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We present a class of composite Higgs models arising from a warped extra dimension that can satisfy all
the electroweak precision tests in a significant portion of their parameter space. A custodial symmetry
plays a crucial role in keeping the largest corrections to the electroweak observables below their
experimental limits. In these models the heaviness of the top quark is not only essential to trigger the
electroweak symmetry breaking, but it also implies that the lowest top resonance and its custodial
partners, the custodians, are significantly lighter than the other resonances. These custodians are the
trademark of these scenarios. They are exotic colored fermions of electromagnetic charges 5=3, 2=3, and
�1=3, with masses predicted roughly in the range 500–1500 GeV. We discuss their production and
detection at the CERN LHC.
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I. INTRODUCTION

Theories of warped extra dimensions, with their holo-
graphic interpretation in terms of 4D strongly coupled field
theories [1,2], have recently given a new twist to the idea of
Higgs compositeness [3,4]. Calculability is one of the main
virtues of this new class of models. Differently from the old
approach [5], physical quantities of central interest can be
computed in a perturbative expansion. This opened up the
possibility of building predictive and realistic theories of
electroweak symmetry breaking (EWSB).

The minimal composite Higgs model (MCHM) of
Ref. [4] is extremely simple to define based only on
symmetry considerations. It consists in a 5D theory on
AdS spacetime compactified by two boundaries, respec-
tively called infrared (IR) and ultraviolet (UV) boundaries
[6].1 An SO�5� � U�1�X � SU�3�c gauge symmetry in the
bulk is broken down to SO�4� � U�1�X � SU�3�c on the IR
boundary (with SO�4� � SU�2�L � SU�2�R), delivering
four pseudo Goldstone bosons that transform as a 4 of
SO(4) and are identified with the Higgs doublet. On the
UV boundary the bulk symmetry is reduced to the standard
model (SM) gauge group GSM � SU�2�L � U�1�Y �
SU�3�c, where hypercharge is defined as Y � X� TR3 .
Once the SO(5) bulk representations in which the SM
fermions are embedded and their boundary conditions are
chosen, the model is completely determined. One can write
down the most general Lagrangian compatible with the
above symmetries, compute the one-loop Higgs potential
and determine the region of the parameter space with the
correct EWSB and SM fermion masses.

In Ref. [4] the SM fermions were embedded in spinorial
representations of SO(5). This choice leads generically to
large corrections to the ZbL �bL coupling, with the result
that a sizable portion of the parameter space of the model
(� 95%) is ruled out [7]. However, it was recently realized
[8] that the ZbL �bL constraint is strongly relaxed if the
fermions are embedded in fundamental (5) or antisymmet-
ric (10) representations of SO(5), with bL belonging to a
�2; 2� of SU�2�L � SU�2�R, and the boundary symmetry
SO(4) is enlarged to O(4). In this case a subgroup of the
custodial symmetry O�3� � O�4� protects the ZbL �bL cou-
pling from receiving corrections.

In this paper we investigate the predictions of the
MCHM with fermions in 5’s or 10’s of SO(5) and the IR
symmetry enlarged to O(4). We will determine the region
of the parameter space with successful EWSB, and study
the constraints imposed by the electroweak precision tests.
The most relevant constraint comes from the Peskin-
Takeuchi S parameter, which excludes �50%–75% of
the parameter space of the model.2 A sizable portion of
the latter is still allowed, and awaits to be explored at the
CERN LHC. An important prediction of the model is that
the heaviness of the top quark implies that the lowest top
Kaluza-Klein (KK) resonance and its O(4)-custodial part-
ners, the ‘‘custodians,’’ are significantly lighter than the
other KK resonances. The custodians are color triplets and
transform as 27=6 of SU�2�L � U�1�Y when the SM fermi-
ons are embedded in 5’s of SO(5), and as 27=6 	 32=3 	

15=3 	 1�1=3 in the case of 10’s of SO(5). They have
electromagnetic charges Qem � 5=3; 2=3;�1=3 and their
masses are predicted roughly in the range 500–1500 GeV.

1Although these boundaries act as sharp cutoffs of the extra
dimension, they can be considered as an effective description of
some smoother configuration that can arise in a more fundamen-
tal (string) theory.

2This must be compared with the most popular supersymmet-
ric models where experimental constraints have already ex-
cluded large portions of the parameter space (� 99% in the
case of universal soft masses [9]).
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The excitations of the SM gauge bosons are always heav-
ier, with masses around 2–3 TeV. The Higgs mass is
predicted in the range mHiggs ’ 115–190 GeV. Its value
is correlated with the mass of the custodians, since top
loops give the largest contribution to the Higgs potential,
and are thus responsible for triggering the EWSB. Being at
the reach of the LHC, the custodians offer the best signa-
ture for distinguishing 5D composite Higgs from other
scenarios of EWSB. We will discuss their most important
production mechanisms and decay channels.

Other models of EWSB in which bL is embedded in a
�2; 2� of SU�2�L � SU�2�R to protect Zb �b have been pro-
posed in Refs. [10–12].

II. HIGGS POTENTIAL AND EWSB

At the tree level, the massless spectrum of the bosonic
sector of the MCHM consists of the SM gauge bosons, plus
four real scalar fields that correspond to the SO�5�=SO�4�
degrees of freedom of the fifth component of the 5D gauge
field. The presence of these scalars is dictated by the
symmetry breaking pattern of the model: they are pseudo
Goldstone bosons and have the right quantum numbers to
be identified with the SM Higgs, ha (a � 1, 2, 3, 4). In
addition to the massless sector, the theory also contains an
infinite tower of massive resonances: the KK states. We can
integrate out all the massive states and obtain an effective
low-energy Lagrangian for the massless modes. We do this
by following the holographic approach of Ref. [4]. The
form of the effective Lagrangian for the gauge bosons is
completely determined by the symmetries of the model. It
can be found in Ref. [4], and it will not be repeated here.3

We only report the following relations:
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boundary in conformal coordinates and sets the mass gap
(1=L1 � TeV); g5 is the SO(5) gauge coupling in the bulk;
1=k is the AdS5 curvature radius; and m� is the mass of the
lightest gauge boson KK. Following Ref. [4], we define
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as our expansion parameter. The fermionic sector of the
model depends on our choice for the 5D bulk multiplets.
We want to study the case in which the SM fermions are
embedded in fundamental (5) or antisymmetric (10) rep-
resentations of SO(5). To this aim, we consider two differ-
ent choices of multiplets and boundary conditions. In the
first choice, which we will refer to as the MCHM5, the bulk
fermions transform as 5’s of SO(5) and are defined by
Eq. (A1) of Appendix A. In the second choice, which we
will denote as the MCHM10, the bulk fermions are defined
by Eq. (B1) and transform as 10’s of SO(5). For all the
technical details, we refer the reader to Appendixes A and
B. Here it will suffice to say that in both cases the low-
energy effective Lagrangian for the quarks can be written,
in momentum space and at the quadratic order, as
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The form factors �i
0;1 and Mi

1 in Eq. (3) can be computed
in terms of 5D propagators using the holographic approach
of Ref. [4]. Their explicit form is given in Appendixes A
and B. From Eq. (3) one can derive the SM up and down
fermion masses,mu;d. A reasonably good approximation to

the exact expressions can be obtained by setting p2 � 0 in
the form factors, the error being of order �mu;dL1�. We
obtain

 mu ’
shch���

2
p

Mu
1 �0����������������

ZuLZuR
p ; md ’

shch���
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p

Md
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where ZuL;dL � �q
0�0� � �s

2
h=2��q1;q2

1 �0� and ZuR;dR �
�u;d

0 �0� � �s
2
h=2��u;d

1 �0�. An explicit version of Eq. (5)
in terms of the 5D input parameters is given in
Eqs. (A13) and (B8) of Appendixes A and B, respectively,
for the MCHM5 and the MCHM10.

At the tree level the Higgs field is an exact Goldstone
boson, and as such it has no potential. At the one-loop
level, the virtual exchange of the SM fields transmits the
explicit breaking of SO(5) and generates a potential for h.

3The only difference between the gauge sector of the model
presented here and that of Ref. [4] is the symmetry on the IR
boundary. Enlarging SO(4) to O(4) forbids the otherwise allowed
IR-boundary kinetic term ��ijkl�F��

�ij�F�kl���, where i, j, k, l are
SO(4) indices. Since this term was not included in Ref. [4], we
can use the results for the gauge sector presented there.
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The largest contribution comes from tL, bL, and tR, and
from the SU�2�L gauge bosons, since these are the fields
that are most strongly coupled to the Higgs. They give
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Here, and from now on, the fermionic form factors �q
0 ,

�q1;q2
1 , �u

0;1, Mu
1 stand for those of the 3rd quark family,

qL � �tL; bL� and tR. The gauge form factors �0;1 can be
found in Ref. [4]. Since the �i

1’s and Mu
1 drop exponen-

tially for pL1 � 1, the logarithms in Eq. (6) can be ex-
panded and the potential is well approximated by

 V�h� ’ �s2
h � �s

2
hc

2
h; (7)

where � and � are integral functions of the form factors. In
particular,� receives contributions from loops of the gauge
fields and of qL or tR alone. We will denote these contri-
butions, respectively, by �gauge, �L and �R. On the other
hand, � receives contributions from loops where both tL
and tR propagate. For �< � and � � 0 we have that the
electroweak symmetry is broken: � � 0. If �> j�j, the
minimum of the potential is at

 sh � � �

��������������
�� �

2�

s
; (8)

while for �< j�j the minimum corresponds to ch � 0,
and the EWSB is maximal: � � 1. In this latter case the
fermion masses vanish—see Eq. (5)—due to an accidental
chiral symmetry that is restored in the limit �! 1. The
model is thus realistic only for 0< �< 1, i.e.�> j�j. The
coefficients � and � can be computed in terms of the
relevant 5D parameters

 N; cq; cu; ~mu; ~Mu; (9)

where cq, cu are the bulk masses (in units of k) of the 5D
multiplets �q, �u that contain the SM qL and tR, and ~mu,
~Mu are mass terms localized on the IR boundary that mix
�q with �u (see Appendixes A and B). The scale L1 has
been traded for v. The five parameters of Eq. (9) are not
completely determined by the present experimental data.
There are only two constraints coming from fixing the top
quark mass to its experimental value, mpole

t � 173 GeV,
and by requiring 0< �< 1.

Let us outline the viable region of this five-dimensional
space of parameters. The large Yukawa coupling of the top

quark is reproduced by having the wave functions of the tL
and tR zero modes peaked towards the IR boundary, where
the Higgs lives. This constrains the 5D bulk masses to lie in
the interval jcq;uj< 1=2; see Eqs. (A13) and (B8). In the
4D dual interpretation, this corresponds to saying that the
elementary fields tL and tR couple to relevant operators O
of the strongly coupled conformal field theory (CFT), with
conformal dimension 3=2< dimO�< 5=2 (see [13]).
Since the operators O have the quantum numbers to excite
the fermionic composite resonances, the elementary top
will have a sizable mixing with these massive states. The
stronger the mixing, the larger the degree of compositeness
of the physical top quark will be. The requirement jcq;uj<
1=2 is also necessary in order to have EWSB. In this region
the top quark contribution to the Higgs potential dominates
over the gauge one, which would otherwise align the
vacuum in an �SU�2�L � U�1�Y�-preserving direction
(since �gauge is always positive). The conditions �< 0
and �> 0 can then be easily satisfied thanks to the top
contribution. In other words, the EWSB, in our model, is a
direct consequence of the heaviness of the top.

To illustrate this point, we show in Fig. 1 the contour
plots of � in the planes �cq; cu� and � ~mu; ~Mu�, respectively,
for the MCHM10 and the MCHM5. The region with no
EWSB (� � 0) is depicted in black, and the dashed black
curve corresponds to mpole

t � 173 GeV. In each plot, we
have set N � 8 and kept the remaining 5D parameters
fixed. The condition�> j�j, i.e. 0< �< 1, further selects
a smaller region of the planes �cq; cu� and � ~mu; ~Mu�. A
naive estimate shows that j�L;Rj is parametrically larger
than � by a factor �1=4� c2

u;q�. A reduction in �, however,
can be obtained in the region where �L ’ ��R. As already
pointed out in Ref. [4], this is possible since �L and �R
have generally opposite sign. In the case of the MCHM10,
the regions with smaller � are the two gray areas with the
‘‘boomerang’’ shape shown in the left plot of Fig. 1, plus a
specular region under cq ! �cq which is not shown.
These two solutions correspond to qL almost elementary
(cq ’ �1=2) or almost composite (cq ’ �1=2). We found
that the case of the MCHM5 is analogous, but with the role
of cq and cu interchanged: the two possible solutions are
for tR almost elementary (cu ’ �1=2) or almost composite
(cu ’ �1=2).

A second circumstance in which �> j�j is when ~mu ’
�1= ~Mu. As one can directly check, by using their expres-
sions in terms of 5D propagators, the fermionic form
factors �q1

1 , �u
1 , and consequently �L;R,4 identically van-

ish for ~mu � �1= ~Mu (both in the MCHM5 and in the
MCHM10). Therefore, for ~mu ’ �1= ~Mu one can have �>
j�j. This is shown for the MCHM5 in Fig. 1, right plot, and

4Notice that �q2
1 � 2�q1

1 in the MCHM10, while in the
MCHM5 �q2

1 is always suppressed and its contribution to �L
can be neglected; see Appendixes A and B.
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a similar result holds for the MCHM10. Even though one
can reach the 0< �< 1 region by moving along the plane
� ~mu; ~Mu� for almost any choice of cq, cu, the additional
constraint of having the top quark mass equal to its experi-
mental value (the black dashed line in the plots of Fig. 1)
disfavors in most of the cases solutions with both qL and tR
elementary (that is, with cq ’ 1=2 and cu ’ �1=2). This is
especially true for the MCHM10, since the formula for the
top mass has an extra suppression factor 1=

���
2
p

compared to
the MCHM5; see Eqs. (A13) and (B8) of Appendixes A
and B.

Our investigation of the structure of the Higgs potential
has then revealed that there are specific regions of the
parameter space in which the electroweak symmetry is
broken and the SM quarks get a mass. Part of these regions,
however, is excluded by the precision tests. How large this
portion is gives us a measure of the ‘‘degree of tuning’’
required in our model. This is the subject of the next
section.

III. ELECTROWEAK PRECISION TESTS

There are two types of corrections to the electroweak
observables that any composite Higgs model must address,
since they are usually sizable: nonuniversal corrections to
the Zb �b coupling, and universal corrections to the gauge
boson self-energies. The results of Ref. [8] show that for
both our choices of fermionic 5D representations,
Eqs. (A1) and (B1), nonuniversal corrections to Zb �b are
small, due to the custodial O(3) symmetry of the bulk and
IR boundary. Therefore, we need to consider only universal
effects, which can be parametrized in terms of four quan-
tities: S, T, W, and Y [14]. The last two parameters are
suppressed by a factor��g2N=16�2� compared to S and T,
and can be neglected [4]. The parameter T is zero at tree
level due to the custodial symmetry. Loop effects can be
estimated to be small (T & 0:3), and explicit calculations

in similar 5D models confirm this expectation [7,10].5 We
defer a full calculation of the T parameter in the MCHM5

and MCHM10 to a future study.
The Peskin-Takeuchi S parameter gives the most robust

and model-independent constraint. Neglecting a small cor-
rection from boundary kinetics terms, one has [4]

 S �
3

8

N
�
�2: (10)

The 99% CL experimental bound S & 0:3 [14]6 then trans-
lates into

 �2 &
1

4

�
10

N

�
: (11)

ForN � 5 (N � 10) this rules out the values 1=2 & �2 < 1
(1=4 & �2 < 1), which we naively expect to correspond to
�1=2 (� 3=4) of the region with EWSB and nonzero
fermion masses (the region 0< �2 < 1). The exact numeri-
cal results—see Fig. 1 for a case with N � 8—reasonably
agree with this rough estimate. This means that there is still
a large portion of the parameter space which is not ruled
out by the constraint from S, and no large fine-tuning is
hence required. Notice that smaller values of N imply
larger fractions of allowed parameter space, although N
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FIG. 1. Contour plots of � in the plane �cq; cu�with ~mu � 1, ~Mu � �2, N � 8 for the MCHM10 (left plot), and in the plane � ~mu; ~Mu�
with cq � 0:35, cu � 0:45, N � 8 for the MCHM5 (right plot). The two gray areas correspond to the region with EWSB and nonzero
fermion masses, 0< �< 1. The lighter gray area is excluded when the bound S & 0:3 is imposed. The dashed black line represents the
curve with mMS

t �2 TeV� � 150 GeV, equivalent to mpole
t � 173 GeV.

5In Ref. [10] the SM fermions were also embedded in the 5
and 10 representations of SO(5), but with different boundary
conditions from ours. This implies that, for example, while in the
MCHM5 there is one SU�2�L-doublet KK state with hypercharge
Y � 7=6 that becomes light in the limit of tR composite, in the
model of Ref. [10] this happens in the limit of tR mostly
elementary.

6In order to fully saturate the bound S & 0:3, a positive T of
the same size is required. The results of Refs. [7,10] suggest that
this could be possible in certain regions of the parameter space.
Otherwise, the 99% CL experimental bound on S becomes
stronger: S & 0:2�0:1� for T & 0:1�0�.
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cannot be too small if we want to remain in the perturbative
regime.

IV. SPECTRUM OF FERMIONIC RESONANCES
AND THE HIGGS MASS

An important prediction of our model is that the require-
ment of a large top mass always forces some of the
fermionic KK states to be lighter than their gauge counter-
part (a similar property is found in the model of
Refs. [12,15]). The reason is the following. The embedding
of tL and tR into SO(5) bulk multiplets implies that some of
their SO(5) partners have ��;�� boundary conditions, an
assignment that is necessary to avoid extra massless states
[see Eqs. (A1) and (B1)]. Consider, for example, the case
in which the left-handed chirality of the 5D field is ��;��
(hence the right-handed one is ��;��): for values of the
5D mass ci�u;q > 1=2, the lightest KK mode, denoted by
q�, has its left-handed chirality exponentially peaked on
the UV boundary, while the right-handed one is localized
on the IR boundary. This implies that the mass of q� is
exponentially suppressed. On the other hand, for ci <
�1=2 both chiralities are localized on the IR boundary
and the mass of q� is of the same order of that of the other
KKs: mq� ’ m�. In the intermediate region �1=2< ci <
1=2, the one in which the large mass of the top can be
reproduced, one finds that mq� is well interpolated by [4,7]

 mq� ’
	
L1

�������������
1

2
� ci

s
; (12)

where 	� 2 is a numerical coefficient with a mild depen-
dence on the values of the boundary masses. This means
that mq� is still parametrically smaller than m� by a factor������������������

1=2� ci
p

. Analogous results hold for left-handed 5D
fermions with a ��;�� boundary condition if they mix
with additional 4D fermions localized on the IR boundary.
In the case of right-handed 5D fields with a ��;�� bound-
ary condition the same argument above also applies if ci !
�ci. Equation (12) has a clear interpretation in the 4D dual
description of the theory where the left- and right-handed
chiralities of the lightest massive state correspond, respec-
tively, to an elementary and a composite state [13]. For
�1=2< ci < 1=2, it can be shown (see also Appendix A)
that the coupling of the elementary state to the CFT flows
to a fixed-point value proportional to

��������
�

p

�
������������������
1=2� ci

p
,

where 
 is the anomalous dimension of the CFToperator to
which the elementary field couples. Naive dimensional
analysis then immediately gives Eq. (12).

We will concentrate on the region �1=2< cu < 1=2
with cq slightly smaller than 1=2 (tL mostly elementary).
From the argument above and by inspecting Eqs. (A1) and
(B1), one can deduce that the light KK modes are all the
SO(5) partners of tR inside �u. In the case of the MCHM5,
�u transforms as a 5 of SO(5) and the partners of tR form a
�2; 2� of SU�2�L � SU�2�R, equivalent to two SU�2�L dou-

blets of hypercharge Y � 1=6 and Y � 7=6. The first is the
lightest resonance with the quantum numbers of tL, while
the second is its O(4)-custodial companion. In the case of
the MCHM10, �u transforms as a 10 of SO(5) and the light
partners of tR also include its own O(4) custodians, a 32=3 	

15=3 	 1�1=3 of SU�2�L � U�1�Y .
Figure 2 shows the spectrum of the lowest fermionic KK

states in the MCHM5 (upper plot) and in the MCHM10

(lower plot). The light states are those predicted. Their
mass is around 500–1500 GeV for � � 0:5 and N � 8,
much smaller than that of the lightest gauge KK, m� �

2:6 TeV, and of other fermionic excitations. The custodian
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FIG. 2 (color online). Masses of the lightest colored KK
fermions in the MCHM5 (upper plot) and in the MCHM10 (lower
plot). Different symbols denote KKs with different quantum
numbers under SU�2�L � U�1�Y , as specified in the plots. Both
plots are for � � 0:5, N � 8. In the upper one we have varied
0:28< cq < 0:38, 0< cu < 0:41, 0:32< ~mu < 0:42, �3:5<
~Mu <�2:2 (filled points), or 0:2< cq < 0:35, �0:25< cu <
�0:42,�1:3< ~mu < 0:2, 0:1< ~Mu < 2:3 (empty points). In the
lower plot we have varied 0:36< cq < 0:45, 0< cu < 0:38,
0:8< ~mu < 3, �3< ~Mu <�0:3. The black continuous line is
the fit to the mass of the lightest resonance according to Eqs. (15)
and (18).
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27=6 turns out to be the lightest among all the light fermi-
onic resonances and therefore the most accessible.

There is an alternative way to understand why in these
types of models one expects light colored fermionic reso-
nances. From Eq. (7), we have that the Higgs mass is given
by

 m2
h ’

8�

f2
�
s2
hc

2
h; (13)

where
 

� ’ Nc
Z d4p

�2��4
F�p�

p2 ;

F�p� 

�Mu

1 �
2

��q
0 � �s

2=2��q1
1 ���

u
0 � �s

2=2��u
1�
:

(14)

Using Eq. (5), we have m2
t � F�0�s2

hc
2
h=2 and hence

 m2
h ’

Nc
�2

m2
t

v2 �
2�2; (15)

where we have defined

 �2 
 2
Z 1

0
dpp

F�p�
F�0�

: (16)

Equation (15) shows the relation between the Higgs mass
and �, which is, roughly speaking, the scale at which the
momentum integral is cut off. On general grounds, one
would expect this cutoff scale to be of the order of the mass
of the lowest fermionic resonance7:

 mq� ’ � ’ 900 GeV
�

mh

150 GeV

��
0:5
�

�
; (17)

where in the last equality Eq. (15) has been used. Equa-
tion (17) shows that in composite Higgs models with a light
Higgs and no tuning (�� 1) colored resonances are ex-
pected to be not heavier than �1 TeV. In our model, the
relation between the Higgs mass and the mass of the lowest
fermionic KK turns out to be more complicated than that of
Eq. (17). We find that the points of Fig. 2 are better
reproduced by a relation of the form

 �2 � a1m
2
q� � a2mq�M� a3M

2; (18)

where ai are numerical coefficients, M 
 m� parametrizes
the mass of the heavier resonances, and by mq� we denote
the mass of the KK weak doublet with hypercharge Y �

7=6 (the lightest among the fermionic KKs in Fig. 2). This
means that in our model the integral

R
1
0 dppF�p�=F�0��

is not completely cut off at p�mq� , and that other (heav-
ier) resonances also play a role. A fit to the points of Fig. 2
gives ai�1;2;3 � ��0:10; 0:35; 0:007� for the MCHM5

(upper plot) and ai � ��0:14; 0:24; 0:06� for the
MCHM10 (lower plot). The dispersion of the points around
the fitted curve (shown in each plot) can be explained as
follows. In Fig. 2 we have fixed N � 8, � � 0:5 and
mpole
t � 173 GeV, which leaves two of the five parameters

of Eq. (9) free to vary. If cu is traded for mq� , we are left
with one free parameter, for example, cq. The coefficients
ai of Eq. (18) will thus depend on cq. To generate the
points in Fig. 2 we have scanned over the values 0:2<
cq < 0:38 (upper plot) and 0:36< cq < 0:45 (lower plot)
and therefore the fitted ai given above should be consid-
ered as average values over these intervals of cq.

V. PRODUCTION AND DETECTION
OF THE LIGHTEST FERMIONIC RESONANCES

AT THE LHC

The most promising way to discover these models is by
detecting their lowest fermionic KKs at the LHC. In par-
ticular, detecting the custodian with electric charge 5=3,
q�5=3, that arises from the 27=6 multiplet of SU�2�L � U�1�Y ,
would be the smoking-gun signature of the model. This
exotic state is a direct consequence of the custodial sym-
metry required to forbid large corrections to Zb �b. For not-
too-large values of its massmq�

5=3
, roughly below 1 TeV, this

new particle will be mostly produced in pairs, via QCD
interactions,

 q �q; gg! q�5=3 �q�5=3; (19)

with a cross section completely determined in terms of
mq�

5=3
(see for example [16,17]). Once produced, q�5=3 will

decay to a (longitudinally polarized) W� plus a tR, with a
coupling of order 4�=

����
N
p �����������������������

�cu � 1=2�
p

. Decays to SM light
quarks will be strongly suppressed, with a coupling of
order of the square root of their Yukawa couplings. In
general, colored resonances will mostly decay to tops
and bottoms, since these are the SM quarks more strongly
coupled to them, as the result of the large top mass. The
process of Eq. (19) then leads to a final state of four W’s
and two b jets:

 q�5=3 �q�5=3 ! W�tW� �t! W�W�bW�W� �b: (20)

The same final state also comes from pair production of
KKs with charge�1=3. A way to discriminate between the
two cases consists in reconstructing the electric charge of
the resonance. For example, one could look for events with
two highly energetic leptons of the same sign, coming from
the leptonic decay of two of the four W’s, plus at least six

7Using Eq. (8) we can rewrite Eq. (15) as

 m2
h ’

Nc
�2

m2
t

2v2 �2 �
4c2

h�

f2
�
:

The first term is the formula for the Higgs mass one obtains in
the SM by defining �2=2 


R
dpp in the top loop. The degree

of cancellation between the first and second terms gives a
measure of the degree of ‘‘tuning’’ needed in our model. This
exactly corresponds to �2.
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jets, two of which are tagged as b jets. Demanding that the
invariant mass of the system of the two hadronically decay-
ing W’s plus one b jet equals mq�

5=3
then identifies the

process and gives evidence for the charge 5=3 of the
resonance. Furthermore, indirect evidence in favor of
q�5=3 would come from the nonobservation of the decays
to Zb, Hb that are allowed for resonances of charge�1=3.

For increasing values of mq�
5=3

the cross section for pair

production quickly drops, and single production might
become more important. The relevant process is tW fusion
[18], where a longitudinal W radiated from one proton
scatters off a top coming from the other proton. The
analogous process initiated by a bottom quark, bW fusion,
has been studied in detail in the literature and shown to be
an efficient way to singly produce heavy excitations of the
top quark [16,17,19]. To prove that the same conclusion
also applies to the case of tW fusion, a dedicated analysis is
required. The main uncertainty and challenge comes from
the small top quark content of the proton, which, however,
can be compensated by the large coupling involved, espe-
cially in the case of tR largely composite [4].

Besides q�5=3, the other components of the 21=6 and 27=6

multiplets of SU�2�L � U�1�Y are also predicted to be light
in both our models; see Fig. 2. In the specific case of the
MCHM10 there are also other states transforming as 32=3,
15=3, 1�1=3. These multiplets contain states with Qem �

5=3 whose phenomenology will be similar to that of the
q�5=3 described above. The states of electric charge 2=3 or
�1=3 will also be produced in pairs via QCD interactions
or singly via bW or tW fusion. They will decay to a SM top
or bottom quark plus a longitudinally polarized W or Z, or
a Higgs. When kinematically allowed, a heavier resonance
will also decay to a lighter KK accompanied with a Wlong,
Zlong or h. Decay chains could lead to extremely character-
istic final states. For example, in the MCHM10 the KK with
charge 2=3 from 32=3 is predicted to be generally heavier
than q�5=3; see Fig. 2. If pair produced, it can decay to q�5=3

leading to a spectacular six W’s plus two b jets final state:

 q�2=3 �q�2=3 ! W�q�5=3W
� �q�5=3 ! W�W�W�bW�W�W� �b:

(21)

To fully explore the phenomenology of the fermionic

resonances in our models, a detailed analysis is necessary.
One could, for example, adopt the simplifying strategy
proposed in Ref. [20], where a 4D effective theory has
been introduced to consistently describe the SM fields and
the first KK excitations of a large class of warped models.
Existing studies in the literature have focused on the pro-
duction and detection of SU�2�L singlets of hypercharge
Y � 2=3 [17,21], since this is a typical signature of little
Higgs theories. In our models, however, the singlet is not
predicted to be light, except for specific regions of the
parameter space. In conclusion, our brief discussion shows
that there are characteristic signatures predicted by our
models that will distinguish them from other extensions
of the SM. While certainly challenging, these signals will
be extremely spectacular, and will provide an indication of
a new strong dynamics responsible for electroweak sym-
metry breaking.
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APPENDIX A: DEFINING THE MCHM5

Here we present in detail the fermion sector of our
composite Higgs models. We have assumed that (i) each
SM fermion is embedded in a different 5D field, and (ii) all
three SM families have the same embedding. Following
these rules, we construct what we think are the minimal
models with fermions embedded in 5 or 10 representations
of SO(5).

The quark sector of the MCHM5 is defined in terms of
5D bulk multiplets transforming as fundamentals of SO(5).
Each SM generation is identified with the zero modes of
the 5D fields

 �q1
�

�2; 2�q1
L �

q01L����
q1L����

� �
�2; 2�q1

R �
q01R����
q1R����

� �
�1; 1�q1

L ���� �1; 1�q1
R ����

264
375; �u �

�2; 2�uL���� �2; 2�
u
R����

�1; 1�uL���� �1; 1�
u
R����

� �
;

�q2
�

�2; 2�q2
L �

q2L����

q02L����

� �
�2; 2�q2

R �
q2R����

q01R����

� �
�1; 1�q2

L ���� �1; 1�q2
R ����

264
375; �d �

�2; 2�dL���� �2; 2�
d
R����

�1; 1�dL���� �1; 1�
d
R����

" #
;

(A1)

where �q1
, �u (�q2

; �d) transform as 52=3 (5�1=3) of SO�5� � U�1�X. A similar 5D embedding also works for the SM
leptons, although with different U�1�X charges. Chiralities under the 4D Lorentz group have been denoted by L, R, and
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��;�� is a shorthand notation to denote Neumann (� ) or
Dirichlet (� ) boundary conditions on the two boundaries.
We have grouped the fields of each multiplet �i in repre-
sentations of SO�4� � SU�2�L � SU�2�R, and used the fact
that a fundamental of SO(5) decomposes as 5 � 4 	 1 �
�2; 2� 	 �1; 1�. Although each of �q1

and �q2
alone could

account for the qL zero mode, we need them both to give
mass to both the up and down SM quarks. We thus identify
the SM qL field with the zero mode of the linear combi-
nation (q1L � q2L), and get rid of the extra zero mode by
introducing a localized right-handed field on the UV
boundary that has a mass mixing with the orthogonal
combination. We denote by ci, i � q1, q2, u, d, the bulk
masses of each 5D field �i in units of k. Localized on the IR
boundary, we consider the most general set of mass terms
invariant under O�4� � U�1�X:

 

~mu�2; 2�
q1
L �2; 2�

u
R �

~Mu�1; 1�
q1
R �1; 1�

u
L � ~md�2; 2�

q2
L �2; 2�

d
R

� ~Md�1; 1�
q2
R �1; 1�

d
L � H:c: (A2)

The holographic description

The 5D field content of Eq. (A1) has a very simple
holographic interpretation in terms of three elementary
chiral fields, qL � �uL; dL�, uR and dR, coupled to a CFT
sector through composite operators Oi.

8 An important
difference from the model of Ref. [4], and also from the
MCHM10 discussed in the next section, is that here the
elementary qL couples to two different CFT operators, O1

and O2, with couplings �1, �2. This is the consequence of
having two different bulk fields in Eq. (A1), q1L and q2L,
mixed on the UV boundary. The elementary fields uR and
dR, instead, couple to one operator each, Ou and Od, with
couplings �u and �d. The bulk gauge symmetry of the 5D
model maps into an SO�5� � U�1�X global symmetry of the
CFT, and Eq. (A1) implies that O1, Ou transform as 52=3,
while O2, Od transform as 5�1=3. Schematically,

 

The double line indicates that � �O1Ou� and � �O2Od� have the
correct quantum numbers to excite the Higgs and generate
in this way the up and down Yukawa couplings of the 4D
low-energy theory. Large hierarchies among the Yukawas
can be explained naturally as the result of the renormal-
ization group (RG) evolution of the couplings �i [4].

Notice that the CFT dynamics alone do not mix O1 and
Ou with O2 and Od, since they have different U�1�X
quantum numbers. Nevertheless, both O1 and O2 can
couple to the external source qL, since this latter coupling
will only preserve the SU�2�L � U�1�Y elementary sym-
metry. This suggests that a hierarchy in the up and down
Yukawa couplings, like in the case of the top and bottom
quarks, can follow from the RG evolution if �u � �d at
low energy, as already pointed out for the model of
Ref. [4], or alternatively if �1 � �2.

Quite interestingly, it is simple to show that �1 can grow
much bigger (or smaller) than �2 in the infrared, even if
both operators O1 and O2 are relevant. The argument goes
as follows. The RG equations of the two couplings �1, �2

form a coupled system:

 p
d
dp

�1�p� � 
1�1 �
N

16�2 �a1�
3
1 � a12�1�

2
2� � . . . ;

(A3)

 p
d
dp

�2�p� � 
2�2 �
N

16�2 �a2�
3
2 � a21�2�2

1� � . . . :

(A4)

The dots stand for subleading terms in a 1=N expansion,
where the number of CFT colors N is defined by Eq. (2).
The duality with the 5D theory implies that the coefficients
a1 and a2 are both positive (see [13]), and that the anoma-
lous dimensions 
1;2 are linear functions of the 5D bulk
masses: 
1;2 � jcq1;q2

� 1=2j � 1. Furthermore, it is easy
to show that the leading contribution to the coefficients a12

and a21 comes from the wave function renormalization,
which in turn implies a21 � a1, a12 � a2 at leading order
in 1=N. Let us then consider the case in which the operator
with the smallest anomalous dimension, say O1, is rele-
vant, that is cq1

< 1=2, cq1
< cq2

(i.e. 
1 < 0, 
1 < 
2).
Then �1 will grow faster than �2 in the infrared, and at
some energy E� it will reach a fixed-point value �1� ’

4�=
����
N
p �����������������

�
1=a1

p
. Below that energy, one can set �1 �

�1� in the RG equation for �2, Eq. (A4), which becomes

 p
d
dp

�2�p� ’ �
2 � 
1��2 � . . . : (A5)

Since �
2 � 
1�> 0 by assumption, this implies that �2

will be suppressed at low energy,

 �2�E� �
�
E
E�

�

2�
1

; (A6)

even if 
2 < 0, that is, even if the operator O2 is relevant.
The above argument shows that the small ratio mb=mt

follows naturally in the MCHM5 by having cq2
> cq1

, even
when bR is strongly coupled to the CFT sector. The large
top mass, on the other hand, requires jcq1

j, jcuj< 1=2 for

8We adopt a left-source holographic description for the fields
�q1

and �q2
, and a right-source description for �u and �d. See

Ref. [13].
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the third generation quarks, i.e. the operators O1 and Ou
need to both be relevant. In our numerical analysis of
the MCHM5 (hence in all the results presented in the
text), we have set cq2

� 0:4, cd � �0:55 for the third
generation, and varied �1=2< cu < 1=2, �1=2< cq1

<
cq2

. Choosing cq1
< cq2

also implies that the contribution
of �q2

to the Higgs potential will be suppressed and hence
negligible compared to that of �q1

(see also below). This
justifies the following identification:

 �q 
 �q1
; cq 
 cq1

; (A7)

where by �q we mean the field responsible for the contri-
bution of qL to the Higgs potential to which we referred in
the text.

Following the method of Ref. [4], one can derive the
most general form of the holographic Lagrangian by in-
troducing spurion fields and embedding the elementary
sources in complete SO�5� � U�1�X (chiral) multiplets.
The fact that the elementary qL couples to two different
CFT operators implies that there are two different ways to
embed it in a fundamental representation of SO(5), namely,
as the T3R � �1=2 or the T3R � �1=2 component of the
internal �2; 2�. More explicitly, grouping the entries of each
5 in SU�2�L � SU�2�R representations, one has

 �1L �
q01L
qL

� �
u0L

24 35; �2L �
qL
q02L

� �
d0L

24 35;
�uR �

quR
q0uR

� �
uR

24 35; �dR �
q0dR
quR

� �
dR

24 35:
(A8)

The multiplets �1L, �uR (�2L;�dR) have U�1�X
charge �2=3 (� 1=3), and all components other than qL,
uR and dR are nondynamical spurion fields. Therefore,
the most general �SO�5� � U�1�X�-invariant holographic
Lagrangian, at the quadratic order and in momentum
space, is

 L �2�
holo �

X
r�1;2

��i
rLp6 ��

ij�̂rL
0 �p� � �i�j�̂rL

1 �p���
j
rL

�
X
r�u;d

��i
rRp6 ��

ij�̂rR
0 �p� � �i�j�̂rR

1 �p���
j
rR

� ��i
1L��

ijM̂1L
0 �p� ��i�jM̂1L

1 �p���
j
uR

� ��i
2L��

ijM̂2L
0 �p� ��i�jM̂2L

1 �p���
j
dR � H:c:

(A9)

Here i; j � 1; . . . ; 5 are SO(5) indices, and � is the non-
linear realization of the Higgs field [4]:

 � �
sh
h

�
h1; h2; h3; h4; h

ch
sh

�
: (A10)

The form factors �̂, M̂ can be computed using the holo-
graphic technique of Ref. [4]; the result is

 

�̂1L
0 � �qL�cq1

; cu; ~mu�;

�̂1L
1 � �QL

�cq1
; cu; ~Mu� ��qL�cq1

; cu; ~mu�;

�̂2L
0 � �qL�cq2

; cd; ~md�;

�̂2L
1 � �QL

�cq2
; cd; ~Md� ��qL�cq2

; cd; ~md�;

�̂uR
0;1 � �̂1L

0;1�cq1
$ cu;L$ R�;

�̂dR
0;1 � �̂2L

0;1�cq2
$ cd;L$ R�;

M̂1L
0 � Mq�cq1

; cu; ~mu�;

M̂1L
1 � MQ�cq1

; cu; ~Mu� �Mq�cq1
; cu; ~mu�;

M̂2L
0 � Mq�cq2

; cd; ~md�;

M̂2L
1 � MQ�cq2

; cd; ~Md� �Mq�cq2
; cd; ~md�;

(A11)

where �qL;QL
and Mq;Q are the form factors defined in the

Appendix of Ref. [4]. After setting all nondynamical fields
to zero, the Lagrangian (A9) reduces to that of Eq. (3) with

 

�q
0 � �̂1L

0 � �̂2L
0 ;

�u
0 � �̂uR

0 � �̂uR
1 ;

�d
0 � �̂dR

0 � �̂dR
1 ;

�q1
1 � �̂1L

1 ; �u
1 � �

1
2�̂

uR
1 ; Mu

1 � M̂1L
1 ;

�q2
1 � �̂2L

1 ; �d
1 � �

1
2�̂

dR
1 ; Md

1 � M̂2L
1 :

(A12)

Since we set cq2
> cq1

, cd <�1=2, the form factors �̂2L
1 ,

�̂d
1 are suppressed compared to �̂1L

1 , �̂u
1 , and their effect

in the Higgs potential can be neglected.
The fermionic spectrum of the SM fields and heavy

resonances of the MCHM5 can be expressed in terms of
poles and zeros of the form factors (see Ref. [7] for the
gauge spectrum). Before EWSB, there are five towers of
states:

(i) a tower of qL ’s [21=6 of SU�2�L � U�1�Y] with
masses given by zerosfp6 �q

0g.
(ii) a tower of uR’s [12=3 of SU�2�L � U�1�Y] with

masses given by zerosfp6 �u
0g.

(iii) a tower of dR’s [1�1=3 of SU�2�L � U�1�Y] with
masses given by zerosfp6 �d

0g.
(iv) a tower of 27=6 of SU�2�L � U�1�Y with masses

given by polesfp6 ��u
0 �

1
2 �u

1�g.

LIGHT CUSTODIANS IN NATURAL COMPOSITE HIGGS . . . PHYSICAL REVIEW D 75, 055014 (2007)

055014-9



(v) a tower of 2�5=6 of SU�2�L � U�1�Y with masses
given by polesfp6 ��d

0 �
1
2 �d

1�g.

After EWSB the different towers are mixed and the final
spectrum consists of

(i) a tower of charge �2=3 fermions with masses given
by

 zeros
�
p2

�
�q

0 �
�2

2
�q1

1

��
�u

0 �
�2

2
�u

1

�
�
�2�1� �2�

2
�Mu

1 �
2

�
:

(ii) a tower of charge�1=3 fermions with masses given
by

 zeros
�
p2

�
�q

0 �
�2

2
�q2

1

��
�d

0 �
�2

2
�d

1

�
�
�2�1� �2�

2
�Md

1 �
2

�
:

(iii) a tower of charge �5=3 fermions with masses
given by polesfp6 ��u

0 �
1
2 �u

1�g.
(iv) a tower of charge�4=3 fermions with masses given

by polesfp6 ��d
0 �

1
2 �d

1�g.

From the formulas above for the fermions of charge 2=3
and�1=3, one recovers Eq. (5) by approximating the form
factors with their values at p2 � 0. Further use of
Eqs. (A11) and (A12) gives

 

mu ’
2

L1
�
��������������
1� �2

p ���������������������������������������������
�1=4� c2

q��1=4� c2
u�

q
~Mu�1� ~mu

~Mu�

�1=2� cu��1� �
2� � ~M2

u��1=2� cq� � �
2 ~m2

u�1=2� cu���
1=2

� �2�1=2� cq� � ~M2
u�2�1=2� cu� � ~m2

u�1=2� cq��2� �2����1=2; (A13)

and a similar formula for the down quark mass.

APPENDIX B: DEFINING THE MCHM10

The quark sector of the MCHM10 is defined in terms of 5D bulk multiplets transforming as antisymmetric representa-
tions of SO(5). Each SM generation is identified with the zero modes of three 102=3 of SO�5� � U�1�X,

 

�q �

�2; 2�qL �
q0L����

qL����

" #
�2; 2�qR �

q0R����

qR����

" #
�3; 1�qL���� �3; 1�qR����

�1; 3�qL���� �1; 3�qR����

2666664
3777775;

�u �

�2; 2�uL���� �2; 2�uR����

�3; 1�uL���� �3; 1�uR����

�1; 3�uL �

uL����

uc0L ����

dc0L ����

2664
3775 �1; 3�uR �

uR����

uR����

d0R����

2664
3775

2666666664

3777777775;

�d �

�2; 2�dL���� �2; 2�dR����

�3; 1�dL���� �3; 1�dR����

�1; 3�dL �

dL����

uc00L ����

dc00L ����

2664
3775 �1; 3�dR �

dR����

u0R����

dR����

2664
3775

26666666664

37777777775
;

(B1)

and an additional g�3; 1�R 	 g�1; 3�R� [an irreducible repre-
sentation of O(4)] localized on the IR boundary. Bulk and
boundary fields mix through the most general set of O(4)-
symmetric IR-boundary mass mixing terms:

 �3; 1�u;dL
g�3; 1�R � �1; 3�u;dL

g�1; 3�R� � H:c: (B2)

and

 

~Mu;d�3; 1�
u;d
L �3; 1�

q
R � �1; 3�

u;d
L �1; 3�

q
R�

� ~mu;d�2; 2�
q
L�2; 2�

u;d
R � H:c: (B3)

We will denote by ci, i � q, u, d, the bulk masses of each
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5D field �i in units of k. We have grouped the fields of each
multiplet �i in representations of SO�4� � SU�2�L �
SU�2�R, and used the fact that an antisymmetric of SO(5)
decomposes as 10 � 4 	 6 � �2; 2� 	 �1; 3� 	 �3; 1�. A
similar 5D embedding also works for the SM leptons,
although with different U�1�X charges.

The holographic interpretation of the 5D theory defined
above is that of three elementary fields qL, uR, dR coupled

to a CFT sector via the composite operators Oq, Ou, Od.9

This is the same 4D description of the model of Ref. [4],
though in this case the operators Oi transform as 102=3

representations of the SO�5� � U�1�X global symmetry of
the CFT. Following the usual procedure, we can embed the
elementary fields into complete SO�5� � U�1�X multiplets
[102=3 of SO�5� � U�1�X in this case],

 �qL �

q0L
qL

� �
�3; 1�qL
�1; 3�qL

26664
37775; �uR �

�2; 2�uR
�3; 1�uR
uR
uR
d0R

0@ 1A
2666664

3777775; �dR �

�2; 2�dR
�3; 1�dR
dR
u0R
dR

0B@
1CA

26666664
37777775 (B4)

and derive the most general holographic Lagrangian at the quadratic order and in momentum space10:

 L �2�
holo �

X
r�qL;uR;dR

Tr� ��rp6 �̂r
0�p��r� �� ��rp6 �̂r

1�p��r�
T� �

X
r�uR;dR

Tr� ��qLM̂
r
0�p��r� �� ��qLM̂

r
1�p��r�

T� � H:c:

(B5)

The form factors �̂, M̂ can be computed using the holo-
graphic technique of Ref. [4]:

 

�̂qL
0 � �QL

�cq; cu; ~Mu�;

�̂qL
1 � 2�qL�cq; cu; ~mu� ��QL

�cq; cu; ~Mu��;

�̂uR
0 � �̂qL

0 �cq $ cu; L$ R�;

�̂uR
1 � �̂qL

1 �cq $ cu; L$ R�;

�̂dR
0 � �̂qL

0 �cq $ cd; L$ R�;

�̂dR
1 � �̂qL

1 �cq $ cd; L$ R�;

M̂uR
0 � MQ�cq; cu; ~Mu�;

M̂uR
1 � 2Mq�cq; cu; ~mu� �MQ�cq; cu; ~Mu��;

M̂dR
0 � MQ�cq; cd; ~Md�;

M̂dR
1 � 2

���
2
p
Mq�cq; cd; ~md� �MQ�cq; cd; ~Md��:

(B6)

Here �qL;QL
and Mq;Q are the form factors defined in the

Appendix of Ref. [4]. After setting all nondynamical fields
to zero, the Lagrangian (B5) reduces to that of Eq. (3) with

 �q
0 � �̂qL

0 �
1

2
�̂qL

1 ; �u
0 � �̂uR

0 ; �d
0 � �̂dR

0 ;

�q1
1 � �

1

2
�̂qL

1 ; �q2
1 � ��̂qL

1 ; �u
1 �

1

2
�̂uR

1 ;

�d
1 �

1

2
�̂dR

1 ; Mu
1 �

1

2
���
2
p M̂uR

1 ; Md
1 �

1

2
M̂dR

1 :

(B7)

The fermionic spectrum of the MCHM10 can be ex-
pressed in terms of poles and zeros of the form factors.
Before EWSB, there are six towers of states:

(i) a tower of qL ’s [21=6 of SU�2�L � U�1�Y] with
masses given by zerosfp6 �q

0g.
(ii) a tower of uR’s [12=3 of SU�2�L � U�1�Y] with

masses given by zerosfp6 �u
0g.

(iii) a tower of dR’s [1�1=3 of SU�2�L � U�1�Y] with
masses given by zerosfp6 �d

0g.
(iv) a tower of 27=6 of SU�2�L � U�1�Y with masses

given by polesfp6 �q
0g.

(v) a tower of 15=3 plus a tower of 32=3 of SU�2�L �
U�1�Y with masses given by polesfp6 �u

0g.

The final spectrum after EWSB consists of
(i) a tower of charge �2=3 fermions with masses given

by

 zeros
�
p2

�
�q

0 �
�2

2
�q1

1

��
�u

0 �
�2

2
�u

1

�
�
�2�1� �2�

2
�Mu

1 �
2

�
:

9We adopt a left-source holographic description for �q and a
right-source description for �u and �d. See Ref. [13].

10The operator �ij�kl�m�ijklm is also SO(5) invariant, but its
form factor identically vanishes due to the O(4) symmetry of the
CFT. Also, we have omitted for simplicity a possible mixing
term between �u and �d, since it can be safely neglected in our
analysis due to the small coupling of bR to the CFT needed to
explain the bottom quark mass.
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(ii) a tower of charge�1=3 fermions with masses given
by

 zeros
�
p2

�
�q

0 �
�2

2
�q2

1

��
�d

0 �
�2

2
�d

1

�
�
�2�1� �2�

2
�Md

1 �
2

�
:

(iii) a tower of charge �5=3 fermions with masses
given by polesfp6 �q

0g and polesfp6 �u
0g.

From the formulas above for the fermions of charge 2=3
and�1=3, one recovers Eq. (5) by approximating the form
factors with their values at p2 � 0. Further use of Eqs. (B6)
and (B7) gives the same explicit formula valid for the
MCHM5, Eq. (A13), but a factor

���
2
p

smaller:

 mujMCHM10
’

1���
2
p mujMCHM5

: (B8)

A similar result is also valid for the down quark mass.
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