it is easy to realize that due to the dynamical
generation of the symmetry-breaking pieces in fermion and
scalar field propagators there are new effective symmetry-
breaking vertices between the mass eigenstates of the
fields.

The paper is organized as follows: After introducing the
model by its Lagrangian we discuss the possibility of the
dynamical spontaneous breaking of the chiral symmetry
and introduce the appropriate formalism. Then we explore
the consequences of the global symmetry: the existence of
the ‘‘would-be’’ NG boson and its interaction vertices with
other particles. In this part we only repeat the main results
of our preceding paper [2] so we do not go into a detail.
After this we present some consequences of the local
symmetry: the mass of the gauge boson, induced by the
bilinear coupling with the ‘‘would-be’’ NG boson, and the
existence of the effective trilinear coupling of the gauge
bosons. In the end we present our numerical results, espe-
cially the possibility of an arbitrarily high ratio of fermion
masses with Yukawa coupling constants being of the same
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order of magnitude, together with the description of our
numerical procedure.

II. THE MODEL

In the full generality the model is defined by the
Lagrangian
 

L � � 1iD6  1 � � 2iD6  2 � �D���
y�D��� �M2�y�

� 1
2���

y��2 � 1
4F��F

�� �LYukawa; (1)

where the Yukawa interaction Lagrangian reads
 

LYukawa � y1� � 1L 1R�� � 1R 1L�y�

� y2� � 2R 2L�� � 2L 2R�y�: (2)

The Lagrangian possesses various symmetries. First, it is
invariant under the global U�1�V1

�U�1�V2
�U�1�A sym-

metry. The two global vector U�1� symmetries are gener-
ated by the fermion number operators of the fermions 1 and
2 and represent separate conservation of the number of
both fermion species. The two naive independent axial
U�1� transformations of the fermions 1 and 2 are related
to each other by the Yukawa couplings to the scalar field�.
Second, the Lagrangian is invariant under the local (gauge)
U�1�A transformations, acting on the fields as

  j ! ei��x�Qj�5 j; �! e�2i��x��;

A� ! A� �
1

g
@���x�;

(3)

where the axial charges Q1, Q2 are defined as

 Q1 � �1; Q2 � �1: (4)

Considering two fermion species with opposite axial
charges provides the simplest solution to an important
theoretical constraint imposed on the model, which is the
absence of the axial anomaly. The Yukawa coupling con-
stants y1, y2 are arbitrary real numbers. For the sake of
simplicity we do not consider a more general Yukawa
Lagrangian, allowing them to be complex.

III. GLOBAL SYMMETRY

A. Self-energies and masses

In the first step we switch off the gauge interaction �g �
0� and demonstrate the spontaneous breakdown of the
global U�1�A symmetry by finding symmetry-breaking
proper self-energies in the fermion and scalar field propa-
gators. We follow the general self-consistent nonperturba-
tive method suggested by Nambu (and Jona-Lasinio) [5,6].

First of all, it is convenient to introduce the Nambu-like
doublet field for the scalar

 � �
�
�y

� �
(5)

and its matrix propagator

 iD�x� y� � h0jTf��x��y�y�gj0i

�
h��yi h��i
h�y�yi h�y�i

� �
: (6)

The point is that this formalism allows us to treat the
symmetry-preserving (the diagonal entries) as well as the
symmetry-breaking (the off-diagonal entries) scalar propa-
gators on the same footing. Similarly in the fermion sector,
it is convenient to deal with the propagator

 i S�x� y� � h0jTf �x� � �y�gj0i; (7)

as it also contains both the symmetry-preserving (e.g.
h L � Li) and the symmetry-breaking (e.g. h L � Ri) fermion
propagators.

However, although it would be possible, and even desir-
able, to deal with the propagators in the full generality, we
will adopt for the present purposes the specific Ansatz:

 S�1
j �p� � p6 ��j�p2�;

D�1�p� �
p2 �M2 ���p2�

����p2� p2 �M2

� �
:

(8)

Here the functions �j�p2� and ��p2� (in the following text
often denoted simply as �j;p and �p) are the one particle
irreducible (1PI) parts of the corresponding symmetry-
breaking propagators, i.e. the proper self-energies. By
this Ansatz we focus only on the symmetry-breaking parts
of the propagators and totally neglect any possible effects
of wave-function renormalization. For the purposes of the
present paper this approximation is sufficient, since we
wish only to demonstrate spontaneous symmetry breaking
and not to make at this stage any phenomenological pre-
dictions. In a more realistic version of the model aspiring to
describe the Nature and make reasonable physical predic-
tions it would be, however, a must to include systemati-
cally all radiative corrections.

Our general strategy in demonstrating the spontaneous
breakdown of the U�1�A symmetry will be to search for the
symmetry-breaking parts of the propagators, i.e. the self-
energies �j and �. The key observation is, however, that at
any finite order of perturbative expansion the U�1�A sym-
metry remains preserved and the self-energies vanish. The
spontaneous symmetry breaking is a nonperturbative ef-
fect. To treat it one has to employ some nonperturbative
technique. We have chosen to make use of the Schwinger-
Dyson equations, which represent a formal summation of
all orders of perturbative expansion and as such they
provide the desired nonperturbative treatment.

The system of Schwinger-Dyson equations forms an
infinite tower of equations for all Green’s functions of
the theory. For practical calculation one usually has to
truncate it at some level. We truncated it at the level of
three-point Green’s functions, which we approximate by
the bare ones. The resulting system of Schwinger-Dyson
equations in terms of the unknown functions �j and � is
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 �1;p � iy2
1

Z d4k

�2��4
�1;k

k2 � �2
1;k

�k�p

��k� p�2 �M2	2 � j�k�pj
2 ;

�2;p � iy2
2

Z d4k

�2��4
�2;k

k2 � �2
2;k

��
k�p

��k� p�2 �M2	2 � j�k�pj
2 ;

�p � �
X
j�1;2

2iy2
j

Z d4k

�2��4
�j;k

k2 ��2
j;k

�j;k�p

�k� p�2 � �2
j;k�p

� i�
Z d4k

�2��4
�k

�k2 �M2�2 � j�kj
2 :

(9)

See also the diagrammatical representation of these
Schwinger-Dyson equations—Fig. 1. If nonzero solutions
�j and � exist, then they should necessarily be
ultraviolet(UV)-finite since the corresponding counter
terms are prohibited by symmetry.

Fermion masses mj are determined in terms of �j by
solving

 m2
j � �2

j �p
2 � m2

j �: (10)

By dimensional arguments the solutions must have the
form

 mj � Mfj�y1; y2�; (11)

to be compared with mj � ��2M2=��1=2yj in the case of a
condensing �. This is the crucial point: while in the
standard Higgs mechanism the functions fj are simple
linear functions, in the present model we expect some
more complicated functions, which should also be non-
analytic, because we deal with nonperturbative effects, that
cannot be obtained at any finite order of perturbative
expansion in coupling constants yj. Moreover there is a
possibility that a small change in yj (say, about 1 order of
magnitude) might produce much larger change in order of
magnitude of fermion masses.

Like in the fermionic sector, the scalar spectrum can be
obtained as a pole of the propagator:

 M2
1;2 � M2 
 j��p2 � M2

1;2�j: (12)

This is easily interpreted: As a result of spontaneous sym-
metry breaking there appear two real scalar fields with

different masses M1;2, instead of one complex field with
mass M.

Our numerical analysis confirms the existence of the
nonzero solutions �j and �. At present we are, however,
able to say nothing about their uniqueness. Upon perform-
ing the Wick rotation we have found numerically the real
solutions �j and � with the following properties: First,
they vanish very fast at large p2 (faster then any power of
p2). Second, the solutions are found so far only for large
values of the Yukawa coupling constants yj (or, more
precisely, for y1 and y2 not being simultaneously small).
Third, fermion mass ratio m2

1=m
2
2 exhibits tremendous

amplification upon decent changes of y1=y2. For example,
for y1=y2 � 77:4=88 we get m2

1=m
2
2 � 10�2. Obviously

this is alluring. If justified and understood analytically,
this property of the solutions of the model should not be
called fine tuning. Finding the explicit form of the func-
tions fj�y1; y2� in Eq. (17) is our ultimate dream.

More details on the numerics and adopted approxima-
tions can be found in the Sec. V.

B. Nambu-Goldstone boson

With the gauge interaction still switched off we reveal in
the second step the Nambu-Goldstone (NG) excitation and
compute its effective couplings with fermion and boson
fields. The analysis is standard:

The conservation of the axial-vector current
 

j�A �x� � � 1���5 1 � � 2���5 2

� 2i��@���y���y@��	 (13)

implies the axial-vector Ward identities for the proper
vertex functions:

 q��� j�p� q; p� � Qj�S�1
j �p� q��5 � �5S�1

j �p�	;

q�����p� q; p� � �2D�1�p� q��� 2�D�1�p�;

(14)

where the proper vertex functions �� j , ��� correspond to

the Green’s functions

 G�
 j
�x; y; z� � h0jTfj�A �x� j�y� � j�z�gj0i;

G�
��x; y; z� � h0jTfj

�
A �x���y��

y�z�gj0i
(15)

 

FIG. 1. The diagrammatical representation of Schwinger-
Dyson equations (9). The first line holds for both  1 and  2.
The gray blobs stand for the proper self-energies, while the solid
black blobs denote the full propagators. The double dashed line
is for the Nambu � doublet.
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with the full propagators of the external legs cut off. The
matrix �,

 � �
1 0
0 �1

� �
; (16)

operates in the ���y space and is quite analogous to �5

in the fermion sector.
For �j and � different from zero these identities imply

that the proper vertices themselves develop poles for
q2!0:

 �� j;pole�p� q; p� �
q�

q2 Qj�S�1
j �p� q��5 � �5S�1

j �p�	;

���;pole�p� q; p� �
q�

q2 ��2D�1�p� q��� 2�D�1�p�	:

(17)

In fact the poles are nothing but the manifestation of the
presence of the NG boson, see Fig. 2. These identities also

allow to explicitly compute the interaction vertices of the
NG boson with the fermions and scalars; for the details see
Ref. [2], the result is [within the Ansatz (8)]

 P j�p� q; p� � �
Qj

N
��j�p� q� ��j�p�	�5;

P��p� q; p� � �
2

N
0 ��p� q� ���p�

����p� q� ����p� 0

� �
:

(18)

The normalization factor N can be expressed as

 N �
��������������������������������������������������
J 1
�0� � J 2

�0� � J��0�
q

; (19)

where the functions J j and J� are defined by

 � iq�J j�q
2� � 8

Z d4k

�2��4
�k� q���j;k

k2 ��2
j;k

�j;k ��j;k�q

�k� q�2 ��2
j;k�q

;

� iq�J��q2� � 8
Z d4k

�2��4
�2k� q���k2 �M2�

�k2 �M2�2 � j�kj
2

Re���
k�q��k ��k�q�	

��k� q�2 �M2	2 � j�k�qj
2 :

(20)

IV. LOCAL SYMMETRY

A. Gauge boson mass

In this step we switch on the gauge interaction perturbatively and compute the axial-vector gauge boson mass squared as
a residue at the massless pole of the gauge field polarization tensor ����q�. As in other strongly coupled models in which
the NG boson is a composite [1,4,7–10] we are only able to compute the longitudinal part of ��� due to the bilinear
coupling of NG boson with gauge boson—see Fig. 3.

Insisting on transversality of ��� due to the axial-vector current conservation, we conclude that the gauge boson mass
squared is softly generated in terms of �j and � as

 M2
A � g2�I 1

�0� � I 2
�0� � I��0�	; (21)

where

 i q�I j�q
2� � 4

Z d4k

�2��4
��k� q���j;k � k

��j;k�q	��j;k�q � �j;k	

��k� q�2 � �2
j;k�q	�k

2 � �2
j;k	

;

iq�I��q
2� � �2

Z d4k

�2��4
�2k� q��f��k�q ��k	���k� q�2 �M2	��

k � �k
2 �M2���

k�q	 � c:c:g

���k� q�2 �M2	2 � j�k�qj
2	��k2 �M2�2 � j�kj

2	
:

(22)

 

FIG. 2. The diagrammatical representation of pole parts of
proper vertices �� j and ��� (17). The pole itself is interpreted

as a propagator of intermediate massless scalar particle—the
Nambu-Goldstone boson, depicted by solid double line. The
small empty circles are vertices P j , P� (18). The external
vector boson lines are indicated for the case the U�1�A symmetry
was gauged.
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For q2 � 0 we have explicitly

 I j�0� � �8i
Z d4k

�2��4
�j;k��j;k � 2k2 d

dk2 �j;k	

�k2 ��2
j;k	

2 ;

I��0� � 16i
Z d4k

�2��4
k2j�kj�j�kj � �k2 �M2� d

dk2 j�kj	

��k2 �M2�2 � j�kj
2	2

:

(23)

In the weakly coupled Higgs model with the elementary
‘‘would-be’’ NG boson the spontaneous gauge boson mass
generation is more transparent: The polarization tensor
����q� can easily be computed completely [11] and de-
cent behavior of scattering amplitudes with longitudinally
polarized massive gauge bosons can be illustrated
explicitly.

On the other hand, in strongly coupled models the lack
of the bound-state spectrum apart from the NG sector
guaranteed by the existence theorem of Goldstone implies:
First, the g�� part of the polarization tensor can hardly be
computed. Second, decent behavior of scattering ampli-
tudes with longitudinally polarized massive gauge bosons
cannot be determined from first principles.

B. A3 vertex

The spontaneous breakdown of the Abelian gauge chiral
symmetry found in the low-momentum behavior of propa-
gators should by construction manifest in noninvariant

loop-generated vertices. Being ultraviolet-finite they rep-
resent the genuine quantum-field theory predictions of the
suggested nonperturbative approach. In the Abelian proto-
type presented here it suffices to provide one illustrative
(still gedanken) example:

The gauge interaction of A� with the massive fermions
gives rise to the effective A3 vertex depicted in Fig. 4. Up to
g3 the result (calculated as a proper vertex) can be written
as the following sum (compare with Fig. 5)

 

iT����p; k� �
X
j

�iT��� j
�p; k� � iT��� j

�k; p�	

� iT���� �p; k� � iT���� �k; p�

� 2�iT���4 �p; k� � iT���4 �p;�p� k�

� iT���4 �k;�p� k�	; (24)

where (with the i0�’s suppressed)

 

iT��� j
�p;k��g3Q3

j

Z d4‘

�2��4
1

�‘2��2
j;‘	��‘�p�

2��2
j;‘�p	��‘�k�

2��2
j;‘�k	

fTr���‘6 ���‘6 �k6 ����‘6 �p6 ��5	

�4i	���
�‘

�j;‘�p�j;‘�k��‘�p�


�j;‘�j;‘�k��‘�k�

�j;‘�j;‘�p	g;

iT���� �p;k��g3
Z d4‘

�2��4
�2‘�p���2‘�k���2‘�p�k��

��‘2�M2�2�j�‘j
2	���‘�p�2�M2�2�j�‘�pj

2	���‘�k�2�M2�2�j�‘�kj
2	

�f�‘2�M2�2���
‘�p�‘�k�c:c:	���‘�p�2�M2	2���

‘�k�‘�c:c:	���‘�k�2�M2	2���
‘�‘�p�c:c:	g;

iT���4 �p;k�� 4g3
Z d4‘

�2��4
g���2‘�p�k�����

‘�p�‘�k�c:c:	

���‘�p�2�M2�2�j�‘�pj
2	���‘�k�2�M2�2�j�‘�kj

2	
: (25)

Being a combination of three axial vectors, the amplitude
should change its sign under the operation of parity. Indeed
it does: in the fermionic contributions it is due to the
presence of the Levi-Civita tensor, while in the scalar
contributions it is due to the following behavior of the
scalar self-energy under parity:

 �!
P

��: (26)

For illustration, let us now evaluate the amplitude
iT����p; k� under certain approximations. First, we set
the self-energies to be some constants. Note that the inte-
grals remain perfectly UV finite. In fact, the scalar integrals

 

FIG. 3. The effective bilinear coupling of NG boson with
gauge boson, giving rise to the longitudinal polarization of the
latter and hence generating its mass. The bilinear coupling is
induced by the couplings of NG boson with fermionic and scalar
fields P j and P�, compare with Fig. 2.  

µ

ρ

p

k

q

ν
FIG. 4. The full A3 vertex, denoted in the main text as
iT����p; k�. Energy-momentum conservation is assumed: p�
k� q � 0.

DYNAMICAL BREAKDOWN OF ABELIAN GAUGE CHIRAL . . . PHYSICAL REVIEW D 75, 056003 (2007)

056003-5



vanish, while the quadratic divergences in the fermion
integrals cancel each other since

 

X
j

Q3
j � 0 (27)

(this, together with the requirement
P
jQj � 0, is precisely

the condition for the axial anomaly to vanish). The linear
divergences cancel because of the symmetric integration.
Note that within this approximation the result is exactly the
same as in the Higgs mechanism since we totally omit the
nontrivial structure of the propagators, represented by non-
constant self-energies, and approximate them by the pole
contribution. Second, for the sake of simplicity, we put all
external momenta on their mass-shell:

 p2 � k2 � q2 � M2
A: (28)

The energy-momentum conservation enables us to easily
compute the dot products of external momenta:

 p � k � p � q � k � q � �1
2M

2
A: (29)

Constant fermion self-energies turn out to be the masses:
�j�p

2� � const: � mj. The resulting amplitude reads
 

iT����p; k� � G�p�	���� � k
�	����

� �p� k��	����	p
�k�; (30)

or equivalently
 

iT����p; k� � G��q�k� � k�q��p�	����

� �p�q� � q�p��k�	����

� �k�p� � p�k��q�	����	: (31)

The latter form is perhaps more convenient because the
invariance under exchange

 �p;�� $ �k; �� $ �q; �� (32)

is more apparent. The amplitude (31) can be generated via
the following effective Lagrangian:

 L eff � G	���
�@
A
���@�A
��@�A
�: (33)

Note that in the result (31) there are no terms propor-
tional to 	����
, although they are present in the original
iT��� j

[see (25)]. This is a simple consequence of the

restriction p2 � k2 � q2, for in this case there is no way
how to write down any nontrivial linear combination of
terms 	����
p
, 	����
k
 and 	����
q
 which would be
invariant under the exchange (32). For general momenta
p2 � k2 � q2 these terms would be present.

The effective coupling constant G can be expressed as

 G � g3
X
j

Q3
jf�m

2
j ;M

2
A�: (34)

The function f is defined by the integral

 f�m2;M2� �
2

�2M2

Z 1

0
dz

z�1� z���������������������������������
z�3z� 4� � 4m2

M2

q

� arctan
z��������������������������������

z�3z� 4� � 4m2

M2

q (35)

(here m2 should be replaced by m2 � i0� whenever the
correct branch choice of a multivalued analytic function is
in question), which can be calculated analytically in some
special cases:

 f�m2; 0� �
1

24�2m2 ; f�0;M2� �
�1

6�2M2 : (36)

More information about the shape of f can be extracted
numerically—see Fig. 6.

V. NUMERICS

In this section the results of the numerical solution of
Schwinger-Dyson equations (9) are presented. Moreover,
as we consider the results quite interesting and important,

 

FIG. 6. The M2-dependence of the function f�m2;M2�. Both
quantities are normalized by m2 to be dimensionless; note that
m2f�m2;M2� is only function of M2=m2. The cusps appear at
M2 � 3m2 and M2 � 4m2. The former one also indicates the
beginning of the imaginary part.

 

FIG. 5. Diagrammatical representation of the expression (24).
Each diagram has the same assignment of momenta p, k, q and
Lorentz indices �, �, � as the full vertex in Fig. 4. The symmetry
factors are indicated explicitly.
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the description of the numerical procedure together with
discussion of its stability is presented.

A. Numerical results

The system of equations (9) is quite difficult to be solved
even numerically, so certain approximations have to be
done. First, we switch to the Euclidean metric via the
Wick rotation. By this we get rid of some poles in the
fermionic and scalar propagators. The absence of poles
makes numerical integration much easier. Moreover, one
can consider the self-energies to be real, without loss of
generality. Note, however, that not all poles are removed,
namely, the pole in the scalar propagator remains: It takes
place if ��p2� � p2 �M2 for some p2.

Second, we set � � 0. In fact, in the present model the
�-term is not of high importance for the mass generation.
In the Higgs case the scalar self-interaction is of utmost
importance: It fixes the numerical value of the condensate
and stabilizes the scalar field energy. In our case both
reasons for considering � � 0 are clearly absent.
However, in full treatment including the perturbative ef-
fects of renormalization yet to be done the term 1

2���
y��2

will become indispensable as a counter term.
As a net result, we solve the following set of equations

for the unknown functions �1�p2�, �2�p2� and ��p2�:

 �1;p � y2
1

Z d4k

�2��4
�1;k

k2 � �2
1;k

�k�p

��k� p�2 �M2	2 ��2
k�p

;

�2;p � y2
2

Z d4k

�2��4
�2;k

k2 � �2
2;k

�k�p

��k� p�2 �M2	2 ��2
k�p

;

�p �
X
j�1;2

2y2
j

Z d4k

�2��4
�j;k

k2 ��2
j;k

�j;k�p

�k� p�2 � �2
j;k�p

;

(37)

where p2 � p2
0 � p

2
1 � p

2
2 � p

2
3 � 0.

The solutions can be classified with respect to the pairs
of coupling constants �y1; y2�. The mass parameterM is not
relevant, since as the only parameter with dimension of
mass in the theory it serves just as a scale parameter for the
self-energies and momenta. The typical shape of the re-
sulting self-energies is depicted in Fig. 7. They are satu-
rated at low momenta and fall down rapidly at high
momenta. Using logarithmic scale on y-axis in Fig. 7 it
would be apparent that the self-energies fall down actually
faster then any power of p2.

We have found interesting qualitative differences be-
tween the solutions of Eq. (37) for different values
�y1; y2�. The main results are summarized in Fig. 8.
There is an area in the �y1; y2� plane, located around the
axis y1 � y2 and denoted as �II�, where both �1 and �2 are
nonzero, and areas where only one of them, �1 or �2, is
nonzero [areas �I� and �III�]. There is also an area �IV�
where the pole in the scalar propagator, mentioned earlier,
matters. The self-energies (which are expected to be imagi-

nary here) were not computed in this area, we do not know
anything about their behavior here.

Our aim was to find the dependence of the spectrum—
the masses of the fermions, scalar bosons and the vector
boson—on the Yukawa coupling constants y1 and y2 [or,
more precisely, on absolute values jy1j and jy2j, due to the
shape of the Schwinger-Dyson equations (37)]. For the
calculation of masses we have used Eqs. (10), (12), and
(21), in the case of vector boson Wick rotated to the
Euclidean metric. We have probed the y1;2-dependence
along the cut depicted in Fig. 8, since it connects all the
three main areas �I�, �II� and �III� and therefore the result-
ing y1;2-dependence of the spectrum can be regarded as
quite typical. The results are depicted in Fig. 9 and 10. Note
how the critical lines between the areas are evident in the
y1;2-dependence of the spectrum. The most significant
result—the behavior of the fermionic spectrum—can be
seen in Fig. 10. As y1 approaches the critical line between
�II� and �I� [or �III�, respectively] in the direction from �II�
to �I� [�III�], the ratio m2

2=m
2
1 becomes arbitrarily high

(low)!

B. Numerical procedure

Let us now say more about the numerical procedure
itself. More formally, we have to solve the following set
of equations:

 �1 � F1��1;�	; �2 � F2��2;�	;

� � G��1;�2	;
(38)

where Fj,G are some functionals. To solve this system, we
have adopted the method of iterations. After choosing
some initial Ansatz for �’s:

 ��0�1 ; ��0�2 (39)

 

FIG. 7. Typical shape of the solutions �1�p
2�, �2�p

2� and
��p2� to the system of equations (37), computed here for
Yukawa coupling constants y1 � 83 and y2 � 88. Note the
saturation of the self-energies at low momenta and fast decrease
at high momenta.
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and calculating also the ‘‘zeroth’’ iteration of the �:

 ��0� � G���0�1 ;�
�0�
2 	; (40)

the iterating process is established: (n � 1)

 ��n�1 � F1��
�n�1�
1 ;��n�1�	;

��n�2 � F2��
�n�1�
2 ;��n�1�	; ��n� � G���n�1�

1 ;��n�1�
2 	:

(41)

If this procedure converges, we have the solution. In order
to control the convergence we used the quantity

 I�n� �

R
X�n�R
X�n�1�

; (42)

where X stands for any of �j, �. If I�n� ! 1, we consid-
ered X�n� to be the solution. This simple criterion is suffi-
cient in our case because the functions X�n� turn out to be
well behaved: there are no intersections between distinct
iterations, or, loosely speaking, their shapes are similar, the
only changes are in their ‘‘size’’ (at least in the nonasymp-
totic region).

Usual behavior of such a nonlinear system in the case of
only one equation for one unknown function (for instance
an equation for � with � set to be a constant) is such that
for any initial Ansatz the iteration procedure converges to
some solution. The solution may be trivial (i.e. I�n� < 1,
I�n� =! 1) or nontrivial (i.e. I�n� ! 1), depending whether
y < ycrit or y > ycrit, respectively, for some critical value
ycrit.

In our case of more coupled equations the situation is,
however, different. Having some fixed Ansatz, there are
three possibilities: (1) The iteration procedure converges to
the trivial solution [which exists always for all �y1; y2�].
(2) It blows up (i.e. I�n� > 1, I�n� =! 1). (3) It converges to a
nontrivial solution (if it exists), depending on the �y1; y2�
(see Fig. 8).

 

FIG. 10. The y1-dependence of the fermion and vector boson
masses m2

1;2 and M2
A with fixed y2 � 88.

 

FIG. 9. The y1-dependence of the scalar masses M2
1;2 with

fixed y2 � 88.

 

FIG. 8. The �y1; y2� plane with indicated areas of different
behavior of the system of equations (37). According to the
resulting fermion self-energies there are three main areas: first
where �1 � 0 and �2 � 0, second where �1 � 0 and �2 � 0
and third where �1 � 0 and �2 � 0, denoted as �I�, �II� and �III�,
respectively. There is also another important area, denoted as
�IV�, where the pole in the scalar propagator takes place (and
hence the imaginary parts of the self-energies are expected to
appear). However we do not know anything about behavior of
the self-energies in this area because of difficulties when nu-
merically integrating the pole. The dashed line, going from y1 �
72 and y2 � 88 to y1 � 104 and y2 � 88, shows where the
dependence of the spectrum on the Yukawa coupling constants
was probed—see Fig. 9 and 10.
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This behavior clearly depends on the Ansatz. To be
specific, our class of Ansätze consisted of functions

 ��0�1 �p
2� � ��0�2 �p

2� � x
M5

�p2 �M2�2
(43)

with x being a free parameter. For x too small or too large
the iteration procedure goes to the trivial solution or blows
up, respectively. Properly adjusting the value of x between
these two extremes one can manage that the iteration
procedure converges to the nontrivial solution.

C. Numerical stability

Special care was taken to check whether the numerical
procedure is stable in the sense that its results (especially
the strong y1;2-dependence of the fermion masses) remain
unchanged upon the changes of the numerical algorithm.
We tested four main variations of the algorithm:

Class of Ansätze—Besides (43) we considered also
other Ansatz classes, all functions decreasing as some
power of p2 or exponentially, respectively. For some of
them (some very rapidly decreasing exponentials) it was
not possible to adjust the variable x [see (43)] to converge
to any but the trivial solution. For the other Ansatz classes,
however, the results were nontrivial and they all coincided.

Step size—There is, of course, a step size dependence of
the numerical integration results, the important question is,
however, how this dependence behaves for arbitrarily small
step sizes. If there is no sensible (i.e. finite) limit of the
integral as the step sizes are going to zero (the continuum
limit), the results of the numerical integration have no
meaning. We checked that this limit does exist and that
all described phenomena, especially the strong
y1;2-dependence of the fermion masses, are present in it.

Integration method—Having expressed the integral
Eqs. (37) in the hyperspherical coordinates, we can do
two angular integrations analytically. The two remaining
integrations (one over momentum and one angular) must
be performed numerically. For this purpose we employed
consecutively the trapezoidal rule and the Simpson’s rule,
for the angular integration also the Gauss-Chebyshev quad-
rature formula (using Chebyshev polynomials of the sec-
ond kind). The final results for all integration methods
agreed, the differences were only in the step size depen-
dence, i.e. in the speed of convergence to the continuum
limit.

Momentum cutoff—Since the momentum integral is
over the infinite interval, for the purposes of the numerical
integration a momentum cutoff must be introduced.
However it turns out that one does not need to check the
cutoff dependence of the results. That is because the re-
sulting self-energies are so rapidly decreasing that the
contribution from the high momenta is negligible.

Moreover, in order to check the consistency of our
numerical method by a comparison with an independent

result, we calculated the equation for �j [see (37)] with �
set to be a constant [up to our knowledge, there are no
independent calculations of the full set of the coupled
equations (37) we could compare with] and compared
our result with the results of [12] [Eq. (2.11) and Fig. 3
therein]. They coincided.

VI. CONCLUDING REMARKS AND OUTLOOK

Within the effective quantum field theory for electro-
weak interactions at forthcoming energy scale we find the
use of scalar fields still welcome: Their Yukawa couplings
with massless elementary fermion fields break explicitly
the huge chiral symmetries of three electroweakly identical
fermion families exactly to the sanctified SU�2�L �U�1�Y .
Alternatives without scalars struggle with guaranteeing
unobservability of physical consequences of these un-
wanted symmetries.

Linear dependences of the wildly wide, sparse and ir-
regular fermion mass spectrum upon the Yukawa coupling
constants of the standard model are, however, a drawback.
It is feasible that the fermion masses can be generated by
the Yukawa interactions dynamically without ever refer-
ring to the scalar field condensation [7,13]. In such a case
the dependences of the fermion masses upon the Yukawa
coupling constants would be nonanalytic. In an Abelian
prototype we have provided a bona fide indication that this
is possible. Most importantly, we have convincingly dem-
onstrated that a small change in the ratio of the Yukawa
couplings may lead to an orders-of-magnitude change in
the ratio of the generated fermion masses. We hope that
this mechanism could provide a natural explanation of the
hierarchy of fermion masses in the standard model.

The price we pay is that the Yukawa interactions having
the expected properties must be strong. But we are accus-
tomed to living with QCD strongly interacting at large
distances even though we still do not know how to solve
it (incidentally, apart from the NG sector). We are tempted
to interpret our findings as manifestations of nontrivial
fixed points [14] in our model.

The bonus we get is an interesting relation of fermion
and gauge boson mass generation mechanisms. Indeed, in
contrast with the Higgs mechanism in our case for the
Yukawa couplings set to zero both fermion and gauge
boson masses vanish.

We are confident that with some technical modifications
the generalization of the Abelian mechanism presented
above to SU�2�L �U�1�Y can be done [15]. Whether it
can be converted into a phenomenologically viable alter-
native of the standard model remains, however, to be seen.
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