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We present perturbative calculations made with domain-wall fermions which possess a finite number of
points Ns in the extra fifth dimension. We have derived the required propagator functions, investigated the
one-loop properties of quark amplitudes at finite Ns, and evaluated three quantities that can provide
insights on chirality-breaking effects from the perturbative side. First we have computed the residual mass
for various choices of Ns and of the domain-wall height M. We have found that this radiatively induced
mass approaches zero reasonably fast with the extent of the fifth dimension, depending on M and on a
lesser extent on the coupling g0. We have also computed the differences of the renormalization constants
of the vector and axial-vector currents and of the scalar and pseudoscalar densities. Finally we have
calculated the chirally forbidden mixing (which at finite Ns is suppressed only partially) of an operator
which describes the lowest moment of the g2 structure function. The quantities that we have studied turn
out to lose gauge invariance when Ns is not infinite. We have also found that anomalous dimensions of
operators at finite Ns generally depend on Ns and M. In particular, the vector and axial-vector currents
have in general a nonzero anomalous dimension at finite Ns.
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I. INTRODUCTION

Domain-wall fermions [1–3] constitute one of the
known solutions of the Ginsparg-Wilson relation [4] and
are hence invariant with respect to chiral symmetry trans-
formations even away from the continuum limit, for non-
vanishing values of the lattice spacing a [5], while
avoiding at the same time unpleasant effects like doublers
and nonanaliticities. The massless chiral mode generated
by the domain wall survives one-loop renormalization and
the theory has been proven to be renormalizable at this
order [6,7]. The possibility arises of the construction of
chiral gauge theories at finite a [8]. Moreover, with this
kind of fermion the leading discretization errors are re-
duced to O�a2� when chiral symmetry is exact.

A certain amount of chiral symmetry breaking arises,
however, in Monte Carlo simulations of domain-wall fer-
mions, because they must be performed using lattices
which have a finite number of points, Ns, in the fifth
dimension. It is only in the theoretical limit in which the
extension of the fifth dimension becomes infinite that the
chiral modes (which are exponentially confined on the two
opposite walls) can fully decouple from each other, yield-
ing an exact chiral symmetry. The chiral modes acquire
some mass if the distance between the two walls is not
infinite, and to study the magnitude of these chirality-
violating effects is one of the main objectives of the present
work. With the computer speeds presently available it is
unfortunately not yet possible to obtain significant physics
from simulations performed at a large Ns, where these
chiral violations would be numerically negligible. After
the first pioneering Monte Carlo implementations of
domain-wall fermions [9,10] and subsequent advances

reported in [11–18], the most recent simulations, which
have considered phenomenological quantities as diverse as
weak matrix elements, structure functions and heavy-light
meson spectroscopy, have been mostly performed using
lattices with only Ns � 12 or 16 (for a selection of the
latest results see for example [19–32]).

The experiences gained in these recent investigations
seem to indicate that for extents of the extra fifth dimension
as small as Ns � 16 the chirality-breaking effects [15,33–
37] are still under control. The residual mass mres for
typical lattice spacings of about a�1 � 1:5–2 GeV gener-
ally turns out to be of O�10�3� or O�10�2�, depending on
whether simulations are carried out in quenched or full
QCD, and on which type of gauge action is used
[17,18,23]. In particular, when using quenched QCD in-
stead of the full theory, or renormalization group improved
gauge actions (like Iwasaki and DBW2) instead of the
simple plaquette action, the residual mass becomes sub-
stantially reduced. This is related to the fact that, at a fixed
choice of a, the values of� � 6=g2

0 are larger for quenched
compared to full QCD, as well as for improved gauge
actions compared to the plaquette, and the gauge fields at
these higher �’s are correspondingly smoother. The resid-
ual mass is then in general not very small (especially in the
full QCD case), and it can at times become comparable to
the input light sea quark masses. However, if the exponen-
tial suppression of chirality-breaking effects takes place
rather quickly with the length of the fifth dimension, then
increasing Ns a little further could already be sufficient to
obtain at last almost negligible chirality-breaking effects.

The extent to which chiral symmetry is broken in lattices
with a small Ns is thus one of the most important issues
which needs to be understood in present domain-wall
simulations. To the extent that one-loop calculations can
provide clues to the true behavior of the truncated domain-*Electronic address: stefano.capitani@uni-graz.at
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wall theory at finite Ns, we believe that it is useful and
interesting to investigate chirality-breaking effects also
from the point of view of perturbation theory, complement-
ing nonperturbative investigations of such effects. Towards
this end we present here the results of some selected one-
loop calculations which we have carried out using the
Feynman rules which exactly correspond to the theory at
finite Ns. This is at variance with past domain-wall pertur-
bative calculations where, in place of the exact quark
propagators, their asymptotic expressions for large Ns
were instead used [38–41]. The purpose of this work is
to calculate with the exact Feynman rules the deviations
from the Ns � 1 results in the case where Ns is limited to
small values of O�10�, that is for situations which roughly
correspond to present simulations. We use the plaquette
gauge action, and we can obtain some estimates of the
amount of perturbative chiral violations by focusing on
quantities like the additive renormalization to the quark
mass (i.e., the residual mass) and the deviations of some
amplitudes from their values at Ns � 1, including a chir-
ally forbidden mixing. Since the cost of domain-wall
simulations grows approximately linear with Ns, it is of
some importance to understand how small Ns can be kept
without occurring in large values of the residual mass. A
thorough exploration of large regions in the two-
dimensional space spanned by Ns and the domain-wall
height M would be quite expensive when using
Monte Carlo simulations, and perturbation theory remains
then often the more practical way for gathering hints of
what is happening in this space. The study of the depen-
dence on M and Ns of various indicators of chiral viola-
tions is thus one of the main aims of the work.

Significant perturbative insights at finite Ns beyond tree
level were provided some years ago by Kikukawa,
Neuberger, and Yamada [42], who diagonalized the mass
matrix in the truncated overlap and derived one-loop equa-
tions under certain assumptions on the gauge fields. We
improve here on this by providing numerical results for the
residual mass. What we present is a complete one-loop
calculation of such radiative effects, with the aim of seeing
how mres, and other quantities which can act as indicators
of chiral symmetry breaking, behave when Ns and M
change.

Other methods also have been used to gain insights on
these effects. Recently Christ [43] has investigated the
residual mass analytically by looking at the eigenfunctions
of the five-dimensional transfer matrix [3]. Building on the
understanding of the localization properties of the domain-
wall modes, characterized by their mobility edge �c [44–
46] (for recent investigations see [47– 49]), the leading
effects were estimated as

 mres � R4
e�e��c�

exp���cNs�
Ns

� R4
l �l�0�

1

Ns
; (1)

where � is the density per unit spacetime volume of the

eigenvalues of the logarithm of the transfer matrix, and l
and e stand for localized and extended modes with average
size R, respectively. The energy threshold from localized to
extended modes is given by the mobility edge �c, which is
then also responsible for the speed with which the chiral
violations decay with Ns.

It has also been shown in [50], following [51], that in
Monte Carlo simulations an increase of the rate of decay of
the residual mass can be achieved by projecting out a few
of the smallest eigenvalues of the four-dimensional opera-
tor defining the transfer matrix along the fifth dimension.
This also has the further effect of damping the large
statistical fluctuations. An alternative method for a practi-
cal reduction of the residual mass was described in [52].

We have automated the calculations presented in this
article by developing suitable FORM codes [53], which are a
sizeable extension of the programs which were used in the
calculations presented in Ref. [41] for Ns � 1. These
codes are now able to compute matrix elements for general
values of Ns and M.

The integrals of the Feynman diagrams have been nu-
merically evaluated by keeping Ns fixed while at the same
time refining the integration grid in the usual four-
dimensional momentum space (where we needed to con-
sider values of Lx � 120). One might wonder whether this
way of performing the computation of the integrals, which
amounts to taking a finite extra dimension with a small
number of points while the number of points in the other
four dimensions goes to infinity, is legitimate. One could
after all object that the number of lattice points in the
standard four dimensions is also bound to be finite in any
Monte Carlo simulation (although it can reach the order of
102 for each of the coordinates, a number certainly larger
than any at present practical value of Ns).

We can, however, observe that in the usual four-
dimensional momentum space one does not encounter so
wide variations for the Feynman integrand functions as
instead is the case in the fifth dimension, where the
Feynman integrands contain functions with an exponential
behavior, responsible for the fact that for small Ns (of the
order of 10) large deviations of the integrals from their
asymptotic values can be observed. Indeed, refining the
integration grid in the usual four-dimensional momentum
space from, say, Lx � 60 to Lx � 80, generally produces
minimal differences in the momentum integrals, and it is
only in order to extract five or more significant digits that
one needs to use Lx � 100 or higher. I think that it is
important in this regard to keep in mind that the shape of
the propagator in the fifth dimension corresponds to physi-
cal effects strictly connected with chirality (or lack
thereof), whereas in four-dimensional momentum space
it corresponds to finite size effects only. One could also
take the point of view in which a lattice spacing as for the
fifth dimension, which is distinct from the four-
dimensional lattice spacing a, is introduced, and imagine
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a situation where one keeps as finite while the usual a goes
to zero.

In the domain-wall perturbative calculations for infinite
Ns made so far it was implicitly assumed that one could
take the limit Ns ! 1 for the quark propagators before
actually using them to perform the computation of the
Feynman diagrams and the momentum integration. This
could in principle present some problems, because these
asymptotic propagators know about the Atiyah-Singer in-
dex, which is something which is not present in the theory
at finite Ns, and furthermore they possess extra infrared
singularities because of the exactly massless chiral mode.
In the present work we always in the first place compute
the Feynman diagrams and the integrals using the exact
Feynman rules appropriate for finite Ns, and only after-
wards we try to investigate the limit Ns ! 1 by computing
the integrals anew for each increasing value of Ns. We can
then observe that, apart from extreme values of M (see
Sec. VIII), these integrals rapidly approach the values
obtained with the theory which uses the Ns � 1 propaga-
tors. By using the exact theory with finite Ns, we have
hence also provided the check that in the large Ns limit one
indeed recovers the results obtained using the simpler
asymptotic theory. We can thus confirm, at least numeri-
cally, that the inversion of the limits was legitimate.

This article is organized as follows. In Sec. II we in-
troduce all propagator functions which are necessary for

the perturbative calculations at finite Ns, and in Sec. III we
analyze the one-loop renormalization of quark amplitudes
in this theory. Since in this article we restrict ourselves to
the calculation of finite diagrams, the treatment of diver-
gences in the theory at finiteNs is left for a future work. We
have, however, computed the coefficients of the divergent
terms in a few cases, and we have seen that they are in
general not equal to their continuum values. In fact, they
depend on Ns and on the height of the domain wall, M, as
we show in Sec. IV, where we also briefly discuss the
implications of this finding. In Sec. V we then present
the computation of the residual mass and encounter an-
other feature of calculations at finiteNs, namely, that gauge
invariance is lost. In Sect. VI we show the results at finite
Ns for the difference between the vector and axial-vector
renormalization constants, which should be zero at infinite
Ns. In Sec. VII we finally present a power-divergent mix-
ing due to the breaking of chiral symmetry, for an operator
which describes polarized parton distributions, and in
Sec. VIII we discuss what happens near the borders of
allowed values of M, M ! 0, and M ! 2, before making
in Sec. IX some concluding remarks.

II. PERTURBATION THEORY

We work with the standard formulation of domain-wall
fermions of Shamir [2],

 SDWq �
X
x

XNs
s�1

�
1

2

X
�

� � s�x���� � r�U��x� s�x� �̂� � � s�x���� � r�Uy��x� �̂� s�x� �̂�� � � � s�x�P� s�1�x�

� � s�x�P� s�1�x�� � �M� 1� 4r� � s�x� s�x�
�
�m

X
x

� � Ns�x�P� 1�x� � � 1�x�P� Ns�x��; (2)

where we put r � �1, that is the Wilson term is added to
the action with minus the conventional sign. The height of
the domain wall, or Dirac mass, M, at tree level satisfies
0<M< 2, so that the correct pattern of chiral modes
(with no doublers) is attained when Ns ! 1: in fact for
M< 0 there is no chiral mode, while for M> 2 there are
four of them (and even more when M is further increased).
The chiral projectors are P� � �1� �5�=2. Here and in
most of the paper we put a � 1, but in some contexts, like
when discussing the residual mass, the lattice spacing will
be explicitly shown.

We refer to [39–41] for the Feynman rules which derive
from this domain-wall action in the limit Ns ! 1. In this
article we always work at finiteNs, and the expressions that
we have to use for the quark propagators are then different.
They were partially derived in [38], and here we compute
the remaining functions and provide the complete set of
required propagators.

In (four-dimensional) momentum space the domain-
wall Dirac operator has the form

 Dst�p� � �s;t
X
�

i�� sinp� � �W
�
st �p� �mM

�
st �P�

� �W�st �p� �mM
�
st �P�; (3)

where the mass matrix is given by

 W�st �p� � �W�p��s;t � �s�1;t; (4)

 M�st � �s;Ns�t;1; (5)

 M�st � �s;1�t;Ns ; (6)

and

 W�p� � 1�M� 2r
X
�

sin2 p�
2
: (7)

In more explicit form, we have
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 W��p� �

�W�p� 1

�W�p� . .
.

. .
.

1
�W�p�

0
BBBBB@

1
CCCCCA; (8)

 W��p� �

�W�p�
1 �W�p�

. .
. . .

.

1 �W�p�

0
BBBB@

1
CCCCA; (9)

 M� �
1

0
@

1
A; (10)

 M� �
1

0
@

1
A: (11)

In practical terms this theory looks like having several
flavors of lattice Dirac fermions, which are mixed in a
very special way so that a large mass hierarchy is gener-
ated. At the end this theory indeed contains one chiral
mode which is nearly massless together with Ns � 1 heavy
fermions.

In this work we only consider the case in which no
explicit mass term appears in the Lagrangian (m � 0).
The tree-level five-dimensional quark propagator is then
given by

 h s��p� � t�p�i �
X
u

���i�� sinp��s;u

�W�su�p��GR
ut�p�P�

� ��i�� sinp��s;u

�W�su�p��GL
ut�p�P�	; (12)

where the expressions of the functions GR�p� and GL�p�
are [38]
 

GR
st�p� �

A�p�
F�p�

��1�W�p�e���p���e�2Ns��p� � 1�e�s�t���p�

� 2W�p� sinh���p���e�s�t���p� � e��s�t���p��

� �1�W�p�e��p���1� e2Ns��p��e��s�t���p�	

� A�p��e�Ns�js�tj���p� � e��Ns�js�tj���p��; (13)

 

GL
st�p� �

A�p�
F�p�

��e�2��p� �W�p�e���p���e�2Ns��p� � 1�


 e�s�t���p� � 2W�p� sinh���p��


 �e�s�t���p� � e��s�t���p��

� �e2��p� �W�p�e��p���1� e2Ns��p��e��s�t���p�	

� A�p��e�Ns�js�tj���p� � e��Ns�js�tj���p��: (14)

In these expressions the quantity ��p� appears, which is
defined by the positive solution of the equation [2,54]

 cosh���p�� �
1�W2�p� �

P
�

sin2p�

2jW�p�j
; (15)

and one uses the abbreviations

 A�p� �
1

2W�p� sinh���p��
1

2 sinh�Ns��p��
; (16)

 

F�p� � eNs��p��1�W�p�e��p��

� e�Ns��p��1�W�p�e���p��: (17)

When W is negative, a situation which arises only when
1<M< 2 if the momentum is small enough, the propa-
gator is given by the above equations with the replacements

 W ! �jWj; (18)

 e�� !�e��; (19)

which imply that also sinh� changes sign.
The standard ‘‘physical’’ quark fields used both in

Monte Carlo simulations and in perturbative calculations
are given by

 q�x� � P� 1�x� � P� Ns�x�; (20)

 �q�x� � � Ns�x�P� �
� 1�x�P�: (21)

Strictly speaking these fields do not correspond exactly to
the chiral modes, which should be instead eigenvectors of
the mass matrix, like

 �0�x� �
���������������
1� w2

0

q X
s

�P�ws�1
0  s�x� � P�w

Ns�s
0  s�x��;

(22)

where one calls

 w0 � W�0� � 1�M: (23)

The physical quark field q�x� is, however, more convenient
to use than �0�x�, given that w0 undergoes already at one
loop a renormalization deriving from the additive correc-
tion to the domain-wall height M [see Eq. (54) below].
Thus one instead takes q�x� to represent the physical zero
modes of the theory. Moreover, at finite Ns an additional
issue about �0�x� would arise, because this field is an
eigenvector of the mass matrix only up to terms of order
Nse�Ns��0� [38,40,42].

The computation of matrix elements involving physical
states and operators requires the introduction of additional
propagators which connect the four-dimensional physical
quark fields with the five-dimensional quark fields which
appear in the Lagrangian. We have here derived the ex-
pressions of these propagators for the case of finite Ns, and
they are given by
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hq��p� � s�p�i � P�h 1��p� � s�p�i � P�h Ns��p�
� s�p�i

�

�i�� sinp�
E�p�

� e�Ns��p�
2W�p� sinh���p��

E�p��1� e�2Ns��p��

�


 ��e��Ns�s���p� � e�2Ns��p�e�Ns�s���p��P� � �e
��s�1���p� � e�2Ns��p�e�s�1���p��P��

�
1

1� e�2Ns��p�
e���p���e��s�1���p� � e�2�Ns�1���p�e�s�1���p��P�

� �e��Ns�s���p� � e�2�Ns�1���p�e�Ns�s���p��P��; (24)

 

h s��p� �q�p�i � h s��p� � 1�p�iP� � h s��p� � Ns�p�iP�

� ��e��Ns�s���p� � e�2Ns��p�e�Ns�s���p��P� � �e
��s�1���p� � e�2Ns��p�e�s�1���p��P��




�i�� sinp�
E�p�

� e�Ns��p�
2W�p� sinh���p��

E�p��1� e�2Ns��p��

�

�
1

1� e�2Ns��p�
e���p���e��s�1���p� � e�2�Ns�1���p�e�s�1���p��P�

� �e��Ns�s���p� � e�2�Ns�1���p�e�Ns�s���p��P��; (25)

where we have defined

 E�p� � 1�W�p�e��p� � e�2Ns��p��1�W�p�e���p��: (26)

We have also numerically checked the above expressions and the correctness of their implementation in our computer
codes by verifying the validity for each s (for various choices of Ns) of the identities

 GL
1s�p� � GL

s1�p� � �
1

E�p�
�e��s�1���p� � e�2Ns��p�e�s�1���p��; (27)

 GR
Nss
�p� � GR

sNs
�p� � �

1

E�p�
�e��Ns�s���p� � e�2Ns��p�e�Ns�s���p��; (28)

 X
t

W�Nst�p�G
L
ts�p� �

X
t

W�st �p�G
R
tNs
�p�

� �
1

1� e�2Ns��p�
e���p��e��Ns�s���p� � e�2�Ns�1���p�e�Ns�s���p��

� e�Ns��p�
2W�p� sinh���p��

E�p��1� e�2Ns��p��
�e��s�1���p� � e�2Ns��p�e�s�1���p��; (29)

 X
t

W�1t �p�G
R
ts�p� �

X
t

W�st �p�G
L
t1�p�

� �
1

1� e�2Ns��p�
e���p��e��s�1���p� � e�2�Ns�1���p�e�s�1���p��

� e�Ns��p�
2W�p� sinh���p��

E�p��1� e�2Ns��p��
�e��Ns�s���p� � e�2Ns��p�e�Ns�s���p��; (30)

which relate the propagators hq��p� � s�p�i and h s��p� �q�p�i to h s��p� � t�p�i.
The calculation of perturbative amplitudes also requires the knowledge of the expressions of these new propagators for

small momentum. In this limit we obtain
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 hq��p� � s�p�ic � �
1� w2

0

1� w2Ns
0

ip6 � wNs0 �1� w
2
0�

p2 � w2Ns
0 �1� w

2
0�

2
��wNs�s0 � w2Ns

0 w��Ns�s�0 �P� � �w
s�1
0 � w2Ns

0 w��s�1�
0 �P��

�
1

1� w2Ns
0

w0��w
s�1
0 � w2�Ns�1�

0 w��s�1�
0 �P� � �w

Ns�s
0 � w2�Ns�1�

0 w��Ns�s�0 �P��; (31)

 h s��p� �q�p�ic � �
1� w2

0

1� w2Ns
0

��wNs�s0 � w2Ns
0 w��Ns�s�0 �P� � �w

s�1
0 � w2Ns

0 w��s�1�
0 �P��

ip6 � wNs0 �1� w
2
0�

p2 � w2Ns
0 �1� w

2
0�

2

�
1

1� w2Ns
0

w0��w
s�1
0 � w2�Ns�1�

0 w��s�1�
0 �P� � �w

Ns�s
0 � w2�Ns�1�

0 w��Ns�s�0 �P��; (32)

where w0 is defined in Eq. (23). Since w0 � e���0�, it is
easy to see that the terms which are proportional to wNs0 �
e�Ns��0� rapidly approach zero when Ns becomes large. In
the derivation of the above formulas we have used the
useful small momentum expansions

 1�W�p�e��p� � �
p2

1� w2
0

; (33)

 1�W�p�e���p� � 1� w2
0 � w0

1� w0 � w
2
0

1� w2
0

p2; (34)

and

 e�Ns��p�
2W�p� sinh���p��

E�p�
� �

wNs0 �1� w
2
0�

2

p2 � w2Ns
0 �1� w

2
0�

2
;

(35)

and we have dropped all terms of order p2wNs0 and higher,
which are much smaller than either of the factors p2 orwNs0
alone, and are not relevant when p! 0. It is easy to check
that all the propagators that we have derived in this section
reduce to the expressions used in the calculations of
Refs. [39–41] when Ns is large. Notice also that the
function E�p� introduced here tends in this approximation
to the function F�p� as defined in those articles. The above
expressions for the small momentum propagators can also
be used for M> 1 without further modifications (as we
have also numerically checked).

Finally, we also need the function that describes the
propagation of the physical fields alone. This is given by

 hq��p� �q�p�i �
1

E�p�
�i�� sinp��1� e

�2Ns��p��

� e�Ns��p� � 2W�p� sinh���p���; (36)

which in the limit of small momentum becomes

 hq��p� �q�p�ic � ��1� w
2
0�
ip6 � wNs0 �1� w

2
0�

p2 � w2Ns
0 �1� w

2
0�

2
: (37)

It is interesting to see that it is also possible to calculate
hq��p� �q�p�i in an alternative way directly from the five-
dimensional propagator of Eq. (12):

 

hq �qi � P�h 1
� NsiP� � P�h 1

� 1iP� � P�h Ns
� NsiP�

� P�h Ns
� 1iP�

� �1
2�i�� sinp��G

R
NsNs

P� �G
L
11P��

�W�GR
1Ns
P� �GL

Ns1
P��	: (38)

The fact that in this way we obtain again the result of
Eq. (37) provides a good check of the above formulas.

Domain-wall fermions present thus at finite Ns some
new peculiar features. Although the theory which we have
started from is described by a Lagrangian of massless
quarks, the propagator of the physical quark field,
hq��p� �q�p�ic, acquires when Ns is kept finite a nonvanish-
ing mass term, which at tree level is given by

 am�0�res � �w
Ns
0 �1� w

2
0� � ��1�M�

NsM�2�M�; (39)

as can be seen from the general expression of a fermion
propagator of mass � for small momentum in Euclidean
space:

 

�ip6 ��

p2 ��2
�

1

ip6 ��
: (40)

We readily see that this tree-level residual mass vanishes
when Ns � 1. We will only consider even values of Ns, in
which case the fermion determinant can be proven to be
positive (so that the square root of the two-flavor theory is
well defined and an odd number of dynamical flavors can
be simulated). Then m�0�res is always a negative quantity.
With our calculation we have thus reproduced, up to a
sign, the result for m�0�res found in [2,33,34,40,42]. This
was derived by considering the quadratic operator DyD,
which could perhaps explain the sign discrepancy.

We will see that when the one-loop corrections are taken
into account, the residual mass changes sign and becomes
positive.

If we had used the chiral mode �0, Eq. (22), the propa-
gator for small momentum would have been given by
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h�1� w2
0��0 ��0ic � �

1� w2
0

p2 � w2Ns
0 �1� w

2
0�

2




�
ip6 � wNs0 �1� w

2
0��1� 2w2Ns

0 �

� Ns
w2Ns

0 �1� w
2
0�

2

1� w2Ns
0

�
; (41)

which compared to hq �qic has correction terms of higher
order in wNs0 in the numerator. We remind the reader,
however, that �0 deviates from what would be the exact
chiral mode for finite Ns by terms of order Nsw

Ns
0 . The real

physical propagator would then also present further cor-
rections terms, and it could be that the expression in
Eq. (41) would get simpler.

To complete the setup of our calculations, we also recall
that we use the plaquette action in a general covariant
gauge, where the gluon propagator is given by

 G�	�k� �
1

4
P
�

sin2 k�
2

�
��	 � �1� ��

4 sin
k�
2 sink	2

4
P
�

sin2 k�
2

�
; (42)

so that � � 1 and � � 0 correspond to the Feynman and
Landau gauges, respectively. The QCD vertices that we
need are the usual ones, and (apart from color factors) they
have the form

 V�1�� �p� � �g0

�
i�� cos

p�
2
� sin

p�
2

�
; (43)

 V�2��	�p� �
1

2
g2

0

�
i�� sin

p�
2
� cos

p�
2

�
� ��	 (44)

for the interaction of the quark current with one gluon and
two gluons, respectively, where p in this case stands for the
sum of the incoming and outgoing quark momenta.

III. RENORMALIZATION AT FINITE Ns

Let us now investigate the properties of the renormal-
ization of the self-energy of a massless quark at finite Ns.
We first notice that the one-loop propagator of the physical
field can be written, according to the general form of the
external legs hq��p� � s�p�ic and h s��p� �q�p�ic, as

 hq��p� �q�p�i1loop �
1� w2

0

ip6 � wNs0 �1� w
2
0�
�

1� w2
0

ip6 � wNs0 �1� w
2
0�

�q�p�
1� w2

0

ip6 � wNs0 �1� w
2
0�

�
1� w2

0

ip6 � wNs0 �1� w
2
0� � �1� w

2
0��q�p�

; (45)

where
 

�q�p� �
X
s;t

1

1� w2Ns
0

�
�wNs�s0 � w2Ns

0 w��Ns�s�0 �P� � �w
s�1
0 � w2Ns

0 w��s�1�
0 �P�

� w0
ip6 � wNs0 �1� w

2
0�

1� w2
0

��ws�1
0 � w2�Ns�1�

0 w��s�1�
0 �P� � �w

Ns�s
0 � w2�Ns�1�

0 w��Ns�s�0 �P��
�

��st�p� �
1

1� w2Ns
0

�
�wNs�t0 � w2Ns

0 w��Ns�t�0 �P� � �w
t�1
0 � w2Ns

0 w��t�1�
0 �P� � w0��w

t�1
0 � w2�Ns�1�

0 w��t�1�
0 �P�

� �wNs�t0 � w2�Ns�1�
0 w��Ns�t�0 �P��

ip6 � wNs0 �1� w
2
0�

1� w2
0

�
(46)

contributes to the g2
0 order and the functions GR

st and GL
st

give contributions to �st�p� only. For the half-circle dia-
gram of the self-energy we have
 

�st�p� �
Z d4k

�2
�4
X
�	

V�1�� �p� k�h s��k� � t�k�i


 V�1�	 �p� k�G�	�p� k�; (47)

and for the tadpole diagram

 �st�p� �
Z d4k

�2
�4
X
�	

V�2��	�2p�G�	�k� � �st: (48)

The general form of the result for �q�p� is
 

�q�p� �
�g2

1� w2
0

�
�0

a
� ip6 �c�Ns;M��1

loga2p2 � �1�

� �ip6 � wNs0 �1� w
2
0��

2w0

1� w2
0

�3

�
; (49)

where from now on we call for brevity �g2 � �g2
0=16
2�CF

[with CF � �N2
c � 1�=2Nc for the SU�Nc� gauge group].

We can observe that �q differs in a few aspects from the
corresponding expression for infiniteNs. In fact, apart from
the different coefficient of the logarithmic term, which now
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depends on Ns and M (see Sec. IV), and the slightly
different coefficient of �3, it also contains a totally new
contribution proportional to 1=a, called �0. This factor
originates from the breaking of chiral symmetry and comes
from the terms of �st of order zero in p, which are called
W�1 in the work [39], where it was shown that their con-
tribution to �q vanishes for Ns ! 1. This �0 is a mass
correction term, and the one-loop radiatively induced mass
is indeed given by

 am�1�res � �w
Ns
0 �1� w

2
0� � �g2�0; (50)

as can be easily seen when the one-loop correction to the
quark propagator is cast in the same form as its tree-level
expression:

 

hq��p� �q�p�i1loop �
1� w2

0

ip6 � wNs0 �1� w
2
0� � �1� w

2
0��q�p�

�
1� w2

0

ip6 Z�1
2 �m

�1�
res

Zw: (51)

This O�a�1� critical mass, reminiscent of the analogous
quantity for Wilson fermions, vanishes when the theory
describes exact chiral fermions, that is at infinite Ns, but is
different from zero when computations are done at any
finite Ns. This means that in the latter case the �0 contri-
bution generates a finite additive renormalization to the
quark mass, which can represent a measure of chirality-
breaking effects. We associate this perturbative critical
mass mres with the residual mass which in Monte Carlo

simulations is computed by looking at the explicit chiral
symmetry breaking term in the axial Ward identities.

The results above should not come as a surprise, since
after all we are working here with a theory of Ns Wilson
fermions, Ns � 1 of which are heavy states (not counting
the doublers), and the necessity of a fine-tuning to some
critical mass comes out naturally. As in the case of Wilson
fermions, where the hopping parameter is renormalized
away from its tree-level value 1=8, in order to obtain a
massless pion in domain-wall simulations the quark mass
must be tuned to a nonzero number, which at one loop is
given by the critical mass given above. This defines the
chiral limit when no explicit mass term appears in the
Lagrangian. Of course higher loops and nonperturbative
effects give further contributions to the shift of the critical
mass. From a practical point of view, it is interesting to see
how small this critical mass is, together with its depen-
dence on Ns (and M). In the free case the numerical results
for mres according to Eq. (39) are collected in Table I
(where they have already been multiplied for 16
2, so as
to ease the comparisons with the one-loop results for the
critical mass presented in the next section). We expect that
the critical mass substantially decreases when Ns becomes
large, as can be verified at one loop from Tables XII to XV
in the next section.

The other quantities appearing in the last line of Eq. (51)
are

 Z2 � 1� �g2�c�Ns;M��1
loga2p2 � �1�; (52)

which is the quark wave function renormalization factor,
and

TABLE I. Residual mass at tree level in lattice units (multiplied for 16
2).

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �12:915 56 �8:473 90 �5:559 73 �3:647 74 �2:393 28 �1:570 23 �1:030 23 �0:190 90 0
0.2 �9:537 67 �3:906 63 �1:600 15 �0:655 42 �0:268 46 �0:109 96 �0:045 04 �0:001 27 0
0.3 �4:642 74 �1:114 72 �0:267 64 �0:064 26 �0:015 43 �0:003 70 �0:000 89 0.000 00 0
0.4 �1:697 50 �0:220 00 �0:028 51 �0:003 70 �0:000 48 �0:000 06 �0:000 01 0.000 00 0
0.5 �0:462 64 �0:028 91 �0:001 81 �0:000 11 �0:000 01 0.000 00 0.000 00 0.000 00 0
0.6 �0:086 93 �0:002 23 �0:00006 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 �0:009 43 �0:000 08 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 �0:000 39 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 �0:000 39 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 �0:009 43 �0:000 08 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 �0:086 93 �0:002 23 �0:000 06 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 �0:462 64 �0:028 91 �0:001 81 �0:000 11 �0:000 01 0.000 00 0.000 00 0.000 00 0
1.6 �1:697 50 �0:220 00 �0:028 51 �0:003 70 �0:000 48 �0:000 06 �0:000 01 0.000 00 0
1.7 �4:642 74 �1:114 72 �0:267 64 �0:064 26 �0:015 43 �0:003 70 �0:000 89 0.000 00 0
1.8 �9:537 67 �3:906 63 �1:600 15 �0:655 42 �0:268 46 �0:109 96 �0:045 04 �0:001 27 0
1.9 �12:915 56 �8:473 90 �5:559 73 �3:647 74 �2:393 28 �1:570 23 �1:030 23 �0:190 90 0
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 Zw � 1�
2w0

1� w2
0

�g2�3 � 1� �g2zw; (53)

which represents an additive renormalization to w0 and
hence to the domain-wall height M [39], as can be inferred
from

 �1� w2
0�Zw � 1� �w0 � �g2�3�

2 �O� �g4�: (54)

There is indeed no chiral symmetry which can protect this
mass, even at Ns � 1. The additive renormalization to M
can be traced back, in the damping factors hq��p� � s�p�ic
and h s��p� �q�p�ic in Eq. (46), to the terms which are
proportional to ip6 . Notice how these terms are also pro-
portional to wNs0 �1� w

2
0�, which although being of a differ-

ent order in a is required for the correct recasting of the
one-loop propagators in the form of Eq. (51).

The renormalization of a composite operator �q�x�Oq�x�
which is multiplicatively renormalizable can also be ex-
pressed in a simple way. Again, by looking at the general
form of the propagators the one-loop matrix element of
such an operator between physical quark states can be
written as

 h� �qOq�q �qi1loop �
1� w2

0

ip6 � wNs0 �1� w
2
0�
� AO�p� �O



1� w2

0

ip6 � wNs0 �1� w
2
0�
; (55)

where AO�p� contains the contribution of the damping
factors. For a logarithmically divergent operator it takes
the form

 AO�p� � �g2����Ns;M�O loga2p2 � BO�; (56)

where the anomalous dimension turns out in general to be a
function of Ns and M, even at lowest order.

IV. DIVERGENCES AT FINITE Ns

As we have anticipated in the previous section, in the
case of the self-energy, Eq. (49), and of a divergent opera-
tor, Eq. (56), the coefficients of the logarithmic divergen-
ces turn out to depend on Ns and M. It is only when
Ns � 1 that they become equal to the ones calculated in
the continuum. We give here some examples of this phe-
nomenon by computing a few of these coefficients.

The divergence of the half-circle diagram of the self-
energy comes from the terms which are of first order in p in
the integral

 

2i
Z d4k

�2
�4
1� w2

0

�1� w2Ns
0 �

2

X
��

X
st

��wNs�s0 � w2Ns
0 w��Ns�s�0 �P� � �ws�1

0 � w2Ns
0 w��s�1�

0 �P��



k � p

�k� p�4

�
��� � �1� ��

k�k�
�k� p�2

�
� �� � ��k� � �� � � ~GR

st�k�P� � ~GL
st�k�P��


 ��wNs�t0 � w2Ns
0 w��Ns�t�0 �P� � �w

t�1
0 � w2Ns

0 w��t�1�
0 �P��; (57)

where the small k expansions of the functions GR and GL are given by

 

~GR
st�k� �

1� w2
0

k2 � �m�0�res�
2

�
w2Ns�s�t

0 �
w2Ns

0

1� w2Ns
0

�ws�t0 � w��s�t�0 � �O�k2�

�
; (58)

 

~GL
st�k� �

1� w2
0

k2 � �m�0�res�
2

�
ws�t�2

0 �
w2Ns

0

1� w2Ns
0

�ws�t0 � w��s�t�0 � �O�k2�

�
: (59)

The terms proportional to w2Ns�s�t
0 and ws�t�2

0 , which are localized near the two walls and provide the leading
approximation for large Ns to the continuum coefficient, have already been given in [38,39].

After doing the gamma algebra and carrying out the sums in the indices s and t in the fifth dimension, we get a compact
analytic expression for the coefficient of the logarithmic term, as a function of Ns and M:

 c�Ns;M��1
� c1�1

�

�
1� Nsw

2Ns
0

1� w2
0

1� w2Ns
0

��
1� Nsw

2Ns
0

1� w2
0

1� w2Ns
0

� 2
w2�Ns�1�

0

1� w2Ns
0

�
1� Ns

1� w2
0

w2
0�1� w

2Ns
0 �

��
; (60)

where c1�1
� � is the value of the coefficient in the case of exact chiral symmetry. Numerical values of c�Ns;M��1

for various
choices of Ns and M in Feynman gauge are shown in Table II.

For a generic bilinear �q�x��q�x�, the divergence is obtained by computing the following integral from the vertex
diagram:

CHIRAL VIOLATIONS IN DOMAIN-WALL QCD FROM . . . PHYSICAL REVIEW D 75, 054505 (2007)

054505-9



 

�
Z d4k

�2
�4
�1� w2

0�
2

�1� w2Ns
0 �

4

X
��

X
st

��wNs�s0 � w2Ns
0 w��Ns�s�0 �P� � �w

s�1
0 � w2Ns

0 w��s�1�
0 �P�

� wNs�1
0 ��ws�1

0 � w2�Ns�1�
0 w��s�1�

0 �P� � �w
Ns�s
0 � w2�Ns�1�

0 w��Ns�s�0 �P���


 ��

�
��wNs�s0 � w2Ns

0 w��Ns�s�0 �P� � �w
s�1
0 � w2Ns

0 w��s�1�
0 �P��

ik6 �m�0�res

k2 � �m�0�res�2

�
w0

1� w2
0

��ws�1
0 � w2�Ns�1�

0 w��s�1�
0 �P� � �w

Ns�s
0 � w2�Ns�1�

0 w��Ns�s�0 �P��
�


 � �
1

�k� p�2
���� � �1� ��

k�k�
�k� p�2

� 


�
ik6 �m�0�res

k2 � �m�0�res�
2
��wNs�t0 � w2Ns

0 w��Ns�t�0 �P� � �w
t�1
0 � w2Ns

0 w��t�1�
0 �P��

�
w0

1� w2
0

��wt�1
0 � w2�Ns�1�

0 w��t�1�
0 �P� � �w

Ns�t
0 � w2�Ns�1�

0 w��Ns�t�0 �P��
�


 ����w
Ns�t
0 � w2Ns

0 w��Ns�t�0 �P� � �wt�1
0 � w2Ns

0 w��t�1�
0 �P� � w

Ns�1
0 ��wt�1

0 � w2�Ns�1�
0 w��t�1�

0 �P�

� �wNs�t0 � w2�Ns�1�
0 w��Ns�t�0 �P���: (61)

The coefficient of the logarithmic term turns out after many simplifications to be given by

 c�Ns;M�� � c1� �
�
1� Nsw

2Ns
0

1� w2
0

1� w2Ns
0

��
1� Nsw

2Ns
0

1� w2
0

1� w2Ns
0

� 4w2Ns
0

�
1� Ns

1� w2
0

1� w2Ns
0

��
; (62)

where c1� is its continuum value, that is c1S � c1P � �3�
�, c1V � c1A � ��, and c1T � 1� �. The dependence on
Ns and M is different from the one of the self-energy,
and thus we find that the anomalous dimensions of all
bilinears must also depend on these parameters.
Numerical values of c�Ns;M�V are reported in Table III for
the Feynman gauge.

A remarkable consequence of the above formulas is that
the anomalous dimension of the vector and axial-vector
currents does not vanish anymore. The contributions com-
ing from the half-circle diagram of the self-energy and
from the vertex diagram of the vector (or axial-vector)
current do not compensate each other, because part of the
subleading terms are different. In Feynman gauge one gets

TABLE II. Coefficient of the logarithmic term for �1, in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 0.113 87 0.411 83 0.647 19 0.803 02 0.895 47 0.946 50 0.973 33 0.998 59 1
0.2 0.716 77 0.925 03 0.982 80 0.996 34 0.999 26 0.999 85 0.999 97 1.000 00 1
0.3 0.949 27 0.995 50 0.999 65 0.999 97 1.000 00 1.000 00 1.000 00 1.000 00 1
0.4 0.994 43 0.999 86 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
0.5 0.999 64 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
0.6 0.999 99 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
0.7 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
0.8 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
0.9 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.0 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.1 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.2 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.3 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.4 0.999 99 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.5 0.999 64 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.6 0.994 43 0.999 86 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1
1.7 0.949 27 0.995 50 0.999 65 0.999 97 1.000 00 1.000 00 1.000 00 1.000 00 1
1.8 0.716 77 0.925 03 0.982 80 0.996 34 0.999 26 0.999 85 0.999 97 1.000 00 1
1.9 0.113 87 0.411 83 0.647 19 0.803 02 0.895 47 0.946 50 0.973 33 0.998 59 1
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��Ns;M�V � 2w2Ns
0 �

�
1� Nsw

2Ns
0

1� w2
0

1� w2Ns
0

�




�
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1� w2
0

1� w2Ns
0

�
2�

1

1� w2Ns
0

�

� 2�
w2

0

1� w2Ns
0

�
; (63)

and the numerical values of this anomalous dimension are
reported in Table IV. These currents have then for any finite
Ns an anomalous dimension which is different from zero.
Only in the Landau gauge it is equal to the case of exact
chiral symmetry and thus vanishes, but this happens just
because the coefficients of the logarithms, being propor-
tional to their values at Ns � 1, in this gauge vanish
separately for the self-energy and for these currents.

TABLE III. Coefficient of the logarithmic term of the vertex diagram of the vector current, in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �0:847 92 �1:022 08 �1:058 64 �1:048 52 �1:031 13 �1:017 79 �1:009 52 �1:000 58 �1
0.2 �1:042 75 �1:021 23 �1:005 92 �1:001 38 �1:00030 �1:000 06 �1:000 01 �1:000 00 �1
0.3 �1:013 54 �1:001 58 �1:000 14 �1:000 01 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
0.4 �1:001 76 �1:000 05 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
0.5 �1:00012 �1:00000 �1:00000 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
0.6 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
0.7 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
0.8 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
0.9 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.0 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.1 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.2 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.3 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.4 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.5 �1:00012 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.6 �1:001 76 �1:000 05 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.7 �1:013 54 �1:001 58 �1:000 14 �1:000 01 �1:000 00 �1:000 00 �1:000 00 �1:000 00 �1
1.8 �1:042 75 �1:021 23 �1:005 92 �1:001 38 �1:000 30 �1:000 06 �1:000 01 �1:000 00 �1
1.9 �0:847 92 �1:022 08 �1:058 64 �1:048 52 �1:031 13 �1:017 79 �1:009 52 �1:000 58 �1

TABLE IV. Anomalous dimension of the vector current, in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 0.734 05 0.610 25 0.411 44 0.245 50 0.135 67 0.071 28 0.036 19 0.001 99 0
0.2 0.325 98 0.096 20 0.023 12 0.005 04 0.001 04 0.000 21 0.000 04 0.000 00 0
0.3 0.064 27 0.006 08 0.000 49 0.000 04 0.000 00 0.000 00 0.000 00 0.000 00 0
0.4 0.007 33 0.000 20 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.5 0.000 48 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.6 0.000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 0.000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 0.000 48 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.6 0.007 33 0.000 20 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.7 0.064 27 0.006 08 0.000 49 0.000 04 0.000 00 0.000 00 0.000 00 0.000 00 0
1.8 0.325 98 0.096 20 0.023 12 0.005 04 0.001 04 0.000 21 0.000 04 0.000 00 0
1.9 0.734 05 0.610 25 0.411 44 0.245 50 0.135 67 0.071 28 0.036 19 0.001 99 0
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The deviations of the anomalous dimension of the scalar
and pseudoscalar densities from its Ns � 1 value are
given for the Feynman gauge in Table V.

Thus, in domain-wall fermions for any finite Ns already
at the one-loop level the anomalous dimensions of the
continuum and lattice versions of an operator are not the
same, and this raises some issues about the correct proce-
dure with which one must carry out the matching of lattice
operators to a continuum scheme in this case. In fact, the
matching formula [55,56]

 

hqjOMSjqi

hqjOlatjqi
� 1� �g2���O loga2�2 � Rlat � RMS� (64)

is only valid provided the coefficients of the logarithmic
terms in

 hqjOlatjqi � �1� �g2���O loga2p2 � Rlat�� � hqjOtreejqi

(65)

and

 hqjOMSjqi �
�
1� �g2

MS

�
��O log

p2

�2 � R
MS

��

� hqjOtreejqi (66)

are the same. But this does not happen for domain-wall
fermions at finite Ns, because the �O in Eq. (65) must be
replaced with a �Ns;MO which depends on Ns, and thus this
logarithmic term cannot be combined with the one of
Eq. (66), whose coefficient is given by the continuum
theory. In particular, the p dependence cannot be elimi-
nated from the matching formula.

It could well be that all this is connected to the fact that
the domain-wall theory at finite Ns is loaded with some
pathologies, as it possesses no analytical Atiyah-Singer
index. It is indeed well known that in all formulations of
chiral fermions that recover the correct quantum anomalies
one needs (in one way or another) an infinite number of
fermion fields. With a finite number of these fields what
happens is that either the two chiralities cannot be com-
pletely separated or that the right anomalies cannot be
reproduced. In domain wall at finite Ns, which corresponds
to a finite number of fermion fields, we could then antici-
pate something like this to happen. These effects presum-
ably appears also at higher loops, since there is nothing
here suggesting a peculiarity of the one-loop theory.
However, they are probably negligible from a practical
point of view, given that (as we will see in the next section)
the optimal one-loop values of M lie near M� 1:2,
although in principle they are present, and for any Ns and
M and any loop order there are deviations (however small
they are). We will see in the following section that in the
theory truncated at finite Ns this is not the only strange
feature which arises, but that gauge invariance is lost as
well, even for finite quantities.

V. RESIDUAL MASS

In this section we report, for several choices of Ns (and
M), the results that we have obtained for �0. This quantity
enters into the description of the one-loop quark self-
energy, Eq. (49), and determines the critical (or residual)
mass at this level. The numbers that we have obtained for
�0 are valid both in the quenched and unquenched cases,
because at one loop internal quark loops can never appear

TABLE V. Anomalous dimension of the scalar density, in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 3.277 80 3.676 49 3.587 35 3.391 05 3.229 07 3.124 64 3.064 74 3.003 72 3
0.2 3.454 24 3.159 90 3.040 87 3.009 18 3.001 93 3.000 39 3.000 08 3.000 00 3
0.3 3.104 89 3.010 80 3.000 89 3.000 07 3.000 00 3.000 00 3.000 00 3.000 00 3
0.4 3.012 60 3.000 36 3.000 01 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
0.5 3.000 85 3.000 01 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
0.6 3.000 03 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
0.7 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
0.8 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
0.9 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.0 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.1 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.2 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.3 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.4 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.5 3.000 85 3.000 01 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.6 3.012 60 3.000 36 3.000 01 3.000 00 3.000 00 3.000 00 3.000 00 3.000 00 3
1.7 3.104 89 3.010 80 3.000 89 3.000 07 3.000 00 3.000 00 3.000 00 3.000 00 3
1.8 3.454 24 3.159 90 3.040 87 3.009 18 3.001 93 3.000 39 3.000 08 3.000 00 3
1.9 3.277 80 3.676 49 3.587 35 3.391 05 3.22907 3.124 64 3.064 74 3.003 72 3
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in the diagrams that enter in this as well as in the other
calculations presented in this paper. These diagrams are
standard and well known and are collected for convenience
in Fig. 1.

The behavior of the tadpole diagrams as Ns and M
change is particularly interesting, and we think that it is
useful to include here also the values of the tadpole con-
tributing to �1 (although in this work we need only the
results of the tadpole contributing to �0). Since no pure
five-dimensional quark propagators appear in the tadpoles,
for these diagrams the �st�p� of Eq. (46) is diagonal in the
fifth dimension [as can be seen in Eq. (48)] and propor-
tional to �ik6 � 4r=a�G�	�k�. This is the same integrand of
the tadpoles for Wilson fermions, and for that action in the
case of the tadpole diagram contributing to �1 (the leg
tadpole in Fig. 1) it gave the result (in a general covariant
gauge)

 Tl � 8
2Z0�1� 1=4�1� ���; (67)

where Z0 � 0:154 933 390 231 . . . is a well-known integral
[56]. It is then clear that for domain-wall fermions (where

we have now r � �1) the behavior of the tadpole diagrams
as a function of Ns (and M) is completely determined by
the damping factors in the fifth dimension. Their general
effect can be seen by looking at their leading contributions
for large Ns, which enter the game in the combinations

 

XNs
s�1

ws�1
0 wNs�s0 � Nsw

Ns�1
0 (68)

and

 

XNs
s�1

�w2
0�
s�1 �

XNs
s�1

�w2
0�
Ns�s �

1� w2Ns
0

1� w2
0

: (69)

These are indeed the leading expressions, in units of

 Td �
�1� w2

0�Tl
�1� w2Ns

0 �
2
; (70)

for the tadpole contributions to �0 and �1, respectively, in
the limit of large Ns. Already from these asymptotic ex-
pressions (before going to the exact results) one can im-
mediately see that the tadpole of �0 vanishes when
Ns � 1, while the tadpole of �1 gives in this limit the
well-known Wilson number, Tl. The damping factors thus
play a primary rôle in determining the results of the
domain-wall tadpoles. We have calculated their exact ex-
pressions including all subleading terms in Ns, and the
tadpole contribution to �0 turns out to be equal to

 4Td

�
Ns�1� w

2�Ns�1�
0 �wNs�1

0 � 2wNs�1
0

1� w2Ns
0

1� w2
0

�
; (71)

while the tadpole contribution to �1 turns out to be equal to

 Td

�
�1� w2�Ns�1�

0 �
1� w2Ns

0

1� w2
0

� 2Nsw
2Ns
0

�
: (72)

Numerical values of these tadpoles for various choices of
Ns and M are collected in Tables VI and VII, where, as in
the rest of the paper, we also show the corresponding
values for the limiting case of infinite extent in the fifth
dimension. In the case of �0 we observe that its tadpole
contribution presents wide variations with Ns and M, so
that in some cases it turns out to be small while in other
cases it can be substantially large. The tadpole contributing
to �1 instead has smaller variations. This suggests that
some care should be used when talking about tadpole
dominance in relation to domain-wall fermions. In fact,
the tadpoles contributing to �0 and �1 even decrease
toward zero when M ! 0 or M ! 2, as we will see in
Sec. VIII.

Given the strong dependence on M and Ns, tadpole
improvement (at least in its more common form) seems
in general not to be an appropriate tool with regard to the
residual mass, which is here associated with the additive
mass renormalization arising from the one-loop self-
energy, Eq. (50). The contribution of the one-loop dia-

 

FIG. 1. The diagrams needed for the one-loop renormalization
of the lattice operators.
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grams to this mass can be inferred from the numbers for �0

presented in Tables X and XI (in Feynman and Landau
gauge, respectively), which take into account the results for
the half-circle diagram given in Tables VIII and IX. Since
we have performed the calculations in a general covariant
gauge, we can express all the quantities presented in this
paper in the form

 A� �1� ��B; (73)

where A and A� B provide the answer in Feynman and
Landau gauge, respectively, and B is a number which
remains the same when using fermion formulations rather
diverse-like domain wall with an infinite extent of the fifth
dimension, Wilson or overlap. The values of B in the case

TABLE VI. Tadpole contribution to �0, Eq. (71), in Feynman gauge (multiplied for 16
2).

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 15.103 61 16.982 04 16.856 01 15.318 33 13.062 60 10.632 33 8.360 32 2.594 84 0
0.2 18.338 90 12.980 46 7.732 01 4.176 37 2.126 04 1.041 15 0.496 23 0.021 82 0
0.3 12.615 92 4.975 85 1.668 03 0.514 27 0.150 80 0.042 77 0.011 84 0.000 06 0
0.4 6.031 46 1.235 59 0.219 03 0.036 02 0.005 66 0.000 86 0.000 13 0.000 00 0
0.5 2.102 63 0.203 09 0.017 17 0.001 35 0.000 10 0.000 01 0.000 00 0.000 00 0
0.6 0.513 09 0.020 03 0.000 69 0.000 02 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 0.075 98 0.000 93 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 0.004 76 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 0.000 04 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 �0:000 04 �0:000 00 �0:000 00 �0:000 00 �0:000 00 �0:000 00 �0:000 00 �0:000 00 0
1.2 �0:004 76 �0:000 01 �0:000 00 �0:000 00 �0:000 00 �0:000 00 �0:000 00 �0:000 00 0
1.3 �0:075 98 �0:000 93 �0:000 01 �0:000 00 �0:000 00 �0:000 00 �0:000 00 �0:000 00 0
1.4 �0:513 09 �0:020 03 �0:000 69 �0:000 02 �0:000 00 �0:000 00 �0:000 00 �0:000 00 0
1.5 �2:102 63 �0:203 09 �0:017 17 �0:001 35 �0:000 10 �0:000 01 �0:000 00 �0:000 00 0
1.6 �6:031 46 �1:235 59 �0:219 03 �0:036 02 �0:005 66 �0:000 86 �0:000 13 �0:000 00 0
1.7 �12:615 92 �4:975 85 �1:668 03 �0:514 27 �0:150 80 �0:042 77 �0:011 84 �0:000 06 0
1.8 �18:338 90 �12:980 46 �7:732 01 �4:176 37 �2:126 04 �1:041 15 �0:496 23 �0:021 82 0
1.9 �15:103 61 �16:982 04 �16:856 01 �15:318 33 �13:062 60 �10:632 33 �8:360 32 �2:594 84 0

TABLE VII. Tadpole contribution to �1, Eq. (72), in Feynman gauge (multiplied for 16
2).

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 6.886 84 8.897 91 10.281 65 11.149 50 11.655 86 11.935 40 12.083 39 12.224 91 12.233 05
0.2 10.714 22 11.824 37 12.137 13 12.212 30 12.228 78 12.232 20 12.232 89 12.233 05 12.233 05
0.3 11.959 87 12.207 85 12.231 05 12.232 90 12.233 04 12.233 05 12.233 05 12.233 05 12.233 05
0.4 12.202 39 12.232 24 12.233 03 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
0.5 12.231 04 12.233 04 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
0.6 12.232 99 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
0.7 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
0.8 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
0.9 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.0 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.1 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.2 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.3 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.4 12.232 99 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.5 12.231 04 12.233 04 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.6 12.202 39 12.232 24 12.233 03 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05 12.233 05
1.7 11.959 87 12.207 85 12.231 05 12.232 90 12.233 04 12.233 05 12.233 05 12.233 05 12.233 05
1.8 10.714 22 11.824 37 12.137 13 12.212 30 12.228 78 12.232 20 12.232 89 12.233 05 12.233 05
1.9 6.886 84 8.897 91 10.281 65 11.149 50 11.655 86 11.935 40 12.083 39 12.224 91 12.233 05
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of the contribution of the half-circle diagram to �0 at finite
Ns are given in Table IX. If we now compare the numbers
shown in Tables X and XI, we can deduce that, even after
the result for the tadpole is included, the contribution to �0

proportional to 1� � is in general not equal to zero, which
is what one would have instead obtained if Ns � 1 or if
Wilson or overlap fermions were used. All this means that
at finite Ns the residual mass, which is derived from �0

according to Eq. (50), is not a gauge invariant quantity

anymore. Although numerically the deviations from gauge
invariance remain in most cases rather small (because there
are large cancellations between the contributions of the
half-circle and tadpole diagrams), we encounter here an-
other of the pathological features of the domain-wall the-
ory truncated at finite Ns. Thus, anomalous dimensions as
well as terms proportional to 1� �, two of the quantities
that remain the same when using a wide variety of fermi-
onic actions, assume instead new values when the theory of

TABLE VIII. Coefficient of �g2 for the contribution of the half-circle diagram to �0, in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 2.755 58 2.696 76 2.396 76 2.002 77 1.602 86 1.243 17 0.941 86 0.268 25 0
0.2 3.483 74 2.226 15 1.241 97 0.643 82 0.319 01 0.153 31 0.072 08 0.003 06 0
0.3 2.673 48 1.011 73 0.331 94 0.101 11 0.029 42 0.008 30 0.002 27 0.000 01 0
0.4 1.527 01 0.318 52 0.057 10 0.009 46 0.001 47 0.000 22 0.000 03 0.000 00 0
0.5 0.689 27 0.072 35 0.006 41 0.000 51 0.000 04 0.000 00 0.000 00 0.000 00 0
0.6 0.249 43 0.011 88 0.000 46 0.000 02 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 0.074 17 0.001 57 0.000 03 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 0.020 85 0.000 29 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 0.007 70 0.000 12 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 0.004 18 0.000 08 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 0.002 86 0.000 07 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 0.003 04 0.000 07 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 0.013 46 0.000 21 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 0.069 83 0.002 70 0.000 09 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 0.244 00 0.022 58 0.001 86 0.000 13 0.000 01 0.000 00 0.000 00 0.000 00 0
1.6 0.605 17 0.112 52 0.019 02 0.003 04 0.000 45 0.000 06 0.000 01 0.000 00 0
1.7 1.123 85 0.363 21 0.109 35 0.031 57 0.008 86 0.002 43 0.000 64 0.000 00 0
1.8 1.567 04 0.779 55 0.364 71 0.166 44 0.074 99 0.033 49 0.014 86 0.000 53 0
1.9 1.407 41 1.010 47 0.666 66 0.410 11 0.237 00 0.128 37 0.064 03 �0:004 72 0

TABLE IX. Coefficient of �g2 for the part proportional to 1� � of the contribution of the half-circle diagram to �0.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 3.197 42 3.771 91 3.849 54 3.560 27 3.071 77 2.520 79 1.993 87 0.626 68 0
0.2 4.007 81 2.950 12 1.792 10 0.978 75 0.501 69 0.246 83 0.118 04 0.005 23 0
0.3 2.811 25 1.140 35 0.387 26 0.120 26 0.03543 0.010 08 0.002 80 0.000 01 0
0.4 1.359 20 0.283 90 0.050 78 0.008 39 0.001 33 0.000 20 0.000 03 0.000 00 0
0.5 0.477 45 0.046 74 0.003 98 0.000 32 0.000 02 0.000 00 0.000 00 0.000 00 0
0.6 0.117 37 0.004 63 0.000 16 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 0.017 55 0.000 22 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 0.001 12 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 �0:000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 �0:001 26 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 �0:020 44 �0:000 25 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 �0:139 17 �0:005 39 �0:000 18 �0:000 01 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 �0:573 87 �0:054 80 �0:004 61 �0:000 36 �0:000 03 0.000 00 0.000 00 0.000 00 0
1.6 �1:656 69 �0:333 89 �0:058 73 �0:009 61 �0:001 50 �0:000 23 �0:000 23 0.000 00 0
1.7 �3:498 85 �1:347 63 �0:44675 �0:136 87 �0:039 97 �0:011 30 �0:003 12 �0:000 02 0
1.8 �5:175 27 �3:541 81 �2:074 09 �1:109 46 �0:561 33 �0:273 75 �0:130 08 �0:005 68 0
1.9 �4:390 70 �4:733 41 �4:584 02 �4:100 98 �3:460 30 �2:795 65 �2:186 39 �0:670 74 0
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domain-wall fermions is truncated at a finiteNs. It could be
that this constitutes a limitation of one-loop (and higher-
loops) perturbation theory, although on the other hand it is
also possible that a small gauge dependence is present also
in numerical simulations.

It is also interesting to compare the one-loop results
presented here for �0 to the numbers that one obtains using
Wilson fermions, which are �51:434 71 for the unim-
proved and �31:986 44 for the improved (with csw � 1)

case. We can then see that the domain-wall results are
much smaller than the Wilson numbers, even for Ns as
small as 8.

The values of the residual mass am�1�res, which come out
from our results for �0 after the one-loop corrections are
added to the tree-level expression, are reported in
Tables XII and XV. One can immediately notice that the
deviations from the case of exact chiral symmetry are
much more pronounced when M is close to 0.1 or 1.9.

TABLE X. Coefficient of �g2 for the complete result of �0, in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 17.859 19 19.678 80 19.252 77 17.321 09 14.665 46 11.875 50 9.302 18 2.863 09 0
0.2 21.822 64 15.206 60 8.973 97 4.820 19 2.445 04 1.194 46 0.568 31 0.024 88 0
0.3 15.289 40 5.987 58 1.999 97 0.615 38 0.180 22 0.051 06 0.014 12 0.000 07 0
0.4 7.558 47 1.554 10 0.276 13 0.045 48 0.007 13 0.001 08 0.000 16 0.000 00 0
0.5 2.791 90 0.275 43 0.023 58 0.001 86 0.000 14 0.000 01 0.000 00 0.000 00 0
0.6 0.762 52 0.031 91 0.001 15 0.000 04 0.000 00 0.000 01 0.000 00 0.000 00 0
0.7 0.150 15 0.002 50 0.000 04 0.000 00 0.000 00 0.000 01 0.000 00 0.000 00 0
0.8 0.025 61 0.000 31 0.000 01 0.000 00 0.000 00 0.000 01 0.000 00 0.000 00 0
0.9 0.007 74 0.000 12 0.000 00 0.000 00 0.000 00 0.000 01 0.000 00 0.000 00 0
1.0 0.004 18 0.000 08 0.000 00 0.000 00 0.000 00 0.000 01 0.000 00 0.000 00 0
1.1 0.002 83 0.000 07 0.000 00 0.000 00 0.000 00 0.000 01 0.000 00 0.000 00 0
1.2 �0:001 72 0.000 06 0.000 00 0.000 00 0.000 00 0.000 01 0.000 00 0.000 00 0
1.3 �0:062 52 �0:000 73 0.000 00 0.000 00 0.000 00 0.000 01 0.000 00 0.000 00 0
1.4 �0:443 27 �0:017 33 �0:000 60 �0:000 02 0.000 00 0.000 01 0.000 00 0.000 00 0
1.5 �1:858 63 �0:180 51 �0:015 31 �0:001 22 �0:000 09 �0:000 01 0.000 00 0.000 00 0
1.6 �5:426 29 �1:123 06 �0:200 01 �0:032 98 �0:005 21 �0:000 80 �0:000 12 0.000 00 0
1.7 �11:492 07 �4:612 64 �1:558 67 �0:48269 �0:141 94 �0:040 34 �0:011 20 �0:000 06 0
1.8 �16:771 86 �12:200 90 �7:367 30 �4:009 94 �2:051 05 �1:007 65 �0:481 38 �0:021 29 0
1.9 �13:696 20 �15:971 57 �16:189 35 �14:908 21 �12:825 61 �10:503 96 �8:296 29 �2:599 56 0

TABLE XI. Coefficient of �g2 for the complete result of �0, in Landau gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 17.280 70 19.205 20 18.888 31 17.051 78 14.471 58 11.738 20 9.205 97 2.841 06 0
0.2 21.245 72 14.911 61 8.833 08 4.754 84 2.415 22 1.181 00 0.562 29 0.024 66 0
0.3 14.946 68 5.883 97 1.970 22 0.607 08 0.177 95 0.050 45 0.013 96 0.000 07 0
0.4 7.409 81 1.529 10 0.272 15 0.044 87 0.007 04 0.001 07 0.000 16 0.000 00 0
0.5 2.743 69 0.271 41 0.023 27 0.001 84 0.000 14 0.000 01 0.000 00 0.000 00 0
0.6 0.75 162 0.031 53 0.001 14 0.000 04 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 0.148 71 0.002 49 0.000 04 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 0.025 54 0.000 31 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 0.007 74 0.000 12 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 0.004 18 0.000 08 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 0.002 83 0.000 07 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 �0:001 79 0.000 06 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 �0:063 97 �0:000 74 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 �0:454 17 �0:017 71 �0:000 61 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 �1:906 84 �0:184 53 �0:015 62 �0:001 24 �0:000 09 �0:000 01 0.000 00 0.000 00 0
1.6 �5:575 12 �1:148 06 �0:203 99 �0:033 59 �0:005 30 �0:000 81 �0:000 12 0.000 00 0
1.7 �11:836 94 �4:716 31 �1:588 42 �0:491 00 �0:144 21 �0:040 95 �0:011 36 �0:000 06 0
1.8 �17:362 40 �12:497 60 �7:508 39 �4:075 30 �2:080 87 �1:021 11 �0:487 40 �0:021 51 0
1.9 �14:311 00 �16:459 47 �16:559 37 �15:179 62 �13:020 25 �10:641 53 �8:392 60 �2:621 58 0
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The values of am�1�res have the same sign of the critical mass
of Wilson fermions only for M * 1:2. In this region of M
they are positive, at least for even Ns and if the coupling is
not very small. If one looks at the columns corresponding
to Ns � 8, our results seem to indicate that the minimal
amount of chiral violations is attained for M� 1:2 (in
Feynman or Landau gauge). The optimal choice of M
from the point of view of one-loop calculations would
then be around these values. This effect can be related to

the renormalization ofM, a quantity which is not protected
by chiral symmetry and is moved by radiative corrections
away from its free value, M � 1 (where the tree-level
residual mass vanishes). One can conjecture that higher-
loop corrections and nonperturbative effects would shift
this optimal value further on, until the chiral violations
approach a minimal point aroundM � 1:8, which seems to
be the choice that provides the smallest residual mass in
Monte Carlo simulations [9,10]. It could be that the results

TABLE XII. Residual mass in lattice units at � � 6 in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �0:232 58 �0:219 82 �0:197 77 �0:169 35 �0:138 98 �0:110 21 �0:085 07 �0:025 38 0
0.2 �0:244 66 �0:153 13 �0:085 90 �0:044 85 �0:022 34 �0:010 78 �0:005 08 �0:000 22 0
0.3 �0:158 50 �0:057 61 �0:018 58 �0:005 60 �0:001 62 �0:000 45 �0:000 12 0.000 00 0
0.4 �0:074 57 �0:014 52 �0:002 51 �0:000 41 �0:000 06 �0:000 01 0.000 00 0.000 00 0
0.5 �0:026 50 �0:002 51 �0:000 21 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0
0.6 �0:006 99 �0:000 28 �0:000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 �0:001 33 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 �0:000 22 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 �0:000 07 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 �0:000 04 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 0.000 47 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 0.003 19 0.000 13 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 0.012 76 0.001 34 0.000 12 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0
1.6 0.035 07 0.008 09 0.001 51 0.000 26 0.000 04 0.000 01 0.000 00 0.000 00 0
1.7 0.067 63 0.031 89 0.011 47 0.003 67 0.001 10 0.000 32 0.000 09 0.000 00 0
1.8 0.081 21 0.078 28 0.052 07 0.029 71 0.015 62 0.007 81 0.003 78 0.000 17 0
1.9 0.033 85 0.081 19 0.101 49 0.102 78 0.093 14 0.078 75 0.06353 0.020 74 0

TABLE XIII. Residual mass in lattice units at � � 6 in Landau gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �0:227 70 �0:215 82 �0:194 69 �0:16708 �0:137 35 �0:109 05 �0:084 25 �0:025 20 0
0.2 �0:239 78 �0:150 64 �0:084 71 �0:044 30 �0:022 09 �0:010 67 �0:005 03 �0:000 22 0
0.3 �0:155 60 �0:056 74 �0:018 33 �0:005 53 �0:001 60 �0:000 45 �0:000 12 0.000 00 0
0.4 �0:073 31 �0:014 30 �0:002 48 �0:000 40 �0:000 06 �0:000 01 0.000 00 0.000 00 0
0.5 �0:026 10 �0:002 47 �0:000 21 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0
0.6 �0:006 90 �0:000 28 �0:000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 �0:001 32 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 �0:000 22 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 �0:000 07 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 �0:000 04 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 0.000 48 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 0.003 28 0.000 14 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 0.013 17 0.001 37 0.000 12 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0
1.6 0.036 32 0.008 30 0.001 54 0.000 26 0.000 04 0.000 01 0.000 00 0.000 00 0
1.7 0.070 54 0.032 76 0.011 72 0.003 74 0.001 12 0.000 32 0.000 09 0.000 00 0
1.8 0.086 20 0.080 78 0.053 26 0.030 26 0.015 87 0.007 93 0.003 83 0.000 17 0
1.9 0.039 05 0.085 31 0.104 61 0.105 07 0.094 78 0.079 91 0.064 34 0.020 93 0
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of the one-loop calculations for M � 1:8 are not substan-
tially changed once higher-loop corrections are included,
while forM< 1:8 they are increased by renormalization so
that the minimum finally ends up located near M � 1:8.

Although it is not consistent in the framework of the
one-loop theory, it is interesting to look at the numbers that
come out for M � 1:8, which is at present a preferred
choice for Monte Carlo simulations, as it appears to mini-
mize chiral violations at the nonperturbative level. We can

focus on this value of M and observe that at one loop the
critical mass seems to be still large up to Ns � 16 or Ns �
20, becoming then somewhat smaller for Ns � 24 and
higher. Since the tree-level and one-loop contributions
are of a different sign, it could also be that the two-loop
expression enters again with a negative sign and that its
effect is to damp the chiral violations that we have ob-
tained. But if higher-order corrections do not at the end
strongly compensate the results of the residual mass at one

TABLE XIV. Residual mass in lattice units at � � 5:2 in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �0:255 78 �0:245 38 �0:222 78 �0:191 85 �0:158 03 �0:125 64 �0:097 15 �0:029 10 0
0.2 �0:273 00 �0:172 89 �0:097 56 �0:051 11 �0:025 52 �0:012 33 �0:005 82 �0:000 25 0
0.3 �0:178 36 �0:065 39 �0:021 18 �0:006 40 �0:001 85 �0:000 52 �0:000 14 0.000 00 0
0.4 �0:084 39 �0:016 53 �0:002 87 �0:000 47 �0:000 07 �0:000 01 0.000 00 0.000 00 0
0.5 �0:030 13 �0:002 87 �0:000 24 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0
0.6 �0:007 98 �0:000 33 �0:000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 �0:001 52 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 �0:000 25 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 �0:000 08 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 �0:000 04 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 �0:000 03 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 0.000 55 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 0.003 77 0.000 15 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 0.015 18 0.001 58 0.000 14 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0
1.6 0.042 12 0.009 55 0.001 77 0.000 30 0.000 05 0.000 01 0.000 00 0.000 00 0
1.7 0.082 56 0.037 88 0.013 49 0.004 30 0.001 29 0.000 37 0.000 10 0.000 00 0
1.8 0.103 00 0.094 13 0.061 64 0.034 92 0.018 28 0.009 12 0.004 40 0.000 20 0
1.9 0.051 65 0.101 94 0.122 52 0.122 14 0.109 80 0.092 39 0.074 30 0.024 12 0

TABLE XV. Residual mass in lattice units at � � 5:2 in Landau gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �0:250 14 �0:240 77 �0:219 23 �0:189 23 �0:156 14 �0:124 30 �0:096 21 �0:028 89 0
0.2 �0:267 38 �0:170 01 �0:096 19 �0:050 47 �0:025 23 �0:012 20 �0:005 76 �0:000 25 0
0.3 �0:175 02 �0:064 38 �0:020 89 �0:006 32 �0:001 83 �0:000 51 �0:000 14 0.000 00 0
0.4 �0:082 94 �0:016 29 �0:002 83 �0:000 46 �0:000 07 �0:000 01 0.000 00 0.000 00 0
0.5 �0:029 66 �0:002 83 �0:000 24 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0
0.6 �0:007 87 �0:000 32 �0:000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.7 �0:001 51 �0:000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.8 �0:000 25 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
0.9 �0:000 08 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.0 �0:000 04 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.1 �0:000 03 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.2 0.000 02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.3 0.000 56 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.4 0.003 87 0.000 16 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0
1.5 0.015 65 0.001 61 0.000 14 0.000 01 0.000 00 0.000 00 0.000 00 0.000 00 0
1.6 0.043 57 0.009 79 0.001 81 0.000 30 0.000 05 0.000 01 0.000 00 0.000 00 0
1.7 0.085 92 0.038 89 0.013 78 0.004 38 0.001 31 0.000 38 0.000 11 0.000 00 0
1.8 0.108 75 0.097 02 0.063 02 0.035 55 0.018 57 0.009 25 0.004 46 0.000 20 0
1.9 0.057 63 0.106 69 0.126 12 0.124 79 0.111 69 0.093 73 0.075 24 0.024 33 0
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loop, and always keeping in mind that the valueM � 1:8 is
in fact determined nonperturbatively and cannot be fully
consistent from the point of view of one-loop perturbation
theory, these results can give some hints that using lattices
with Ns � 20 or larger would be worthwhile. The general
behavior of the one-loop results for various choices of M
and Ns also would tend to support these insights.

The region around M � 1:8 suffers perturbatively rather
badly from another problem as well. When M is indeed
close to 0.1 or 1.9, the numerical convergence of the
integrals (which are computationally quite demanding,
being in this case sums over a six-dimensional space) is
much worse than when M is nearer to 1. This behavior had
already been noticed in the calculations for the Ns � 1
limit presented in [41]; however, now the convergence is
even slower than in that case, and it also tends to become
worse when Ns is small.

Notice that for M � 1:9 the residual mass at Ns � 12 is
larger than at Ns � 8, and at Ns � 16 is even larger. We
will discuss more in detail this kind of behavior in
Sec. VIII.

As an aside, we have also investigated what happens
when one chooses an odd value of Ns. As can be seen from
Tables XVI and XVII, which are representative of the
general situation, when M is smaller than 1 the residual
mass has always a negative sign for Ns even or odd, but in
the more interesting case of M greater than 1 the one-loop
residual mass turns out to be positive when Ns is even and
negative when Ns is odd. This could be related to the
suggestion which was made by Neuberger some years
ago [57], according to which for odd Ns the theory which

is simulated could correspond to the � � 
 regime of
QCD.

The residual mass obviously changes also when the
coupling g0 is varied, as an effect of the loop corrections.
Indeed, the overlap between the chiral modes living near
the two walls depends also on the strength of the gauge
coupling, and for strong couplings this overlap tends to
acquire some nonnegligible values. Furthermore, the resid-
ual mass explicitly depends also on the value of the lattice
spacing a, as can be seen from Eq. (50), since all the
numbers presented in the tables are given, as elsewhere
in the paper, in lattice units. The residual mass is thus
different for quenched and unquenched simulations made
at the same lattice spacing, because a and g0 are related in
a different way. Let us now consider some typical values of
the parameters at which simulations are currently per-
formed. We first fixM � 1:8 andNs � 16. In the quenched
case we can then take � � 6:0, which corresponds to a
lattice spacing of about 2 GeV, and according to our one-
loop calculations this gives amres � 0:052 07 in Feynman
gauge and amres � 0:053 26 in Landau gauge, that is
mres � 104 MeV and mres � 107 MeV, respectively. The
dependence on the gauge seems thus from the numerical
point of view not to be very significant. Notice also that if
m�0�res in Eq. (39) were positive, the values of m�1�res would be
even larger. In the unquenched case, if we take � � 5:2,
which corresponds roughly to the same lattice spacing of
2 GeV but now to a different bare coupling, we then obtain
amres � 0:061 64 in Feynman gauge and amres � 0:063 02
in Landau gauge, that is mres � 123 MeV and mres �
126 MeV, respectively. Results from dynamical domain-

TABLE XVI. Residual mass at � � 6:0 for some odd Ns, in
Landau gauge.

M Ns � 13 Ns � 14 Ns � 15 Ns � 16 Ns � 17 Ns � 18

0.1 �0:211 �0:206 �0:201 �0:195 �0:188 �0:181
0.2 �0:132 �0:114 �0:099 �0:085 �0:072 �0:062
0.3 �0:043 �0:033 �0:025 �0:018 �0:014 �0:010
0.4 �0:009 �0:006 �0:004 �0:002 �0:002 �0:001
0.5 �0:001 �0:001 0.000 0.000 0.000 0.000
0.6 0.000 0.000 0.000 0.000 0.000 0.000
0.7 0.000 0.000 0.000 0.000 0.000 0.000
0.8 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.000 0.000 0.000 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.000 0.000 0.000
1.1 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000
1.4 0.000 0.000 0.000 0.000 0.000 0.000
1.5 �0:001 0.000 0.000 0.000 0.000 0.000
1.6 �0:006 0.004 �0:002 0.002 �0:001 0.001
1.7 �0:026 0.020 �0:015 0.012 �0:009 0.007
1.8 �0:074 0.067 �0:060 0.053 �0:047 0.041
1.9 �0:092 0.098 �0:102 0.105 �0:106 0.107

TABLE XVII. Residual mass at � � 5:2 for some odd Ns, in
Landau gauge.

M Ns � 13 Ns � 14 Ns � 15 Ns � 16 Ns � 17 Ns � 18

0.1 �0:236 �0:231 �0:226 �0:219 �0:212 �0:205
0.2 �0:149 �0:129 �0:112 �0:096 �0:082 �0:070
0.3 �0:049 �0:037 �0:028 �0:021 �0:016 �0:012
0.4 �0:011 �0:007 �0:004 �0:003 �0:002 �0:001
0.5 �0:002 �0:001 0.000 0.000 0.000 0.000
0.6 0.000 0.000 0.000 0.000 0.000 0.000
0.7 0.000 0.000 0.000 0.000 0.000 0.000
0.8 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.000 0.000 0.000 0.000 0.000 0.000
1.0 0.000 0.000 0.000 0.000 0.000 0.000
1.1 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000
1.4 0.000 0.000 0.000 0.000 0.000 0.000
1.5 �0:001 0.000 0.000 0.000 0.000 0.000
1.6 �0:006 0.004 �0:003 0.002 �0:001 0.001
1.7 �0:030 0.024 �0:018 0.014 �0:010 0.008
1.8 �0:089 0.080 �0:071 0.063 �0:055 0.048
1.9 �0:114 0.120 �0:124 0.126 �0:127 0.127
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wall simulations show that the residual mass in full QCD
assumes much higher values than in the quenched case.
Dynamical domain-wall fermions present then a larger
explicit chiral symmetry breaking. We can infer a similar
effect which goes in the same direction from our one-loop
perturbative results, although here the difference between
quenched and full QCD is not as pronounced as it has been
observed in the simulations, suggesting that higher-order
corrections and especially nonperturbative effects presum-
ably play a significant role.

In the case of the contribution of the half-circle diagram
of the self-energy to �0, we have also repeated the whole
calculation (in a general covariant gauge) by hand, includ-
ing the evaluation of the gamma algebra and the explicit
computation of the sums over the fifth-dimensional indi-
ces. The final expressions are very lengthy and it is of no
interest to report them here; however, this alternative pro-
cedure provides a rather independent check of our calcu-
lations with respect to both the analytic part and the
precision of the numerical integration in the six-
dimensional code. Furthermore, since this time we com-
pute the sums in the extra dimension analytically, this saves
2 dimensions in the numerical integration, which is re-
duced to the usual 4, and this is why we are able to give the
results for �0 with more precision than otherwise. Of
course we cannot always employ this procedure, given
that the other diagrams are in general way too complicated
for a computation by hand. But this alternative four-
dimensional code for �0 provides another advantage be-
cause the dependence on Ns is now computed exactly and
the computational cost is the same for every Ns, and thus
we can think of getting results also at higher values of Ns,
which would be too expensive in the six-dimensional code
where the computational cost grows as N2

s .
We conclude this section by reminding that the tadpoles

of course can be calculated for any Ns and M with an
extremely high precision, which is limited only by the
knowledge of Z0 (at present known with about 400 digits
[56]).

VI. BILINEAR DIFFERENCES

We now consider the calculation at finite Ns of matrix
elements of some operators. In this section we present one-
loop results for the (finite) differences of chirally related
bilinear operators, which should become zero at infinite
Ns, that is when chiral symmetry is fully restored. Since the
vector and axial-vector currents renormalize differently
when chiral symmetry is broken, an estimate of chirality-
breaking effects can indeed be given by how much for a
given finite Ns the perturbative results for these currents
differ from each other. The quantity � � ZV � ZA pro-
vides such a measure of chirality breaking. Moreover, one
finds that ZV � ZA � ��ZS � ZP�=2 [58]. The fact that we
obtain for � the same number with a very good precision
whether we consider the vector and axial-vector case or the

scalar and pseudoscalar case then provides a compelling
check of our calculations.

We can successfully obtain all results for � by comput-
ing only finite lattice diagrams, because of the following
three facts. For one thing, the anomalous dimensions of the
operators which are chirally related are the same also when
one considers the subleading orders (see Sec. IV), that is
��Ns;M�V � ��Ns;M�A and ��Ns;M�S � ��Ns;M�P . Furthermore, the
continuum values of the finite parts, called RMS in Eq. (66),
are also equal for these pairs of operators. Finally, the
mismatch between lattice (at finite Ns) and continuum
anomalous dimensions that we discussed at the end of
Sec. IV is also the same for the chirally related operators,
and thus it cancels in their differences. We remind the
reader that the vector and axial-vector currents have now
a nonvanishing anomalous dimension, which becomes zero
only when Ns � 1.

As we can gather in Tables XVIII and XIX, the decrease
of the amount of chirality breaking connected to � follows
a pattern similar to the one that we have encountered in the
case of the residual mass and to the one that we will see for
the operator discussed in the next section, that is � is rather
large for small Ns and large j1�Mj, and decreases when
Ns grows or when j1�Mj tends towards zero. Again, the
part proportional to �1� �� of � shows a violation of
gauge invariance, since if gauge invariance were respected
these numbers would have to be zero, as it happens for
Wilson or overlap fermions. We point out that although the
latter are equivalent to domain-wall fermions at Ns � 1
[59], they do not give in general (at least at the one-loop
order) the same perturbative numbers. Then it should also
probably happen that the truncated overlap presents viola-
tions of gauge invariance of a different numerical amount
than the ones presented here. We can notice that in the case
of domain-wall fermions the deviations from gauge invari-
ance of � are in general small; however, they are larger
than the ones of mres if one looks at the relative deviations.
The operator studied in the next section gives also very
similar results regarding this point.

Although, as we have remarked, it is not consistent in the
framework of the one-loop theory, we can give a look at the
results that come out when taking a typical case of
Monte Carlo simulations, M � 1:8 and Ns � 16. For
a�1 � 2 GeV, the numbers that we have obtained imply
for QCD a chiral violation of about 2 MeV, with the
quenched case giving the slightly lower value. These num-
bers are much smaller, at given M and Ns, than the ones
obtained for mres. In [18,43] it has been suggested for
quantities such as four-quark operators that their chiral
violations are of O�m2

res�, and given the smallness of the
numbers that we have obtained for � it is possible that
something similar is occurring here.

It is also interesting to compare the numbers presented in
this section to the results that one obtains for this quantity
when Wilson fermions are used. In this case one gets
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� � 4:821 52 for the unimproved case and � � 1:536 33
for the improved case, which correspond to chiral viola-
tions which are at least of order 30 MeV for �� 6:0.

VII. A POWER-DIVERGENT MIXING

We think that it is also very instructive to study the case
of an operator mixing which gets completely suppressed

only when chiral symmetry is fully operative, so that the
nonzero amount of residual mixing present for any given
finite Ns provides another quantitative measure of chiral
violations. One of the simplest examples of this kind of
mixing is probably furnished by the operator

 Od1
� �q��4�5D1	q; (74)

TABLE XIX. Coefficient of �g2 for the part proportional to 1� � of �.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �1:1115 �0:8058 �0:5284 �0:3257 �0:1914 �0:1081 �0:0590 �0:0042 0
0.2 �0:4075 �0:1438 �0:0416 �0:0106 �0:0025 �0:0006 �0:0001 0.0000 0
0.3 �0:1092 �0:0140 �0:0014 �0:0001 0.0000 0.0000 0.0000 0.0000 0
0.4 �0:0191 �0:0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.5 �0:0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.6 �0:0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.4 �0:0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.5 �0:0022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.6 �0:0186 �0:0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.7 �0:0879 �0:0134 �0:0015 �0:0001 0.0000 0.0000 0.0000 0.0000 0
1.8 �0:2750 �0:1064 �0:0353 �0:0100 �0:0025 �0:0006 �0:0001 0.0000 0
1.9 �0:9106 �0:5678 �0:3473 �0:2140 �0:1314 �0:0790 �0:0461 �0:0040 0

TABLE XVIII. Coefficient of �g2 for the quantity � � ZV � ZA � ��ZS � ZP�=2, which vanishes when chiral symmetry is restored
at Ns � 1, in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 6.9399 4.4434 2.6941 1.5749 0.8916 0.4899 0.2622 0.0179 0
0.2 2.3272 0.7211 0.1945 0.0477 0.0110 0.0025 0.0005 0.0000 0
0.3 0.5894 0.0668 0.0064 0.0006 0.0000 0.0000 0.0000 0.0000 0
0.4 0.0994 0.0034 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.5 0.0106 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.6 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.4 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.5 0.0083 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.6 0.0701 0.0029 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.7 0.3140 0.0501 0.0056 0.0005 0.0000 0.0000 0.0000 0.0000 0
1.8 0.8354 0.3672 0.1288 0.0374 0.0096 0.0022 0.0005 0.0000 0
1.9 2.2075 1.5323 1.0348 0.6904 0.4490 0.2811 0.1686 0.0153 0
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which taken together with Oa2;d � �q�f1�5D4gq (or,
in an alternative representation of the hypercubic group,
Oa2;e � �q�4�5D4q�

1
3

P3
i�1 �q�i�5Diq), determines the

first moment of the g2 structure function, which measures
the distribution of the (chiral even) transverse spin of
quarks inside hadrons, and also receives contributions
from twist-3 operators. More details on these operators
can be found in [60,61] (of which we follow the notation)
and references therein. Matrix elements of the operatorOd1

have been recently simulated using quenched domain-wall
fermions with the DBW2 gauge action [19]. We remind
that the symbol �	 denotes antisymmetrization over the
relevant Lorentz indices, while fg denotes symmetrization,

and that for the covariant derivatives D � ~D�D
 

we use
the lattice discretizations

 

~D �q�x� �
1
2�U��x�q�x� �̂� �Uy��x� �̂�q�x� �̂�	;

(75)

 �q�x�D
 

� �
1
2� �q�x� �̂�U

y
��x� � �q�x� �̂�U��x� �̂�	:

(76)

We point out that many of the mixings which one
encounters in the study of physical processes, like for
instance the ones occurring in the renormalization of the
second moment of the unpolarized parton distribution
[62,63], arise as a consequence of the breaking of
Lorentz symmetry (or, in other cases, of other symmetries
apart from chirality) and hence do not interest us much in
the present context. The power-divergent mixing on the

lattice of Od1
with an operator of lower dimension, which

can be written as

 cmix �
i
a

�q�41�5q; (77)

is instead particularly interesting because it is only caused
by the breaking of chirality, and hence it provides a quan-
titative measure of how much chiral symmetry has been
broken. The finite coefficient cmix must vanish for infinite
Ns, when chiral symmetry is fully restored, and Od1

be-
comes in this case multiplicatively renormalized (like it
also is when overlap fermions are used). For finite Ns the
values of this coefficient in the Feynman gauge are re-
ported in Table XX, where we can see that in general this
mixing can be considered to be almost negligible. Were
this not the case, the removal of these lattice artifacts in
Monte Carlo simulations would become quite challenging.

The results show that large chiral violations are present
only for very small Ns, or when M is rather close to 0 or 2.
Again, although not consistent in the framework of the
one-loop theory, we find it interesting to look at the num-
bers that come out when taking a typical case of
Monte Carlo simulations, M � 1:8 and Ns � 16. For
a�1 � 2 GeV the chiral violations come out of about
3 MeV, with the quenched case giving the slightly lower
value. These numbers are much smaller, at givenM andNs,
than the ones obtained formres. It is then possible that, as it
has been suggested for other quantities in [18,43], the
chiral violations are here quadratic in mres, that is this
coefficient is doubly suppressed.

TABLE XX. Coefficient of �g2 for the coefficient of the power-divergent mixing of Od1
, cmix in Eq. (77), in Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 �14:1244 �8:4448 �5:3682 �3:4884 �2:2846 �1:4996 �0:9848 �0:1829 0
0.2 �5:8166 �2:4014 �0:9910 �0:4075 �0:1674 �0:0688 �0:0283 �0:0008 0
0.3 �2:4733 �0:6070 �0:1475 �0:0359 �0:0087 �0:0021 �0:0005 0.0000 0
0.4 �0:9361 �0:1265 �0:0169 �0:0022 �0:0003 0.0000 0.0000 0.0000 0
0.5 �0:3094 �0:0213 �0:0014 �0:0001 0.0000 0.0000 0.0000 0.0000 0
0.6 �0:0893 �0:0029 �0:0001 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.7 �0:0231 �0:0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.8 �0:0059 �0:0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.9 �0:0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.1 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.2 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.3 0.0031 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.4 0.0127 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.5 0.0546 0.0029 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.6 0.1969 0.0207 0.0024 0.0003 0.0000 0.0000 0.0000 0.0000 0
1.7 0.5774 0.1129 0.0229 0.0049 0.0011 0.0002 0.0001 0.0000 0
1.8 1.3844 0.4817 0.1715 0.0615 0.0224 0.0083 0.0031 0.0001 0
1.9 2.9825 1.5917 0.9340 0.5665 0.3480 0.2148 0.1328 0.0198 0
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Again, as can be deduced from Table XXI, gauge in-
variance is lost in the theory at finite Ns. The part propor-
tional to 1� � of cmix vanishes only when Ns � 1 (and
this happens also when, for example, Wilson or overlap
fermions are used).

Wilson fermions also suffer from this power-divergent
mixing which is caused by the breaking of chirality, but the
mixing coefficient is in this case gauge invariant. However,
it takes the values cmix � 16:243 762 for the unimproved
and cmix � 8:798 732 for the improved case with csw � 1,
so that compared to domain-wall fermions at the standard
choices ofNs andM, the Wilson violations are then about 2
orders of magnitude higher. For overlap fermions of course
cmix is zero.

VIII. TOWARD THE BORDERS

It is also interesting to see what happens when the
domain-wall height M is chosen dangerously close to 0
or 2, that is at the edges of its (at lowest order) allowed
values. After investigating in various cases, we have found
as a general phenomenon that the exponential decay in Ns
of the chiral violations slows down when approaching
these borders. In some instances it can even happen that
for a fixedM chosen very near to one of the edges the chiral
violations increase with Ns, at least up to a certain point.

One can observe this behavior already by looking at the
tadpole diagrams, which can be calculated exactly. For
M ! 0 they assume in fact the asymptotic expressions
(in Feynman gauge)

 

4

3
MTd

�
Ns � 3�

2

Ns

�
(78)

in the case of �0, and

 

1

3
MTd

�
2Ns � 3�

1

Ns

�
(79)

in the case of �1. For M ! 2 one just takes into account
the fact that these tadpoles are, respectively, odd and even
upon reflection around the point M � 1. We can then
immediately see that for a given Ns the tadpoles tend to
zero whenM approaches 0 or 2. From Table VI we can also
see that the decay in Ns (at a constant M) of the tadpole of
�0 tends to become slower and slower as M nears the
borders, until the rate of decay probably vanishes at
some point and the tadpole then reaches the asymptotic
regime of Eq. (78), where actually the chiral violations
grow with Ns (at fixed M). We can observe a similar
behavior also for the other quantities considered in this
article, which we have run for values of M close to j1�
Mj � 0:99 and j1�Mj � 0:999. For � and cmix the rate of
the exponential decay in Ns keeps decreasing when one
approaches the borders, until a likely final disappearance,
even though these quantities instead increase in M (for a
fixed Ns) when M ! 0 and M ! 2. In fact, cmix tends to
diverge very fast when M ! 0.

The slowing of the exponential decays of mres, �, and
cmix when one moves M such that j1�Mj ! 1 can be
related to the decrease of the mobility edge �c towards zero
in these extreme regions of M [44–46]. Choosing a value
of M too close to 0 or 2 can then become dangerous,
because the mobility edge has to remain well above zero
in order to perform reliable Monte Carlo simulations,
otherwise the restoration of chiral symmetry can become
problematic. The fall of the mobility edge to zero signals
the onset of the Aoki phase, and this can be pictorially

TABLE XXI. Coefficient of �g2 for the part proportional to 1� � of cmix.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28 Ns � 32 Ns � 48 Ns � 1

0.1 0.3241 0.1056 0.0395 0.0162 0.0071 0.0033 0.0015 0.0001 0
0.2 0.0480 0.0093 0.0019 0.0004 0.0001 0.0000 0.0000 0.0000 0
0.3 0.0093 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.4 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.5 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.5 �0:0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.6 �0:0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.7 �0:0060 �0:0007 �0:0001 0.0000 0.0000 0.0000 0.0000 0.0000 0
1.8 0.0035 �0:0043 �0:0015 �0:0004 �0:0001 0.0000 0.0000 0.0000 0
1.9 0.4015 0.0982 0.0218 0.0029 �0:0011 �0:0013 �0:0009 �0:0001 0
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seen, for example, in Fig. 1 of Ref. [44] or [46], where in
fact it corresponds to moving, for g0 not too large, from the
rightmost C phase towards the B phase, which one even-
tually enters through one of the thin ‘‘fingers.’’ Since the
phenomena that we describe in this section are inferred
only from our one-loop perturbative calculations of mres,
�, and cmix, they would be put on a more solid basis if they
were supported by investigations of the order parameter
h �q�5qi.

We can thus briefly sum up the behavior of the chiral
violations when M changes as follows. The coefficient of
their exponential decay is zero or rather small whenM is in
the vicinity of 1. It then grows when M moves towards
either 0 or 2, before decreasing again and at last getting
rather small for M� 0 and M� 2.

A remarkable thing that we have observed for values of
M very near the edges is that mres and � happen to be
smaller for small Ns than for larger values of Ns, that is the
chiral violation initially grows in Ns instead of decaying
exponentially. This observed initial growth is just a tem-
porary one, before eventually mres or � starts to decay as
expected. But it could be that eventually a behavior like the
one of Eqs. (78) and (79) sets in, that is the exponential
decay disappears altogether and one can only see a steady
increase with Ns.

For cmix this does not seem to happen, that is we always
observe a clear exponential-like decay, without any initial
growth in Ns, at least for Ns � 8 and for the values of M
that we have investigated, up to 2�M � 10�10.

Numerical examples that illustrate this phenomenon of
the initial growth in Ns can be seen in the case of mres in

Tables XXII and XXIII, which refer to M ! 2 (similar
things can also be seen for the other limit, M ! 0). The
onset of this behavior takes place around M � 1:9, as can
also be observed in the last line of Tables XII, XIII, XIV,
and XV. Furthermore, we can notice that the exponential
decay which follows these regions of initial growth in Ns
sets in at ever higher values ofNs when one gets nearer and
nearer to 2 (note that for M> 1:95 the maximum of mres is
reached for Ns > 28). We can then speak of a sort of
suppression of the chiral violations for small Ns, which
becomes stronger as M approaches the borders, and it
could be that in this case the density of eigenvalues or
the radius of the modes in Eq. (1) change in such a way to
produce this kind of effect, or that this equation breaks
down in this region. It could also happen that the value of
Ns for which the chiral violations reach their maximum (at
fixed M) is further and further shifted toward higher values
of Ns until one cannot observe any exponential decay at all
even for very large Ns, and possibly for all Ns, as in the
exact asymptotic results of Eqs. (78) and (79).

In Tables XXIV and XXV we can observe a similar
behavior in the case of the difference of the vector and
axial-vector currents. Since cmix apparently does not in-
stead show these effects, it could be that this quantity is
described by a somewhat different formula than Eq. (1).

It would be interesting to carry out further studies about
these phenomena which happen near the borders ofM, and
more investigations in the future could clarify these issues.
We have, however, seen that already at one loop we can
observe interesting features, in some cases corresponding

TABLE XXV. Coefficient of �g2 for � near M � 2, in Landau
gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28

1.94 2.112 1.897 1.558 1.237 0.973 0.763
1.95 2.416 2.310 1.997 1.654 1.346 1.090
1.96 2.774 2.836 2.602 2.268 1.929 1.621
1.97 3.193 3.503 3.432 3.179 2.856 2.522
1.98 3.682 4.346 4.564 4.522 4.335 4.071
1.99 4.251 5.402 6.098 6.488 6.673 6.718

TABLE XXIV. Coefficient of �g2 for � near M � 2, in
Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28

1.94 3.699 3.151 2.488 1.915 1.467 1.125
1.95 4.246 3.858 3.220 2.594 2.063 1.637
1.96 4.885 4.753 4.220 3.592 2.995 2.475
1.97 5.630 5.883 5.586 5.063 4.474 3.897
1.98 6.494 7.301 7.442 7.225 6.823 6.332
1.99 7.495 9.073 9.945 10.377 10.524 10.481

TABLE XXIII. The residual mass near M � 2, at � � 5:2 in
Landau gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28

1.91 0.049 0.099 0.124 0.130 0.122 0.108
1.92 0.040 0.089 0.119 0.131 0.130 0.122
1.93 0.031 0.078 0.110 0.128 0.134 0.132
1.94 0.023 0.065 0.098 0.120 0.132 0.137
1.95 0.015 0.052 0.083 0.107 0.124 0.134

TABLE XXII. The residual mass near M � 2, at � � 5:2 in
Feynman gauge.

M Ns � 8 Ns � 12 Ns � 16 Ns � 20 Ns � 24 Ns � 28

1.91 0.043 0.094 0.120 0.127 0.120 0.107
1.92 0.034 0.085 0.115 0.128 0.128 0.120
1.93 0.026 0.074 0.106 0.125 0.132 0.130
1.94 0.018 0.061 0.094 0.117 0.130 0.134
1.95 0.011 0.048 0.080 0.104 0.121 0.132
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to what is expected from general considerations which can
be derived from other methods.

IX. CONCLUSIONS

In this paper we have presented the calculation of a few
one-loop amplitudes for domain-wall fermions at finite Ns,
with the intention of gathering some knowledge about the
extent of chiral symmetry breaking for choices ofNs which
are far away from the case of infinite extent in the extra
fifth dimension. In particular, we have studied three quan-
tities whose deviations from their values at Ns � 1 can
provide some significant estimates of chiral violations: the
residual mass, the difference between the vector and axial-
vector renormalization constants, and a power-divergent
mixing of a deep-inelastic operator which is entirely due to
the breaking of chirality.

We have automated the perturbative calculations by
developing suitable FORM codes. We have found that the
pattern of the deviations from the case of exact chirality
turns out to be approximately the same for all quantities
studied, that is these violations substantially increase when
Ns becomes small or when M approaches 0 or 2, i.e., close
to the borders of the region of allowed values of M. Our
perturbative calculations show indeed that the numerical
deviations from the case of infinite extension in the fifth
dimension depend, apart from Ns and to a smaller extent
from the bare coupling g0, very strongly on the choice of
M. These deviations can become rather pronounced when
M is close to the borders of the region of allowed values.
For M � 1:8, a standard choice in Monte Carlo simula-
tions, chiral violations remain still not small for Ns � 16,
as can be seen from mres, which for a lattice spacing of
2 GeV is equal to about 100 MeV in the quenched case and
about 120 MeV in full QCD. For the difference between the
vector and axial-vector renormalization constants as well
as for the power-divergent mixing the chiral violations are
instead of about 2–3 MeV, suggesting that they are of
higher order in mres.

These numbers for M � 1:8 should not be taken too
literally and cannot provide the precise numerical values of
the chiral violations, because at this order in perturbation
theory they do not represent the minimum of the chiral
violations, which happens to be instead located around
M� 1:2. However, we can still get plausible insights and
useful hints from these numbers. Perturbation theory after
all is in practice the cheapest method which is available to
investigate how changing M and Ns could improve things
(if one does not want to repeat expensive simulations at
several points of this parameter space). We think then that
to the extent that one-loop perturbation theory can provide
hints to the actual behavior of these quantities, and if
higher-order corrections do not strongly compensate for
these one-loop effects, our work would suggest that one
should perhaps consider performing simulations which use
at least Ns � 20 or Ns � 24 points in the fifth dimension,

in order to be able to work with reasonably small chiral
violations.

Our work also confirms (though only from the numerical
side) the legitimacy of the assumptions made in previous
calculations at infinite Ns, where from the start it was
postulated that the limit Ns ! 1 for the quark propagators
could be taken before doing the actual computations of the
Feynman diagrams and the numerical integration. The
asymptotic propagators introduce in fact spurious infrared
singularities not present in the theory at finite Ns, and in
passing from Ns � 1 to any finite value of Ns the analyti-
cal Atiyah-Singer index of the Dirac operator, which pro-
tects the quarks from acquiring a nonzero mass, disappears.
One cannot then be certain that this transition occurs with a
smooth and continuous behavior, although at the end it is
likely that no problem is present [57]. We can observe that
the results which we have presented in this work rapidly
approach for large Ns the numbers which were obtained
with the simplified asymptotic theory, with the exception
of the regions very close to the borders of allowed values,
M ! 0 or M ! 2, where other effects can come into play.
We can then a posteriori confirm that, at least for one-loop
calculations made at choices of M which are not too
extreme, the inversion of the limits was numerically
legitimate.

In an interesting paper Shamir has studied the wave
function at one loop and suggested that an increase of the
rate of decay of the chiral violations can be achieved by a
change in the form of the four-dimensional fermion action
[64], and some of his predictions have been verified in
simulations [65]. Comparisons of the results presented in
this article with the results in [64] are, however, not
straightforward. Apart from the fact that they rely on
resummations which employ tadpole improvement and
nonperturbative arguments [66], the latter are obtained in
the context of the asymptotic theory at large Ns; however,
for small Ns the exact truncated fermion propagators and
their large-Ns asymptotic expressions give in general dif-
ferent results. In the present work instead we have limited
ourselves to investigate what happens (as Ns and M are
varied) when one performs plain perturbative calculations
with the exact theory, without any resummations.
Furthermore, it is not clear what tadpole improvement
means in this case, since the tadpole that contributes to
the residual mass goes to zero for large Ns or for M near 1
(and otherwise can be small or large). Moreover, no tad-
pole at all enters in the calculations of � and cmix.

A disturbing finding of our calculations is the pathologi-
cal behavior of renormalization factors, which are no
longer gauge invariant, although the deviations from gauge
invariance are not numerically large, even for values of M
far away from 1 (the pattern of chiral violations seems to be
the same for all quantities considered in this work). It could
be that the act of choosing a definite gauge affects the
amount of chirality-breaking effects in Monte Carlo simu-
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lations as well. Furthermore, the coefficients of the loga-
rithmic divergences turn out to depend on Ns and M, and
only forNs � 1 they are the same as the ones calculated in
the continuum. In particular, the anomalous dimension of
the vector (as well as the axial-vector) current is not zero,
and not constant in Ns andM. It would be interesting in the
future to investigate in more detail these phenomena,

which could perhaps contribute to a fuller understanding
of domain-wall simulations.
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