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I. INTRODUCTION

In the next years the Large Hadron Collider (LHC) will
start to function and provide the scientific community with
a new tool with which to explore hitherto unknown regions
of particle physics. We expect many exciting discoveries to
arise from LHC experiments. However, the LHC is a
hadronic machine, and as such precision measurements
will be quite hard to undertake there. Also, the existence
of immense backgrounds at the LHC may hinder discov-
eries of new physical phenomena already possible at the
energies that this accelerator will achieve. Thus it has been
proposed to build a new electron-positron collider, the
International Linear Collider [1]. This would be a collider
with energies on the TeV range, with extremely high
luminosities. The potential for new physics with such a
machine is immense. In this paper, we will focus on a
specific sector: the possibility of processes which violate
lepton flavor occurring.

We now know that the solar and atmospheric neutrino
problems [2] arise, not from shortcomings of solar models,
but from particle physics. Namely, the recent findings by
the SNO collaboration [3] have shown beyond doubt that
neutrinos oscillate between families as they propagate over
long distances. Leptonic flavor violation (LFV) is therefore
an established experimental fact. The simplest explanation
for neutrino oscillations is that neutrinos have masses
different from zero—extremely low masses, but nonzero
nonetheless. Oscillations with zero neutrino masses are
possible, but only in esoteric models [4]. With nonzero
neutrino masses, flavor violation in the charged leptonic
sector becomes a reality [whereas with massless neutrinos,
it is not allowed in the standard model (SM)]. This is a
sector of particle physics for which we already have many
experimental results [5], which set stringent limits on the
extent of flavor violation that may occur. Nevertheless, as
we will show in this paper, even with all known experi-
mental constraints it is possible that signals of LFV may be

observed at the ILC, taking advantage of the large lumi-
nosities planned for that machine. There has been much
attention devoted to this subject. For instance, in Refs. [6]
effective operators were used to describe LFV decays of
the Z boson. LFV decays of the Z boson were also studied
in many extensions of the SM [7]. The authors of
Refs. [8,9] performed a detailed study of LFV at future
linear colliders, originating from supersymmetric models.
Finally, a detailed study of the four-fermion operators in
the framework of LFV is performed in [10]. In that work
the exact number of independent four-fermion operators is
determined. Gauge invariance is then used to constrain
LFV processes which are poorly measured, or not mea-
sured at all.

In this work we carry out a model-independent analysis
of all possible LFV interactions which might arise in ex-
tensions of the SM. To do so, we utilize the effective
operator formalism of Buchmüller and Wyler [11], a stan-
dard tool in such studies. This formalism parametrizes
whatever new physics may appear in theories that general-
ize the SM as effective operators of dimension greater than
four. Our goal is to provide the reader with as many
analytical expressions as possible for physical quantities
which might be measured at the ILC. In this way, our
experimentalist colleagues will have expressions they can
include in their Monte Carlo simulations. This paper is
structured as follows. In Sec. II we present the effective
operator formalism and list the operators which contribute
to lepton-violating interactions, both interactions with
gauge bosons and four-fermion contact terms. In Sec. III
we use the existing experimental bounds on decays such as
�! e� to exclude several of the operators which could a
priori have a contribution to the processes we will be
considering. We also analyze the role that the equations
of motion of the fields play in further simplifying our
calculations. Having chosen a set of effective operators,
we proceed, in Sec. IV, to calculate their impact on LFV
decays of leptons, deducing analytical expressions for
those quantities. Likewise, in Sec. V, we will present
analytical results for the cross sections and asymmetries
of several LFV processes which might occur at the ILC.
We analyze these results in Sec. VI, performing a scan of a
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wide range of values for the anomalous couplings we
introduced, and considering their possible observability
at the ILC.

II. FLAVOR CHANGING EFFECTIVE OPERATORS

The effective operator formalism of Buchmüller and
Wyler [11] is based on the assumption that the standard
model (SM) of particle physics is the low energy limit of a
more general theory. Such theory would be valid at very
high energies but, at a lower energy scale �, we would only
perceive its effects through a set of effective operators of
dimensions higher than four. Those operators would obey
the gauge symmetries of the SM, and be suppressed by
powers of �. This allows us to write the effective
Lagrangian as a series, such that

 L � LSM �
1

�
L�5� �

1

�2 L
�6� �O

�
1

�3

�
; (1)

where LSM is the SM Lagrangian and L�5� and L�6� contain
all the dimension five and six operators which, like LSM,
are invariant under the gauge symmetries of the SM. The
L�5� terms break baryon and lepton numbers. Hence, we
should start by considering the dimension five LFV terms.
However, these terms would also be responsible for the
generation of neutrino masses. With the present limits on
neutrino masses, m� < 2 eV [5], the scale of new physics
would have to be of the order 1013 GeV [11], which is
clearly out of the reach of the next colliders. This leaves us
with the L�6� operators, some of which, after spontaneous
symmetry breaking, generate dimension five terms. The
list of dimension-six operators is quite vast [11]. In this
work we are interested in those operators that give rise to
LFV. Throughout this paper we will use lh to represent a
heavy lepton and ll denotes a light one (whose mass we
consider zero). In processes where a tau lepton is present,
both the muon and the electron will be taken to be mass-
less. If a given process only involves muons and electrons,
then the electron mass will be set to zero, but the muon
mass will be kept. Whenever the lepton’s mass has no
bearing on the result we will use l for all massless leptons,
and drop the generation index.

The effective operators that will be important for our
studies fall in three categories: (a) those that generate
flavor-violating vertices of the form Zlhll and �lhll (and
also, for some operators, vertices like ��lhll); these op-
erators always involve gauge fields, either explicitly or in
the form of covariant derivatives. (b) Four-fermion opera-
tors, involving only leptonic spinors. (c) And a type of
operator that involves only scalar and fermionic fields that
will roughly correspond to a wave function renormaliza-
tion of the fermion fields.

A. Effective operators generating Zlhll and �lhll
vertices

There are five tree-level dimension 6 effective operators
that can generate a new Zlhll interaction. This means that
these interactions are compatible with SM symmetries at
tree level. Following the notations of [11] we write the first
two operators as
 

ODe
�
�Rij
�2 �

�‘iLD
�ejR�D��;

O �De
�
�Lij
�2 �D

� �‘iLe
j
R�D��:

(2)

The coefficients �R�L�ij are complex dimensionless cou-
plings and the �i; j� are flavor indices. For flavor violation
to occur, these indices must differ. ‘iL is a left-handed
SU�2� doublet, ejR is a right-handed U�1�Y singlet, � is
the Higgs scalar SU�2� doublet. Notice that the terms
contributing to the interaction Zlhll in which we are inter-
ested appear in the Lagrangian when the Higgs doublet
acquires a vacuum expectation value (vev) v. There is no
�lhll interaction stemming from these terms, although one
may obtain contributions to vertices involving also a Higgs
field, such as ��lhll and Z�lhll.

The remaining three operators that contribute to the
vertices Zlhll but not to �lhll are given by
 

O�e � i
�Rij
�2 ��

yD���� �eiR�
�ejR�;

O�1��‘ � i
�L�1�ij

�2 ��
yD���� �‘

i
L�

�‘jL�;

O�3��‘ � i
�L�3�ij

�2 ��
yD��I��� �‘

i
L�

��I‘jL�:

(3)

Again, �Rij and �L�1�;�3�ij are complex dimensionless cou-
plings, and the contributions to Zlhll arise when both scalar
fields acquire a vev v. Because the covariant derivatives act
on those same fields and the SM Higgs has no coupling to
the photon, there are no contributions to �lhll from these
operators. There are, however, five dimension-six opera-
tors that contribute to both the Zlhll and �lhll vertices and
are only present at the one-loop level. They are given by
 

OeB � i
�BRij
�2 � �e

i
R�

�D�ejR�B��;

O‘B � i
�BLij
�2 �

�‘iL�
�D�‘jL�B��;

O‘W � i
�WLij
�2 �

�‘iL�I�
�D�‘jL�W

I
��;

OeB� �
	Bij
�2 �

�‘iL

��ejR��B��;

OeW� �
	Wij
�2 �

�‘iL�I

��ejR��W

I
��:

(4)
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�ij and 	ij are complex dimensionless couplings, B�� and
WI
�� are the usual U�1�Y and SU�2�L field tensors, respec-

tively. These tensors ‘‘contain’’ both the photon and Z
boson fields through the well-known Weinberg rotation.
Thus they contribute to both Zlhll and �lhll when we
consider the partial derivative of D� in the Eqs. (4) or
when we replace the Higgs field� by its vev v in them. We
will return to this point in Sec. III A.

B. Four-fermion effective operators producing an
eelhll contact interaction

Because we are specifically interested in studying the
phenomenology of the ILC, we will only consider four-
fermion operators where two of the spinors involved cor-
respond to the colliding electrons/positrons of that collider.
Another spinor will correspond to a heavy lepton, lh. There
are four relevant types of four-fermion operators that con-
tribute to e�e� ! lhll,
 

O�1�‘‘ �
��1�‘‘
2
� �‘L��‘L�� �‘L�

�‘L�;

O�3�‘‘ �
��3�‘‘
2
� �‘L���I‘L�� �‘L���I‘L�;

Oee �
�ee
2
� �eR��eR�� �eR�

�eR�;

O‘e � �‘e� �‘LeR�� �eR‘L�:

(5)

Again, all of the couplings in these operators are, in
general, complex. As we have done with the previous
operators, we should now consider all possible ‘‘place-
ments’’ of the lh spinor, and consider different couplings
for each of them. But that would lead to an unmanageable
number of fermionic operators, all with the same Lorentz
structure but differing simply in the location of the heavy
lepton spinor. Thus we will simplify our approach and
define only one coupling constant for each type of operator.
An exception is the operator O‘e � �‘e� �‘LeR�� �eR‘L�,
which corresponds to an interaction between a right-
handed current and a left-handed one. Depending on where
we place the lh spinor, then, we might have two different
effective operators. For example, if we consider the opera-
tors that would contribute to e�e� ! ��e�, the two pos-
sibilities we would have, putting the chiral structure of the
operators in evidence, are
 

O�e � ��e� �‘
�
L�ReR�� �eR�L‘

e
R�;

Oe� � �e�� �‘
e
L�ReR�� ��R�L‘

e
L�;

(6)

where ‘e and ‘� are the leptonic doublets from the first and
third generations, respectively, and �L;R � �1� �5�=2 are
the usual chiral projectors. As we see, we find two different
Lorentz structures depending on where we ‘‘insert’’ the �
spinor. Therefore we define two different couplings,
each corresponding to the two possible flavor-violating
interactions.

It will be simpler, however, to parametrize the four-
fermion effective Lagrangian built with the operators
above in the manner of Ref. [12]. For the e�e�lhll inter-
action, we have
 

Leelllh �
1

�2

X
I;J�L;R

�VsIJ� �e���Ie���lh�
��Jll�

� SsIJ� �e�Ie���lh�Jll��: (7)

The vectorlike (VIJ) and scalarlike (SIJ) couplings may be
expressed in terms of the coefficients of the four four-
fermion operators written in Eq. (5) [13] in the following
manner:
 

VLL �
1
2��
�1�
‘‘ � �

�3�
‘‘ �; VRR �

1
2�ee;

VLR � 0; VRL � 0;

SRR � 0; SLL � 0;

SLR � �L‘e; SRL � �R‘e:

(8)

C. Effective operators generating an lhll mixing

There is a special kind of interaction that corresponds to
a wave-function renormalization, which has its origin in
the operator

 O e‘� �
�ij
�2 ��

y��� �‘iLe
j
R��; (9)

where �ij are complex dimensionless couplings. After
spontaneous symmetry breaking the neutral component
of the field � acquires a vev (�0 ! �0 � v, with v �
246=

���
2
p

GeV) and a dimension three operator is generated
which is a flavor-violating self-energy like term. In other
words, it mixes, at the level of the propagator, the leptons
of different families. We consider these operators here for
completeness, even though we will show that they have no
impact in the phenomenology whatsoever.

III. THE COMPLETE LAGRANGIAN

The complete effective Lagrangian can now be written
as a function of the operators defined in the previous
section
 

L � Leelllh �ODe
�O �De

�O�e �O�1��‘ �O�3��‘ �Oe‘�

�OeB �O‘B �O‘W �OeB� �OeW� � H:c:: (10)

This Lagrangian describes new vertices of the form ��lhll,
Z�lhll, �ee �lhll, �lhll (and many others) and all of their charge
conjugate vertices. We will also consider an analogous
Lagrangian with flavor indices exchanged—in other
words, we will consider couplings of the form �hl and
�lh, for instance—except for the four-fermion Lagrangian,
as was explained in the previous section. Rather than write
the Feynman rules for these anomalous vertices and start
the calculation of all LFV decay widths and cross sections,
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we shall use all experimental and theoretical constraints to
reduce as much as possible the number of independent
couplings. After imposing these constraints we will write
the Feynman rules for the remaining Lagrangian and pro-
ceed with the calculation.

A. The constraints from lh ! ll�

Some of the operators presented in the previous section
can be immediately discarded due to the very stringent
experimental bounds which exist for the decays �! ��,
�! e� and �! e�. The argument is as follows: all the
operators in Eqs. (4) contribute to both �lhll and Zlhll
interactions, due to the presence of the gauge fields B� and
W3
� in the field tensors B�� and W�� that compose them.

Then we can write, for instance, an operator O‘�, given by

 O ‘� � i
��Lij
�2 �

�‘iL�
�@�‘jL�F�� (11)

where F�� is the usual electromagnetic tensor. This opera-
tor was constructed from both O‘B and O‘W , and the new
effective coupling ��Lij is related to �BLij and �WLij through
the Weinberg angle �W by

 ��Lij � cos�W�BLij � sin�W�WLij : (12)

Following the same exact procedure we can also obtain an
operator O‘Z, with coupling constant given by

 �ZLij � � sin�W�BLij � cos�W�
WL
ij : (13)

New operators with photon and Z interactions appear from
the remaining terms, with coupling constants given by

 ��Rij � cos�W�BRij �ZRij � � sin�W�BRij

	�Rij � cos�W	
B
ij 	ZRij � � sin�W	

B
ij

	�Lij � cos�W	Bij � sin�W	
W
ij

	ZLij � � sin�W	Bij � cos�W	
W
ij :

(14)

It is a simple matter to obtain the Feynman rules for the
�lhll interactions from the Lagrangian (they are identical
in form to those obtained for the flavor-violating interac-
tions gtc and gtu in Refs. [14,15]). In Fig. 1 we present the
Feynman diagrams for the decay �! e� (in fact, for any
decay of the type lh ! ll�) with vertices containing the
effective couplings �, 	 and �. Interestingly, the � con-
tributions cancel out, already at the level of the amplitude
[16]. The calculation of the remaining diagram is quite
simple and gives us the following expression for the width
of the anomalous decay lh ! ll� in terms of the � and 	
couplings:

 

��lh ! ll�� �
m3
h

64
�4 �m
2
h�j�

�R
lh � �

�R	
hl j

2

� j��Llh � �
�L	
hl j

2� � 16v2�j	�lhj
2 � j	�hlj

2�

� 8mhv Im���Rhl 	
�
hl � �

�R
lh 	

�	
hl � �

�L
lh 	

�	
lh

� ��Lhl 	
�
lh��: (15)

So, for the decay �! e�, using the data from [5], we get
(with � expressed in TeV)
 

BR��! e�� �
0:22

�4 ��j�
�R
e� � �

�R	
�e j2 � j�

�L
e� � �

�L	
�e j2�

� 4:3
 107�j	�e�j2 � j	
�
�ej2�

� 1:3
 104 Im���R�e	
�
�e � �

�R
e�	

�	
�e

� ��Le�	
�	
e� � �

�L
�e	

�
e���: (16)

Now, all decays lh ! ll� are severely constrained by ex-
periment , especially in the case of �! e�, but also in
�! e� and �! ��. To obtain a crude constraint on the
couplings, we can use the experimental constraint
BR��! e��< 1:2
 10�11 and set all couplings but
one to zero. With this procedure we get the approximate
bound

 

j��L;Re� j

�2
� 7:4
 10�6 TeV�2 (17)

and identical bounds for the ��L;R�e couplings. The con-
straints on the 	 constants are roughly 4 orders of magni-
tude smaller. Using the same procedure for the two
remaining LFV processes we get
 

j��L;Re� j

�2 � 1:6
 10�3 TeV�2

j��L;R�� j

�2 � 1:3
 10�3 TeV�2

(18)

with the 	 couplings even more constrained in their values.
The experimental bounds on the various branching ratios

are so stringent that they pretty much curtail any possibility
of these anomalous operators having observable effects on
any experiences performed at the ILC. To see this, let us
consider the flavor-violating reaction �� ! lhll, which in
principle could occur at the ILC [9]. There are five
Feynman diagrams involving the f�;	g couplings that
contribute to this process. There are also three diagrams
involving the � couplings of Eq. (9), but their contributions
(once again) cancel at the level of the amplitude. The

 

µ−

e−

γ

µ−

e−

γ

µ−µ−

e−

γ

FIG. 1. �! e� with effective anomalous vertices involving
the couplings �, 	 and �.
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calculation of the cross section for this process is laborious
but unremarkable. The end result, however, is extremely
interesting. The cross section is found to be

 

d
��� ! lhll�
dt

� �
4
�F��

mh
3s�mh

2 � t�2t�mh
2 � u�2u


 ��lh ! ll��; (19)

with a function F�� given by

 

F�� � m10
h �t� u� � 12m8

htu�m
6
h�t� u��t

2 � 13tu� u2�

�m4
htu�7t

2 � 24tu� 7u2� � 12m2
ht

2u2�t� u�

� 6t3u3: (20)

The remarkable thing about Eq. (19) is the proportionality
of the (differential) cross section to the width of the
anomalous decay lh ! ll�, which is to say (modulus the
total width of lh, which is well known), to its branching
ratio. A similar result had been obtained for gluonic flavor-
changing vertices in Refs. [14,15]. Because the allowed
branching ratios for the lh ! ll� are so constrained, the
predicted cross sections for the ILC are extremely small.
We have

 


��� ! ��e�� � 10�8 
 BR��! e�� pb


���! ����� � 10�5 
 BR��! ��� pb


��� ! ��e�� � 10�5 
 BR��! e�� pb;

(21)

with
���
s
p
� 1 TeV. With the current branching ratios of the

order of 10�12 for the muon decay and 10�7 for the tau
ones, it becomes obvious that these reactions would have
unobservable cross sections.

Our conclusion is thus that the ��ij and 	�ij couplings are
too small to produce observable signals in foreseeable
collider experiments. However, both f��ij; 	

�
ijg and

f�Zij; 	
Z
ijg are written in terms of the original f�B;Wij ; 	B;Wij g

couplings, via coefficients (sine and cosine of �W) of order
1. Hence, unless there was some bizarre unnatural cancel-
lation, the couplings f�; Zg and fB;Wg should be of the
same order of magnitude. Since we have no reason to
assume such a cancellation, we come to the conclusion
that the � and 	 couplings are simply too small to be
considered interesting. They will have no bearing what-
soever on anomalous LFV interactions mediated by the Z
boson. From now on, we will simply consider them to be
zero, which means that there will not be any anomalous
vertices of the form �lilj.

B. A set of free parameters

In the previous section we have presented the complete
set of operators that give contributions to the flavor violat-

ing processes e�e� ! lhll. However, these operators are
not, a priori, all independent. It can be shown that (see
Refs. [11,14,17,18] for details), for instance, there is a
relation between operators of the types OeB� and OeB

and some of the four-fermion operators, modulo a total
derivative. These relations between operators appear when
one uses the fermionic equations of motion, along with
integration by parts. They could be used to discard opera-
tors whose coupling constants are � and 	, or some of the
four-fermion operators. We used this argument to present
the results in Refs. [14,15,18] in a more simplified fashion.
However, in the present circumstances, we already dis-
carded the � and 	 operators due to the size of their
contributions to physical processes being extremely lim-
ited by the existing bounds on flavor-violating leptonic
decays with a photon. Since we already threw away these
two sets of operators, we are not entitled to use the equa-
tions of motion to attempt to eliminate another.

Notice also that in most of the work that was done with
the effective Lagrangian approach one replaces, at the level
of the amplitude, operators of the type ODe

by operators of
the type OeZ� by using Gordon identities. In fact, it can be
shown that the following relation holds for free fermionic
fields,

 �e iL@
�ejR � mj �eiL�

�ejR � �eiL

��@�ejR: (22)

Notice that the use of Gordon identities is not the same
thing as using the field’s equations of motion to eliminate
operators: in the latter case, one proves that different
operators are related to one another and use those condi-
tions to choose among them; in the former, all we are doing
is rewriting the amplitude in a different form. And in our
case, this procedure does not bring any simplification.

Finally, using the equations of motion, a relation can be
established between operators ODe

and O �De
, namely

 

ODe
�O �De

�� �‘LeR���
y
e �eR‘L��u �qL�uR��yd

�dRqL� � 0;

(23)

where the �e coefficients are the leptonic Yukawa cou-
plings and � the bidimensional Levi-Civita tensor. We see
that the relationship between these two operators involves
four-fermion terms as well. This relation means we can
choose between one of the two operators ODe

and O �De
,

given that the four-fermion operators appearing in this
expression have already been considered by us. This means
that only one of the �Rij and �Lij couplings will appear in the
calculation. We chose the first one and will drop, from this
point onwards, the superscript ‘‘R.’’ Also, after expanding
the operators of Eq. (3), we see that the � couplings always
appear in the same combinations. We therefore define two
new couplings, �R and �L, as
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 �R � �Rlh � �
R	
hl ;

�L � �L�1�lh � �L�1�	hl � �L�3�lh � �L�3�	hl :
(24)

As an aside, we must add that the use of equations of
motion to simplify the effective Lagrangian is not followed
by all authors. For instance, the authors of [19] do not use
them and consider instead a fully general set of dimension-
six effective operators.

The original Lagrangian is now reduced to
 

L � Leelllh �ODe
�O�e �O�1��‘ �O�3��‘ �Oe‘� � H:c::

(25)

We will not present the Feynman rules for the four-fermion
interactions because they are obvious and rather cumber-
some to write. The remaining Feynman rules we will use
are presented in Fig. 2, where lepton momenta follow the
arrows and vector boson momentum is incoming. For
completeness, we included the �Zij and 	Zij in this figure,
but we remind the reader that we have set them to zero.

IV. DECAY WIDTHS

As we said before, all LFV processes are severely con-
strained by experimental data. Now that we have settled on
a set of anomalous effective operators, we should first
consider what is the effect of those operators on LFV

decays. The existing data severely constrains two types
of decay: a heavy lepton decaying into three light ones,
lh ! lll, such as �� ! e�e�e�, and decays of the Z boson
to two different leptons, Z! lhll (such as Z! ��e�).
Flavor-violating processes involving neutrinos in the final
state (such as, say, Z! �� ��e) are not constrained by
experimental data, as they are indistinguishable from the
‘‘normal’’ processes.

For the 3-lepton decay, there are three distinct contribu-
tions, whose Feynman diagrams are shown in Fig. 3 for the
particular case of �� ! e�e�e�. As before, the contribu-
tions involving the � operators cancel at the level of the
amplitude and have absolutely no effect on the physics.
Using the Feynman rules in Fig. 2 and the four-fermion
Lagrangian we can determine the expression for the decay
lh ! lll. Remember that l stands for a massless lepton
whatever its flavor is. The decay width obtained is the
sum of three terms, to wit

 

��lh! lll� � �4f�lh! lll���Z�lh! lll���int�lh! lll�;

(26)

where �4f contains the contributions from the four-fermion
graph in Fig. 3, �Z those from the Feynman diagram with a
Z boson and �int the interference between both diagrams. A
simple calculation yields

 

�4f�lh ! lll� �
m5
h

6144
3�4 �jSLRj
2 � jSRLj2 � 4�jVLLj2 � jVRRj2��

�Z�lh ! lll� �
�g2
A � g

2
V�v

2

768M4
z
3�4

�
�j�Lj

2 � j�Rj
2�v2m5

h �
1

2
Re��lh�

	
L � �hl�

	
R�vm

6
h �

m7
h

10M2
z
��j�lhj

2 � j�hlj
2�M2

z

� 6�j�Lj2 � j�Rj2�v2�

�

�int�lh ! lll� �
v2m5

h

768M2
z


3�4

��
1�

3m2
h

10M2
z

�
f�gV � gA�Re��LV	LL� � �gV � gA�Re��RV	RR�g

�
mh

4v

�
1�

m2
h

5M2
z

�
f�gV � gA�Re��lhV	RR� � �gV � gA�Re��hlVLL�g

�
:

(27)

 

FIG. 2. Feynman rules for anomalous Z�lhll and �lllh vertices.
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where

 gV � �
e

sin�W cos�W

�
�

1

4
� sin�2

W

�
;

gA �
e

4 sin�W cos�W

(28)

and e is the elementary electric charge. An important re-
mark about these results: they are not, in fact, the exact
expressions for the decay widths. The full expressions for
�Z�lh ! lll� and �int�lh ! lll� are actually the sum of a
logarithmic term and a polynomial one. However, it so
happens that the first four terms of the Taylor expansion in
mh=Mz of the logarithm cancel the polynomial exactly.
The expressions of Eq. (27) are therefore the first surviving
terms of that Taylor expansion, and constitute an excellent
approximation to the exact result, and one that is much
easier to deal with numerically (the cancellation mentioned
poses a real problem in numerical calculations).

As for the LFV decays of the Z-boson, there is extensive
literature on this subject [6]. There are, of course, no four-
fermion contributions to this decay width, and a simple
calculation provides us the following expression:

 

��Z! lhll� �
�M2

z �m2
h�

2v2

128M5
z
�4

��M2
z �m

2
h�

2�j�hlj
2 � j�lhj

2� � 4�m2
h � 2M2

z �v
2�j�Lj

2 � j�Rj
2�

� 4mh�m
2
h �M

2
z �vRe��L�hl � �R�

	
lh��: (29)

V. CROSS SECTIONS
In this section we will present expressions for the cross

sections of various LFV processes that may occur at the
ILC. There are three such processes, namely, (1) e�e� !
��e�, (2) e�e� ! ��e� and (3) e�e� ! ����, as well
as the respective charge-conjugates. We have calculated all
cross sections keeping both final state masses. However,
given the energies involved, the contributions to the cross
sections which arise from the lepton masses are extremely
small, and setting them to zero is an excellent approxima-
tion. We thus present all formulas with zero leptonic
masses, as they are much simpler than the complete ex-
pressions. In Figs. 4 and 5 we present all diagrams that
contribute to the process e�e� ! ��e�. A brief word
about our conventions. There are two types of LFV pro-
duction cross sections, corresponding to different sets of

Feynman diagrams. In the case of process (1), we see from
Figs. 4 and 5 that the reaction can proceed through both a
t-channel and an s-channel—this is obvious for the dia-
grams involving the exchange of a photon or a Z boson. For
the four-fermion channels less so, but Fig. 5 illustrates the t
and s-channel analogy. Depending on the ‘‘location’’ of the
incoming electron spinor in the operators of Eq. (5), we can
interpret those operators as two fermionic currents inter-
acting with one another, that interaction is obviously ana-
log to the two different channels. Process (2) has diagrams
identical to those of process (1). Process (3), however, can
only occur through the s channel—that is obvious once
one realizes that for process (3) there is no positron in the
final state. In fact for process (3) there are only
‘‘s-channel’’ contributions from the four-fermion
operators.

 

FIG. 4. Feynman diagrams describing the process e�e� ! ��e�.

 

FIG. 3. Feynman diagrams for the decay �� ! e�e�e�.
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A simple way of condensing the different four-fermion
cross sections into a single expression is to adopt the
following convention: we will include indices ‘‘s’’ and
‘‘t’’ in the four-fermion couplings. If we are interested in

the cross sections for processes (1) and (2)—which occur
through both s and t channels—then all ‘‘s’’ couplings will
be equal to the ‘‘t’’ ones. If we wish to obtain the cross
section for process (3) (which only has s channels) we must
simply set all couplings with a ‘‘t’’ index to zero. We have
further considered the likely possibility that in the ILC one
may be able to polarize the beams of incoming electrons
and positrons [20]. Thus,
IJ represents the polarized cross
section for an I polarized electron and a J polarized
positron, with fI; Jg � fR;Lg—that is, beams with a
right-handed polarization or a left-handed one. The explicit
expressions for the four-fermion differential cross sections
are then given by

 

d
LL
dt
�

1

16
s2�4 �4u
2jVsLL � V

t
LLj

2 � t2�4jVsLRj
2 � jStRLj

2��

d
RR
dt
�

1

16
s2�4 �4u
2jVsRR � V

t
RRj

2 � t2�4jVsRLj
2 � jStLRj

2��

d
LR
dt
�

1

16
s2�4 �u
2jSsLL � S

t
LLj

2 � s2�4jVtRLj
2 � jSsLRj

2��

d
RL
dt
�

1

16
s2�4 �u
2jSsRR � S

t
RRj

2 � s2�4jVtLRj
2 � jSsRLj

2��

(30)

See appendix B for the full calculation. The unpolarized cross section is obviously the averaged sum over the four terms of
Eq. (30). To reemphasize, the four-fermion cross section for processes (1) and (2) is obtained from this expression by
setting all ‘‘s’’ couplings equal to the ‘‘t’’ ones; and to obtain the cross section for process (3) one must simply set all ‘‘t’’
couplings to zero. The total cross sections for each of the processes are then given by

 


�1;2��e�e� ! lhe
�� � 
�1;2�Z � 
�1;2�4f � 


�1;2�
int


�3��e�e� ! ����� � 
�3�Z � 

�3�
4f � 


�3�
int ;

(31)

where 
Z is the cross section involving only the anomalous Z interactions of Fig. 2, 
4f the four-fermion cross section—
whose calculation we already explained—and 
int the interference between both of these. The � couplings also present in
Fig. 2 end up not contributing at all to the physical cross sections, once again. For completeness, then, the remaining terms
in the differential cross section for processes (1) and (2) are given by

 

d
�1;2�Z

dt
� �v2 v

2�F1�gA; gV�j�Lj2 � F1�gA;�gV�j�Rj2� � F2�gA; gV�j�lhj2 � F2�gA;�gV�j�hlj2

32
�4�M2
z � s�

2s2�M2
z � t�

2 (32)

with
 

F1�gA; gV� � 2f�gA � gV�
2�st�2M4

z � 2uM2
z � s

2 � t2�

� uM2
z �uM

2
z � 2s2 � 2t2��

� 2�g2
A � g

2
V�u�t

3 � s3� � �gA � gV�
2su2tg

F2�gA; gV� � �tus��g2
A � g

2
V��3M

4
z � 3uM2

z � s2

� t2 � st� � 2gAgV�M2
z � s��M2

z � t��:

(33)

The interference term is given by

 

d
�1;2�int

dt
�

�t� s�v2

16
�4�M2
z � s�s2�M2

z � t�
��gA Re��LS

	
LR

� �RS
	
RL� � gV Re��LS

	
LR � �RS

	
RL��


 �st� ��M2
z � s� t�u�

� 4�gA � gV��s� t�uRe��LV
	
LL�

� 4�gA � gV��s� t�uRe��RV
	
RR�� (34)

For process (3), we have

 

FIG. 5. Interpretation of the four-fermion terms contributing to
the process e�e� ! ��e� in terms of currents; notice the
analog of a t channel and an s one.
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d
�3�Z
dt
�

�v2

32
�4�M2
z � s�

2s2 f2v
2��g2

A � g
2
V��2tu� s

2�


 �j�Lj2 � j�Rj2�

� 2gAgVs�t� u��j�Lj2 � j�Rj2��

� �g2
A � g

2
V�tus�j�hlj

2 � j�lhj2�g (35)

and finally, the interference terms are

 

d
�3�int

dt
�

�s� t�uv2

8
�4�M2
z � s�s2 ��gV � gA�Re��LV

	
LL�

� �gV � gA�Re��RV
	
RR��: (36)

At this point we must remark on the different energy
behavior that these various terms follow. Once integrated
in t, the four-fermion terms grow linearly with s, whereas
those arising from the anomalous Z couplings have a much
smoother evolution with s—whereas the first ones diverge
as s! 1, the second ones tend to zero. See appendix B for
the expressions of the integrated cross sections. This could
be interpreted as a clear dominance of the four-fermion
terms over the remaining anomalous couplings. However,
we must remember that we are working in a nonrenorma-
lizable formalism. We know, from the beginning, that these
operators only offer a reasonable description of high-
energy physics up to a given scale, of the order of �.
The dominance of the four-fermion cross section must
therefore be carefully considered—it may simply happen,
as there is nothing preventing it, that the four-fermion
couplings of Eq. (5) are much smaller in size than the Z
boson ones of Fig. 2.

As we saw, the � couplings end up not contributing to
either decay widths or cross sections (and this is true
regardless of whether the light leptons are considered
massless or not). As we mentioned before, their inclusion
could be interpreted as an on-shell renormalization of the
leptonic propagators. On that light, their cancellation sug-
gests that the effective operator formalism is equivalent to
an on-shell renormalization scheme. This is further sup-
ported by the fact that the list of effective operators of
Ref. [11] was obtained by using the fields’ equations of
motion to simplify several terms. However, we must
mention that at least in some Feynman diagrams (some
of those contributing to �� ! lhll, for instance), the
‘‘�-insertions’’ were made in internal fermionic lines, so
that this cancellation is not altogether obvious.

Asymmetries

In a collider with polarized beams, asymmetries can play
a major role in the determination of flavor-violating cou-
plings. A great advantage of using these observables is that,
as will soon become obvious, all dependence on the scale

of unknown physics, �, vanishes due to their definition.
There is a strong possibility that the ILC could have both
beams polarized, therefore the measurement of polariza-
tion asymmetries could be very interesting. For a more
detailed study see [20]. A particularly appealing situation
is found when the contributions from the Z boson anoma-
lous couplings are not significant when compared with the
four-fermion ones. In this case the study of asymmetries
would allow us, in principle, to determine each four-
fermion coupling individually. We will now concentrate
on one of the most feasible scenarios, which is to have a
polarized electron beam and an unpolarized positron beam.
We will take both the right-handed and left-handed polar-
izations to be 100%, which is obviously above what is
expected to occur (recent studies show that a 90% polar-
ization is attainable) [20]. The differential cross sections
for left-handed (Pe� � �1) and right-handed (Pe� � �1)
polarized electrons are

 

d
L
dt
�

1

16
s2�4 �4u
2jVsLL�V

t
LLj

2� t2jStRLj
2� s2jSsLRj

2�

d
R
dt
�

1

16
s2�4 �4u
2jVsRR�V

t
RRj

2� t2jStLRj
2� s2jSsRLj

2�:

(37)

Two forward-backward asymmetries for the left-handed
and right-handed polarized cross sections can now be
defined as

 AFB;L�R� �

R
=2
0 d
L�R���� �

R



=2 d
L�R����


L�R�
(38)

and we can also define a left-right asymmetry, given by

 ALR �

L � 
R

L � 
R

; (39)

where 
L�R� is the total cross section for a left-handed
(right-handed) polarized electron beam. Note that we
have assumed that the polarization of the final state parti-
cles is not measured. Otherwise we could get even more
information by building an asymmetry related to the mea-
sured final state polarizations. Using the expressions on
appendix B it is simple to find, for these asymmetries, the
following expressions:

 AFB;L �
12jVsLL � V

t
LLj

2 � 3jStRLj
2

16jVsLL � V
t
LLj

2 � 4jStRLj
2 � 12jSsLRj

2 (40)

and

 AFB;R �
12jVsRR � V

t
RRj

2 � 3jStLRj
2

16jVsRR � V
t
RRj

2 � 4jStLRj
2 � 12jSsRLj

2 : (41)

Finally, the left-right asymmetry reads
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 ALR �
jVsLL � V

t
LLj

2 � jVsRR � V
t
RRj

2 � jStRLj
2 � jStLRj

2 � 3�jSsLRj
2 � jSsRLj

2�

jVsLL � V
t
LLj

2 � jVsRR � V
t
RRj

2 � jStRLj
2 � jStLRj

2 � 3�jSsLRj
2 � jSsRLj

2�
; (42)

which has no dependence on �. Notice that all of these
expressions assume an unpolarized positron beam, and a
completely polarized electron beam, either left- or right-
handed. If the electron beam is not perfectly polarized, but
instead has a percentage of polarization Pe� , we can still
write

 
Pe� � 
0�1� Pe�ALR� (43)

with 
0 � �
L � 
R�=4. So if in reality we only have
access at the ILC to beams with �80% (� 80%) polar-
ization we could still use them to determine 
0 and ALR. If
we had access to a positron polarized beam, we could then
write a similar expression for the cross section obtained
from the polarized positrons. Notice that ALR would be
different—the indices left and right would then refer to the
positron and not to the electron.

The most interesting possibility is, of course, when both
beams are polarized, with different percentages, Pe� and
Pe� . We could then perform experiments where the four
different combinations of beam polarizations were used.
The resulting cross section would be
 


Pe�Pe� �
1
4��1� Pe���1� Pe��
RR

� �1� Pe���1� Pe��
LL

� �1� Pe���1� Pe��
RL

� �1� Pe���1� Pe��
LR�: (44)

As such, we would be able to determine 
RR, 
LL, 
RL,
and 
LR—and consequently each of the four four-fermion
couplings, VLL, VRR, SRL, and SLR.

VI. RESULTS AND DISCUSSION

In the previous sections we computed cross sections and
decay widths for several flavor-violating processes. We
will now consider the possibility of their observation at

the ILC. To do so we will use one set of parameters [20] for
the ILC, i.e., a center-of mass energy of

���
s
p
� 1 TeV and

an integrated luminosity of L � 1 ab�1. At this point we
remark that, other than the experimental constraints on the
flavor-violating decay widths computed in sec. IV (see
Table I), we have no bounds on the values of the anomalous
couplings. The range of values chosen for each of the
coupling constants was 10�4 � ja=�2j � 10�1, where a
stands for a generic coupling and � is in TeV. For a 
 1
the scale of new physics can be as large as 100 TeV. This
means that if the scale for LFV is much larger than
100 TeV, it will not be probed at the ILC unless the values
of coupling constants are unusually large. The asymmetry
plots are not affected by this choice as explained before.

We will therefore generate random values for all anoma-
lous couplings (four-fermion and Z alike), and discard
those combinations of values of the couplings for which
the several branching ratios we computed earlier are larger
than the corresponding experimental upper bounds from
Table I. This procedure allows for the possibility that one
set of anomalous couplings (the Z or four-fermion ones)
might be much larger than the other. When an acceptable
combination of values is found, it is used in expressions
(30)–(36) to compute the value of the flavor-violating cross
section. In Fig. 6 we plot the number of events expected at
the ILC for the process e�e� ! ��e�, in terms of the
branching ratio BR�Z! �e�. To obtain the points shown in
this graph, we demanded that the values of the effective
couplings were such that all of the branching ratios for the

TABLE I. Experimental constraints on flavor-violating decay
branching ratios [5].

Process Upper bound

�! eee 2:0
 10�7

�! e�� 2:0
 10�7

�! �ee 1:1
 10�7

�! ��� 1:9
 10�7

�! eee 1:0
 10�12

Z! e� 1:7
 10�6

Z! e� 9:8
 10�6

Z! �� 1:2
 10�5
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FIG. 6. Number of expected events at the ILC for the reaction
e�e� ! ��e�, with a center-of-mass energy of 1 TeV and a
total luminosity of 1 ab�1.
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decays of the � lepton into three light leptons and BR�Z!
��� were smaller than the experimental upper bounds on
those quantities shown in Table I. We observe that, even for
fairly small values of the � flavor-violating decay branch-
ing ratios (10�9–10�6), there is the possibility of a large
number of events for the anomalous cross section.

By following the opposite procedure—requiring first
that the branching ratios BR�Z! �e� and BR�Z! ���
be according to the experimental values, and letting
BR��! lll� free, where l is either an electron or a
muon—we obtain the plot shown in Fig. 7. This time we
analyze the process e�e� ! ����, but a similar plot is
found for e�e� ! ��e�. The number of events rises
sharply with increasing branching ratio of � into three
leptons. It is possible to discern a thin ‘‘band’’ of events
in the middle of the points of Fig. 7, rising linearly with
BR��! lll�. This band corresponds to events for which
the four-fermion couplings are dominant over Z0 events. In
that case, they dominate both BR��! lll� and 
�e�e� !
�����, and the larger one is, the larger the other will be—
which explains the linear growth of this subset of points in
the plot of Fig. 7. This ‘‘isolated’’ contribution from the
four-fermion terms is not visible in Fig. 6 since the branch-
ing ratios of the Z decays are independent of those same
couplings. Finally and for completeness, in Fig. 8 we show
the values of the asymmetry coefficient AFB;R defined in
(41), for the process e�e� ! ����, versus the three-
lepton decay of the �. A similar plot is obtained for the
asymmetry AFB;L. We observe a fairly uniform dependence
on the branching ratio BR��! lll�, which is to say, on the
values of the four-fermion couplings. However, there is a
significant concentration of ‘‘points’’ near the maximum
allowed value for this cross section, 0.75.

Finally, we also considered another possible process of
LFV, namely �e� ! ��Z0. There are three Feynman
diagrams contributing to this process, one of which involv-
ing a quartic vertex which emerges from the effective
operators of Eqs. (2) and (3). This process might occur at
the ILC, if we consider the almost-collinear photons emit-
ted by the colliding leptons, well described by the so-called
equivalent photon approximation (EPA) [21]. An estimate
of the cross section for this process, however, showed it to
be much lower than the remaining ones we considered in
this paper. This is due to the EPA introducing an extra
electromagnetic coupling constant into the cross section,
and also to the fact that the final state of this process
includes at least three particles (one of the beam particles
‘‘survives’’ the interaction)—thus there is, compared to
the other processes which have only leptons in the final
state, an additional phase space suppression. Notice, how-
ever, that an optional upgrade for the ILC is to have e�
collisions, with center-of-mass energies and luminosities
similar to those of the e�e� mode, so this cross section
might become important.

The flavor-violating channels are experimentally inter-
esting, as they present a final state with an extremely clear
signal, which can be easily identified. The argument is that
the final state will always present two very energetic
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FIG. 8 (color online). AFB;R asymmetry for the process
e�e� ! ���� versus BR��! lll�.

TABLE II. Cross sections (in fbarn) for the LFV signal and
most relevant backgrounds to that process for several values of
the angle cut between the outgoing electron and the beam axis.

Cut in �e (degrees) 10 20 30 40 50 60

e�e� ! ��e� ! ��e��� ��� 4.9 4.6 4.1 3.5 2.8 2.1
e�e� ! ��e��� ��e 68.2 26.3 10.8 4.4 1.6 0.5
e�e� ! ���� ! ��e��� ��e�� ��� 1.3 0.8 0.3 0.2 0.06 0.01
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FIG. 7. Number of expected events at the ILC for the reaction
e�e� ! ����, with a center-of-mass energy of 1 TeV and a
total luminosity of 1 ab�1.
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leptons of different flavor, more to the point, an electron
and a muon. LFV can be seen in one of the three channels
e�e� ! ��e�, e�e� ! ��e�, e�e� ! ���� and
charge conjugate channels. The first channel is the best
one, with the two leptons back to back and almost free of
backgrounds. For the other production processes, we may
‘‘select’’ the decays of the tau that best suit our purposes:
for the second we should take the tau decay �� !
�� �����, and for the third process, �� ! e� ��e��. The
branching ratios for both of these tau decays are around
17%, so the loss of signal is affordable. The conclusion is
that, for every lepton flavor-violating process, one can
always end up with a final state with an electron and a
muon. If the ILC detectors have superb detection perfor-
mances for these particles, then the odds of observing
violation of the leptonic number at the ILC, if those
processes do exist, seem reasonable.

Clearly, our prediction that significant numbers of
anomalous events may be produced at the ILC needs to
be further investigated including the effects of a real de-
tector. Notice also that due to beamstrahlung effects which
reduce the effective beam energy, the total LFV event rates
might be reduced, specially in the case of the four-fermion
cross sections, which increase with s. Also, one must take
into account the many different backgrounds that could
mask our signal. And the fact that, even in the best case
scenario, only a few thousand events are produced with an
integrated luminosity of 1 ab�1, could limit the signal-to-
background ratio. A careful study of the background to
LFV processes lies clearly beyond the scope of this paper.
Nevertheless, we will show that with some very simple cuts
most of the background can be eliminated. Because of the
weaker experimental constraints on processes involving �
leptons, the most promising LFV reactions at the linear
collider are �e and �� production. For illustrative pur-
poses we will study the backgrounds to the LFV process
e�e� ! ��e� ! ��e��� ���. The main sources of back-
ground to this process are e�e� ! ��e��� ��e and
e�e� ! ���� ! ��e��� ��e�� ���. The cross section to
the background process e�e� ! ��e��� ��e was calcu-
lated using WPHACT [22] and confirmed using RACOONWW

[23]. The cross section for the remaining background was
evaluated using PYTHIA [24]. In e�e� ! ��e� !
��e��� ��� the electron is produced in a two body final
state. Therefore its energy is approximately half of the
center-of-mass energy. Furthermore, if �e is the angle
between the electron and the beam, then the transverse
momentum of the electron is pT �

���
s
p
=2 sin��e�. This

means that a cut in �e implies a cut in pT . The main
contribution to this cross section comes from the four-
fermion interaction. There are no propagators involved
and consequently the dependence in �e (and in pT) is
very mild. This can be seen from the expression (B5) in
the appendix. Making all coupling constants Vij and Sij
equal, it can be shown that a 10� cut will reduce the cross

section by 2% while a 60� cut will reduce it only by 58%.
In Table II we show the cross sections for the signal and for
the backgrounds as a function of a cut in �e and a corre-
sponding cut in pT . For the signal we start with a cross
section of 5 fbarn when no cuts are applied. Because of the
mild dependence on �e, a cut of 60 degrees will make the
signal well above background. A further cut on the energy
of the electron could be applied, say Ee > 300 GeV. This
would not affect the signal but will reduce the background
even further. All calculations were performed at tree level
with initial state radiation and final state radiation turned
off. Another possibility for background reduction would be
to use the polarization of the beams, a method known to be
very efficient. Notice, however, that this procedure might
affect the extraction of four-fermion couplings from polar-
ized beam experiments—if the signal is observed only for
certain combinations of beam polarizations, it could hap-
pen that only certain couplings, or combinations thereof,
can be measured.

Finally, some comments on the dependence of these
results vis-a-vis expected improvements on the measure-
ments of the LFV branching ratios of Table I. Could it be
that future experiments would tighten the constraints so
much that there was no room available for discovery? Tau
physics at BABAR and BELLE has provided the best limits
so far on LFV involving the � lepton. The combined results
from BABAR and BELLE on �! l� are now reaching the
level of 10�8 and will be close to just a few 10�8 by 2008
[25]. More important to us are the decays �! lll, due to
the constraints imposed on the four-fermion operators. The
latest results on Br��! lll� from BABAR and BELLE are
of the order of 10�7, with less than 100 fb�1 of data
analyzed. A value of the order of a few 10�8 is expected
when all data is taken into account [26]. Other planned
experiments like MEG or SINDRUM2 (see [27]) will
provide much more precise results for both �! e� and
�e conversion, respectively. However, those results will
not constrain any further the four-fermion couplings. The
current limit Br��! eee�< 10�12 at 90% CL [28] al-
ready excludes the possibility of finding LFV in the �eee
coupling. This limit will be improved by the Sundrum
experiment (see [27]). Another possibility is the GigaZ
option for the ILC, which probably would be earlier than
an energy upgrade to 1 TeV. Again, the limits on the LFV
branching ratios of the Z boson would be improved [29]
but the bounds on the four-fermion couplings would not be
affected. Lastly, LFV searches will also take place at the
LHC. Preparatory studies on the LFV decay �! ��� are
being conducted by CMS [30], ATLAS [31], and also by
LHCb [32]. During the initial low luminosity runs
(10–30 fb�1=year) for 2008–2009, searches for this decay
may be possible. So far the limits predicted are only
slightly better than the known limits from the B-factories.
Therefore, in the foreseeable future, the constraints on the
four-fermion � couplings arising from the branching ratios
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of Table I could go down 1 order of magnitude, to be of the
order of 10�8. Accordingly, and repeating the calculations
that led to Figs. 6 and 7, the maximum number of events
expected at the ILC also goes down by 1 order of magni-
tude, to about 1000 events. Given the discussion on back-
grounds above, we expect that detection of LFV at the ILC
would still be possible, although harder.
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APPENDIX A: SINGLE TOP PRODUCTION VIA
GAMMA-GAMMA COLLISIONS

In section III Awe argued that the couplings correspond-
ing to the operators of Eqs. (4) were extremely limited in
size by the existing experimental data for the branching
ratios of the decays lh ! ll�. In fact, we even showed that
the cross sections for the processes ��! lhll, Eq. (19),
were directly proportional to those branching ratios, and
their values at the ILC were predicted to be exceedingly
small. It is easy to understand, though, that we can define
operators analogous to those of Eqs. (4) for quarks instead
of leptons. In particular, we can consider flavor-changing
operators involving the top quark, which would describe
decays such as t! u� or t! c�—and these decay
widths have not yet been measured. More importantly,
their values may vary immensely, depending on the model
one uses to calculate them. According to [33], the branch-
ing ratios for these decays range from their SM value of
�10�16 (for the u quark), �10�12 (for the c quark) to
�10�6 (for both quarks) in supersymmetric models with
R-parity violation. The total top quark width being also a
lot larger than the tau’s or the muon’s, it seems possible
that the cross section for single top production via flavor-
violating photon-photon interactions presents us with ob-
servable values.

The corresponding calculation is altogether identical to
the one we presented for the leptonic case. We find an
expression for the width of the anomalous decay t! q�
similar to that of Eq. (15),

 

��t! q�� �
m3
t

64
�4 �m
2
t �j�

�R
qt ��

�R	
tq j

2� j��Lqt ��
�L	
tq j

2�

� 16v2�j	�qtj2�j	
�
tqj

2�

� 8mtv Im���Rtq 	
�
tq��

�R
qt 	

�	
tq ��

�L
qt 	

�	
qt

���Ltq 	
�
tq��; (A1)

with new couplings � and 	 (we reemphasize that these
new couplings are not in the least constrained by the argu-
ments we used in Sec. III A) and q � fu; cg. Likewise,
considering that the top quark’s charge is 2=3 and the
quarks have three color degrees of freedom, we may re-
write the analog of Eq. (19) as

 

d
���! t �q�
dt

� �
16
�F��

3m3
t s�m2

t � t�2t�m2
t � u�2u

��t! q��;

(A2)

with F�� given by an expression identical to Eq. (20), with
the substitution mh $ mt. With a top total width of about
1.42 GeVand for

���
s
p

equal to 1 TeV, this expression can be
integrated in t (with a pT cut of 10 GeV on the final state
particles, to prevent any collinear singularities) and the
total cross section estimated to be of the order

 
���! t �q� � 90
 BR�t! q�� pb: (A3)

We see a considerable difference vis-a-vis the predicted
leptonic cross sections, from Eqs. (21)—this one is much
larger. To pass from the photon-photon cross section to an
electron-positron process, we apply the standard proce-
dure: use the equivalent photon approximation [21] to
provide us with the probability of an electron/positron
with energy E radiating photons with a fraction x of E
and integrate Eq. (A2) over x. For recent studies of photon-
photon collisions at the ILC, see for instance [34]. The
numerical result we found for the single top production
cross section is

 
�e�e� ! e�e�t �q� � 1:08
 BR�t! q�� pb: (A4)

For an integrated luminosity of about 1 ab�1, this gives us
about one event observed at the ILC for branching ratios of
t! q� near the maximum of its theoretical predictions
[35], �10�6. Clearly, this result means that this process
should not be observed at the ILC, even in the best case
scenario. However, in the event of nonobservation,
Eq. (A4) could be useful to impose an indirect limit on
the branching ratio BR�t! q��. Several authors have
studied single top production in e�e� collisions [12,36].
For gamma-gamma reactions, single top production at the
ILC in the framework of the effective operator formalism
may has been studied in [37], and for specific models, such
as SUSY and technicolor, in Ref. [34].
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APPENDIX B: TOTAL CROSS SECTION
EXPRESSIONS

We write the amplitude for the four-fermion cross sec-
tions in two parts. One for the s channel and the other one
for the t channel. In doing so we are generalizing the four-
fermion Lagrangian which for a gauge theory has equal
couplings for both s and t channels. For the s channel the
amplitude reads
 

Tsij �
1

�4 �V
s
ij� �ve���iue�� �ulh�

��jvll�

� Ssij� �ve�iue�� �ulh�jvll�� (B1)

while for the t channel we have
 

Ttij � �
1

�4 �V
t
ij� �ulh���iue�� �ve�

��jve�

� Stij� �ulh�iue�� �ve�jve�� (B2)

with i, j � L, R. With these definitions we can write

 jT�e�L e
�
L ! l�hLl

�
lL�j

2 �
1

�4 �4u
2jVsLL � V

t
LLj

2�

jT�e�R e
�
R ! l�hRl

�
lR�j

2 �
1

�4 �4u
2jVsRR � V

t
RRj

2�

jT�e�L e
�
L ! l�hRl

�
lR�j

2 �
1

�4 t
2jStRLj

2

jT�e�R e
�
R ! l�hLl

�
lL�j

2 �
1

�4 t
2jStLRj

2

jT�e�L e
�
R ! l�hLl

�
lR�j

2 �
1

�4 s
2jSsLRj

2

jT�e�R e
�
L ! l�hRl

�
lL�j

2 �
1

�4 s
2jSsRLj

2

(B3)

and to obtain the expressions when only the t or s channels
are present, you just have to set the s couplings or the t
couplings, respectively, equal to zero. u, t and s are the
Mandelstam variables defined in the usual way.

The cross sections for polarized electron and positron
beams with no detection of the polarization of the final
state particles were given in Eq. (30). The International
Linear Collider will have a definite degree of polarization
that will depend on the final design of the machine. For

longitudinally polarized beams the cross section can be
written as
 

d
Pe�Pe�
dt

�
1

4

�
�1� Pe���1� Pe��

d
RR
dt

� �1� Pe���1� Pe��
d
LL
dt

� �1� Pe���1� Pe��
d
RL
dt

� �1� Pe���1� Pe��
d
LR
dt

�
(B4)

where 
RL corresponds to a cross section where the elec-
tron beam is completely right-handed polarized (Pe� �
�1) and the positron beam is completely left-handed po-
larized (Pe� � �1). This reduces to the usual averaging
over spins in the case of totally unpolarized beams. For the
general expression for polarized beams, as well as a study
on all the advantages of using those beams, see [20].

In the main text we presented expressions for the differ-
ential cross sections. For completeness we now present the
formulas for the total cross sections. For the four-fermion
case, the expressions have a very simple dependence on the
pT cut one might wish to apply, so we exhibit it. The

quantity x �
����������������������
1� 4p2

T=s
q

, with pT being the value of the
minimum transverse momentum for the heaviest lepton,
gives us an immediate way of obtaining these cross sec-
tions with a cut on the pT of the final particles. The total
cross section is obviously the sum over all polarized ones,
which gives us
 


�
sx�3� x2�

768
�4 �4jV
s
LL�V

t
LLj

2�jStRLj
2� 4jVsRR�V

t
RRj

2

�jStLRj
2��

sx

64
�4 �jS
s
LRj

2�jSsRLj
2�: (B5)

As explained in the main text, the cross sections for pro-
cesses (1, 2) are obtained from Eq. (B5) by setting all of the
‘‘s’’ couplings equal to the ‘‘t’’ ones, and, for process (3),
by setting the ‘‘t’’ couplings to zero.

For the remaining cross section expressions we imposed
no pT cut on any of the final particles. The total cross
section for the Z couplings is given by, for processes (1, 2),

 


�1;2�Z �e�e� ! lhll� �
v2

192
�4M2
zs2�M2

z � s�2�M2
z � s�

�F3�gA�j�lhj2 � F3��gA�j�hlj2 � F4�gA�j�Lj2

� F4��gA�j�Rj2�; (B6)

with

 

F3�gA� � 6sM2
z �M

4
z � s

2� log
�
M2
z � s

M2
z

�
��gA � gV�

2M4
z � 2�g2

A � gAgV � g
2
V�sM

2
z � �g

2
A � g

2
V�s

2�

� s2M2
z �M2

z � s��6�gA � gV�2M4
z � 3�7g2

A � 2gAgV � 7g2
V�sM

2
z � 2�7g2

A � 3gAgV � 7g2
V�s

2� (B7)
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F4�gA� � 48v2�M4
z � s

2��M2
z � s�M

4
z log

�
M2
z

M2
z � s

�
�gA � gV�

2 � 8v2s�3�gA � gV�
2M6

z �2M
2
z � s�

� �5g2
A � 18gAgV � 5g2

V�s
2M4

z � 5�g2
A � g

2
V�s

3M2
z � 3�g2

A � g
2
V�s

4�;

with interference terms

 


�1;2�int � �
v2

48�4
�s�M2
z �s

2

�
s��gA � gV�f�12M4

z � 6sM2
z � 14s2�Re��LV

	
LL� � s

2 Re��RS
	
RL�g

� �gA � gV�f�12M4
z � 6sM2

z � 14s2�Re��RV
	
RR� � s

2 Re��LS
	
LR�g�

� 3�M2
z � s���gA � gV�f�4M

4
z � 8sM2

z � 4s2�Re��LV
	
LL� � s

2 Re��RS
	
RL�g

� �gA � gV�f�4M
4
z � 8sM2

z � 4s2�Re��RV
	
RR� � s

2 Re��LS
	
LR�g� log

�
M2
z

M2
z � s

��
: (B8)

Finally, for process (3), we have

 
�3�Z �
�g2
V � g

2
A�v

2s

192
�4�M2
z � s�

2 �8�j�Lj
2 � j�Rj2�v2 � �j�hlj2 � j�lhj2�s�; (B9)

and

 
�3�int �
sv2

24
�s�M2
z ��

4 ��gV � gA�Re��RV
	
RR� � �gV � gA�Re��LV

	
LL��: (B10)

APPENDIX C: NUMERICAL VALUES FOR DECAY WIDTHS AND CROSS SECTIONS

We present here numerical values for the several decay widths and cross sections given in the text. We have set, in the
following expressions, � equal to 1 TeV, the dependence in � being trivially recovered if we wish a different value for it.

 

BR4f��! lll� � 2:3
 10�4�jSLRj2�jSRLj2� 4�jVLLj2� jVRRj2��

BR4f��! lll� � 4:0
 10�5�jSLRj2�jSRLj2� 4�jVLLj2� jVRRj2��

BRZ��! lll� � 8:2
 10�4�j�Lj2� j�Rj2�� 2:5
 10�7 Re��lh�	L��hl�R�

BRZ��! lll� � 1:4
 10�4�j�Lj2� j�Rj2�� 7:3
 10�7 Re��lh�	L��hl�R�

BRint��! lll� ��1:4
 10�3 Re��LV	LL�� 1:1
 10�3 Re��RV	RR�� 1:7
 10�7 Re��lhV	RR�� 2:1
 10�7 Re��hlVLL�

BRint��! lll� ��2:4
 10�4 Re��LV
	
LL�� 1:9
 10�4 Re��RV

	
RR�� 4:8
 10�7 Re��lhV

	
RR�� 6:0
 10�7 Re��hlVLL�:

(C1)

 

BR�Z! ll� � 2:3
 10�5�j�hlj
2 � j�lhj

2� � 6:7
 10�4�j�Lj
2 � j�Rj

2�

BR�Z! �l� � Br�Z! ll� � 2:0
 10�7 Re��L�hl � �R�
	
lh�

BR�Z! �l� � Br�Z! ll� � 2:4
 10�6 Re��L�hl � �R�
	
lh�:

(C2)

For the cross sections, taking
���
s
p
� 1 TeV and imposing a cut of 10 GeVon the pT of the particles in the final state, we

have (in picobarn):
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�1;2�4f �e
�e� ! ll� � 2:58�jSLRj

2 � jSRLj
2� � 10:33�jVLLj

2 � jVRRj
2�


�3�4f �e
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�1;2�Z �e�e� ! ll� � 1:0
 10�2j�lhj2 � 9:7
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�3�Z �e
�e� ! ll� � 1:6
 10�4�j�Lj2 � j�Rj2� � 6:7
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�1;2�int �e
�e� ! ll� � 0:70 Re��LV

	
LL� � 0:19 Re��LS

	
RL� � 0:56 Re��RV
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