
Renormalization-group analysis of the validity of staggered-fermion QCD
with the fourth-root recipe

Yigal Shamir*
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv, Israel

(Received 13 December 2006; published 15 March 2007)

I develop a renormalization-group blocking framework for lattice QCD with staggered fermions. Under
plausible, and testable assumptions, I then argue that the fourth-root recipe used in numerical simulations
is valid in the continuum limit. The taste-symmetry violating terms, which give rise to nonlocal effects in
the fourth-root theory when the lattice spacing is nonzero, vanish in the continuum limit. A key role is
played by reweighted theories that are local and renormalizable on the one hand, and that approximate the
fourth-root theory better and better as the continuum limit is approached on the other hand.
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I. INTRODUCTION

Lattice QCD simulations with staggered fermions [1–8]
have been producing remarkably accurate predictions of
various hadronic observables [9]. The staggered-fermion
field has only one component per color per lattice site,
making the numerical computations relatively cheap, as
well as a nonanomalous U�1� chiral symmetry in the
massless limit, which is important for the phenomenology
of the light-quark sector.

All staggered-fermion simulations with three flavors of
light quarks make use of the fourth-root recipe [10]. The
up, down, and strange quarks are each represented by a
staggered field with a different bare mass. But normally a
single staggered field generates four quark species, or
‘‘tastes,’’ in the continuum limit. The four tastes do have
equal renormalized masses thanks to the lattice staggered-
fermion symmetries [8].1 In order to remove the excessive
degrees of freedom one takes the fourth root of the
staggered-fermion determinant.2 The fourth-root recipe
defines a renormalizable theory which, to all orders in
perturbation theory, reproduces a local, unitary theory
with the correct number of light quarks in the limit of a
vanishing lattice spacing. (It is assumed [12] that the
staggered theory without the fourth root behaves as ex-
pected in perturbation theory, which is very plausible
[11,13].) Nonperturbatively, the validity of the fourth-
root recipe is a nontrivial issue which has been the subject
of much debate [14]. For a recent review, see Ref. [11].

In a formal expansion in the lattice spacing, the massless
staggered action splits into marginal terms that have aU�4�
taste symmetry and irrelevant terms that break the symme-

try explicitly. Because of the absence of an exact four-fold
degeneracy in the spectrum of the staggered Dirac opera-
tor, the fourth-root theory is nonlocal, and not unitary, at
any nonzero lattice spacing [15]. The question that must be
addressed is whether the nonlocality disappears, and uni-
tarity is recovered, in the continuum limit.

First, a degree of control over the infrared behavior must
be maintained, and I will assume that the quark masses are
all positive [16–19]. In a nutshell, the following tentative
reasoning summarizes how the fourth-root recipe might be
valid in the continuum limit: The taste-violating effects of
staggered fermions arise from irrelevant operators. These
effects should scale to zero in the continuum limit like a
positive power of the lattice spacing. Hence exact four-fold
taste degeneracy is recovered in the continuum limit. The
effective low-energy Dirac operator attains the form ~D � 1,
where ~D is a local operator that carries no taste index, and
where 1 is the four-by-four identity matrix in taste space.
The fourth root of det� ~D � 1� is det� ~D�. This fourth root is
analytic, leading to locality and unitarity.3

Before making any concrete claims, a framework is
needed where statements about the continuum limit will
be well defined to begin with. The natural tool for the task
is renormalization-group (RG) block transformations,
which have already been used in the free theory [20]. A
coarse-lattice theory is obtained via n blocking steps,
starting from a fine-lattice theory which, in the case at
hand, contains staggered fermions. The process is repeated
with more and more blocking steps, but the coarse-lattice
spacing (in physical units) is held fixed. With each addi-
tional blocking step the initial fine-lattice spacing gets
smaller, while the bare parameters are adjusted to maintain
constant physics. In the limit n! 1, one obtains a (well-
defined) coarse-lattice theory that generates a set of
continuum-limit observables. By setting the coarse-lattice
spacing to be small enough, we ensure that the observables
are rich enough to extract all the QCD physics.

*Electronic address: shamir@post.tau.ac.il
1In principle, one could account for the up, down, strange, and

charm quarks by the four tastes of a single staggered field with a
general staggered mass term [8]. In practice, this is not done. See
Ref. [11] for a discussion of the reasons.

2In the isospin limit, the up-down sector is represented by a
square root of a staggered determinant with the common light-
quark mass.

3The analytic continuation to Minkowski space must be per-
formed after the continuum limit.
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Using this blocking framework, I make the following
two-pronged argument. I first derive the noncontroversial
claim that exact taste symmetry is recovered in the con-
tinuum limit of the ordinary, local staggered theory. The
concrete physical properties on which this conclusion rests
are itemized. Like many fundamental properties, no rigor-
ous proofs of these physical properties are available. Yet,
they are more than just plausible. It is difficult to imagine
how they could be spoiled without grossly affecting the
continuum limit of lattice QCD as we know it.

I next examine to what extent the same physical prop-
erties remain valid in the fourth-root theory. Properties that
have to do purely with the short-distance behavior, and
generalize relatively easily to the fourth-root theory, in-
clude power-counting renormalizability [11–13], and the
locality of the contributions to the gauge-field effective
action generated by the integration over the ultraviolet
fermion modes.

A crucial ingredient is the scaling of taste-breaking
effects. Because of the absence of a local fermion action,
it is unclear whether a scaling analysis is at all possible. In
other words, it is unclear what is the merit of the observa-
tion that the taste-breaking effects arise, formally, from an
irrelevant operator. I bypass this difficulty by building a
representation of the RG-blocked theory where all the taste
violations can be traced back to a local operator, whose
scaling can be computed by developing the appropriate
perturbative expansion. I argue that the result should in-
deed reproduce the scaling law of an irrelevant operator.

If the taste violations vanish in the limit of infinitely
many blocking steps, then, after sufficiently many blocking
steps, it should be possible to find local theories in the
correct universality class that provide a good approxima-
tion of the fourth-root theory. I construct such local theo-
ries explicitly via a reweighting of the blocked fourth-root
theory that amounts to discarding all the taste-breaking
terms. Starting from the reweighted theories and working
back towards the fourth-root theory, I then conclude that
exact taste symmetry is recovered in the continuum limit of
the fourth-root staggered theory as well. As I have ex-
plained above, this implies the validity of the fourth-root
recipe.

This paper is organized as follows. The RG-blocking
framework is introduced in Sec. II. Technical details have
been kept to a minimum, and are mostly relegated to
several appendices. The beginning of Sec. II contains a
brief summary both of the section itself and of the content
of the appendices. Sec. II ends with the introduction of the
reweighted theories, at which point I give a description of
the key steps of the argument, the details of which will be
presented in subsequent sections.

The recovery of exact taste symmetry in the continuum
limit of the ordinary, local staggered theory is discussed in
Sec. III. The reweighted theories are discussed in detail in
Sec. IV. Finally, in Sec. V, the reweighted theories are used

to establish the recovery of exact taste symmetry in the
continuum limit of the fourth-root theory. My conclusions
are given in Sec. VI.

This paper is long, and addresses both conceptual and
technical questions. In order to help the reader find his/her
way through, I have organized the paper such that the
essentials are summarized in the following (sub)sections:
Sec. II E explains the technical layout of the argument;
Sec. IV D gives a summary of key properties of the re-
weighted theories; and Sec. VI contains the conclusions.
For a brief account of this work, see Ref. [21].

II. THE RG-BLOCKING FRAMEWORK

In this section I introduce the RG-blocking framework,
referring mostly to the ordinary staggered theory for peda-
gogical reasons. This section provides a bird’s eye over-
view. It contains only the minimum needed to follow the
logic of the main argument, as given in subsequent sec-
tions. Much of what goes into the construction has been
relegated to several appendices. In the appropriate places,
I refer to the relevant appendices for a more elaborate
discussion. The summary below serves as a ‘‘Table of
Contents’’ both for this section and for the appendices.

The blocking transformations are introduced in Sec. II A
which also serves to set the notation. The first blocking step
is special, since it is used to make the transition from the
standard one-component formalism of staggered fermions
to a taste-basis representation. This special step is dis-
cussed in Appendix A 1. The same appendix also provides
technical details on the fermion blocking kernels for sub-
sequent blocking steps (Appendix A 2), and contains a
proof of the positivity of fermion determinants encountered
in the blocking process (Appendix A 3). Next, Sec. II B
casts the partition function of the resulting blocked theory
in a form that will be repeatedly used below. Sec. II C
introduces the pullback mapping of operators from the
coarse lattice back to the original fine lattice, as well as
its main uses. A more elaborated discussion of the pullback
mapping may be found in Appendix B, alongside with
some details on the gauge-field blocking kernels. Also
relegated to appendices are the generation of blocked
gauge-field ensembles (Appendix C), a general discussion
of lattice symmetries under the blocking transformation
(Appendix D), as well as a more specific discussion of the
hypercubic and chiral symmetries (Appendix E).

The reasons why the interacting fourth-root theory can-
not be local for any finite lattice spacing have been spelled
out in Ref. [15], which also contains further details on
various Dirac operators encountered within the blocking
framework. For completeness, a brief review of these
reasons is given in Appendix F. The remaining two appen-
dices (Appendix G and H) deal with scaling issues.

In this section, I continue in Sec. II D with a summary of
the main lessons from the free theory [20]. Finally, I
introduce the fourth-root theory and the various reweighted
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theories in Sec. II E, and give an overview of the argument,
to be presented in detail in subsequent sections, the con-
clusion of which is that the fourth-root recipe is valid in the
continuum limit.

A. The blocking transformations

Originally, the partition function of the ordinary stag-
gered theory is

 Z �
Z

DUD�D �� exp��Sg�U� � ��Dstag�U���;

(2.1)

where Dstag�U� � Dstag�x; y;U� is the staggered Dirac
operator, and ���x�, ��y� is the staggered field. The fine-
lattice coordinates are denoted x, y, and the lattice spacing
is af. The link variables are U�;x, and the gauge field as a
whole will be denoted U � fU�;xg. The gauge-field action
is Sg�U�. Summations over all lattice sites will be
suppressed.

As already mentioned, I assume that all the quark
masses are positive.4 In order to avoid unnecessarily clut-
tered notation I will consider the ordinary and fourth-root
theories with a single flavor of staggered fermions. The
generalization to more than one flavor is obvious.

I will perform n� 1 blocking steps, labeled as k �
0; 1; . . . ; n. The first, k � 0 step is special; it transforms
the staggered field from its usual one-component basis to a
taste basis, which is then retained in all subsequent block-
ing steps. The k � 0 step maintains the number of fermi-
onic degrees of freedom. It is described in detail in
Appendix A. In the subsequent blocking steps, thinning
out of all degrees of freedom (fermions and gauge field)
occurs. I have chosen to block (and thin out) the gauge field
in the special k � 0 step as well, essentially for no better
reason than making the notation more tractable.

In every blocking step the lattice spacing is increased by
a factor of 2. Thus, ak � 2k�1af for k � 0; . . . ; n. When
speaking of the coarse-lattice theory I will refer to the
theory obtained at the last, k � n step. Its lattice spacing
will also be denoted ac 	 an. When I increase the number
of blocking steps, the coarse-lattice spacing ac will be held
fixed in physical units, and the fine-lattice spacing will
decrease as af � 2�n�1ac. The bare parameters on the fine
lattice are adjusted to maintain constant physics. I will
assume that the (fixed) length of each dimension of the
coarse lattice is finite. Since, by assumption, all quarks are
massive, no subtlety should arise in taking the thermody-
namical limit.

For k � 0; . . . ; n, the blocked fermion and antifermion
fields on the kth lattice will be denoted as  �k��i �~x

�k�� and

� �k��i �~x
�k�� respectively, where ~x�k� are the coordinates on the

kth lattice. The indices � and i, both ranging from one to
four, are the Dirac and the taste index, respectively. The
blocked link variables will be denoted V�k�

�;~x�k�
. The kth-step

blocked gauge field as a whole is denoted V �k� � fV�k�
�;~x�k�
g.

Each blocking step is performed by multiplying the
integrand of the partition function of the previous step by
one, written in a sophisticated form [22] (for reviews of the
renormalization group, see Refs. [23,24]). Since integra-
tions are over a compact space or else involve Grassmann
variables, the order of integrations can be chosen at will.
The result of the first, special blocking step, and the sub-
sequent n ordinary blocking steps, is summarized by the
following equation:

 

Z �
Z

DUD�D �� exp��Sg�U� � ��Dstag�U���



Z Yn

k�0

�DV �k�D �k�D � �k��


 exp��K�U; �; ��; fV �k�;  �k�; � �k�g�� (2.2a)

�
Z

DV �n�D �n�D � �n� exp��Sn�V
�n�;  �n�; � �n���;

(2.2b)

where Sn is the final coarse-lattice action. In Eq. (2.2a), K
represents the sum of all the blocking kernels. The notation
fV �k�; . . .g signifies dependence on the listed fields for all
0 � k � n. Itemizing the blocking kernels,

 K �
Xn
k�0

�K�k�
B �K�k�

F �; (2.3)

in which the subscripts B, F refer to bosons (i.e. the gauge
field) and fermions, respectively, we have

 

K�0�
B � B0�V

�0�;U� �N 0�U�; (2.4a)

K�k�
B � Bk�V

�k�;V �k�1�� �N k�V
�k�1��; (2.4b)

where

 

exp��N 0�U�� �
Z

DV �0� exp��B0�V
�0�;U��;

(2.5a)

exp��N k�V
�k�1��� �

Z
DV �k� exp��Bk�V

�k�;V �k�1���;

(2.5b)

and

4See Refs. [17,19] for a discussion of how to implement the
physical theory with a negative quark-mass using the fourth-root
recipe.
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K�0�
F � �0� � �0� � ��Q�0�y�U��� �0� �Q�0��U���; (2.6a)

K�k�
F � �k� � �k� � � �k�1�Q�k�y�V �k�1���


 � �k� �Q�k��V �k�1�� �k�1��: (2.6b)

In Eqs. (2.4b), (2.5b), and (2.6b), the k-range is 1 � k � n.
The fermion blocking kernel Q�k��V �k�1�� depends on the
gauge field on the �k� 1�th lattice only. It is an ultralocal
and gauge-covariant linear transformation that maps each
24 hypercube of the �k� 1�th lattice to a single site of the
kth lattice. The blocking parameter �k has mass-dimension
one. In this paper I will assume that �k is chosen to be of
order a�1

k � 2n�ka�1
c . Note that the Gaussian integral

 

Z
D �k�D � �k� exp��K�k�

F �; (2.7)

yields a trivial constant; in Eq. (2.2a), this constant was
absorbed into the definition of the Grassmann measure. For
more details on the fermion blocking kernels, see
Appendix A. For the gauge-boson blocking kernels, see
Appendix B.

B. A convenient representation

Keeping track of the taste-symmetry violations is evi-
dently important. For this purpose, the action Sn that
results from the blocking transformations is not very useful
because it contains multifermion interactions. In the
fourth-root theory, that action would furthermore be non-
local, and completely intractable. The problem can be
circumvented by noting that the fermion blocking trans-
formations are Gaussian, as can be seen from Eqs. (2.2a)
and (2.6). Let us integrate out the original fermion variables
as well as all the blocked fermion variables, except for
those that live on the coarsest lattice. But let us not inte-
grate out the original gauge field nor any of the blocked
gauge fields. All the integrations we explicitly do are, thus,
Gaussian. The result is

 Z �
Z

DU
Yn
k�0

�DV �k��Bn�1;U; fV �k�g�



Z

D �n�D � �n� exp�� � �n�Dn 
�n��; (2.8)

where

 

Bn��;U; fV �k�g� � exp
�
�Sg �

Xn
k�0

K�k�
B

�
det����0G0�

�1�



Yn
k�1

det����1=16
k Gk�

�1�: (2.9)

In the ordinary staggered theory one has � � 1. In the
fourth-root theory we will have � � 1

4 . Here

 

D�1
0 � ��1

0 �Q
�0�D�1

stagQ
�0�y; (2.10a)

D�1
k � ��1

k �Q
�k�D�1

k�1Q
�k�y; k � 1; . . . ; n; (2.10b)

 

G�1
0 � Dstag � �0Q

�0�yQ�0�; (2.11a)

G�1
k � Dk�1 � �kQ�k�yQ�k�: k � 1; . . . ; n: (2.11b)

Equation (2.9) includes the constant resulting from the
Grassmann integration (2.7), for each k. The different
powers of �k arise because the �k� 1�th lattice has 16
times fewer fermionic degrees of freedom compared to the
kth lattice, except for the k � 0 step which does not reduce
the number of fermionic degrees of freedom.

For fixed values of the original as well as all the blocked
gauge fields, we have the factorization formula [22]

 det�Dstag� � det�Dn� det���0G0�
�1�

Yn
k�1

det���1=16
k Gk�

�1�:

(2.12)

Equation (2.12) shows how the fermionic short-distance
fluctuations are gradually removed from the theory. Each
factor of det�G�1

k � results from integrating out fermionic
degrees of freedom during the k-th blocking step, and
generates an effective action for the collection of gauge
fields U;V �0�; � � � ;V �k�1�,
 

S0
eff � log det��0G0�; (2.13a)

Skeff � log det��1=16
k Gk�; k � 1; . . . ; n: (2.13b)

All the long-distance physics is contained in the RG-
blocked Dirac operator Dn. That Dn faithfully reproduces
the long-distance physics can be seen as follows. By suc-
cessive applications of Eq. (2.10), the blocked-field propa-
gator D�1

n can be expressed in terms of the original
propagatorD�1

stag between a special type of smeared sources
built up from the product of the fermion blocking kernels
[cf. Eq. (A6)]. As I explain below, this is but a special case
of a more general mechanism.

For m> 0, one can show that det�Dk� is strictly positive
and det�G�1

k � is positive. See Appendix A 3 for the proof.

C. Pullback mapping

The RG-blocking transformations start off at the cutoff
scale and proceed gradually towards lower energy scales.
But the blocking transformations facilitate another opera-
tion that works in the reverse direction. Suppose that we
want to calculate the expectation value of an operator
O�n� � O�n��V �n�;  �n�; � �n�� defined explicitly in terms
of the fields of the nth lattice. Using Eq. (2.2), the expec-
tation value may be calculated as follows. We begin by
integrating over the nth-lattice fields, then over the
�n� 1�th-lattice fields, and so on. If, however, we stop at
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any intermediate step k, the result of the integrations we
have done so far will be expressible solely in terms of the
fields of the kth lattice. This procedure defines a pullback
mapping of any operator from the nth to the kth lattice, that
by construction preserves expectation values.

Explicitly, for any �1 � j � n� 1, the pullback map-
ping T �j;n�: O�n� ! O�j� is defined by

 

T �j;n�O�n� �
Z Yn

k�j�1

�DV �k�D �k�D � �k��


 exp
�
�

Xn
k�j�1

�K�k�
B �K�k�

F �

�
O�n�: (2.14)

As promised, by construction the pullback mapping pre-
serves the value of observables,

 hT �j;n�O�n�ij � hO
�n�in: (2.15)

Here the expectation value h� � �in is defined by the repre-
sentation of the partition function in Eq. (2.2a). Taken
together, these equations merely say that we may perform
the integrations in Eq. (2.2) by first integrating over the
blocked fields labeled by j� 1 � k � n, and then inte-
grating over the remaining blocked fields as well as over
the original fields. The value j � �1 accounts for the
original fine-lattice theory, and T ��1;n� is the pullback
from the last-step coarse lattice all the way to the original
staggered theory on the fine lattice.

The pullback mapping is ultralocal if and only if the
blocking kernels are. An operator supported on a compact
subset of the nth lattice is mapped by T �j;n� to an operator
supported on a corresponding, only somewhat bigger, sub-
set of the jth lattice.

An immediate corollary is that the coarse-lattice observ-
ables form a proper subset of the fine-lattice observables.
The coarse-lattice expectation value of the operator O�n� is
equal to the fine-lattice expectation value of the operator
T ��1;n�O�n�. As alluded to earlier, the reconstruction of the
blocked fermion propagator D�1

n from its predecessors is
in fact an example of the pullback mapping in action.

This innocuous corollary leads to another, all important,
result. Every coarse-lattice observable, being simulta-
neously a fine-lattice observable via the pullback mapping,
is constrained by all the fine-lattice symmetries. In this
sense, the (physical) consequences of the exact lattice
symmetries cannot ‘‘be lost’’ by the blocking process.

More can be said on the role of specific lattice symme-
tries within the blocking framework. The interested reader
is referred to Appendix B for a more detailed discussion of
the pullback mapping. Effects of the blocking transforma-
tions on the fine-lattice symmetries, including the rele-
vance of the pullback mapping, are discussed in
Appendix D and E.

D. Lessons from the free theory

In this subsection I review the main results of RG-
blocking in the free theory [20]. With no gauge fields,
Eq. (2.12) takes a somewhat special form. By a unitary
change of variables one can switch back and forth between
the Dirac operators Dstag, in the one-component basis, and
Dtaste, in the taste basis [5,6], and5

 det�Dstag� � det�Dtaste� � det�Dn�
Yn
k�1

det���1=16
k Gk�

�1�:

(2.16)

An explicit expression for the free RG-blocked Dirac
operator Dn may be written down. Its taste-violating part
�n [see Eq. (2.21) below] has a norm bounded by6

 kac�nk � O�2�n� � O�a0=ac�: (2.17)

In the limit n! 1, all the taste-violating terms go to zero,
and
 

lim
n!1

Dn � Drg � 1; (2.18a)

lim
n!1

det�Dtaste�Qn
k�1 det���1=16

k G�1
k �
� det4�Drg�: (2.18b)

Again, 1 is the identity matrix in taste space. The ‘‘one-
taste’’ operator Drg is local, and det�Drg� qualifies as a
fourth root of det�Dtaste� � det�Dstag� in the sense of
Eq. (2.18b).

By repeatedly integrating out the short-distance fluctua-
tions we thus obtain a coarse-lattice operator with an exact
four-fold degeneracy in the limit n! 1. The power-law
scaling of the taste-breaking terms is clearly as dictated by
their origin: irrelevant operators with mass-dimension
equal to five. Intuitively this can be understood as follows.
The dimension-five taste-violating terms in Dtaste are mul-
tiplied by an explicit factor of a0, the initial taste-basis
lattice spacing. But the momentum flowing through the
fermion line is in effect of order jpj  a�1

c at most. The
relative size of the taste-violating terms is therefore at most
of order a0=ac.

As a simple corollary of the rigorous work of Ref. [25],
one can prove thatDk,G�1

k , and its inverseGk, are all local,
bounded operators. Mathematical rigor set aside, one can
understand how G�1

k develops an O��k� gap directly from
Eq. (2.11). Since the fermion mass is very small in any
lattice units, it can be ignored for this purpose. Also, from

5Equation (2.12) reduces to Eq. (2.16) in the limit �0 ! 1,
where det���0G0�

�1� ! 1 and D0 ! Dtaste [15]. What I denote
as Gk in this paper was denoted �k in Ref. [20], see Eq. (6)
therein. The notation Gk has a related, but different meaning in
Ref. [20]. Also, for compatibility with Ref. [25], in Ref. [20] the
blocking parameters �k were all chosen to have a fixed, O�1�
value in units of the coarse-lattice spacing, whereas here I make
the more natural assumption �k � O�a�1

k �.6This bound is rigorous in the free theory [20,25].
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now on, I assume that �0 in Eq. (2.10a) has a finite,O�a�1
0 �

value. Hence Eq. (2.12) [and not Eq. (2.16)] must be used
also in the free theory. For further details on the k � 0 step
see Ref. [15] and Appendix A.

For k � 1, the massless Dirac operator Dk�1 satisfies a
Ginsparg-Wilson (GW) relation [26], in which ��5 � �5�
takes the role usually played by �5. Here �5 is the repre-
sentation of �5 that acts on the taste index (see
Appendix A).7 The eigenvalues of Dk�1 thus lie on a circle
in the right half of the complex plane, with the imaginary
axis tangent to the eigenvalue circle on the left [15,20]. In
order to obtainG�1

k fromDk�1, we add the blocking-kernel
term �kQ�k�yQ�k�. This new term is positive semidefinite. It
affects mostly the small-momentum modes located near
the origin of the Brillouin zone, and pushes their eigenval-
ues to the right by an amount proportional to �k. The result
is that no eigenvalue remains in an O��k� neighborhood of
the origin. In other words, G�1

k has developed a gap of
order �k.

8 Its inverse Gk will thus have a decay rate of
order �k as well. Furthermore, since one may also obtain
the blocked Dirac operator as

 Dk � �k � �2
kQ
�k�GkQ�k�y; (2.19)

it follows that the decay rates of the kernels of Dk and of
G�1
k�1 should be O��k� too. The argument may now be

repeated for the �k� 1�th step.

E. Overview of the argument

When no roots are taken, the local lattice theory with Nf
staggered fields belongs to the universality class of QCD
with 4Nf quarks. The usual universality classification is,
however, inapplicable to the fourth-root theory, because of
its nonlocality. There is evidence from staggered chiral
perturbation theory that the outcome of taking the fourth
root may be described in terms of an extended Hilbert
space containing unphysical states with nonzero taste
charges: the contributions of these taste-charged states as
intermediate states are thus also unphysical. A unitary
subspace with the correct number of quarks, one per stag-
gered field, will exist only in the continuum limit, and
only provided that exact taste symmetry is recovered
[15,19,27,28].

The range of the nonlocality present in the fourth-root
theory appears to be set by infrared scales of the theory: the
masses of the various staggered pions [15,21]. The taste-
breaking terms driving the nonlocality are lattice artifacts,
and would naively be expected to vanish in the continuum
limit. If indeed exact taste symmetry is recovered in the
continuum limit of the fourth-root theory, then, when the
lattice spacing has become small enough, it is logically

necessary that local lattice theories in the desired univer-
sality class exist which provide a good approximation of
the fourth-root theory. Such local theories could be con-
structed by simply discarding the taste-violating terms
from the blocked fourth-root theory. This is the idea behind
the introduction of reweighted theories.

Consider first the ordinary, local staggered theory. With
the help of Eqs. (2.8) and (2.9), the original staggered
partition function in Eq. (2.1) can be reexpressed as

 Z � Zn 	
Z

DU
Yn
k�0

�DV �k��Bn�1;U; fV �k�g� det�Dn�:

(2.20)

In short, this expression results from n� 1 blocking steps,
after which the fermion fields have been integrated out
altogether, while retaining explicitly the integral over the
original, fine-lattice gauge field U, as well as over the
gauge fields V �k� of all the blocking steps. Recall that the
special k � 0 step facilitates the transition from the usual
one-component staggered basis to a taste basis.

In order to keep track of taste-symmetry violations, let
us split the blocked Dirac operator Dn into its taste-
invariant and noninvariant parts:
 

Dn � Dinv;n ��n; (2.21a)

Dinv;n � ~Dinv;n � 1; (2.21b)
~Dinv;n �

1
4 trts�Dn�; (2.21c)

where trts denotes tracing over the taste index only. The
taste noninvariant part �n is traceless on the taste index.

By construction, Dn accounts for physics over distances
on the order of the coarse-lattice spacing ac or longer. In
particular, its taste violating part �n accounts for all taste-
symmetry violations at the energy scale a�1

c and below.
The question is how big are the taste-symmetry violating
effects in the spectrum of Dn.

Originally, the staggered Dirac operator Dstag exhibits
taste-symmetry violations on all scales. In the low-lying
spectrum they are small [29]; but they grow gradually with
the energy scale, until they become O�1� at the scale of the
original lattice cutoff a�1

f � 2n�1a�1
c . I will argue that,

nevertheless, by choosing n large enough the taste-
violating effects in the spectrum of Dn can be made arbi-
trarily small. RG blocking removes the ultraviolet fermi-
onic modes. Their remnant is, mutatis mutandis, the
effective action Skeff [Eq. (2.13)]. This effective action is a
sum of (products of) Wilson loops and, I will claim, it is
local on both the ordinary and fourth-root staggered en-
sembles. Being a local functional of the (original and
blocked) gauge fields, but not a functional of the fermion
fields, it cannot give rise to any taste-symmetry violations
at large distances. In this sense, the ultraviolet taste viola-
tions have been eliminated. I will further claim that, with
every additional blocking step, the remaining taste viola-
tions in the entire eigenvalue spectrum of the blocked

7In the massless limit Drg [Eq. (2.18)] satisfies the usual
Ginsparg-Wilson relation.

8When the eigenvalues �i are complex we may define the gap
as minj�ij.
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Dirac operator get smaller, uniformly, basically because
this spectrum consists of only ‘‘low-energy’’ modes with
respect to the fine-lattice scale. In the limit of infinitely
many blocking steps, taste symmetry is fully recovered.

We may discard all the taste-breaking effects from the
staggered theory, by hand, after only a finite number of
blocking steps. Truncating the blocked Dirac operator in
Eq. (2.20) to its taste-invariant part Dinv;n gives rise to the
following reweighted theory

 Zinv;n �
Z

DU
Yn
k�0

�DV �k��Bn�1;U; fV �k�g� det�Dinv;n�:

(2.22a)

A more conventional looking path-integral representation
may be obtained by rewriting det�Dinv;n� as a path integral
over (four-taste) coarse-lattice fermion fields  �n�, � �n�, as
in Eq. (2.8), and then integrating out the ‘‘tower’’ of gauge
fields except for the coarse-lattice gauge field V �n�. This
gives
 

Zinv;n �
Z

DV �n�D �n�D � �n�


 exp��Sinv;n�V
�n�;  �n�; � �n���; (2.22b)

which is to be compared with the path-integral representa-
tion (2.2b) of the blocked staggered theory. Unlike the
staggered theory, the reweighted theory has no shift invari-
ance [7,8]. Instead, it has exact taste-U�4� invariance by
construction. Another difference is that the above con-
structed reweighted theory does not have an exact chiral
symmetry in the massless limit.9

Reweighting at blocking level n generates a sequence of
theories Zinv;n which are different from each other, as well
as from the staggered theory. But I will argue in Sec. III
that, because �n is an irrelevant operator, the (sequence of)
reweighted theories has the same continuum limit as the
(blocked) staggered theory. Each reweighted theory enjoys
exact taste symmetry by construction, and this implies (the
uncontroversial result) that exact taste symmetry is recov-
ered in the continuum limit of the ordinary staggered
theory. The proof works by establishing the existence of
a convergent expansion relating the staggered and re-
weighted theories when n is large enough. One must
require that all the quark masses be nonzero, consistent
with the fact that the chiral and continuum limits do not
always commute [16–19].

Moving on to the fourth-root theory, its partition func-
tion cannot be represented as an ordinary path integral with
a local fermion action. Rather, it is given by [10]

 Zroot �
Z

DU exp��Sg�det1=4�Dstag�; (2.23)

where the positive fourth root is taken. As in the ordinary
staggered theory, this may be reexpressed in an n-step RG-
blocked form as

 Zroot � Zroot
n

	
Z

DU
Yn
k�0

�DV �k��Bn

�
1

4
;U; fV �k�g

�
det1=4�Dn�:

(2.24)

Again let us remove the taste-breaking terms by hand,
which gives rise to a new family of reweighted theories
 

Zroot
inv;n �

Z
DU

Yn
k�0

�DV �k��Bn

�
1

4
;U; fV �k�g

�
det� ~Dinv;n�:

(2.25)

Here I have used the exact taste symmetry of Dinv;n �
~Dinv;n � 1 to take the analytic fourth root of its
determinant.10

One can represent det� ~Dinv;n� as a fermion path integral.
This suggests that the validity of the continuum limit of the
fourth-root theory could be established by, once again,
showing that the sequence of reweighted theories has the
same continuum limit as the blocked fourth-root theory.
But we must now face two hurdles that were not encoun-
tered in the local, ordinary staggered theory.

The new hurdles are addressed in Sec. IV. First, we must
show that the reweighted theories derived from the fourth-
root theory are local. This is done in Sec. IV B by showing
that, on the basis of plausible assumptions, the effective
action Skeff and the blocked Dirac operator Dk are local on
the kth lattice scale, on both the ordinary and the fourth-
root staggered ensembles. Because ~Dinv;n is defined by a
trace projection, ~Dinv;n and �n are then separately local.

Introducing coarse-lattice Dirac fields q�n�, �q�n� that, this
time, carry no taste index, and once again integrating out
the tower of gauge fields except for the coarse-lattice gauge
field V �n� the reweighted fourth-root partition function
then takes the form [compare Eq. (2.22b)],
 

Zroot
inv;n �

Z
DU

Yn
k�0

�DV �k��Bn

�
1

4
;U; fV �k�g

�



Z

Dq�n�D �q�n� exp�� �q�n� ~Dinv;nq�n�� (2.26a)

�
Z

DV �n�Dq�n�D �q�n�


 exp��Sroot
inv;n�V

�n�; q�n�; �q�n���: (2.26b)

The ‘‘one-taste’’ action Sroot
inv;n � Sroot

inv;n�V
�n�; q�n�; �q�n�� is

complicated, and contains many multifermion interactions,
just like Sn and Sinv;n encountered earlier. What matters,

9More sophisticated reweighted theories may be constructed.
See Ref. [15] for a construction that maintains the exact chiral
symmetry of the m! 0 limit.

10For large enough n, det�Dinv;n� and det� ~Dinv;n� are positive,
see Sec. V.
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however, is that Sroot
inv;n too is local on the coarse-lattice scale

if, in particular, ~Dinv;n is; the ‘‘surgery’’ of removing the
taste violations has also removed the nonlocalities of the
blocked fourth-root theory.

I stress that the argument for locality of Skeff and Dk does
not require that the underlying theory be local. This non-
perturbative argument is very general, and only makes mild
use of the renormalizability of all theories including the
fourth-root theory [11,12] to establish the existence of a
weak-coupling regime.

At this point we expect that the reweighted theories
Zroot

inv;n derived from the fourth-root theory are local, and
belong to the desired universality class. Now comes the
second hurdle. Convergence of the reweighted and the
staggered theories to the same continuum limit depends
on the scaling of the taste-breaking effects. But the fourth-
root theory does not have a local action in the first place, so
how are we to perform any scaling analysis?

The scaling of taste-breaking effects in gauge-invariant
observables can, of course, be studied numerically, and
what one finds is in agreement with what one would
naively expect [9,28,30]. But, while no undesirable effects
have been encountered at presently accessible values of the
lattice spacing and the quark masses, numerical results
alone cannot alleviate the concern that closer to the con-
tinuum and/or the chiral limit the scaling of taste-breaking
effects might eventually be altered in undesirable ways due
to the lack of a local lattice action.

On the lattice, a scaling analysis rests on two pillars. On
the nonperturbative side, we define a theory, construct local
operators within it, and set up an RG transformation. On
the perturbative side, if the theory is power-counting re-
normalizable, we can compute the scaling of any local
operator. An important special case is to take the local
operator to be the action itself, or individual terms within
it.

In this paper I show how to generalize the scaling
analysis to the fourth-root theory. First, the fourth-root
theory is renormalizable. The multi-gauge-field represen-
tation of the blocked fourth-root theory, Eq. (2.24), then
allows us to bypass the lack of a local fermion action.
Instead, we may study the scaling of the blocked Dirac
operator Dk and the effective action Skeff . Having first
shown by nonperturbative considerations that both of
them are local operators, their scaling can be computed
by setting up the appropriate perturbative expansion, which
is done in Sec. IV C. I find that any local operator scales in
the same way in the staggered theory and in the corre-
sponding reweighted theories (with or without the
fourth root). In particular, the taste-breaking part of the
blocked Dirac operator, �n, indeed scales as an irrelevant
operator.

Finally, in Sec. V I reconstruct the rooted theory from
the corresponding reweighted theories, and establish the
validity of its continuum limit.

My conclusion rests on renormalizability of the fourth-
root theory, concerning which there is little doubt, and the
fact that renormalizability is ‘‘inherited’’ by the reweighted
theories (Sec. IVA). My conclusion also rests on two
additional key features that have to do with locality
(Sec. IV B), and scaling (Sec. IV C). I give plausible argu-
ments for each of them, but confirmation must await more
detailed future investigations. Where, then, do we stand
today? One can draw an indirect but important lesson from
the ordinary staggered theory. In that case we (believe we)
know what is the continuum limit. Moreover, the re-
weighted theories are tightly constrained by the convergent
expansion relating them to the—local—staggered theory.
This leaves little doubt that all the key properties are valid
in this case. But the argumentation of Sec. IV makes very
little discrimination between the ordinary and the fourth-
root cases. As I explain in more detail later, this increases
confidence that nothing essential has been overlooked, and
that the claimed properties are valid in the fourth-root case
as well.

III. CONTINUUM LIMIT OF THE ORDINARY
STAGGERED THEORY

In this section I discuss the continuum limit of the
ordinary staggered-fermion theory. Continuum-limit ob-
servables that can be computed within the coarse-lattice
theory are introduced in Sec. III A. In Sec. III B, I list
scaling relations that follow from a standard RG analysis
in the ordinary staggered theory. These scaling relations
imply the recovery of taste symmetry in the continuum
limit. This is inferred in Sec. III C by comparing the
blocked staggered theory to the reweighted theory at
each blocking level n. Provided that the renormalized
quark mass is nonzero, I show that the two theories are
connected by a convergent expansion when n is large
enough, and that any difference between them vanishes
in the limit n! 1.

A. Continuum-limit observables

The continuum limit corresponds to the limit of infi-
nitely many blocking steps, which is taken while holding
fixed the coarse-lattice spacing ac in physical units. The
fine-lattice spacing af of the staggered theory goes to zero,
af� � 2�n�1ac�! 0, where � is the QCD scale.
Constant physics is maintained by adjusting the bare pa-
rameters such that the renormalized gauge coupling gr�ac�
and quark mass mr�ac� are kept fixed. The coarse-lattice
spacing plays the role of the renormalization scale. The
fermion’s wave-function renormalization is controlled by
the parameter z�k� in Eq. (A5), that fixes the overall nor-
malization of the gauge-covariant ‘‘blocking’’ kernel Q�k�

in the interacting theory. I will assume that the z�k�’s have
been adjusted so as to impose a wave-function renormal-
ization condition on the blocked fermion fields at the
renormalization scale ac.
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For simplicity I will restrict the discussion to meson
observables. Sources for mesons are added into the fermion
action on the nth lattice as follows11:

 S�n�source�J� � � �n�J � S�n� �n�; (3.1)

where

 

� �n�J � S�n� �n� 	
X
~x�n�

X
i

Ji�~x�n��O
�n�
i �~x

�n��; (3.2)

 

O�n�i �~x
�n�� �

X
~y�n�;~z�n�

� �n��~y�n��S�n�i �~x
�n�; ~y�n�; ~z�n�;V �n��


  �n��~z�n��: (3.3)

The kernels S�n�i are gauge-covariant and ultralocal.12

Augmenting the fermion action in Eq. (2.8) by the source
term (3.2) and performing the Grassmann integration we
obtain the partition function with sources [compare
Eq. (2.20)]:
 

Zn�ac; J� �
Z

DU
Yn
k�0

�DV �k��Bn�1;U; fV �k�g�


 det�Dn � J � S�n��; (3.4)

as well as the normalized version

 Z n�ac; J� � Zn�ac; J�=Zn�ac; 0�: (3.5)

Meson correlation functions, renormalized at the scale ac,
are generated by functional differentiation of Zn�ac; J�.
The (assumed) existence of the continuum limit means
that the n! 1 limit of the normalized generating func-
tional Zn�ac; J� is smooth:

 Z1�ac; J� � lim
n!1

Zn�ac; J�: (3.6)

By differentiation of Z1�ac; J� one generates continuum-
limit meson correlators in Euclidean space.

Before moving on let me comment on the set of coarse-
lattice observables. In Eq. (2.15), which states the equality
of observables under the pullback mapping, let us choose
j � n� 1. Instead of using the number of blocking steps
as a label, we may use the corresponding lattice spacing for
this purpose. The equation then takes the form

 hT �ac=2; ac�O�ac�iac=2 � hO�ac�iac ; (3.7)

in self-explanatory notation. Equation (3.7) remains valid
in the continuum limit, where the pullback mapping
T �ac=2; ac� remains well defined. This equation identifies
the observables of the coarse-lattice theory Z1�ac; J� with
a proper subset of the observables of Z1�ac=2; J�, the
coarse-lattice theory with half the lattice spacing.

Because observables are lost in the blocking, we need to
take ac� to be small enough in the first place to ensure that
the observables derived from Z1�ac; J� are rich enough to
extract all the QCD physics. Additional reasons for choos-
ing ac� small will be encountered in Sec. IV.

B. Scaling of irrelevant operators

I now list the scaling laws needed to establish the
recovery of exact taste symmetry in the continuum limit
of the ordinary staggered theory, as they apply within the
RG-blocking framework of this paper.

First, the very existence of the continuum limit in QCD
derives from asymptotic freedom,13 or, in other words,
from the scaling properties of the running coupling
gr�ac� as a function of the bare coupling.

The remaining scaling laws pertain to the fermion sector.
For the restoration of taste symmetry in all observables,
two scaling laws will be necessary:

 kD�1
n k &

1

mr�ac�
; (3.8)

 k�nk &
af
a2
c
�

2��n�1�

ac
: (3.9)

These scaling laws are assumed to hold in an ensemble
average sense; they do not hold on all configurations, but
they (are assumed to) hold after averaging over the con-
figurations in the ensemble. Each configuration is gener-
ated as described in Appendix C: one complete
configuration consists of a ‘‘mother’’ configuration Ui of
the fine-lattice gauge field, as well as of ‘‘daughter’’ con-
figurations V �0�

i ;V
�1�
i ; . . . ;V �n�

i of blocked gauge fields.
The bound (3.8) relates the lowest eigenvalues of the

blocked Dirac operator Dn to the running quark mass
mr�ac�. This inequality says that the value of mr�ac� mea-
sured on an ensemble of configurations is set by the lowest
eigenvalues of Dn, provided that the wave-function renor-
malization condition was imposed at the coarse-lattice
scale. The bound (3.8) is needed to tame the infrared
behavior in the fermion sector. We will see in the next
subsection how it enters. For some further comments on
the bound (3.8) and its parallel in the fourth-root theory, see
Appendix G.

The crucial scaling law (3.9) determines the scaling of
�n, the taste-breaking part of the blocked Dirac operator
Dn [see Eq. (2.21)]. In the taste representation, the leading
taste violations arise from dimension-five irrelevant opera-
tors [5,6,20], and the right-hand side of Eq. (3.9) gives the
anticipated scaling based on this engineering dimension
[compare Eq. (2.17) for the free theory]. The ‘‘&’’ sign
means that in the interacting theory the inequality holds up

11For general sources, see Appendix B of Ref. [11].
12See Appendix A 2 for the renormalization of composite

coarse-lattice operators.

13The argument may be extended to other theories such as
lattice QED with staggered fermions, if a finite but ‘‘beyond the
Planck scale’’ lattice cutoff is acceptable.
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to logarithmic corrections, that is, powers of log�ac=af� or,
equivalently, powers of n.

In a standard RG application the fermions and the gauge
field are both blocked at each step, and the scaling laws
apply to (the parameters of) the blocked action. Here, the
scaling laws are assumed within the representation (2.8),
which is superficially different in that none of the gauge
fields have been integrated over explicitly. However, be-
cause the sources couple to coarse-lattice fields only
[cf. Eq. (3.3)], we may imagine that we first integrate
over U;V �1�; . . . ;V �n�1� and only later over the coarse-
lattice (fermions and) gauge field. This is equivalent to
inserting the source term into Eq. (2.2b) which contains the
blocked-lattice action Sn. Thus, in the context of the ordi-
nary staggered theory, the above scaling laws are on the
same footing as the scaling laws used in a completely
standard RG-blocking context.

Because of the scaling of the taste-breaking part as given
by Eq. (3.9), the bound (3.8) practically applies to bothD�1

n
and D�1

inv;n. When using Eq. (3.8) I will disregard the
difference between kD�1

n k and kD�1
inv;nk.

C. Recovery of taste symmetry in the continuum limit

Assuming the existence of the continuum limit and the
scaling laws (3.8) and (3.9), I will now prove that exact
taste symmetry is recovered in this limit for all the coarse-
lattice observables of the ordinary staggered theory, pro-
vided mr�ac�> 0. The proof makes use of the reweighted
theories introduced in Sec. II E, and reveals why it is
necessary to avoid an exactly massless lattice theory.

I first add the source term (3.1) to the nth reweighted
theory [cf. Eq. (2.22a)]:

 

Zinv;n�ac; J� �
Z

DU
Yn
k�0

�DV �k��Bn�1;U; fV �k�g�


 det�Dinv;n � J � S�n��: (3.10)

I also introduce a family of partition functions14 (with
sources) in which Dn is replaced by Dinv;n � t�n, where
t takes values in the interval 0 � t � 1. Explicitly,

 

Zinter;n�t; ac; J� �
Z

DU
Yn
k�0

�DV �k��Bn�1;U; fV �k�g� det�Dn � J � S
�n�� det�1� �t� 1��n�Dn � J � S

�n���1� (3.11a)

�
Z

DU
Yn
k�0

�DV �k��Bn�1;U; fV �k�g� det�Dinv;n � J � S
�n�� det�1� t�n�Dinv;n � J � S

�n���1�: (3.11b)

These partition functions interpolate between the re-
weighted theory for t � 0, and the staggered theory for t �
1. Normalized generating functionals are defined in anal-
ogy with Eq. (3.5), and the n! 1 limits in analogy with
Eq. (3.6).

I will now show that the n! 1 limit does not depend on
t, viz.,

 Z1�ac; J� � Zinter;1�t; ac; J� � Zinv;1�ac; J�: (3.12)

The key step is to bound the last factor in Eq. (3.11a) as

 exp tr log�1� �t� 1��nD�1
n � � 1�O��2

n�; (3.13)

where

 �n � kD�1
n kk�nk: (3.14)

I have used that �n is traceless on the taste index, as well as
the geometric series for the staggered propagator D�1

n �

D�1
inv;n �D

�1
inv;n�nD

�1
inv;n � � � � . The sources are infinitesi-

mal and do not interfere with any bound valid for J � 0.
The (unnormalized) partition function of any interpolating
theory, Zinter;n�t; ac; J�, is obtained from the staggered par-
tition function by reweighting with the left-hand side of
Eq. (3.13). Because the scaling laws (3.8) and (3.9) hold by

assumption on the staggered ensemble, it follows that

 �n &
af

a2
cmr�ac�

�
2��n�1�

acmr�ac�
: (3.15)

We arrive at several important conclusions. First, each term
in the Taylor expansion of the logarithm in Eq. (3.13) is
bounded by the corresponding power of �n. Second, be-
cause the product acmr�ac� is held fixed, there will be an n0

such that, for any n � n0, one has �n < 1 and the Taylor
expansion converges. It follows that the change in any
(meson) observable over the interval 0 � t � 1 is O�a2

f�.
Finally, since �n ! 0 for n! 1, we readily arrive at
Eq. (3.12).

The reweighted theories Zinv;n�ac; J� have exact U�4�
taste symmetry by construction, and the same is true for the
limiting theory Zinv;1�ac; J�. But the limit is independent
of t, and so the staggered generating functional Z1�ac; J�
has exact taste symmetry as well; the RG-blocked stag-
gered theory becomes taste-invariant in the limit of infi-
nitely many blocking steps if, in particular, Eq. (3.9) holds.
As far as the rate of restoration of taste symmetry is
concerned, this is recognized as the familiar result that
the discretization errors of staggered fermions are propor-
tional to the (fine) lattice-spacing squared [2,31–34].

In the massless staggered theory one has mr�ac� � 0,
and the bound (3.15) becomes an empty statement.14For positivity of the determinants see Sec. V.
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Therefore it is not possible to infer the recovery of full taste
symmetry in the exactly-massless case. This is consistent
with the established fact that the continuum and the chiral
limits of staggered fermions do not always commute [16–
19].

The result I have established readily generalizes to all
the coarse-lattice observables. Given a coarse-lattice op-
erator O�n� � O�n�� �n�; � �n�;V �n��, I introduce the nota-
tion hO�n�t0 it for a ‘‘mixed,’’ unnormalized expectation value
where the sea quarks have Dirac operator Dint;n�t� �
Dinv;n � t�n, while the valence quarks have Dirac operator
Dint;n�t

0�. To be precise, the Boltzmann weight is given by
Eq. (3.11) (with J � 0), while the valence propagators are
given by D�1

int;n�t
0�. We then have

 

hO�n�t it � hO
�n�
t exp�tr log�1� �t� 1��nD

�1
n ��i1 (3.16a)

� hO�n�t i1�1�O��
2
n�� (3.16b)

� hO�n�1 i1�1�O��n��: (3.16c)

Equation (3.16a) reexpresses an unnormalized observable
of Zinter;n�t� as a correlation function computed on the
staggered ensemble with a reweighting factor.
Equation (3.16b) follows from the validity of the scaling
laws on the staggered ensemble. Last, Eq. (3.16c) replaces
any valence propagator D�1

int;n�t
0� by the staggered propa-

gator D�1
n . The expansion of D�1

int;n�t
0� as a power series in

�nD�1
n has the same convergence properties as that of the

logarithm in Eq. (3.13).15 As a special case, h1it � h1i1

�1�O��2

n��, and Eq. (3.16) readily generalizes to normal-
ized expectation values. It follows that all the staggered
and the reweighted (t � 0) observables have the same n!
1 limit, which now establishes the exact taste symmetry of
all observables.

Equality of all the observables implies the equality of the
‘‘fixed-point’’ coarse-lattice actions obtained in the limit
n! 1. Comparing once again the staggered and the re-
weighted theories, this means [cf. Eqs. (2.2b) and (2.22b)]

 S1�ac;V ;  ; � � 	 lim
n!1

Sn�ac;V ;  ; � �

� lim
n!1

Sinv;n�ac;V ;  ; � �

	 Sinv;1�ac;V ;  ; � �: (3.17)

In analogy with Eq. (3.7), I have dropped the blocking-step
label attached to the coarse-lattice fields, and traded it with
the coarse-lattice spacing. Adding in the source term (3.1)

then gives

 

Z1�ac; J� �
Z

DVD D � exp��S1�ac;V ;  ; � �

� � J � S�ac;V � �: (3.18)

By Eq. (3.17), the action S1�ac;V ;  ; � � of the limiting
RG-blocked staggered theory has acquired exact
taste-U�4� invariance. Equation (3.18) can be used to de-
rive taste-SU�4� Ward-Takahashi identities that will be
exactly satisfied in the limiting theory. The corresponding
result in the fourth-root theory [see discussion below
Eq. (5.15)] will put on a firm basis the observation made
in Refs. [11,19] that no paradoxes can be derived from the
extended taste symmetry of the continuum-limit fourth-
root theory.

IV. REWEIGHTED THEORIES AT WEAK
COUPLING

In the previous section I have shown that, for large
enough blocking level n, the reweighted theory can be
reached from the local staggered theory by means of a
convergent expansion. The converse is also true: Setting
t � 1 in Eq. (3.11b), we can reconstruct the staggered
theory from the reweighted theory. The convergence of
the (t-)expansion in Eq. (3.11b) is controlled by �inv;n,
where

 �inv;n � kD�1
inv;nkinvk�nkinv: (4.1)

The notation k � kinv means that the norms are now to be
evaluated on the reweighted ensemble. In view of the
established scaling of �n on the staggered ensemble,
Eq. (3.9), the difference between any staggered-ensemble
expectation value and the corresponding reweighted-
ensemble expectation value must be very small. Indeed
we must have �inv;n � �n, up to corrections which are of
higher order (in either of them).

The ability to go back and forth between the staggered
and reweighted theories implies that the reweighted theory
associated with the local staggered theory must have the
following key properties:

(i) A suitable notion of renormalizability;
(ii) Locality on the coarse-lattice scale;
(iii) Validity of the scaling laws of Sec. III B, including,

in particular, the scaling of �n as in Eq. (3.9), on the
reweighted ensemble.

In this section I explore direct evidence for these key
physical properties. The main output is that, step by step,
every argument about the (four taste) reweighted theory
derived from the local staggered theory generalizes
straightforwardly to the (one-taste) reweighted version of

15I have allowed for an O��n� mismatch in the observable,
though presumably for any physical quantity of interest one
could construct a coarse-lattice observable that would have
only O�a2

f� discretization errors, in which case the additional
mismatch incurred in Eq. (3.16c) is likely to stay O��2

n� as well.
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the fourth-root theory. In Sec. V, this will allow me to
establish the validity of the continuum limit of the
fourth-root theory. The n! 1 limit of the blocked
fourth-root theory will be reached via the corresponding
limit of the sequence of reweighted theories. Since the
reweighted theories are all local on the coarse-lattice scale,
the same will be true for the (common) limiting theory.

Power-counting renormalizability of the ordinary and
fourth-root staggered theories, alongside with the derived
reweighted theories, is discussed in Sec. IVA. Locality of
the reweighted theories is addressed in Sec. IV B. The
scaling laws are discussed in Sec. IV C, relegating some
further issues to Appendix H. I summarize the emerging
physical picture in Sec. IV D.

In the rest of this paper I will assume that the coarse-
lattice scale has been chosen to satisfy ac � ��1. This has
the following implications. (1) Because of asymptotic free-
dom, the running coupling constant gr�ac� is weak at the
coarse-lattice scale as well as on all shorter distance scales.
(2) One can define lattice-regularized QCD to be local if it
is local at the coarse-lattice scale. (3) The coarse-lattice
observables are rich enough to extract all of the QCD
physics.

A. Renormalizability

I begin with a brief account of what is known about the
renormalizability of the ordinary and fourth-root staggered
theories (Sec. IVA 1). I then offer a natural definition of
renormalizability for reweighted theories, from which it
follows that a reweighted theory is automatically renorma-
lizable if the underlying staggered theory is (Sec. IVA 2).

1. Staggered theory

Unlike Wilson fermions [35], the task of deriving lattice
power-counting theorems and all-orders renormalizability
remains to be completed for staggered fermions (for recent
progress, see Refs. [13,36]). Still, it is widely believed that
the ordinary staggered theory is renormalizable to all or-
ders. The main evidence comes from a one-loop calcula-
tion accompanied by the observation that the staggered-
fermion symmetries forbid the generation of any relevant
or marginal terms not already present in the staggered
action [8]. In particular, the taste-breaking terms remain
irrelevant to all orders.

As first noted in Ref. [12], all-orders renormalizability
should extend from the ordinary staggered theory to the
fourth-root theory. The argument relies on the familiar
replica trick.16 Consider an ordinary staggered theory
with nr copies, or replicas, of equal-mass staggered fields.
At this stage, nr is a positive integer. At each order in
perturbation theory, the counter-terms needed to renormal-

ize the lattice theory will be polynomials in nr, because nr
only enters as an overall multiplicative factor attached to
every closed fermion loop. Next, we consider the analytic
continuation in nr to arbitrary real values, which corre-
sponds to raising the staggered determinant to a (possibly
fractional) power nr. This continuation is unique, because
the (polynomial) nr-dependence of the diagrammatic ex-
pansion at each order, including the counter-terms, is al-
ready known. Thus, the counter-terms derived for integer
nr will be just enough to renormalize the fractional-power
theory for any value of nr. (While this captures the essence
of the argument, it amounts to an over-simplification. For a
more thorough discussion, see Ref. [11].)

Thus, while the fourth-root theory is nonlocal [15],
renormalizability is not lost. Retaining renormalizability
turns out to be the absolutely essential starting point from
which everything else follows.

2. Reweighted theory

Renormalizability of a lattice theory means that, by
adjusting the bare parameters, the correlation functions
of the renormalized fields have a finite limit when the
lattice spacing goes to zero and momenta in physical units
are kept fixed, to any order in perturbation theory. In the
present RG-blocking context I will assume that the corre-
lation functions under study are constructed from coarse-
lattice fields. The external momenta all belong to the
Brillouin zone of the coarse lattice.

While the reweighted theories depend on both the fine-
and coarse-lattice scales, I will adopt exactly the same
criterion to define when they are renormalizable. The
implication is that renormalizability carries over automati-
cally from the staggered theory to the derived, reweighted
theories. The reason is that, to leading order (in the fine-
lattice spacing), the difference between a given coarse-
lattice correlation function in the staggered and in the
reweighted theory is equal to the taste-breaking part the
staggered correlation function. In Sec. IV C below I will
argue that the taste-breaking part of any diagram vanishes
in the continuum (n! 1) limit, and so the staggered and
the reweighted theories assign the same continuum-limit
value for every correlation function,17 to any order in
perturbation theory.18 This prediction applies to both the
ordinary and the fourth-root staggered theories, in fact to
any real value of the number of replicas nr.

In order to avoid unrelated nonperturbative complica-
tions, as well as to ensure the existence of a weak-coupling

16The relevance of the replica trick [37] for the low-energy pion
sector of the fourth-root theory has been discussed in
Refs. [18,27,38].

17The notion of renormalizability is often assumed to include
the requirement that the continuum-limit value of each diagram
can be made equal to the value computed using some other
regularization method by a finite renormalization [35]. To the
extent that this is true for the staggered theory, this will readily
generalize to the (sequence of) reweighted theories as well.

18Extending this claim to the nonperturbative level is the
subject of Sec. V.
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regime, I will further restrict nr to positive values where
the one-loop beta function (which depends linearly on nr)
remains asymptotically free. The main results of Sec. IV B
below are valid under these mild restrictions only. As a
preparation for the next stage, let me write down the
staggered-fermion RG-blocked partition function (without
sources) for a general number of replicas nr,
 

Zn�t; nr; ac� �
Z

DU
Yn
k�0

�DV �k��Bn�nr;U; fV �k�g�


 detnr�Dinv;n � t�n�; (4.2)

in which I have also kept the interpolating parameter 0 �
t � 1 of Eq. (3.11). All the partition functions studied in
this paper are special cases of Zn�t; nr; ac�. As claimed
above, they are all renormalizable.

B. Locality of Skeff and Dk
The main result of this subsection is that both the

effective action Skeff (Eq. (2.13)) and the blocked Dirac
operator Dk (Eq. (2.10)) are local on the kth lattice scale.
In more detail, integrating out fermionic degrees of free-
dom at the kth blocking step generates a local effective
action Skeff for the gauge field, and the Dirac operator
governing the remaining fermionic degrees of freedom is
local too. Because ~Dinv;n is defined by trace projection,
~Dinv;n and �n are separately local. I will argue that this is
true on the ensemble generated by Zn�t; nr; ac� defined
above, for any t and nr (in the indicated ranges). The
argument relies on the renormalizability of the lattice
theory defined by Zn�t; nr; ac�, but it does not require that
that theory be local in itself.

As noted in Sec. II E [see Eq. (2.26)], a corollary of
crucial importance is that the theory defined by
Zn�t; nr; ac� turns out to have a local coarse-lattice action
whenever raising of the fermion determinant to the nrth
power is an analytic operation. A local coarse-lattice action
defines when a reweighted or an interpolated theory is
local. A local coarse-lattice action is obtained for the
ordinary (nr � 1) staggered theory, as well as for any
theory derived from it by varying t; and for the nr � 1=4
theory at t � 0, which is recognized as the (nth) re-
weighted theory derived from the fourth-root theory,
cf. Eq. (2.26).19

Let me begin with RG-blocking in a pure Yang-Mills
theory. While again no rigorous proofs exist, it is widely
accepted (see e.g. Ref. [24]) that the pure Yang-Mills
lattice action obtained after n blocking steps is local. The

coarse-lattice action can be approximated by the contin-
uum form

 Sn�ac� �
1

g2
r�ac�

Z
d4xF2

�� � discretization errors:

(4.3)

The ensemble of coarse-lattice configurations generated by
the Boltzmann weight Bn�ac� � exp��Sn�ac�� will corre-
spond to the correct running coupling gr�ac�. (See
Appendix C for the generation of blocked-lattice gauge-
field configurations.)

Next let us consider lattice QCD. After integrating over
all fields except for the coarse-lattice gauge field, one
arrives at a Boltzmann weight of the general form (again
using continuum notation)

 Bn�ac� � exp
�
�

1

g2
r�ac�

Z
d4xF2

�� �O�1�

� discretization errors
�
: (4.4)

Here ‘‘O�1�’’ stands for terms occurring at zeroth or higher
order in the expansion in powers of gr�ac�, which are also
of zeroth order in the expansion in powers of the lattice
spacing (i.e. terms that survive the continuum limit). The
form (4.4) depends on renormalizability, because the ultra-
violet divergent part of the fermion determinant that re-
normalizes the coupling constant has been separated out
explicitly. All other effects of the integration over the
fermion fields are contained in the last two terms in
Eq. (4.4). These terms obviously include the effects of
virtual quark loops, and they are not local. For the consid-
erations in this subsection, the only thing that matters is
that the renormalized Yang-Mills action inside of the
Boltzmann weight is parametrically larger by 1=g2

r�ac�.
Equation (4.4) applies to the partition function
Zn�t; nr; ac� as well (after all but the integration over
V �n� has been done), because this partition function too
defines a renormalizable theory.

With Eq. (4.4) in hand, we are ready to discuss the
locality properties of Skeff and Dk. Let me summarize the
relevant discussion from Sec. II [in particular around
Eq. (2.19)], but now in terms of the Hermitian [15] operator

 Hk � ��5 � �5�G�1
k : (4.5)

First, functional differentiation of Skeff with respect to the
(original or blocked) link variables generates expressions
that depend on both Hk and H�1

k . Locality of Skeff then
follows provided that Hk and H�1

k are both local on the kth
lattice scale. The locality of Dk, Hk and H�1

k is established
iteratively using Eqs. (2.11b) and (2.19). (For the k � 0
step, see Ref. [15].) The only nontrivial step is to demon-
strate the short-range nature ofH�1

k . In the free theory, this
follows because Hk has an O��k� gap.

19The same is true at t � 0 for nr � ns=4, where ns is a positive
integer, interpreted as the number of equal-mass sea quarks. All
other (fractional) values of nr fail to yield a local action, even at
t � 0, because there is no local Dirac operator ~D such that
det1=nr � ~D� � det�Dinv;n�. Notice that, in Sec. III, it was not
necessary to use the locality of the reweighted theories because
the ordinary staggered theory is by itself local.
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In the interacting theory one has to replace the notion of
a spectral gap by the notion of a mobility edge. The
properties established in the free theory will carry over to
any smooth gauge field, and, more technically, to any order
in lattice perturbation theory. This leaves open the follow-
ing question. In the presence of very rough, lattice-size
structures in the gauge field, or ‘‘dislocations,’’ could Hk
develop much smaller eigenvalues, which in turn would
spoil the short-range character of its inverse? I will now
argue that the answer is negative.

Before coming to the main argument I should note that it
is logically possible that all eigenvalues ��k�i of Hk may
always satisfy j��k�i j � ��k�min > 0, for some ��k�min � O��k�.
In other words, Hk might have an O��k� gap for all gauge
fields. If this is true, we are done. Because it is unknown if
this is true, I will disregard this possibility.

According to the theory of disordered systems (see
Refs. [39,40] and references therein), the right question
becomes what is the mobility edge of Hk. In general, the
spectrum of Hk will consist of localized eigenstates (at the
scale ak) with eigenvalues 0 � j��k�i j � ��k�c . Above the
critical value ��k�c the eigenstates become extended. By
definition, ��k�c � 0 is the mobility edge of Hk. The value
of ��k�c is a property of the ensemble.

I will argue that the mobility edge of Hk is O��k� in the
weak-coupling regime. On general grounds, any localized
eigenmodes lying below the mobility edge, be their eigen-
values as small as they may, will not spoil the short-range
character of the inverse H�1

k [39,41]. The decay length of
H�1
k is thus O�ak� as required.
At scales where lattice QCD is weakly coupled, the

physics that goes into the mobility edge is simple.
Because it may be unfamiliar, and since Hk itself has not
been studied numerically yet, let me digress to describe
results obtained in the study of the mobility edge of the
Hermitian Wilson operator HW . In Ref. [40] the mobility
edge of HW was determined for the supercritical bare mass
am0 � �1:5, and for a range of values of 	 � 6=g2

0 on
quenched ensembles. This example is relevant for the
following reason. First, for the chosen parameters, HW
and Hk both have O�a�1� gaps in the free theory, where
a is the relevant lattice spacing. Moreover, at any super-
critical bare mass the spectrum of HW can, and does, reach
zero. Therefore, the analogy will become relevant in case
that future numerical work will demonstrate the existence
of low-lying eigenvalues ofHk. According to the argument
below, the corresponding eigenmodes will necessarily be
localized.

For the case at hand, the most interesting finding of
Ref. [40] was that the mobility edge was very close to
the free-theory gap for several different gauge actions,
even at the not-very-large cutoff scale a�1  2 GeV. At
stronger coupling (lower cutoffs) the mobility edge did go
down, eventually reaching zero when the Aoki phase was
entered.

Returning to the RG-blocking context, we set the coarse-
lattice spacing such that gr�ac� is as weak as we like.
Therefore we are interested in values of the mobility
edge at weaker couplings than any of those already studied.
The results of Ref. [40] suggest that, on a very weakly-
coupled pure Yang-Mills ensemble, the mobility edge of
any operator, including the supercritical HW and Hk, will
be very close to the free-theory gap; for 	!1 the mo-
bility edge will continuously approach the free-theory gap.

It remains to consider the inclusion of a fermion deter-
minant raised to some positive (but not necessarily integer)
power at weak coupling, as described by Eq. (4.4). This
should have little effect on mobility edges which are al-
ready O�a�1�. A different power of a fermion determinant
does change the beta-function and the running of the gauge
coupling, so we should be a bit careful in what we are
comparing. Consider first the operatorHn of the last block-
ing step. We may compare the value of its mobility edge on
a pure Yang-Mills ensemble to the corresponding value on
a dynamical-fermion ensemble that has the same coarse-
lattice running coupling gr�ac�. Once the coarse-lattice
couplings are equal, the remaining contribution of the
fermion determinant in Eq. (4.4) is parametrically smaller
by a factor of g2

r�ac� compared to the Yang-Mills action
which is the leading term. Changes to the spectrum near a
mobility edge which is already O�a�1

c � and, therefore, any
further deviations of the mobility edge itself from the free-
theory gap, are expected to be very small.

We actually need to know something about the mobility
edges of Hk for all k � n. For each k, we may compare the
blocked staggered ensemble to a new Yang-Mills ensemble
chosen such that the running coupling gr�ak� at the kth
lattice scale is the same in the two theories. Again a similar
conclusion will follow.

What can, and will, be significantly affected by the
inclusion of fermion determinants is the small-eigenvalue
localized spectrum (if there were any near-zero eigenval-
ues to begin with; see, for example, Ref. [39]). Since the
Boltzmann weight contains det�G�1

k � � det�Hk� raised to a
positive power, the transition from the pure Yang-Mills
ensemble to dynamical staggered-fermion ensembles will
lead to fewer near-zero eigenvalues of Hk, for all k.

Let me summarize the anticipated physical situation. In
the free theory, Hk has an O��k� gap. On weakly-coupled
pure Yang-Mills ensembles, the mobility edge of Hk is
expected to be very close to the free-theory gap and, thus,
O��k� by itself. Now, starting at nr � 0, let us gradually
increase the power of the staggered-fermion determinant in
Eq. (4.2), while maintaining a fixed renormalized coupling
gr�ac� at the coarse-lattice scale. Any near-zero eigenval-
ues of Hk will be gradually suppressed, but otherwise
nothing much should change in the spectrum of Hk, for
all k. In particular, any further change in the mobility edge
will be even smaller than the, by itself small, deviation
from the free-theory gap on the pure Yang-Mills en-
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semble.20 As a result, the mobility edge of Hk will remain
O��k�, and the decay length of H�1

k will remain O�ak�. As
explained above, this implies the locality of Dk, Hk, H�1

k ,
and Skeff , for all k � n.

C. Scaling of �n

In Sec. IVA I have explained why the partition function
(4.2) defines a renormalizable theory for any nr and t. For
generic values of these parameters, this theory is nonlocal.
Nevertheless, thanks to its power-counting renormalizabil-
ity we may study the scaling of any local operator con-
structed within such a theory. This includes, in particular,
the operators listed at the end of the previous subsection,
whose locality I have just established by nonperturbative
considerations.

I will be mostly interested in the scaling of �n, the taste-
breaking part of the blocked Dirac operator, in the stag-
gered (t � 1) and in the reweighted (t � 0) theory. In this
subsection I argue that Eq. (3.9) correctly describes the
leading power-law scaling of �n. I furthermore find that
the logarithmic corrections to the scaling of �n depend on
nr but not on t. The argument is heuristic, and will have to
be confirmed by future calculations.

Setting up perturbation theory is in principle straightfor-
ward. In reality, perturbation theory for a reweighted the-
ory is unfamiliar, and technically rather different from
ordinary staggered perturbation theory. It can be gradually
built up in several steps:
Step 1. Ordinary staggered perturbation theory;
Step 2’. Staggered perturbation theory with the fermions
in a taste basis obtained via a unitary change of variables
[6,32];
Step 2. Staggered perturbation theory with the fermions in
a taste basis obtained via a Gaussian smearing RG-like step
[15];
Step 3. Multi-gauge-field perturbation theory for the
blocked staggered theories of Eqs. (2.8) and (2.20) or
(2.24);
Step 4. Multi-gauge-field perturbation theory for a re-
weighted theory (or, more generally, for Zn�t; nr; ac�).

As I will explain, computing the scaling of �n within the
fully developed perturbative setup of Step 4 can be re-
duced, via Steps 3 and 2 (skipping Step 2’), to a calculation
in ordinary staggered perturbation theory (Step 1).
Focusing on the fourth-root theory, the outcome is that in
spite of the lack of a local action, we nevertheless have at
our disposal a local operator �n that, on the one hand,
accounts for all the taste violations in blocked observables,
and, on the other hand, is controlled by staggered pertur-
bation theory.

Ordinary staggered perturbation theory is a well-
developed technique and there is no need to discuss it
here (see e.g. Ref. [11] and references therein). I now
discuss all the other steps listed above.

In taste-basis perturbation theory the fermion
momentum ranges over a reduced Brillouin zone, and the
16 sites of each 24 hypercube are accounted for by the
Dirac and the taste degrees of freedom. A taste-basis
perturbative expansion is usually not used for two
reasons. The unitary transformation to a taste basis is not
unique, and complicates the form of many symmetries
[6,32] (see Appendices A, D, and E for more details).
Also, in a taste-basis diagrammatic expansion, taste viola-
tions occur in both the propagator and the vertices, as can
immediately be seen by inspection of the free taste-basis
Dirac operator (see Appendix H for further discussion).
This is to be contrasted with the usual staggered perturba-
tion theory, where the momentum-space propagator is
taste-symmetric and taste violations reside in the vertices
only [8,11].

Next, consider the staggered theory obtained by per-
forming the special k � 0 ‘‘blocking’’ step introduced in
Sec. II A for the fermions only. No blocking is applied to
the gauge field U. The resulting Dirac operator is D0 of
Eq. (2.10a). Following the notation of Ref. [15] where its
explicit form was derived, in this subsection I denote it as
Dtaste � Dtaste��0; m�. In the free theory one can write
Dtaste � i�A�B� �M, where A, B and M are all
Hermitian, and correspond to the Dirac � taste structures
�� � 1, �5 � i���5, and 1 � 1 respectively. As usual,
Dtaste��0; m� satisfies a GW relation in the massless limit.
A key feature of Dtaste��0; m� is that, provided �0 <1,
dropping the taste-breaking part B does not introduce any
new doublers into the theory [15]. The Gaussian-smearing
transformation reduces to the previous unitary transforma-
tion in the limit �0 ! 1, where M�1; m� � m. Here, as
in Sec. II, I assume that �0 � O�a�1

f �.
With its extra technical hassles, staggered perturbation

theory with the Dirac operator Dtaste is, clearly, highly
relevant to the present blocking framework. For the pur-
pose of the discussion below, I only need to draw attention
to one fact. By using the general procedure of Ref. [42] one
can prove that Dtaste retains all the staggered symmetries,
albeit in a complicated form.21 These symmetries forbid
the appearance of taste-breaking relevant or marginal
terms through loop corrections [8]. The taste-violating

20I use asymptotic freedom to bound gr�ak� by gr�ac�. This
restricts my conclusions to the range of nr-values where the one-
loop beta-function is negative. See also footnote 13.

21The underlying reason is that, on top of the previously applied
unitary transformation, Gaussian smearing changes the propa-
gator by a contact term only. The long-distance propagator is
unchanged, and therefore all the symmetry constraints on long-
distance correlation functions must hold, as can be shown using
the pullback mapping (Sec. II C and Appendix D). The modified,
Ginsparg-Wilson-Lüscher (GWL) chiral symmetry [43] associ-
ated with the GW relation is a special case of the general
construction of Ref. [42].
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part of the fermion self-energy, denoted �t:v:, is therefore
O�p2� in lattice units. But since taste violations occur now
in both vertices and propagators, this result necessarily
represent a delicate cancellation. Schematically: �vt:v: �
�lt:v: � O�p2� where both �vt:v: and �lt:v: are O�1�, and
where �vt:v: accounts for the contribution of diagrams
with at least one taste-breaking vertex, while �lt:v: accounts
for the remaining contributions, in which taste-breaking
arises from the fermion lines only.

The thing to notice is that this delicate cancellation
would be hampered had we truncated the free propagator
��i�A�B� �M�=�A2 �B2 �M2� to the ‘‘linear-
ized’’ form ��i�A�B� �M�=�A2 �M2� obtained
keeping only the first taste-breaking term in the
geometric-series expansion of the free propagator about
the taste-symmetric ��iA�M�=�A2 �M2�. This
truncation is not entirely foolish, because it does not in-
troduce doublers into the theory. Yet, it mutilates shift
symmetry (see Appendix H for a related discussion).
Dynamically, the reason is that, for lattice-scale momenta
that contribute to the loop integrals, the taste-breaking
part of the propagator is not small relative to the taste-
symmetric part. Therefore, truncating the propagator
will give rise to large, imbalanced changes in �vt:v: and
�lt:v:.

I will now argue that the main change brought about by
(many) iterations of the RG transformation is that the taste-
breaking term �n becomes uniformly small, for all the
coarse-lattice momenta. As a result, for large n the scaling
of taste-breaking effects will be controlled by diagrams
with a single insertion of �n.

Before we do any RG-blocked diagrammatic calcula-
tion, we must first set up the appropriate perturbative
expansion. Usually lattice perturbation theory is based
on the expansion of the link variables as U�;x �

exp�igaA�;x�. When the definition of the lattice theory
makes use of the representation (2.8), a similar
expansion will have to be applied to the entire tower
of gauge fields U;V �0�;V �1�; . . . ;V �n� simultaneously.
With this, one can in principle set up the perturbative
expansion for every theory that can be cast in the form of
Eq. (4.2), because the closed-form expressions for Dk, ~Dk,
�k, and Skeff as functionals of all the gauge fields are
known.

The next stage is to consider the multi-gauge-field
perturbative expansion of the RG-blocked staggered
theory (t � 1 in Eq. (4.2)). This perturbation theory
will reproduce all the scaling laws derived using
ordinary staggered perturbation theory. The reason is sim-
ply that, as already noted in Sec. III B, one can first
integrate out U;V �0�;V �1�; . . . ;V �n�1�. At this point,
one has effectively recovered the diagrammatic expansion
derived from the action Sn [Eq. (2.2b)] of the nth level
blocked theory. The scaling of the parameters of Sn, in
turn, must agree with the predictions of ordinary

lattice perturbation theory.22 While this description is,
strictly speaking, applicable for integer values of nr, all
other values can be reached via the replica trick,
cf. Sec. IVA.23

The last step is to show that �n must scale in the same
way in the (blocked) staggered theory and in the corre-
sponding reweighted theory.24 This result is established by
isolating the diagrams that determine the scaling of �n in
each theory, and showing that they amount to exactly the
same set of diagrams.

In the blocked staggered theory, �n gives rise to taste-
breaking effects either through vertices or though the
expansion of the free blocked propagator as D�1

n �

D�1
inv;n �D

�1
inv;n�nD�1

inv;n � � � � . Next comes the main ob-
servation. The momentum that flows though any fermion
line is, in all cases, a coarse-lattice momentum p & 1=ac.
After sufficiently many blocking steps, any coarse-lattice
momentum will be very small in fine-lattice units: paf 
af=ac � 1. (This is true whether the fermion line forms a
closed loop or connects to an external leg.) In contrast, �n
embodies taste-breaking effects coming from all higher
momentum scales up to the fine-lattice cutoff 1=af. This
means that any mechanism needed to ensure the smallness
of all taste-breaking effects on the coarse lattice, such as
cancellations based on symmetries, must be built into the
functional form of �n � �n�U;V �0�; . . . ;V �n�� itself.
Said differently, most of the needed cancellations must
occur over distance scales much smaller than ac.
Therefore, they will not occur in an expectation value
with multiple insertions of the operator �n, unless they
already occurred in every expectation value with a single
insertion of �n.

Within the multi-gauge-field diagrammatic expansion,
this translates into the statement that any insertion of �n in
any diagram must scale as af=ac in coarse-lattice units.
Given a diagram of the blocked staggered theory, let us
now drop every contribution where the total number of
insertions of �n (coming from both propagators and verti-
ces) is bigger than one. In the remaining taste-violating
diagrams, the fermion propagator is D�1

inv;n, and they con-
tain exactly one insertion of �n. These diagrams determine
the scaling of �n in the blocked staggered theory, and, as
argued above, will reproduce the taste-breaking scaling
laws of the original staggered theory.

22Alternatively, we may consider the pullback of �n to the
original fine-lattice staggered theory, where we may again study
its scaling as a function of n.

23As long as we stay within the confines of perturbation theory,
this procedure gives meaning to the blocked action Sn for any
real value of nr. Conceptually, this is similar to the way the
diagrammatic expansion gives meaning to the dimensionally-
continued action in dimensional regularization.

24The argument can be generalized to t � 0, with the same
conclusion.
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But, clearly, the very same set of diagrams is what
determines the scaling of �n in the reweighted theory. I
conclude that, in any reweighted theory, �n must scale in
the same way as in the original staggered theory. While this
will not be needed, the diagrammatic correspondence is
clearly tight enough to encompass the logarithmic correc-
tions as well. Thus, the logarithmic corrections depend on
nr, but not on t.

More generally, the scaling behavior of any local opera-
tor must be the same in the staggered and in the reweighted
theory, simply because the scaling will be insensitive to
dropping �n from the blocked Dirac operator. (The special
case considered above amounts to taking the local operator
to be �n itself.) This implies that the physical observables
of the reweighted theory should have scaling violations
proportional to a2

f, as predicted by (perturbation theory for)
the original staggered theory. The n! 1 limit therefore
yields a ‘‘perfect action’’ theory [24]. (See, however,
Appendix D for a discussion of related technical issues.)

In summary, we learn two important lessons. After many
blocking steps, �n will be small on any staggered or
reweighted ensemble. We may thus compute its scaling
behavior on either ensemble by appealing to perturbation
theory for the multi-gauge-field representation of the
blocked staggered theory (t � 1). Also, as long as we allow
for coarse-lattice observables only, this calculation further
reduces to a conventional scaling calculation in staggered
perturbation theory, augmented by the replica trick (for
noninteger nr).

In particular, I find that the power-law scaling (3.9) is
valid in the reweighted theory derived from the fourth-root
theory. Notice that I have assumed that �n scales like a
dimension-five (and not like a dimension-six) operator.
But, as explained in Sec. III C, thanks to taste-tracelessness
of �n this assumption is consistent with O�a2

f� scaling of
the taste-violating effects in all the physical observables. In
Sec. V, the scaling of �n will be used to establish the
validity of the continuum limit of the fourth-root theory.

In this subsection I gave only a very minimal discussion
of the multi-gauge-field diagrammatic expansion. In
Appendix H, I illustrate some further aspects of this ex-
pansion by considering a few examples of terms which are
expected to occur in �n.

D. Summary and future work

We are almost done. In the next section, the reweighted
theories will be used to establish the validity of the fourth-
root theory in the continuum limit. This conclusion is a
straightforward corollary of the emerging physical picture
of the reweighted theories. I therefore pause to summarize
what has been learned.

All the reweighted theories introduced in Sec. II E share
the following key features: (1) renormalizability, (2) local-
ity, and (3) the same scaling laws as the underlying stag-

gered theory. At the starting point is the all-essential
observation that the fourth-root theory is renormalizable
if the ordinary staggered theory is. From this point on,
basically the same reasoning was applied in both the
ordinary and fourth-root cases. In fact, for the most part
the arguments generalize to any real number of replicas nr
within the range specified above Eq. (4.2).

As briefly discussed in Sec. IVA 1, renormalizability of
both the ordinary and fourth-root staggered theories is not
as solidly established as in other cases (notably Wilson
fermions). But there is no real reason to doubt it either. For
a recent, more thorough discussion, see Ref. [11]. As
explained in Sec. IVA 2, the reweighted theories ‘‘inherit’’
their renormalizability from the underlying staggered the-
ory, in a rather trivial way.

Locality of the reweighted theories at the coarse-lattice
scale rests on the locality of the effective action Skeff and the
blocked Dirac operator Dk, on the relevant ensemble.
Those locality properties, in turn, are set by the range of
H�1
k , where the Hermitian operator Hk [Eq. (4.5)] accounts

for the short-distance fermion modes integrated out at the
kth step. I have argued in Sec. IV B that what is needed is
that the mobility edge of Hk be O�1� in units of the kth
lattice scale. I have drawn an analogy to a recent applica-
tion of the theory of localization to lattice QCD, specifi-
cally, to a study of the mobility edge of the supercritical
Wilson operator [39,40]. I concluded that, thanks to the
existence of a weak-coupling regime (which in turn is a
consequence of renormalizability), both the mobility edge
ofHk and the range ofH�1

k will beO�1� in kth lattice units,
as required. Obviously, it will be necessary to confirm the
claims by numerical investigations of Hk itself. The first
nontrivial instance is provided by the k � 1 blocking
step.25

Our knowledge about the ordinary staggered theory
strengthens the claims I have made. In the ordinary stag-
gered theory, based on standard RG considerations one
assumes that the blocked action Sn [Eq. (2.2b)] will be
local on the coarse-lattice scale. For this to be true, the
locality properties of Skeff and Dk must be as claimed. But
my reasoning in Sec. IV B did not discriminate between the
ordinary and the fourth-root ensembles. This lends higher
credibility to the proposed physical picture in the fourth-
root case as well.

My claims are on stronger footing for nr � 0 as well:
this quenched limit is closer to the actual setup of the work
reported in Ref. [40]. The fourth-root value nr � 1=4 may
thus be reached by interpolation, starting either from nr �
0 or nr � 1. Once again, this supports the claims made in
the fourth-root case.

25Because of special features of the k � 0 step, the operator H0
is guaranteed to have a gap in the interacting theory too. The
same is not true for k � 1.
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I now turn to the scaling of the taste-breaking effects
represented by �n. The basic difficulty is simply that, in
the fourth-root theory, there is no local fermion action.
Thus, it is unclear if the taste violations that reside in the
fermion sector are amenable to a scaling analysis.

First, the fourth-root theory is renormalizable.
Therefore, even though the theory is nonlocal, we have a
power counting and we can study the scaling of any local
operator.26 Specifically, I have shown that a scaling analy-
sis in the fermion sector is made possible thanks to the
multi-gauge-field representation introduced in Sec. II. This
gives us access to the operator �n that accounts for all the
taste-symmetry violations in blocked observables.
According to the discussion of Sec. IV B, �n is a local
operator; therefore its scaling can be computed using
the appropriate (multi-gauge-field) perturbative ex-
pansion. Finally, I have argued that the needed scaling
calculation ultimately reduces to a calculation in ordinary
staggered perturbation theory augmented by the replica
trick, and that �n indeed scales as an irrelevant operator
should.

My arguments in Sec. IV C were heuristic, and it is
clearly necessary to confirm them by performing the ap-
propriate perturbative calculations. The actual scaling of
�n can also be investigated numerically, at least on the
fourth-root ensembles provided by MILC [44]. A first
study was performed last year [30]. Most of the arguments
of this section rely on being in a (sufficiently) weak-
coupling regime, and it is important to understand how
close are we to this region in practice. Numerically re-
weighting is clearly a challenge, which, if successfully
tackled, could further strengthen confidence in the entire
framework. Another challenging project is to perform an
accurate comparison of the predictions of the various
perturbative expansions to numerical results obtained e.g.
by measuring Wilson loops [36] or by adapting the
Schrödinger-functional technique [45– 48].

V. CONTINUUM LIMIT OF THE FOURTH-ROOT
THEORY

Assuming the properties of the reweighted theories dis-
cussed in Sec. IV, in this section I prove the validity of the
fourth-root theory in the continuum limit. As explained
earlier, when the blocking level n is high enough, one
can either reach the reweighted theory from the stag-
gered theory via a convergent expansion, or work the
other way around. I find it appealing to reconstruct the
fourth-root theory from the reweighted theory, because
the latter is local, and is already expected to be in the
correct universality class. The argument, that otherwise
follows the same logic as in Sec. III, is given in Sec. VA.
I add several comments on the scaling analysis in Sec. V B.

A. Recovery of locality in the continuum limit

In the fourth-root theory I will make use of the scaling
laws (compare Eqs. (3.8) and (3.9))

 k�nkinv &
af
a2
c
; (5.1)

where the subscript ‘‘inv’’ refers to the reweighted en-
semble, and

 kD�1
inv;nkinv &

1

minv;n
; (5.2)

where

 minv;n � mr�ac� �O�af=a2
c�: (5.3)

The scaling of �n was discussed in Sec. IV C. The leading
power-law behavior of �n is robust. It is unchanged by
taking the fourth root, and it is also independent of re-
weighting. Turning to Eq. (5.3), the origin of the rightmost
term is simply that the transition fromDn toDinv;n amounts
to dropping �n. The latter is O�af=a2

c� which, therefore,
could entail similar changes in the eigenvalues. See
Appendix G for some further comments on the bound
(5.3). Similar considerations show that the effective cou-
pling constant of the reweighted theory, denoted ginv;n,
satisfies

 g2
inv;n � g2

r�ac��1�O��af=ac�
2��; (5.4)

where I have used Eq. (4.4) and the taste-tracelessness of
�n. This implies that the reweighted theory is in a weak-
coupling regime if the coarse-lattice staggered theory is,
and vice versa.

I will restrict the present discussion to meson observ-
ables of the fourth-root theory. The generalization to all
other observables requires additional technical steps which
are discussed in Appendix B of Ref. [11]. The physical
meson observables are taste singlets. They are probed by
restricting the source term of Sec. III A to the form ~J � S�n�,
where now S�n�i � �

~S�n�i � 1�. Here ~S�n�i carries no taste
index and, as usual, 1 is the identity matrix in taste space.
Switching notation from J to ~J is meant to remind us that
the sources now couple to taste singlets only. The blocked
fourth-root partition function with these sources is given by
 

Zroot
n �ac; ~J� �

Z
DU

Yn
k�0

�DV �k��Bn

�
1

4
;U; fV �k�g

�


 det1=4�Dn � ~J � S�n��: (5.5)

Equation (5.5) means that observables are constructed as
follows [27]. Fermion—antifermion contractions are done
in the same way as in the ordinary staggered theory; then
one applies the extra ‘‘replica’’ rule that a factor of 1

4 is to be
attached to every closed fermion loop occurring in the
observable itself (in other words, to every valence
staggered-fermion loop). With this replica rule in place,

26See Ref. [11] for similar examples taken from condensed
matter physics.
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the pullback mapping defined in Eqs. (2.14) and (B1)
remains valid, and the same is true for Eq. (2.15). Thus,
the ultralocal nature of the pullback mapping is preserved,
even though the lattice action itself is not local.

I add the same source term to the reweighted theories,
which gives rise to
 

Zroot
inv;n�ac; ~J� �

Z
DU

Yn
k�0

�DV �k��Bn

�
1

4
;U; fV �k�g

�


 det� ~Dinv;n � ~J � ~S�n��: (5.6)

Here I have used the exact taste invariance of the re-
weighted theories and the taste-singlet nature of the
sources to take the analytic fourth root. In analogy with
Sec. III, I also introduce interpolating theories (with the
same source), whose partition functions can be expressed
as
 

Zroot
inter;n�t; ac; ~J� �

Z
DU

Yn
k�0

�DV �k��Bn

�
1

4
;U; fV �k�g

�


 det� ~Dinv;n � ~J � ~S�n��


 det1=4�1� t�n�Dinv;n � ~J � S�n���1�:

(5.7)

Normalized varieties of all partition functions are defined
in analogy with Eq. (3.5), e.g.

 Z root
inv;n�ac; ~J� � Zroot

inv;n�ac; ~J�=Zroot
inv;n�ac; 0�: (5.8)

I will assume that the continuum limit of the (sequence of)
reweighted theories exists:

 Z root
inv;1�ac; ~J� � lim

n!1
Zroot

inv;n�ac; ~J�: (5.9)

As usual, this is based on the scaling of the coupling
constant itself, which, in turn, is only negligibly affected
by reweighting [cf. Eq. (5.4)].

We are now ready to reconstruct the observables of the
fourth-root staggered theory from those of the reweighted
theory. To this end I use that, on the reweighted ensemble,

 exp�14 tr log�1� t�nD�1
inv;n�� � 1�O��t�inv;n�

2�: (5.10)

The definition of �inv;n is the same as in Eq. (4.1), except
that this is now in the context of the fourth-root theory of
course. The similarity between Eqs. (3.13) and (5.10) is
clear. It follows that

 Zroot
inter;n�t; ac; ~J� � Zroot

inv;n�ac; ~J��1�O��t�inv;n�
2��: (5.11)

Because mr�ac� scales logarithmically while �n is sup-
pressed by a power of the fine-lattice cutoff
(cf. Equation (5.1)), it is guaranteed that, for n above a
certain value, we will have �inv;n < 1 and, with it, conver-
gence of the t-expansion in Eq. (5.10). Once again, �inv;n !
0 for n! 1, and the continuum limit is independent of t,

 Z root
1 �ac; J� � Zroot

inter;1�t; ac; J� � Zroot
inv;1�ac; J�: (5.12)

We now recall that the reweighted theories are local on
the coarse-lattice scale, as can be seen from the path-
integral representation (2.26), and that they belong to the
correct universality class. In the limit n! 1 we thus have
 

Zroot
inv;1�ac; ~J� �

Z
DVDqD �q exp��Sroot

inv;1�ac;V ; q; �q�

� �q ~J �~S�ac;V �q�; (5.13)

where the limiting action

 Sroot
inv;1�ac;V ; q; �q� � lim

n!1
Sroot

inv;n�ac;V ; q; �q�; (5.14)

is local too. But, by Eq. (5.12), Zroot
inv;1�ac; ~J� accounts for

the continuum-limit observables of the (blocked) fourth-
root theory as well. This establishes the validity of the
continuum limit of the fourth-root theory.27

I conclude with two additional observations. My first
comment concerns the physical consequences of the
continuum-limit taste symmetry of the fourth-root theory.
One can lift the restriction on the sources and consider
(meson) observables with a general taste structure. The
reweighted partition function then takes the form
 

Zroot
inv;n�ac; J� �

Z
DU

Yn
k�0

�DV �k��Bn

�
1

4
;U; fV �k�g

�


 det1=4� ~Dinv;n � 1� J � S�n��: (5.15)

Taste-SU�4� Ward-Takahashi identities may now be de-
rived by varying J. These identities will be exact in the
reweighted theory for every n, and will be true up to
O��2

inv;n� corrections in the blocked fourth-root theory. In
the n! 1 limit, these identities will become exact in the
fourth-root theory as well. If, however, we reinstate the
restriction to taste-singlet observables, then Eq. (5.15) evi-
dently reduces to Eq. (5.6). This means that no paradoxes
can be derived based on the taste symmetry of the
continuum-limit fourth-root theory (as claimed in
Ref. [49]). The taste nonsinglet states live in an extended,
nonunitary Hilbert space; but a unitary, physical subspace
exists. A more practical conclusion concerns deciding
when one is allowed to use taste nonsinglet operators
[such as those in Eq. (D2)], which are often advantageous
numerically, instead of taste-singlets ones. For a detailed
discussion of these issues, see Refs. [11,19,21].

Another observation is that, as I have assumed in
Sec. II E, det�Dinv;n� and det� ~Dinv;n� will both be strictly
positive when �n, �inv;n < 1. I begin by rewriting the
blocked staggered determinant as

 det�Dn� � det�Dinv;n� det�1��nD
�1
inv;n�: (5.16)

27As explained in Sec. IV C, Sroot
inv;1 is a ‘‘perfect’’ action.
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Because ��5 � �5�Dn is Hermitian [15], and Dinv;n �
~Dinv;n � 1 accounts for its taste-invariant part, it follows
that �5

~Dinv;n is Hermitian too. Therefore, det�Dinv;n� and
det� ~Dinv;n� are real. Moreover, by my assumption, the
expansion of the determinant in Eq. (5.16) is convergent
(on both the staggered and reweighted ensembles), and the
rightmost determinant in Eq. (5.16) is thus strictly positive.
Since det�Dn� is strictly positive too (see Sec. II B), it
follows that det�Dinv;n� is strictly positive. Next I consider
det� ~Dinv;n�. Because det4� ~Dinv;n� � det�Dinv;n�, we know
that det� ~Dinv;n� cannot be zero and cannot flip sign. By
considering the limit where the bare mass of the original
staggered theory goes to infinity, it follows that det� ~Dinv;n�
is strictly positive.

Finally I should note that it is quite certain that the
bounds I have made use of in this section and in Sec. III
must represent overestimations. I return to this point in
Sec. VI.

B. Scaling in the reweighted theories revisited

A key result of this paper is that the fermion sector of the
fourth-root theory becomes amenable to a scaling analysis
by means of the multi-gauge-field representation of the
blocked theory. As explained in Sec. IV C, the scaling
analysis in the fourth-root theory can be carried out by
reducing it to a calculation in ordinary staggered perturba-
tion theory augmented by the replica trick.

Interestingly, in the reweighted fourth-root theory, the
needed scaling laws may be found without making any
reference to the replica trick in staggered perturbation
theory. According to this alternative route, the calculation
of the scaling of �n (which is still done as described in
Sec. IV C) proceeds by first considering only reweighted
theories with ns � 4nr quark species, where ns is a mul-
tiple of four, and therefore nr is integer. This means that the
complete calculation, including the part done on the
staggered-theory side, involves local theories only. The
scaling of �n for any other number of quark species ns
in the reweighted theory can now be found without any
further reference to the staggered theory. We simply ana-
lytically continue the previous result to the desired value of
ns. As usual, because the ns dependence is known in
closed-form, the analytic continuation is uniquely deter-
mined. Unlike in the staggered theory, however, this ana-
lytic continuation only relates local (reweighted) theories
to other local (reweighted) theories. In particular, the scal-
ing in the one-taste reweighted theory is inferred from the
scaling in reweighted theories where the number of quark
species is a multiple of four, without ever having to per-
form a scaling analysis in the fourth-root theory.

Thus, this line of argument relates the needed scaling
properties of the reweighted fourth-root theory to the local,
ordinary staggered theory, while passing only through local
theories at intermediate steps. The fourth-root theory is
then encountered only at the very last stage, where we

reconstruct it from the reweighted theory, as was done in
Sec. VA.

I comment in passing that, ‘‘forgetting’’ where they
came from, the reweighted theories Zinv;n or Zroot

inv;n each
constitute a family of local theories defined on a lattice
with spacing ac, which depend on an additional parameter
n. The role of this parameter is similar to the fifth dimen-
sion L5 of domain-wall fermions: when either n or L5 are
sent to infinity, a GWL chiral symmetry is recovered.28 The
actual construction of the reweighted theories would
amount to a gross ‘‘overkill,’’ if our only aim was to find
solutions of the GW relation. The merit of the construction
is that the same local operator, �n, controls both the
violations of the GWL chiral symmetry (that originates
from the staggered U�1�� symmetry) in the reweighted
theory, and the deviations of the latter from the correspond-
ing staggered theory.

VI. CONCLUSION

Like a journey through a dark wood, when dealing with
a difficult problem in quantum field theory one can never
be too sure which is the right way, and where danger is
lurking. I have concluded that the fourth-root recipe is
valid in the continuum limit using plausible assumptions.
Plausibility is, at the end of the day, in the eye of the
beholder. In this concluding section, I give my personal
perspective on what has been gained.

In a way, this paper trades one set of questions for
another. But while at the starting point the questions
were rather vague, the new questions are focused, techni-
cal, and testable. The initial worries basically stem from
our lack of experience with nonlocal theories. A formal
expansion of the staggered action suggests that the taste-
breaking terms are irrelevant operators, that would naively
be expected to vanish in the continuum limit. But it is
unclear how to perform a scaling analysis when there is
no local fermion action in the first place. Related, one must
also translate the (tentative) claim ‘‘locality is recovered in
the continuum limit’’ into a well-defined statement.

This paper offers a solution to these problems. By first
RG-blocking the (fourth-root) staggered theory and then
enforcing exact taste symmetry by reweighting, we obtain
local coarse-lattice theories in the desired universality
class, which provide a good approximation of the
(fourth-root) staggered theory once the number of blocking
steps is large enough. That the reweighted and staggered
theories are indeed close to each other, follows from a
scaling analysis, which, in the fourth-root case, is made
possible by the multi-gauge-field representation of the
blocked theory introduced in Sec. II. Within this represen-
tation, the taste-breaking effects all arise from the taste-
breaking part �n of the local, blocked Dirac operator Dn.

28Of course, in a one-flavor theory, a GWL symmetry exists
only in the free theory.
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The reasoning of this paper has been presented early on
in Sec. II E and I now recapitulate it: All-orders renorma-
lizability of the reweighted theories follows from that of
the (ordinary and fourth-root) staggered theories
(Sec. IVA); making mild use of renormalizability to estab-
lish the existence of a weak-coupling regime, a robust
nonperturbative consideration shows that the reweighted
theories are local (Sec. IV B); the scaling of the local
operator �n, which embodies all the taste violations in
the blocked theory, can be traced back to a calculation in
ordinary staggered perturbation theory (augmented by the
replica trick in the case of the fourth-root theory), and the
result is that �n indeed scales as an irrelevant operator
(Sec. IV C); the smallness of �n on the reweighted en-
semble enables the reconstruction of the staggered theory
from the reweighted theory by means of a convergent
expansion (Sec. V); in the continuum limit, the difference
between the (blocked) staggered theory and the reweighted
theory, which is already known to be in the correct univer-
sality class, vanishes. For the ordinary, local staggered
theory this implies that exact taste symmetry has been
recovered; for the fourth-root theory, this implies that it
has become local. Thus the fourth-root theory provides a
valid regularization of QCD.

This conclusion depends on confirming the key proper-
ties of the reweighted theories. This amounts to verifying
their locality, checking the actual predictions of their per-
turbation theory, as well as testing these predictions non-
perturbatively (by numerical methods). A summary of
what each of the above amounts to has been given in
Sec. IV D.

A detailed-level comprehensive study of all the proper-
ties of the reweighted theories would be a major endeavor.
Nevertheless, already now there is good reason to believe
that the fourth-root theory is indeed a valid regularization
of QCD. This conclusion derives from the comparison to
the local four-taste staggered heory. In short, our under-
standing of the local staggered heory is on essentially the
same footing as with any other local lattice fermion
method. If the continuum imit of the four-taste staggered
theory is what we think it is, then it is difficult to see how
the claimed properties of the reweighted theories derived
from it could go wrong. But then, the arguments for the key
properties of the reweighted theories apply, basically un-
changed, to the four-taste (derived from local staggered)
and one-taste (derived from fourth-root staggered) cases,
both of which constitute local theories. Thus, it is also
difficult to see how any key property of a reweighted theory
could go wrong in the one-taste case, if this does not
happen in the four-taste case.

By following this line of argument one can in fact avoid
any reference to the replica trick—which is the manifes-
tation of the nonlocality in staggered perturbation theory.
Instead, one first derives the scaling laws for reweighted
theories where the number of quark species is a multiple of

four (and, thus, the original staggered theory is local).
From this, one infers the scaling laws for reweighted
theories with any other number of quark species
(Sec. V B). Thus, any reference to the nonlocal fourth-
root theory is avoided until the very last step where it is
reconstructed from the reweighted theory.

Taste-breaking effects in the spectrum of the staggered
Dirac operator are largest at the (fine-lattice) cutoff scale.
But the largest taste-breaking effects are not a major source
of nonlocality; in fact they entail basically no nonlocality,
because RG blocking trades all ultraviolet fermion modes
with a local correction to the gauge-field action. This
observation is nothing but a (part of the standard) descrip-
tion of how symmetries broken by the lattice regulator are
recovered in the continuum limit. A key result is that this
feature is not lost by the fourth-root theory.

The remaining nonlocal effects have been argued to be
associated with the dimensionless, small parameter af�
[15,21,27,28]. It follows from the results of this paper that
all the nonlocal effects should be controlled by (powers of)
af�. In Sec. III and V, I have bounded the relative size of
taste-breaking effects in long-distance observables, hence
also the relative size of nonlocal effects, by powers of
af=�a2

cmr�ac��. But, because the coarse-lattice spacing ac
is basically arbitrary (apart from the restriction ac �
��1), this has got to be an over-estimation. In all like-
lihood, the actual relative size of the taste-breaking and the
nonlocal effects is on the order of af�2=mphys (or powers
thereof), where mphys is the renormalized quark-mass ex-
tract from some low-energy observable. This is based on
the anticipation that, on low-energy modes of the staggered
Dirac operator, the actual magnitude of taste-splittings
among quartets of eigenvalues should scale like af�2.
For related theoretical discussions, see Refs. [15,19,50].

In numerical simulations, the taste-symmetry violations
are observed to decrease rapidly as af is decreased, and
indeed to be roughly proportional to ��s�af�af��2 (with
‘‘improved’’ staggered quarks) [9]. The presence of a fixed
physical scale, and not some a�1

c � �, makes it possible
to extrapolate to the continuum limit using present-day
computer resources.

This work lends strong support to the physical picture
advocated in Refs. [19,21,27]: The nonlocalities of the
fourth-root theory can be interpreted in terms of an ex-
tended Hilbert space containing states with, in general,
nonzero taste charges. The physical subspace consists of
the taste-singlet states. The exact taste symmetry, recov-
ered in the continuum limit, relates physical and unphys-
ical states, and its Ward-Takahashi identities play a crucial
role in establishing unitarity in the physical subspace.

It is interesting to consider a closely related problem,
namely, the use of the fourth-root recipe for finite-density
simulations (see Ref. [50] and references therein). Here
there is a new, three-fold difficulty. First, there are all the
general difficulties having to do with a complex measure,
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that set in when Re��� � 0, where � is the chemical
potential. Second, when trying to apply the fourth-root
recipe one confronts phase ambiguities, and the systematic
error they introduce must be kept under control.29 Last, a
nonzero quark mass is no longer an effective infrared cut-
off. The eigenvalues reach the origin in the complex plane
for realistic values of the chemical potential. Even in this
case, it has been argued in Ref. [50] that everything is in
principle under control, provided that the continuum limit
is taken before the thermodynamical limit. The crucial
grouping of eigenvalues into quartets—near the origin in
the complex plane and beyond—can still be done when
one is close enough to the continuum limit, if the volume
(in physical units) is finite. However, the systematic error
due to the phase ambiguities is parametrically much larger,
and grows with a positive power of the volume. For more
details, see Ref. [50].

Returning to zero density, the up and down quark masses
used in numerical simulations are larger than their physical
values. Extrapolation of numerical results to the physical
point requires the appropriate low-energy effective theory.
For the development of staggered chiral perturbation the-
ory (S�PT) see Refs. [12,34,38]. Recently, based on plau-
sible assumptions within the context of the chiral effective
theory, it has been argued that S�PT augmented by the
replica trick is indeed the correct low-energy description of
the pion sector of the fourth-root theory [27].

It will be interesting to rederive S�PT with the replica
trick directly from the underlying theory, the (RG-blocked)
fourth-root theory. The difficulty is that the effective theory
depends on the number of replicas nr both explicitly, as
well as implicitly through the nr-dependence of its low-
energy constants. Normally, the dependence of low-energy
constants on the parameters of the underlying theory is
nonperturbative, and is not known. The challenge is to cast
the (RG-blocked) underlying theory into a new form where
the necessary analytic continuation in the number of fer-
mion species of some type can be done in a closed form.
Work on this subject is in progress [51].
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APPENDIX A: THE FERMION BLOCKING
KERNELS

In this appendix I describe the fermion blocking kernels
in some more detail. The transition to a taste representation
in the special k � 0 step is discussed in Appendix A 1. The
blocking kernels of all subsequent steps are introduced in
Appendix A 2. In Appendix A 3, I prove the positivity of
det�Dn� and det�G�1

n �.

1. Taste representation in the interacting theory

In the case of free staggered fermions there is a unitary
transformation between the one-component field ��x� and
the taste-basis field  �0��i �~x

�0��, given explicitly by [5,6]

  �0��i �~x
�0�� �

X
r��0;1

��r1
1 �

r2
2 �

r3
3 �

r4
4 ��i��2~x�0� � r�: (A1)

For notation see Sec. II A. Writing Eq. (A1) compactly as
 � ��, the ‘‘conjugate’’ Grassmann variables are related
by � � ���y. Recall that the fine-lattice spacing af of the
one-component field, and the lattice spacing a0 of the taste-
basis field, are related via a0 � 2af. Equation (A1) makes
use of the embedding of the taste-basis lattice into the fine
lattice, and the fact that each fine-lattice site has a unique
representation as x� � 2~x�0�� � r�, where r� � 0, 1.

In a free theory, RG blocking normally works by sup-
pressing modes with a lattice-scale momentum. It is there-
fore natural to apply the blocking in the taste basis [20],
where all the long-distance physics comes from the vicinity
of the origin in the Brillouin zone. The one-component
formalism would be inconvenient30 because the long-
distance physics comes from all 16 ‘‘corners’’ of the
Brillouin zone.

Unlike the free theory, an equal choice between a one-
component basis and a taste basis does not exist in the
interacting theory. Lattice QCD with staggered fermions
must be defined in the one-component formalism.
According to power-counting arguments and explicit
one-loop calculations, only this formalism has enough
symmetry to ensure the multiplicative renormalization of
the staggered-fermion-mass term and the recovery of full

29This difficulty never appears when Re��� � 0. When the
quark mass is strictly positive the staggered determinant is
strictly positive too, and the positive, analytic fourth root can
always be chosen.

30RG blocking of free one-component staggered fermions was
discussed in Ref. [52].
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rotation and taste symmetries in the continuum limit
[8,53]. This state of affairs poses a difficulty for the RG
program. The question is how to accommodate all the
symmetries of the standard one-component formalism in
a taste-basis representation that will, in turn, provide the
starting point for the succession of RG-blocking steps.

The unitary transformation from the one-component
basis to the taste basis can be promoted to a gauge-
covariant one,

 

 �0��i �~x
�0�� � Q�0��i �~x

�0���

	
X

r��0;1

��r1
1 �

r2
2 �

r3
3 �

r4
4 ��i


W �2~x�0�; 2~x�0� � r;U���2~x�0� � r�: (A2)

Setting x0 � 2~x�0� for short, an explicit choice for the
parallel transporter is [6]

 

W �x0; x0 � r;U� � Ur1
1;x0
Ur2

2;x0�1̂r1
Ur3

3;x0�1̂r1�2̂r2


Ur4

4;x0�1̂r1�2̂r2�3̂r3
; (A3)

where �̂ is the fine-lattice unit vector in the � direction.
With the notation of Eq. (A2) we similarly have
� �0��i �~x

�0�� � ��Q�0�y�i �~x
�0��, where Hermitian conjugation ap-

plies to the color matrices. Parallel transporting the fine-
lattice variables entails well-defined transformation prop-
erties for the taste-basis variables under fine-lattice gauge
transformations. Thus, gauge invariance is maintained by
the blocking transformation.

The covariant blocking kernel (A2) illustrates, however,
an inherent problem. Any concrete choice of the gauge-
covariant blocking kernel will transform nontrivially under
hypercubic rotations. In Eq. (A2) this is seen both in the
special role of the hypercube’s site with relative coordi-
nates r� � 0, because these relative coordinates transform
nontrivially under hypercubic rotations; and, for a similar
reason, in the specific ordering of traversing the axes in
Eq. (A3).

The solution adopted in this paper is to perform the
transition from the original one-component formalism to
a taste representation as a Gaussian RG-like transforma-
tion, in which no thinning out of the fermionic degrees of
freedom (but only of the gauge field) occurs. For the taste-
basis Dirac operator resulting from this transformation, see
Ref. [15]. This comprises the special k � 0 blocking step
introduced in Sec. II A. Within the Gaussian blocking
transformation,  �~x� is loosely equal to Q�0��~x�0�;U��,
and � �~x� is loosely equal to ��Q�0�y�~x�0�;U�. For a precise
statement, see Appendix B.

Of course, replacing the unitary change of variables
(A2) by a Gaussian transformation does not by itself solve
the difficulty with hypercubic rotations. But we may now
overcome it by creating a coherent superposition over a

family of different blocking transformations. This is ex-
plained in Appendix E (see also Appendix D).

2. Fermion blocking kernels for 1 � k � n

For completeness, let me specify the fermion blocking
kernels of the subsequent, 1 � k � n blocking steps. In the
free theory I take

 Q�k��~x�k�� �k�1� �
1

16

X
r��0;1

 �k�1��2~x�k� � r�: (A4)

In analogy with Eq. (A2) we may define a covariant
version,
 

Q�k��~x�k�;V �k�1�� �k�1�

�
z�k�

16

X
r��0;1

W �2~x�k�; 2~x�k� � r;V �k�1�� �k�1��2~x�k� � r�;

(A5)

where the parallel transporters are defined analogously to
Eq. (A3), but now in terms of the blocked gauge field of the
�k� 1�th lattice. These definitions imply that the linear
transformation Q�0� is unitary, whereas for 1 � k � n, the
product Q�k�Q�k�y is equal to �z�k��2=16 times the identity
matrix on the kth lattice. The difficulty with hypercubic
symmetry recurs at every blocking step, and again it is
solved in a similar manner (see Appendix E).

The constants z�k� are adjusted to impose a wave-
function renormalization condition on the fermion fields
at each blocking level. Usually, lattice renormalization
produces factors of log�a�� where � is the renormaliza-
tion scale. But in an RG-blocking setup one has a! ak�1,
�! 1=ak at the kth blocking step. Whence log�a�� !
log�2�, and we may expect z�k� � 1� ckg2

r�ak�=�16
2�,
where ck � O�1�. Of course, the product of all the z�k�’s
can diverge (or vanish) in the limit n! 1, as dictated by
the integrated anomalous dimension of the fermion field.

The expectation value of any product of local composite
operators constructed from the coarse-lattice fields will
always be finite. Therefore, composite operators do not
necessarily require a separate renormalization. (Once
again this can be explained by the fact that the ratio of
the cutoff and renormalization scales is a finite, fixed
number.) One might, however, opt to impose specific re-
normalization conditions for certain composite operators.
A renormalization condition imposed on a composite op-
erator at the coarse-lattice scale will in general entail some
finite renormalization.

3. Positivity of det�Dn� and det�G�1
n �

Here I prove that det�Dn� and det�G�1
n � are positive for

m> 0. In more detail, I will prove that, like det�Dstag�, also
det�Dn� is real and strictly positive for m> 0. It follows
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from Eq. (2.12) that det�G�1
n � is real positive (for the issue

of zero eigenvalues of G�1
n , see Sec. IV B).

I begin by noting [15] that ��5 �

�5�Dn��5 � �5� � Dyn .31 It follows that ��5 � �5�Dn is
Hermitian, and det�Dn� is real. Moreover, complex eigen-
values of Dn must occur in pairs with conjugate values.
Therefore det�Dn� will be (strictly) positive if all the real
eigenvalues are (strictly) positive.32

By ‘‘undoing’’ the all the blocking steps one can express
the blocked propagator as

 D�1
n � Rn �QnD

�1
stagQ

y
n ; (A6)

where Qn � Q�n�Q�n�1� � � �Q�0�, and Rn > 0 is deter-
mined iteratively from R0 � ��1

0 and Rk � ��1
k �

��z�k��2=16�Rk�1 [for the free theory, see Eq. (H2)]. It is
now straightforward to show that, if � is an eigenstate of
Dn with real eigenvalue �, then

 

1

�
� Rn ��yQn

m

�D2
msls �m

2 Q
y
n�: (A7)

I have used that Dstag � Dmsls �m, where the massless
staggered operator Dmsls is anti-Hermitian. For m> 0, it
follows that Rn � ��1 <1. Hence all the real eigenvalues
of Dn are (finite and) strictly positive for m> 0.

APPENDIX B: MORE DETAILS ON THE
PULLBACK MAPPING

Here I discuss in more detail the pullback mapping
introduced in Sec. II A. First, considering the original as
well as all the blocked gauge fields as a fixed background,
let us discuss the pullback mapping T �j;n�

F of the fermions
only. In analogy with Eq. (2.14) it is defined for�1 � j �
n� 1 by

 T �j;n�
F O�n� �

Z Yn
k�j�1

�D �k�D � �k��


 exp
�
�

Xn
k�j�1

K�k�
F

�
O�n�: (B1)

As an example, consider the action of T �n�1;n�
F on a fer-

mion bilinear. Using Eq. (B1) one has

 T �n�1;n�
F � �n��~x�n�� � �n��~y�n��� �

�~x�n�;~y�n�

�n

� �Q�n��~x�n�� �n�1��


 � � �n�1�Q�n�y�~y�n���:

(B2)

The resemblance to Eq. (2.10b) is evident. Notice that for
~x�n� � ~y�n� there is no contact term. This generalizes to the
product of any number of fermion and antifermion fields.
Thus, the fermion pullback mapping realizes the operator
relation

 

T �n�1;n�
F  �n��~x�n�� ’ Q�n��~x�n�� �n�1�; (B3a)

T �n�1;n�
F

� �n��~x�n�� ’ � �n�1�Q�n�y�~x�n��; (B3b)

where the right-hand sides were defined in Appendix A,
and where the ’ sign means equality up to the contact
terms that arise when a fermion and an antifermion reside
on the same site of the coarse lattice. Observe that, for the
fermion kernels of Appendix A, if no fermion and anti-
fermion reside on the same site of the coarse lattice, then
no contact terms will arise under the pullback T �j;n�

F for
any j.

Next let us consider the action of the pullback mapping
on the gauge fields as well. First, a few more details on the
gauge-field blocking kernels are needed. The nonlinear
blocking kernel Bk is constructed as a sum over the links
of the kth lattice,

 B k�V
�k�;V �k�1�� �

X
�;~x�k�

F k�V
�k�
�;~x�k�

;W�k�
�;~x�k�
�V �k�1���:

(B4)

A simple choice, consistent with the gauge-transformation
properties of the fermion kernels (A5), is

 

F k�V;W� � �	k tr�VyW�; (B5a)

W�k�
�;~x�k�

� V�k�1�

�;2~x�k�
V�k�1�

�;2~x�k���̂
; (B5b)

where 	k > 0 is a new blocking parameter. Since W 2
SU�3�, one can use the invariance of the Haar measure to
show that N k�V

�k�1�� in Eq. (2.4b) reduces to a numerical
constant. Many other choices of Bk are possible, see e.g.
Ref. [30].

Considering the defining Eq. (2.2a), the gauge-field
blocking kernel Bk may be viewed as a generalized action.
This generalized action couples each kth-lattice link V�k�

�;~x�k�

to the gauge field on the �k� 1�th lattice, but it does not
couple directly any two kth-lattice links. As an example, let
F�g� denote some function of g 2 SU�3�. Considering an
operator of the form F�V�n�

�;~x�n�
�O�n�, where O�n� does not

depend on V�n�
�;~x�n�

, it follows that

 T �n�1;n��F�V�n�
�;~x�n�
�O�n�� � �T �n�1;n�F�V�n�

�;~x�n�
��


 �T �n�1;n�O�n��: (B6)

31The transformation (A1) implies �� � �T� if the Dirac and
the taste matrices both act from the left.

32If Dn has no real eigenvalues, the strict positivity of det�Dn�
follows trivially.
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Returning to the general case, while the explicit expression
gets more complicated with every pullback step, the pull-
back mapping is ultralocal because the blocking kernels
are. If O�n� has a compact support, then the support of
T �j;n�O�n� will only slightly increase for all j < n.

APPENDIX C: ENSEMBLES OF BLOCKED
CONFIGURATIONS

Having introduced all the blocking kernels (see
Appendix A and B), let us discuss the generation of en-
sembles of blocked gauge fields. This is necessary, for
example, for the computation of the coarse-lattice observ-
ables numerically. The issue is how to generate blocked
gauge-field configurations from preexisting fine-lattice
configurations. Using Eq. (2.12) in Eq. (4.2) for t � 1,
we get

 

Zn�1; nr; ac� �
Z

DU
Yn
k�0

�DV �k�� exp
�
�Sg �

Xn
k�0

K�k�
B

�


 detnr�Dstag� (C1a)

�
Z

DU exp��Sg�detnr�Dstag� 	 Z�nr�:

(C1b)

Equation (C1b) reminds us that, in the original staggered
theory, the Boltzmann weight of the fine-lattice gauge field
U has the form exp��Sg�detnr�Dstag� with nr �

1
4 ;

1
2 , or 1.

Equation (C1a) provides a Boltzmann weight for all the
blocked gauge fields as well. In view of Eq. (C1b),
the process begins with an ensemble of fine-lattice con-
figurations generated in the usual way. Given a mother
configuration Ui in this ensemble, one can generate a
daughter configuration of the once-blocked gauge field
V �0�

i by a new Monte-Carlo process, by taking
exp��K�0�

B �V
�0�;Ui�� as a Boltzmann weight while hold-

ing the fine-lattice gauge field Ui fixed. As it should, the
probability to obtain the pair fUi;V

�0�
i g is given by the

product of the original (normalized) Boltzmann weight
Z�1�nr� exp��Sg�Ui��detnr�Dstag�Ui�� and the new

Boltzmann weight exp��K�0�
B �V

�0�
i ;Ui��. The process

may be repeated on further blocking steps 1 � k � n,
each time generating a kth-lattice daughter configu-
ration from the existing �k� 1�th-lattice daughter con-
figuration V �k�1�

i using the Boltzmann weight
exp��K�k�

B �V
�k�;V �k�1�

i ��.
Once an ensemble of fine-lattice configurations and of

daughter configurations for all 0 � k � n has been gener-
ated, it can be used to calculate any observable. The
blocked-lattice fermion propagator D�1

n can be calculated
by repeatedly applying Eq. (2.10) until an expression in-
volving the fine-lattice propagator D�1

stag is obtained. The
blocking kernel Q�k� is an explicit functional of V �k�1�

only, therefore it should be evaluated using a �k� 1�th-
lattice daughter configuration.33

APPENDIX D: LATTICE SYMMETRIES UNDER
THE BLOCKING TRANSFORMATION

As explained in Sec. II C, thanks to the pullback map-
ping each coarse-lattice observable is at the same time a
fine-lattice observable; as such, it is constrained by all the
staggered-fermion symmetries of the original theory. In a
more technical sense, a given fine-lattice symmetry may or
may not survive as a manifest symmetry on the coarse
lattice. I will now discuss the fine-lattice symmetries one
by one.

Translation and gauge invariance have a prominent role,
and they are secured by construction. With the fermion and
gauge-field blocking kernels introduced above, the
blocked-lattice action Sn [cf. Equation (2.2b)] retains these
symmetries manifestly.34

The situation is more subtle with respect to hypercubic
symmetry. As explained in Appendix A, the fermion block-
ing kernels transform nontrivially under 90� rotations. As a
result, with the blocking transformations as introduced in
Eq. (2.2), in fact Sn is not invariant under hypercubic
rotations. On a closer look, the reason can also be under-
stood as follows. Consider the pullback T ��1;n�O�n� of
some operator from the coarse to the fine lattice. Under a
fine-lattice rotation, T ��1;n�O�n� transforms in the usual
way. But, because of the nontrivial transformation proper-
ties of the blocking kernels, the rotated fine-lattice operator
cannot be obtained as the pullback of any coarse-lattice
operator. In other words, the observables of the coarse-
lattice theory do not constitute complete representations of
the hypercubic group.

This difficulty can be solved by allowing the blocking
kernels to depend on additional degrees of freedom, or
disorder fields. Each blocking step in Eq. (2.2) is promoted
to a coherent superposition of block transformations
summed over all values of the disorder fields. The details
are given in Appendix E. Briefly, a disorder field allows for
parallel transporting of the fermion variables of a given 24

hypercube to any of its 16 sites in turn. Another disorder
field allows for all possible orderings for traversing the
axes. The gauge-field blocking kernels are similarly
adapted. With the disorder fields in place, the blocked

33In the limit 	k ! 1 the blocking Boltzmann weight
exp��K�k�

B �V
�k�;V �k�1��� collapses to a �-function, and the

daughter configurations reduce to well-defined functionals of
the original fine-lattice gauge field. In the case of Eq. (B5), for
example, one finds that that V�0�

�;~x�0�
is equal to U�;2~x�0�U�;2~x�0���̂,

and V�k�
�;~x�k�

is equal to V�k�1�
�;2~x�k�

V�k�1�
�;2~x�k���̂

.

34Obviously, the size of the translation group gets smaller with
each blocking step.
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action becomes manifestly invariant under hypercubic
rotations.

Next, the U�1�� symmetry of the (massless) one-
component formalism turns into a Ginsparg-Wilson-
Lüscher (GWL) chiral symmetry [26,43] in the blocked-
lattice theories. See Refs. [15,20] for a detailed discussion
of both the massless and the massive cases. For some
further observations, see Appendix E.

The last symmetry of the (one-flavor) staggered theory is
shift symmetry. It is generated by four anticommuting
elements L�. The action of L� involves a one-unit trans-
lation in the � direction, as well as the multiplication of
��x� and ���x� by sign factors. In the low-energy limit, shift
symmetry reduces to a discrete subgroup of taste-U�4�.
The importance of shift symmetry is that, without it, a
cutoff-scale mass term that breaks the U�4� taste symmetry
may be induced. This unacceptable mass term is indeed
generated if one couples the free taste-basis Dirac operator
directly to a gauge field [54], as was found by an explicit
one-loop calculation in Ref. [53].

In contrast, the taste-basis representation constructed in
this paper avoids this problem. To see this, consider the
expectation value of the pulled back fermion propagator
[compare Eq. (A6)]35

 G�x�n�; y�n�� � hT ��1;n�� �n��x�n�� � �n��y�n���i�1: (D1)

Here, cf. Eq. (2.15), the subscript ‘‘�1’’ refers to the
expectation value of the pulled back operator in the origi-
nal staggered theory. It is straightforward to verify that the
presence of the offensive mass term in the coarse-lattice
propagator would imply that G�x�n�; y�n�� is not invariant
under shift symmetry [8,32]. This is impossible, however,
becauseG�x�n�; y�n�� is a correlation function of the original
staggered theory.

As a last exercise that nicely exhibits how the coarse-
lattice observables are constrained by the fine-lattice sym-
metries, let us examine the two-point function of a coarse-
lattice operator with the quantum numbers of an exactly
massless (taste nonsinglet) Goldstone pion [20], in a two-
flavor theory. As an interpolating field we may take

 
�n�ab �~x
�n�� � � �n�a �~x�n����5 � �5� 

�n�
b �~x

�n��; (D2a)

where again �5 and �5 act on the Dirac and the taste
indices, respectively, and a; b � 1, 2, label the staggered
flavor. Then

 h
�n�12 �~x
�n��
�n�21 �~y

�n��in � hG�~x�n�; ~y�n��i; (D2b)

where

 

G�~x�n�; ~y�n�� � tr���5 � �5�D�1
n �~x�n�; ~y�n��


 ��5 � �5�D�1
n �~y�n�; ~x�n���: (D2c)

The expectation value on the left-hand side of Eq. (D2b) is
with respect to the partition function in Eq. (2.2), while on
the right-hand side it is with respect to Eq. (C1a).36 Via the
pullback mapping, the interpolating coarse-lattice fields
we use represent specific smeared sources on the fine
lattice. Now, one can show that G�~x�n�; ~y�n�� is strictly
positive [15,20]. This rules out the possibility of destruc-
tive interference caused by these smeared sources; the
asymptotic decay rate of the correlator must be dictated
by the lightest excitation of the original staggered theory in
that channel, the Goldstone pion. Once again, this shows
that no fermion-mass terms that contradict any of the
symmetries of the original staggered theory could be gen-
erated, because such a mass term would completely change
the long-distance behavior of this correlator.

A feature that may be confusing on first acquaintance is
that the limiting n! 1 coarse-lattice theory is invariant
only under 90� rotations, and not under continuous rota-
tions. This can be understood as follows. Via the pullback
mapping, even a nominally scalar (or pseudoscalar) opera-
tor on the coarse lattice has in effect some internal structure
for its support, that ‘‘remembers’’ the orientations of the
axes of the lattice. The lack of manifest invariance under
continuous rotations in the coarse-lattice theory is, once
again, because its observables do not constitute complete
representations of this symmetry group.37 In a formal
sense, the continuum-limit observables accessible by the
coarse-lattice theory form a discrete subset of the set of
‘‘all’’ continuum-limit observables. If we would keep de-
creasing the coarse-lattice spacing, we expect that the
breaking of continuous rotational invariance should go to
zero like some positive power of ac�.

In more detail, consider as an example the n! 1 limit
of the pion two-point function in Eq. (D2b),

 

�G�x; y; ac� � lim
n!1
h
�n�12 �~x�


�n�
21 �~y�in: (D3)

At large (Euclidean) distances, where the correlator is
dominated by the Goldstone-pion intermediate state, one
expects the factorization

 

�G�x; y; ac� � e�m
jx�yjF 2�n�; acm
�: (D4)

Here jx� yj is the usual Euclidean distance, and n� is the
unit vector pointing in the direction of x� y. Power cor-
rections that depend on jx� yj have been suppressed. The
(direction dependent) form factor F �n�; acm
� accounts

35We may either consider the expectation value in Eq. (D1) in a
fixed gauge, or replace it by a gauge-invariant one, obtained e.g.
by connecting the coarse-lattice fermion and antifermion by a
coarse-lattice Wilson line.

36In other words, the right-hand side is to be evaluated on an
ensemble of blocked configurations, cf. Appendix C.

37In the free theory, one can check that the operator Drg
obtained in the n! 1 limit [Eq. (2.18)] indeed has only
hypercubic-rotation invariance [20].
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for the coupling of our coarse-lattice interpolating field to
the pion intermediate state it creates. The smeared fine-
lattice operator that corresponds (via the pullback map-
ping) to the coarse-lattice interpolating field is manifestly
invariant under 90� rotations only. As noted above, in the
limit acm
 ! 0, the form factor F �n�; acm
� should ap-
proach an (n�-independent) constant.

APPENDIX E: HYPERCUBIC SYMMETRY AND
DISORDER FIELDS

Here I discuss how manifest hypercubic invariance is
recovered by summing over disorder fields at each block-
ing step. I will discuss mainly the k � 0 step, which
produces the transition from the one-component basis to
the taste basis. Subsequent blocking steps work essentially
in the same way, except that they are somewhat simpler
because the subsequent blocking kernels act trivially on the
Dirac and taste indices. Within this Appendix, I will usu-
ally use the term ‘‘coarse lattice’’ for the taste-basis lattice
obtained via the k � 0 blocking step, in which case I will
drop the corresponding superscript-label of the fields and
the coordinates.

The guiding principle is that we want to preserve the
embedding of the coarse (taste-basis) lattice into the origi-
nal fine lattice, i.e. we want to maintain the same breakup
of the fine lattice into 24 hypercubes. On the coarse lattice,
the 90� rotation will be around the origin. As can be seen
from Fig. 1, this corresponds to a fine-lattice rotation
around the origin which is either followed by, or preceded
with, a one-unit translation. Recall that, for staggered
fermions, the fine-lattice translation group is generated
by the four anticommuting shifts L� that involve a one-
unit translation and the multiplication of the staggered
fields by sign factors. Let us denote by R the matrix that
produces a 90� rotation around the origin. This defines a

linear, homogeneous mapping of the coordinates, as well
as of four-vectors. The coarse- and fine-lattice coordinates
rotations are given by
 

~x! ~x0 �R~x; (E1a)

x! x0 � R̂�x� 	Rx� �; (E1b)

where � is the one-unit translation that follows the rotation
(Fig. 1). The inverse of Eq. (E1b) is

 R̂�1�x0� �R�1�x0 � �� �R�1x0 �R�1�: (E2)

Making the vector index explicit, the fine-lattice rotation is
given by x0� �R�����x� � ���. The rotation matrix
R����� � ����� � ����� � P����� produces the
‘‘counterclockwise’’ rotation in the ��; � plane, whereby
x0 � x� and x0� � �x. Here P����� � ��� � ������ �
���� is the projector on the d� 2 invariant coordinates.
For the same rotation one has � � �̂ in Eq. (E1b), namely,
the follow-up translation is in the positive �̂ direction.

Space-time transformations act on fields by prescribing
their value at a point in terms of their value at the source of
that point (under the ‘‘active’’ coordinates transformation).
For a coarse-lattice rotation around the origin, the value of
the transformed staggered field at a fine-lattice point x0 will
be determined in terms of its value at R̂�1�x0�. Therefore,
the transformation applied to the staggered field is first a
shift from x0 back to x0 ��, and then a fine-lattice rotation
(around the origin) back to the original orientation,
cf. Eq. (E2). Performing this combined transformation
using the rules given in Ref. [8] and plugging the result
into the right-hand side of Eq. (A1) yields the taste-basis
transformation rule for hypercubic rotations [53]

  �~x� !  0�~x� � �R � TT� �R�1~x�: (E3)

Here R��� � 2�1=2�1� ���� is the usual Dirac rotation,
while T��� � 2�1=2��� � �� � Ty

��� produces the rota-
tion on the taste index.38

The fermion blocking kernels (A2) and (A5) are already
gauge covariant. I now discuss how to ‘‘covariantize’’ their
transformation properties under hypercubic rotations. The
idea is to simply let any element of the fine lattice, be it a
site or a link, transform as it should under the above fine-
lattice rotation. For the fermion blocking kernels we need
to make two choices. What choice is being made will be
prescribed by a set of discrete-valued ‘‘disorder fields,’’
that reside on suitable elements of the coarse lattice. In
detail, we have to decide to which one of the hypercube’s
16 sites will all the fermion variables be parallel trans-
ported. The chosen site will be determined by a vector field
��. The possible values of ���~x� are zero or one, and the

 

FIG. 1. Rotations. The two-dimensional example shows how
fine- and coarse-lattice rotations are related. The small circle
marks the origin. The point X � �12 ;

1
2� is marked by a cross.

Thick squares show the blocking pattern. Left panel: Counter-
clockwise 90� rotation about the point X. The blocked squares
are mapped onto themselves: centers are mapped to centers;
corners undergo a rotation with respect to the square’s center.
Right panel: The same effect is achieved by a rotation about the
origin, followed by a translation that brings the point X back into
its original position.

38The transformation rule in Ref. [53] looks slightly different
due to a further change of basis. See also footnote 31.
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fine-lattice coordinates of the chosen site will be 2~x�
��~x�. We must also decide in which order to traverse the
axes. The ordering will be determined by another coarse-
lattice field !̂ � !̂�~x� that takes values in S4, the permu-
tation group of four elements.

Let us next establish the transformation rules of these
fields. For the chosen-site field we demand that, if x �
2~x� ��~x�, then this relation will be respected by the
rotation. With x0 and ~x0 given by (E1), we must require
x0 � 2~x0 � �0�~x0�. It is straightforward to show that the
required transformation rule is

 �0�~x0� �R��R�1~x0� � �: (E4)

Let us verify that Eq. (E4) is a consistent transformation on
this field. We must verify that for �� � 0, 1, also �0� takes
only these two values. Let us again consider the counter-
clockwise rotation in the ��; � plane. Only the � and 
components undergo a nontrivial transformation, which
reads explicitly �0�R���~x� � ���~x� and �0��R���~x� �
���~x� � 1. We see that the translation by the unit vector
��̂ acts precisely to bring �0��R���~x� back into the
allowed range.

In order to write down the transformation rule for the
axes-ordering field, let us use the defining representation of
the permutation group S4 in terms of four-by-four orthogo-
nal matrices, each of which has one entry equal to one and
the rest equal to zero on every raw or column. The axes
ordering is then given by letting this matrix act on the
constant four-vector v � �1234�, that is, act on the four-
vector whose entries are given by v� � �. With this, the
transformation rule is

 !̂ 0�~x0� � !̂�R�1~x0�
̂�R�; (E5)

where the permutations 
̂�R���� 2 S4 is represented
by the four-by-four matrix 
̂�R������ � ����� �
����� � P�����.

For completeness, recall the transformation rule of the
fine-lattice gauge field, which is conveniently expressed as
[8]

 U�x; y� ! U0�x; y� � U�R�1x;R�1y�; (E6)

where

 U�x; y� �

8><
>:
U�;x; y � x� �̂;

Uy�;y; y � x� �̂;
0; otherwise:

(E7)

We are now ready to introduce new parallel transporters
that transform covariantly under rotations. Let

 W �x; y; 
̂;U�; (E8)

be the parallel transporter from y back to x, which traverses
the axes in the order determined by 
̂ 2 S4, as follows.
With the constant four vector v introduced above, we let
v
̂ � 
̂v. Starting at y and letting � � v
̂�4�, we first go

along the �th axis until the �th coordinate is equal to x�.
The direction is determined by the sign of y� � x�. Then
we go along the axis specified by v
̂�3� and so on. In four
steps, each involving a straight line, we go from y back to
x. Note that the parallel transporter in Eq. (A3) corresponds
to the special case of choosing 
̂ as the identity element.

Armed with the more general parallel transporter
(E8), we modify the fermion kernel of the k � 0 step by
replacing W of Eq. (A3) with W �2~x� ��~x�; 2~x�
r�~x�; !̂�~x�;U�. For convenience, the dummy summation
variable of Eq. (A2) has been promoted to a field; its
transformation properties are, obviously, the same as those
of ��~x�. The so-constructed parallel transporter transforms
as
 

W �2~x� ��~x�; 2~x� r�~x�; !̂�~x�;U�

!W �2~x� �0�~x�; 2~x� r0�~x�; !̂0�~x�;U0�

�W �2R�1~x� ��R�1~x�; 2R�1~x

� r�R�1~x�; !̂�R�1~x�;U�: (E9)

With this, the right-hand side of Eq. (A2) attains the same
hypercubic transformation properties as the taste-basis
field, cf. Eq. (E3).

Now that the fermions are each time parallel transported
to a different hypercube’s site, we must also modify the
gauge-field blocking kernels, so as to maintain gauge
invariance of the coarse-lattice theory. For the k � 0
step, the new gauge-field blocking kernel is obtained by
replacing Eq. (B5b) with

 W�;~x �W �2~x� ��~x�; 2�~x� �̂� � ��~x� �̂�; �̂��~x�;U�;

(E10)

where again W is defined by Eq. (E8). In Eq. (E10), the
axes ordering is chosen independently for each coarse-
lattice link, according to a new disorder field �̂��~x� taking
values in the permutation group S4. Introducing notation
analogous to Eq. (E7),

 �̂�~x; ~y� �

8><
>:

�̂��~x�; ~y � ~x� �̂;

�̂y��~y�; ~y � ~x� �̂;
0; otherwise;

(E11)

its transformation rule is [compare Eq. (E5)]

 �̂�x; y� ! �̂0�x; y� � �̂�R�1~x;R�1~y�
̂�R�: (E12)

We are now ready for the implementation. A complete
set of disorder fields is introduced at each blocking step.
Reinstating the blocking-step label, the ‘‘measure’’ for the
disorder fields is

 

X
�k�

	
Y
~x�k�

�
1

24

X
!̂�k��~x�k��2S4

�Y
�;~x�k�

�
1

16 �24

X
��k�� �~x�k���0;1

X
�̂�k�� �~x�k��2S4

�
:

(E13)
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The k � 0 blocking step takes the form
 

Z�
Z
DUD�D ��exp��Sg�U�� ��Dstag�U��� (E14a)



X
�0�

Z
DV �0�D �0�D � �0� exp��B0�V

�0�;U��N 0�U��exp���0� � �0� � ��Q�0�y�U��� �0� �Q�0��U���� (E14b)

�
Z
DV �0�D �0�D � �0� exp��S0�V

�0�; �0�; � �0���: (E14c)

The blocking transformation is introduced on line (E14b).
As promised, it consists of a coherent superposition of
‘‘elementary’’ blocking transformations, each correspond-
ing to a particular set of values of all the disorder fields. In
going from Eq. (E14b) to Eq. (E14c) we both integrate out
the original fields, and sum over all values of the disorder
fields. Similar coherent superpositions of blocking trans-
formations are introduced in all subsequent steps.

With all the disorder fields in place, the coarse-lattice
theory obtained at the nth step is manifestly invariant under
hypercubic rotations. To see this, observe that all the block-
ing kernels in Eq. (2.3) become hypercubic-rotation invari-
ant thanks to the transformation properties endowed to the
disorder fields. The original action is invariant too, and the
sum of the original action plus the blocking kernels may be
regarded as a generalized action, which is hypercubic-
rotation invariant as well. The effective action Sn obtained
after integrating out any number of fields retains the same
invariance.

Because the values of the disorder fields can vary locally,
the resulting action Sn can be written as a sum over coarse-
lattice sites of a local hypercubic scalar. The same would
not be true had we restricted the disorder fields to take
globally constant values only. Such a global sum would
amount to averaging correlation functions of different
(blocked) theories, and the result would in general violate
clustering. If (manifest) hypercube symmetry was enforced
by global averaging, violation of clustering would occur at
every blocking level k, where it is expected to scale like a
power of ak (and, ultimately, like a power of ac), which is
unacceptable. This unpleasant situation is avoided, how-
ever, because the disorder fields are local fields.

Turning to the representation (2.8), in order to maintain
the Gaussian nature of the remaining fermion integral one
must refrain from integrating out any fields other than
fermions. This means that summations over the disorder
fields must not be carried out explicitly as well. The
representation then takes the form
 

Z �
X
�0�

X
�1�

� � �
X
�n�

Z
DU

Yn
k�0

�DV �k��Bn�1;U; fV �k�g�



Z

D �n�D � �n� exp�� � �n�Dn �n��; (E15)

Related subsequent equations (e.g. in Sec. II E) are modi-
fied accordingly. We should also modify the process of

generating ensembles of blocked-lattice configurations.
Integrating out the remaining fermion fields as well as all
the blocked gauge fields in Eq. (E15) we obtain

 Z �
X
�0�

X
�1�

� � �
X
�n�

Z
DU exp��Sg� det�Dstag�; (E16)

which is to be compared with Eq. (C1b).39 This equation
states the (obvious) result that, with no more blocked gauge
fields around, the disorder fields decouple from the original
theory. Therefore, the original fine-lattice gauge field is to
be generated as always with its usual Boltzmann weight
Z�1 exp��Sg� det�Dstag�, while all the disorder fields are to
be generated with a flat measure. Any ‘‘tensor-product’’
configuration made of a fine-lattice gauge-field configura-
tion and a configuration of all the disorder fields then
serves as a mother configuration for the production of the
chain of daughter configurations of the blocked gauge
fields. In practice, this entails the simple instruction that
a new set of values of the disorder fields is to be picked up
at random for any new evaluation of a blocking kernel.

Last let me address the following question. The fermion
blocking kernels are not invariant under ordinary chiral
transformations, and this leads directly to the GW relation,
and to the replacement of any ordinary chiral symmetry by
its GWL cousin, as discussed for the case at hand in
Refs. [15,20]. In comparison to hypercubic rotations, the
invariance (of the massless limit) under ordinary chiral
symmetries is in fact lost already in the free theory after
one or more blocking steps. One may wonder whether a
similar trick with some new disorder fields would help us
retain the invariance under ordinary chiral transformations
in the blocked theory. The answer is yes, but it carries with
it very little gain as I will now explain.

In the free theory, the generator of (ordinary) chiral
transformations in the taste basis is ��5 � �5�. Within the
blocking process, we may enforce the invariance under the
same (global) chiral symmetry by augmenting each of the
fermion blocking kernels with a new disorder field M�k� �
M�k��~x�k�� transforming like a mass spurion. Specifically,
M�k��~x�k�� is a 16 by 16 matrix, labeled by a double, Dirac
and taste, index. It takes values in the U�1� group
exp�i���5 � �5��. Again taking the k � 0 step as an ex-
ample, the new blocking kernel would take the form

39The generalization to nr � 1, cf. Eq. (C1), is straightforward.
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 K �0�
F � �0� � �0� � ��Q�0�y�U��M�0�� �0� �Q�0��U���;

(E17)

where the dependence on all other disorder fields has been
suppressed. Under a global U�1� chiral rotation, and as-
suming that the taste-basis field transforms as  !
exp�i���5 � �5�� , the new disorder field transforms as

 M�k��~x�k�� ! exp��2i���5 � �5��M�k��~x�k��: (E18)

Taken alone, the new blocking kernel (E17) is in fact
invariant not only under global but also under local U�1�
chiral transformations. However, the original action is only
invariant under the corresponding global transformations
(the U�1�� symmetry) in the massless limit. Hence, the
blocked action obtained after integrating over the original
staggered fields, as well as over all values of the new
disorder field, will be invariant under global chiral rota-
tions only, as it should. Of course, that blocked action is not
bilinear in the fermion fields, nor can it be reasonably
approximated by any bilinear fermion action even in the
free case. This has to be so, or else the Nielsen-Ninomiya
theorem [55] would be violated.

More relevant is the role of the chiral disorder fields
within the representation (E15). Particularly illuminating is
to consider their effect on the fermions pullback mapping
(B1). It is easily seen that the role of M�k��~x�k�� is to multi-
ply the contact term in Eq. (B2), obtained while undoing
the kth blocking step, by a chiral phase which depends on
the Dirac and the taste indices. Under a ‘‘complete’’ fer-
mion pullback all the way to the staggered theory on the
original fine lattice, nothing would depend on the chiral
disorder fields, apart from the contact terms encountered
along the way. The integration at each blocking step over
all values of M�k��~x�k�� for all ~x�k� would thus wipe out all
the contact terms.

For noncoinciding points ~x�n� � ~y�n� on the ‘‘last’’
coarse lattice, however, contact terms are absent anyway.
The upshot is that, when evaluating blocked fermion
propagators on blocked ensembles (cf. Appendix C), we
have the following choice for coinciding coarse-lattice
points. We may either evaluate the contact terms generated
by the fermions pullback mapping, assuming there were no
chiral disorder fields; or else, we are free to drop them,
assuming that these disorder fields were present.
Whichever choice we make, it is of no consequence for
any noncoinciding coarse-lattice points. The coarse-lattice
fermion propagator between noncoinciding points is inde-
pendent of the chiral disorder fields.

APPENDIX F: NON-LOCALITY OF THE
INTERACTING THEORY AT NON-ZERO LATTICE

SPACING

In the free theory, a local square-root operator may be
constructed at nonzero lattice spacing in the massive case
[56]. This is not possible in the interacting case: the fourth-

root theory, or the square-root theory for that matter, are
nonlocal for any nonzero fine-lattice spacing af. This
paper shows that the magnitude of all the nonlocal terms,
(but not their range) goes to zero with the fine-lattice
spacing.

Here I briefly repeat the argument why, in the interacting
fourth-root theory, the range of the nonlocal terms must be
a physical scale [15]. With Eqs. (2.8) and (2.12) in mind let
us assume on the contrary that, after n� 1 blocking steps,
a local fourth root exists in the sense that

 det 1=4�Dn� � exp��1
4�Seff� det� ~D�; (F1)

where �Seff is local, and where ~D is a local lattice Dirac
operator which describes one quark in the continuum
limit.40

Let us now compare the actual Goldstone-boson spec-
trum of the ordinary staggered theory (no roots) to that
dictated by Eq. (F1). Substituting the fourth power of
Eq. (F1) back into Eq. (2.20) and noting that det4� ~D� �
det� ~D � 1�, the assumed locality of �Seff would imply that
the RG-blocked theory is in fact a local four-taste theory
with an exact U�4� taste symmetry. This would imply, in
turn, that the 15 pseudo-Goldstone pions must be exactly
degenerate. This conclusion is wrong, however. As ex-
plained above (see, in particular, Sec. II C and
Appendix D), the RG-blocked theory has the same low-
energy spectrum as the original staggered theory. This
spectrum constitutes of 15 non-degenerate pseudo-
Goldstone pions for any nonzero fine-lattice spacing
[9,34,57]. Thus, the different lattice symmetries of the
staggered theory and of the putative theory defined by
the Dirac operator ~D � 1 rule out a local �Seff . As dis-
cussed in Sec. II E and on, however, the notion of a
reweighted theory, namely, of a taste-symmetric theory
that only approximates the staggered theory, can be very
useful.

APPENDIX G: THE PROPAGATOR BOUNDS

In this appendix I collect a few observations on the
propagator bounds (3.8) and (5.2). The first thing to notice
is that the precise form of these bounds is not important, so
long as it is known that the norm of the inverse Dirac
operator in question is bounded by some nonzero constant
in the limit af ! 0. That constant will depend on mr�ac�,
and may depend on ac and � as well.

A configuration for which the bound (3.8) is nearly, but,
not quite, saturated is an instanton with size � ac. The
bound is not fully saturated because there is no index
theorem for staggered fermions. (For related observations,
see Refs. [15,19]; for related numerical work, see
Ref. [29].) For zero modes of larger-size instantons, the

40Both �Seff and ~D may in general depend on the original as
well as on all the blocked gauge fields. The arguments simplify a
bit if no blocking steps are done, as was assumed in Ref. [15].
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bound (3.8) may be corrected by factors of log��=ac� due
to both wave-function and mass renormalizations over the
range from ac to �. Because ac � � � ��1, and both ac
and � are held fixed, I have neglected such logarithmic
corrections.

My remaining comments concern the bound (5.2) in the
reweighted theory. (The bound (5.2) pertains to the one-
taste reweighted theory derived from the fourth-root stag-
gered theory, but similar comments apply to the four-taste
reweighted theory derived from the ordinary staggered
theory.) The U�1�� symmetry of the massless staggered
theory is disguised as a GWL chiral symmetry by the RG
blocking. This chiral symmetry is broken only by the
(staggered) mass term, which, in turn, is protected against
additive mass renormalization. The same is not true for the
reweighted theories: for fixed af > 0, the taste-invariant
operator Dinv;n has no chiral symmetry in the limit where
the staggered mass goes to zero. Thus, Eq. (5.3) reflects the
presence of an additive fermion-mass renormalization in
the reweighted theory.

One should, however, be careful with the interpretation
of Eq. (5.3). First, as noted above, already in the staggered
theory itself the bound (3.8) is not expected to be com-
pletely saturated. Second, in this paper I do not consider
the reweighted theories as ‘‘stand-alone’’ coarse-lattice
theories. Their renormalization is defined with references
to the underlying fine-lattice cutoff af (see Sec. IVA 2).
Thus, the rightmost term in Eq. (5.3) vanishes in the con-
tinuum limit af ! 0 with, in particular, ac fixed, which
implies that no fine-tuning of the fermion mass in the
reweighted theory is needed.

The conclusion that an additive mass renormalization of
a certain size is present cannot, in any case, be drawn based
on the magnitude of �n alone, as can be seen from the
following example. In Ref. [15] another family of re-
weighted theories was constructed with a taste-invariant
Dirac operator Dov;n�m� � ~Dov;n�m� � 1 such that once
again Dn�m� �Dov;n�m� scales in essentially the same
way as does �n�m� � Dn�m� �Dinv;n�m�. Nevertheless,
Dov;n�m� satisfies a GW relation in the limit where the
staggered mass m goes to zero. This implies that, just like
the original staggered mass, the fermion mass residing in
Dov;n�m� renormalizes multiplicatively.41

In the physical one-flavor theory the only chiral sym-
metry is anomalous, and instantons modify the quark’s
mass. Correspondingly, there is a related tiny correction
to the denominator in Eq. (5.2), coming from the integra-
tion over instantons with size in the range af � � � ac.
By choosing ac small enough, instantons with size � � ac
are strongly suppressed, and this correction can be made
arbitrarily small relative to mr�ac�. No similar correction

exists in a theory with more than one degenerate flavor.42

For related observations on the fourth-root regularization
of one-flavor QCD (prompted by the claims made in
Ref. [49]), see Refs. [11,19].

APPENDIX H: SCALING AND THE
MULTI-GAUGE-FIELD REPRESENTATION

In this appendix I further expand on scaling issues
within the multi-gauge-field diagrammatic expansion, dis-
cussed in Sec. IV C of the main text. This appendix is
organized around a few examples that each illuminate
some particular aspect. In Appendix H 1 I discuss the
free theory, and in Appendix H 2 the interacting theory.

1. Free theory: small-momentum expansion of Dn
Extending the result obtained in Ref. [20] to m � 0 and

adapting to the present conventions and notation, the
blocked free propagator takes the form

 D�1
n �Mn �

X
�

�i��� � 1�An
� � ��5 � �5���Bn

��;

(H1)

where, in the massless limit,

 M n

��������m�0
� Rn �

Xn
k�0

�16�k�n=�k: (H2)

A straightforward calculation gives43

 

An
� �

p�
p2 �m2 �1�O�p

2��; (H3a)

Bn
� � 2�n�1ac

p2
�

p2 �m2 �1�O�p
2��: (H3b)

Inverting Eq. (H1) we find44

 

Dn�p� � m� i�p6 � 1� � af
X
�

��5 � �5���p
2
�

� Rn�m� i�p6 � 1��2 � � � � : (H4)

The ellipsis stand for terms of homogeneity degree three or
higher in p� and m. Observe that, even though Dn lives on
the coarse lattice, the first three terms on the right-hand
side of Eq. (H4) are exactly the same as in the usual taste-
basis Dirac operator [5,6]. In particular, the ‘‘skewed
Wilson term’’ (that comprises the leading taste-breaking

41This observation is relevant for Ref. [58] where a comparison
of the staggered ensemble to a reweighted overlap ensemble was
attempted. See also Ref. [15].

42I thank Mike Creutz for a discussion of this point.
43Equation (H3) follows from Eq. (11) of Ref. [20]. The free

propagator D�1
n is constructed as a sum over terms with fine-

lattice momentum p� �2
=ac�k
�n�, where the coarse-lattice

momentum p is fixed, and k�n�� takes integer values such that
the k�n�� -summation samples all of the Brillouin zone of the
original fine lattice. Thanks to the suppression provided by the
blocking kernels, cf. Eq. (11d) therein, any term with k�n�� � 0 is
O�p2� at most.

44Equation (H4) corrects a mistake in Eq. (3.21) of Ref. [15].
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term) has a coefficient that scales with the fine lattice
spacing af � 2�n�1ac. Because �
=ac � p� � 
=ac,
the leading taste-breaking term is indeed of order af=a2

c.
Considering the massless limit we see that there is also a
term Rnp2 with the same structure as an ordinary Wilson
term. The coefficient Rn scales with the coarse-lattice
spacing because ��1

k � O�ak� by assumption. The
Rn-dependent terms reflect the fact that Dn satisfies a
GW relation in the massless limit.

2. Aspects of scaling in the interacting theory

The scaling of �n was derived in Sec. IV C for any
theory whose partition function can be cast in the multi-
gauge-field form of Eq. (4.2). This includes as special cases
the ordinary and fourth-root staggered theories, with or
without reweighting. Here I illustrate some of the ‘‘inner
working’’ of the scaling of �n. I first discuss two terms that
(should) occur in �n, and how their functional form depend
on the blocking level n. I then discuss how the two terms
scale.

The free-theory result (H4) together with gauge invari-
ance requires the presence in �n of a covariant, skewed
Wilson term

 O �n�
D � afz�2

n

X
�

� �n���5 � ���5�r
�n�
�  �n�; (H5)

where, using Eq. (2.10b) and the overall normalization of
the blocking kernels in Eq. (A5), the wave-function renor-
malization factor is

 zn �
Yn
k�1

z�k�: (H6)

The covariant laplacian r�n�� reduces to p2
� �O�p

4� in the
free-theory limit. The superscript notation �n� is meant to
remind us that, excepting V �n�, this covariant laplacian
depends on the entire tower of gauge fields, r�n�� �
r�n�� �U;V �0�; . . . ;V �n�1��. The explicit (complicated)
form can in principle be computed using Eq. (2.10).

Another example is based on the result of Ref. [32],
where it was shown that the taste-basis Dirac operator of
the k � 0 step (cf. Eq. (2.10a) and Sec. IV C) contains a
term with the generic form

 O �0�
F � af � �0��iF

�0�
�� 

�0�
	jc

�0�
�	ij��: (H7)

The notation F �0��� � F �0����U� is a shorthand for �1�
W ���U��=�iafg0�, where W ���U� is a Wilson-loop
operator (without a color trace), and g0 is the bare cou-
pling; F �0��� reduces to F�� in the classical continuum limit.
In Eq. (H7) all indices except color are explicitly shown,
and pairs of indices are summed over. The dimensionless
tensor c�	ij�� has O�g0� entries, and its explicit form is

such that the operator O�0�F violates taste symmetry.

The presence of both O�0�D and O�0�F in the taste-basis
Dirac operator is dictated by shift symmetry, which mixes
the leading, dimension-four, taste-invariant part of this
Dirac operator with taste noninvariant terms of dimension
five and higher.45 The precise form of O�0�D and O�0�F de-
pends on the covariant blocking kernel (A2) that has been
chosen for the k � 0 step. While Ref. [32] discusses the
taste-basis Dirac operator in the case �0 ! 1, the result
(H7) generalizes to �0 <1.

How the operator O�0�F ‘‘evolves’’ with blocking is less
certain than in the case of O�n�D , where we could appeal to
gauge invariance (and the free theory) to determine the
overall normalization. Still, based on the fact that the initial
taste-basis operatorD0 is known to contain O�0�F , one would
expect that Dn contains a similar-looking taste-breaking
term,

 O �n�
F � af � �n��iF

�n�
�� 

�n�
	jc

�n�
�	ij��; (H8)

where the coefficients c�n��	ij�� evolve logarithmically. The

operator F �n��� has similar properties to F �0���, except that
now it depends on the tower of gauge fields F �n��� �

F �n����U;V �0�; . . . ;V �n�1��.
Let me now consider the contribution of O�n�F to the

taste-violating part of blocked observables. The point to
make is that any operator of the general form (H8) will be
suppressed by the (effective) gauge-field action in the
Boltzmann weight [cf. Eqs. (4.2) and (4.4)]. The under-
lying reason that this works is that the discussion below is
nothing but a reconstruction, using the terminology of
nonperturbative ensemble averages, of the familiar dia-
grammatic argument why taste-violating processes medi-
ated by a hard-gluon exchange are suppressed by powers of
the lattice cutoff [11,31,33].

Suppose that a ‘‘big part’’ of F �n���, which accounts for
the gauge-field dependence of O�n�F , comes from the fine-
lattice gauge field, or from a blocked gauge field V �k� with
k� n. Then one can devise gauge-field configurations for
which O�n�F is too large. In fact, there exist configurations
for which O�n�F will be O�1=af�. However, all such con-
figurations are rare. A particular example consists of a fine-
lattice vector potential A�;x with the shape of a wave packet
whose average momentum is p 1=af and whose width is
�p 1=ac. Such a vector potential is coherent over the
coarse-lattice scale; its amplitude, Â, can in principle get as
large asO�1=af�. Were it to happen, this would give rise to

an O�1=af� value of O�n�F . However, large values of Â are
suppressed. By expanding the fine-lattice gauge-field ac-
tion to quadratic order one finds that the action of the

45The taste-symmetric propagator usually used in staggered
perturbation theory is related to the taste-basis propagator by a
nonlocal unitary transformation.
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‘‘wave packet’’ is Â2a4
c=a2

f. Therefore the average value

of Â is O�af=a2
c�. (I have neglected the coupling-constant

dependence, together with any other corrections that scale
logarithmically with the lattice cutoff.) This, in turn, im-
plies that O�n�F � O�af=a2

c� as well. Obviously, this par-
ticular ‘‘wave packet’’ configuration is further suppressed
in the ensemble because it has a limited phase space. But a
similar conclusion is reached for generic fluctuations of the
fine-lattice gauge field, when taking into account that these
fluctuations are uncorrelated over the coarse-lattice scale.
Individual (local) fluctuation will typically be O�1=af�.
The random-walk sum of O��ac=af�4� such fluctuations
is O�a2

c=a
3
f�, if the sum is over a fine-lattice region with

roughly the size of a coarse-lattice hypercube. The average
value, which is the only thing that a coarse-lattice field will
be sensitive to, is O�af=a2

c�. Thus, again, one finds that

O�n�F � O�af=a
2
c�. Last, in the case of the local four-taste

staggered theory it is clear that, upon integrating the tower
of gauge fields, and, in particular, the fine-lattice gauge
field, O�n�F will induce four-fermi (or higher-dimensional)
terms in the coarse-lattice action Sn, which are suppressed
by a2

f (at least).46

I now turn to the role of O�n�D . Recall that, according to
Sec. IV C, �n scales like af=a2

c (up to logarithms) on the
ensemble of any theory defined by Eq. (4.2). However, one
cannot deduce that O�n�D scales like af=a2

c all by itself. We
only know that the sum of all contributions to �n, coming
not only from O�n�D but from many other (higher-
dimensional) terms, must scale like af=a2

c. As I will now
explain, this scaling depends not only on the suppression
provided by the gauge-field action (as was the case for
O�n�F ), but also on the underlying staggered symmetries
and, in particular, on shift symmetry. The example below
also shows that, in other circumstances, there exist opera-
tors that would fit the description of O�n�D as given around
Eq. (H5), and yet they would scale as badly as 1=af.

In order to illustrate in what way things could be differ-
ent, let us consider the proposal [54] to couple the taste-
basis fermions directly to a gauge field on the lattice with
spacing a0 � 2af. The resulting Dirac operator DDK

0 has
no shift symmetry (the superscript ‘‘DK’’ stands for Dirac-
Kähler formulation, which was the main thrust of
Ref. [54]). The one-loop calculation of Ref. [53] proves
that a taste-violating O�1=af� mass term is induced in that
theory. Thus, �DK

n [defined in analogy with Eq. (2.21)] will
scale like 1=af on the corresponding ensemble, and will
diverge in the limit af ! 0. In more detail, before doing
any blocking steps, the 1=af divergence originates directly

from the skewed Wilson term [53]. By itself, RG blocking
obviously cannot ‘‘eliminate’’ any of the divergences of the
underlying theory. (Assuming on the contrary that a diver-
gent mass term is present in the fine-lattice propagator,
but absent from the blocked propagator, one reaches a
contradiction by invoking the pullback mapping,
cf. Appendix D.) Thus, after n blocking steps, the
O�1=af� scaling is expected to come from an operator

O�n�DK
D with the same general form as in Eq. (H5). Note

that, because the kinetic term is only marginal, the range of
the blocked propagator 1=DDK

n rapidly tends to zero with n.
This is, of course, nothing but the decoupling of a fermion
with a cutoff-scale mass.

Let us add to the Dirac operator of the DK theory a (taste
nonsymmetric) mass counterterm:

 DDK
sub � DDK

0 �ODK
M ; ODK

M � mDK
X
�

��5 � ���5�;

(H9)

wheremDK � O�1=af� too; we moreover fine-tunemDK so
that taste symmetry is restored, and the correct physical
quark masses are obtained in the continuum limit. (Any
additional, taste-symmetric mass term present in DDK

0 will
renormalize multiplicatively [8,53].) With the subtracted
operator DDK

sub at the starting point, the taste-violating ef-
fects of the DK theory have become irrelevant. The desired
O�af=a2

c� scaling of the taste-breaking �DK
sub;n will now be

recovered on the corresponding ensemble.
The example of the DK theory illustrates that there are

two distinct issues here: separation of relevant and irrele-
vant operators; and the scaling of irrelevant operators (in
particular, within the current RG framework) once we have
actually determined what they are. The separation of rele-
vant from irrelevant terms will in general require subtrac-
tions (i.e. additive renormalizations). This is indeed the
case in the DK theory. No such subtractions are needed in
the staggered theory, thanks to its extended symmetry.

As soon as the appropriate counter terms have been
added to the underlying theory, all terms in the RG-
blocked-lattice action that break any of the symmetries
of the continuum theory must have become irrelevant,
and will scale accordingly on the corresponding en-
semble.47 This amounts to a standard lore in the case of
local theories. In this paper I have extended this conclusion
to the fourth-root theory (under plausible assumptions).

In summary, what the example of the DK theory shows
is that the only conceivable way for the scaling of �n to go
wrong, is when we overlook some of the necessary counter
terms of the underlying theory. Once all the counter terms
needed for the desired (universal) continuum limit are

46A parallel statement in the context of the fourth-root theory
would only be meaningful within a diagrammatic expansion
augmented by the replica trick. I stress that the discussion of
Sec. V is nonperturbative, and free of this limitation.

47In a strict technical sense, this statement directly applies to
internal symmetries. The role of rotation symmetry in the RG-
blocked action is more involved, see Appendices D and E.
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introduced, the anticipated scaling of the taste-breaking
part of the blocked Dirac operator, as discussed in
Sec. IV C, is a generic property of the RG transformation.

In the staggered case, however, it turns out that no counter
terms are necessary [8], thanks, in particular, to shift
symmetry.
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