PHYSICAL REVIEW D 75, 054502 (2007)

Highly improved staggered quarks on the lattice with applications to charm physics
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We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has
greatly reduced one-loop taste-exchange errors, no tree-level order a errors, and no tree-level order (am)*
errors to leading order in the quark’s velocity v/c. We demonstrate with simulations that the resulting
action has taste-exchange interactions that are 3—4 times smaller than the widely used ASQTAD action.
We show how to bound errors due to taste exchange by comparing ASQTAD and HISQ simulations, and
demonstrate with simulations that such errors are likely no more than 1% when HISQ is used for light
quarks at lattice spacings of 1/10 fm or less. The suppression of (am)* errors also makes HISQ the most
accurate discretization currently available for simulating ¢ quarks. We demonstrate this in a new analysis
of the ¢y — 7. mass splitting using the HISQ action on lattices where am,. = 0.43 and 0.66, with full-QCD
gluon configurations (from MILC). We obtain a result of 111(5) MeV which compares well with the
experiment. We discuss applications of this formalism to D physics and present our first high-precision

results for D, mesons.
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L. INTRODUCTION

The reintroduction of the staggered-quark discretization
in recent years has transformed lattice quantum chromo-
dynamics, making accurate calculations of a wide variety
of important nonperturbative quantities possible for the
first time in the history of the strong interaction [1-5].
Staggered quarks were introduced 30 years ago, but un-
usually large discretization errors, proportional to a> where
a is the lattice spacing, made them useless for accurate
simulations. It was only in the late 1990s that we discov-
ered how to remove the leading errors, and the result was
one of the most accurate discretizations in use today.
Staggered quarks are faster to simulate than other discre-
tizations, and as a result have allowed us for the first time to
incorporate (nearly) realistic light-quark vacuum polariza-
tion into our simulations. This makes high-precision simu-
lations, with errors of order a few percent, possible for the
first time (see [1] for a more detailed discussion). In this
paper we present a new discretization that is substantially
more accurate than the improved discretization currently in
use. With this new formalism accurate simulations will be
possible at even larger lattice spacings, further reducing
simulation costs.

The O(a?) discretization errors in staggered quarks have
two sources. One is the usual error associated with discre-
tizing the derivatives in the quark action. The correction for
this error is standard and was known in the 1980s [6]. The
second source was missed for almost a decade. It results
from an unusual property of the staggered-quark discreti-
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zation: the lattice quark field creates four identical flavors
or tastes of quark rather than one. (We refer to these
unphysical flavors as “tastes” to avoid confusion with
the usual quark flavors, which are not identical since
quarks of different flavor have different masses.) The
missing a” error was associated with taste-exchange inter-
actions, where taste is transferred from one quark line to
another in quark-quark scattering. The generic correction
for this type of error involves adding four-quark operators
to the discretized action.

Taste is unphysical. Instead of one 77", for example, one
has 16. Taste is easily removed in simulations provided that
different tastes are exactly equivalent, which they are, and
provided there are no interactions that mix hadrons of
different taste. Taste-exchange interactions, however,
cause such mixing, and therefore it is crucial that we
understand such interactions and suppress them.
Furthermore, past experience suggests that the errors due
to residual taste exchange are the largest remaining a’
errors in current simulations.

The corrections to the lattice action that suppress taste
exchange were missed initially because four-quark opera-
tors are not usually needed to correct discretization errors
in lowest order perturbation theory (that is, at tree level).
They were first discovered empirically from simulations in
which the gluon fields in the quark action were replaced by
smeared fields, which happen to suppress taste-changing
quark-quark scattering amplitudes [7]. This discovery led
to a proper understanding of the taste-exchange mecha-
nism [8,9], and to the first correct analysis of the a? errors
in staggered-quark formalisms [8,10]. The resulting
“ASQTAD” quark action has provided the basis for almost
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all simulations to date that include (nearly) realistic light-
quark vacuum polarization.

While it is possible to remove all tree-level taste ex-
change by smearing the gluon fields appropriately, higher-
order corrections can only be removed by adding four-
quark operators. Recent numerical experiments suggest,
however, that even these corrections can be significantly
suppressed through additional smearing [11]. These stud-
ies, while very important, were limited in two ways. First,
they used the mass splittings between the 16 tastes of pion
as a probe for taste exchange; there are many taste-
exchange interactions that do not affect this spectrum.
Second, smearing the gluon fields introduces other types
of O(a®) error which undo the advantage of an improved
discretization (that is, accuracy at large values of a).

In this paper we present the first rigorous analysis of
one-loop taste exchange. Based upon this analysis we
develop a simple smearing scheme that suppresses one-
loop corrections by an order of magnitude on average. Our
smearing scheme is simpler than that in [11] and, unlike
that scheme, it does not introduce new a2 errors. The result
is a new discretization for highly improved staggered
quarks which we refer to by the acronym HISQ.

An added advantage of a highly improved action is that
it can be used to simulate ¢ quarks. Heavy quarks are
difficult to simulate using standard discretizations because
discretization errors are large unless am << 1, where a is
the lattice spacing and m the quark mass. To simulate b
quarks, for example, one would require lattice spacings
substantially smaller than 1/20 fm—much too small to be
practical today. Consequently high-quality simulations of
b quarks rely upon rigorously defined effective field theo-
ries, like nonrelativistic QCD [12], that remove the rest
mass from the quark’s energy. While this approach works
very well for b quarks, it is less successful for ¢ quarks
because the quark’s mass is much smaller, and conse-
quently ¢ quarks are much less nonrelativistic. The smaller
quark mass, however, means that am, = 1/2 for lattice
spacings of order 1/10 fm, which are typical of simula-
tions today. As we demonstrate in this paper, we can obtain
few-percent accuracy for charm quarks when am,. = 1/2
provided we use a highly improved relativistic discretiza-
tion like HISQ.

In Sec. II we review the (perturbative) origins of taste-
exchange interactions in staggered quarks, and their re-
moval at lowest order (tree level) in perturbation theory,
using the Symanzik improvement procedure. We also ex-
tend the traditional Symanzik analysis to cancel all (am)*
errors to leading order in the quark’s velocity, v/c (in units
of the speed of light c). The additional correction needed is
negligible for light quarks, but significantly enhances the
precision of c-quark simulations.

In Sec. III, we extend our analysis of taste exchange to
one-loop order, and show how to suppress such contribu-
tions by approximately an order of magnitude, thereby

PHYSICAL REVIEW D 75, 054502 (2007)

effectively removing one-loop taste exchange from the
theory. The resulting quark action (HISQ) is the first
staggered-quark discretization that is both free of lattice
artifacts through O(a?) and effectively free of all taste
exchange through one-loop order. We also identify the
order a;(am)? corrections to the action that are important
for high-precision ¢ physics.

We illustrate the utility of our new formalism, in Sec. IV,
first by examining its effect on taste splittings in the pion
spectrum. We also show how to directly bound the size of
taste-exchange interactions in simulations by comparing
ASQTAD and HISQ simulations at the same lattice spac-
ing. There has been much discussion recently about the
formal problems caused by taste exchange [13]. The issues
are summarized by Sharpe in [14]. His conclusion, with
which we agree, is that the errors associated with taste
exchange vanish in the continuum limit. His formal analy-
sis gives no indication, however, of the size of these errors
for the finite lattice spacings in current use. Assuming that
taste-exchange errors vanish in the continuum limit, the
differences between ASQTAD and HISQ measurements at
any lattice spacing can be used to bound the taste-exchange
errors in each measurement since taste-exchange errors
will be much smaller in HISQ.

We report on a new simulation of ¢ quarks and charmo-
nium using the HISQ formalism in Sec. V. This is the most
severe test of the HISQ formalism since am, = 1/2 for the
lattice spacings we use, but we show that the formalism
delivers results that are accurate to a couple of percent,
making it the most accurate formalism available for simu-
lating ¢ quarks. We demonstrate this in a new high-
precision determination of the ¢ — m. splitting. This
analysis confirms our expectation that the largest a errors
in the ASQTAD action are associated with taste exchange,
and we show that these are greatly reduced by using the
HISQ action instead.

The moderately heavy smearing used in the HISQ for-
malism complicates unquenched simulations. In Sec. VI,
we discuss how these complications can be dealt with.
Finally, in Sec. VII, we summarize our results and discuss
their relevance to future work. Here we also present our
first D physics results from the HISQ action.

Much of our discussion is framed in terms of the
“naive” discretization for quarks, which is conceptually
equivalent to the staggered-quark discretization (see
Appendix B). We usually find naive quarks to be more
intuitive in analytic work than staggered quarks, while the
latter formalism is definitely the more useful one for
numerical work. We outline the formal connection be-
tween the naive-quark and staggered-quark formalisms in
a series of detailed appendices. We use these results in our
one-loop analysis of taste-exchange interactions, which is
described in detail in Appendix F.

It is also clear, using naive quarks, that there can be no
O(a) errors of any sort in these formalisms. This appears to
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TABLE I. Gluon configurations used in this paper with infor-
mation about the collaboration that produced them, the lattice
spacing a, the gluon action used (the unimproved quenched
Wilson action or the Symanzik-improved Liischer-Weisz action
for full ny = 3 QCD), the s and u = d quark masses used in
vacuum polarization (here u, is the fourth root of the gluon
plaquette operator), and the spatial size of the lattice. The first set
of configurations is described in [15], while the others are
discussed in detail in [1,16].

a (fm)  Gluon action  ugam; wupam,;; L/a
UKQCD  1/10 Wilson — — 16
MILC 1/8 Liischer-Weisz ~ 0.05 0.01 20

MILC 1/11  Liischer-Weisz ~ 0.03 0.006 28

contradict some older treatments of staggered quarks,
which find taste-exchange errors in O(a) even for free
quarks. At the end of Appendix C, we discuss why these
O(a) effects are artifacts of the particular way in which
these older treatments isolate different tastes; the artifacts
have nothing to do with the underlying theory and do not
affect physical quantities.

We used several sets of gluon configurations in this
paper. The parameters for these various sets are summa-
rized in Table I.

II. SYMANZIK IMPROVEMENT FOR NAIVE/
STAGGERED QUARKS

A. Naive quarks, doubling, and taste-changing
interactions

We begin our review of staggered quarks by examining
the formally equivalent naive discretization of the quark
action (see Appendix B):

S = Py - A(U) + mo)ih(x), (1)
where A, is a discrete version of the covariant derivative,

A0 = 5 (U, W + af)
- UL - - ad), @)

U, (x) is the gluon link-field, a the lattice spacing, and m,
is the bare quark mass. The gamma matrices are Hermitian,
with

{’Y}L’ YV} = 25}[,1/’ (3)

where indices w and » run over 0...3. A complete set of
16 spinor matrices can be labeled by four-component
vectors n,, consisting of Os and 1s (i.e., n, € Z,):

Yi=Yw V=1

"

3
Yo = []ru) €
u=0
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A set of useful gamma-matrix properties is presented in
Appendix A.

The naive-quark action has an exact “doubling” sym-
metry under the transformation:

h(x) = P(x) = y5y, (= D%/ 4h(x)
= vsv, explix,m/a)(x). (5)

Thus any low energy-momentum mode, (x), of the theory
is equivalent to another mode, #(x), that has momentum
Py = 7/ a, the maximum allowed on the lattice. This new
mode is one of the ‘“doublers” of the naive-quark action.
The doubling transformation can be applied successively
in two or more directions; the general transformation is

Px) = B P(x), ) = F(0)BLx),  (6)
where

B (x) = v (=) = [ Jysy,)o explix - {m/a),
p

)

and {'is a vector with {,, € Z,, while [ is “conjugate” to £
(see Appendix A):

{u= > §mod2. ®)

123"

Consequently there are 15 doublers in all (in four dimen-
sions), which we label with the 15 different nonzero {’s.

As a consequence of the doubling symmetry, the stan-
dard low-energy mode and the 15 doubler modes must be
interpreted as 16 equivalent flavors or tastes of quark. (The
16 tastes are reduced to four by staggering the quark field;
see Appendix B.) This unusual implementation of quark
tastes has surprising consequences. Most striking is that a
low-energy quark that absorbs momentum close to {7/a,
for one of the 15 {’s, is not driven far off energy-shell.
Rather it is turned into a low-energy quark of another taste.
Thus the simplest process by which a quark changes taste is
the emission of a single gluon with momentum ¢ =~ {7/a.
This gluon is highly virtual, and therefore it must imme-
diately be reabsorbed by another quark, whose taste will
also change (see Fig. 1).

Taste exchange necessarily involves highly virtual glu-
ons. This means that taste exchange is perturbative for
typical lattice spacings. It also means that it is suppressed
by a?: the effect of the process in Fig. 1 is indistinguishable
from that of a local four-quark operator when the gluon is
highly virtual, and four-quark operators, being dimension
six, are suppressed by (pa)? where p is a typical external
momentum. One-gluon exchange, with gluon momentum
q = {m/a, is the dominant flavor-changing interaction
since it is lowest order in a,({7/a) and involves only 4
external quark lines. (Processes with more quark lines are
suppressed by additional powers of (ap)3.) This observa-
tion is crucial when trying to improve naive quarks by
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FIG. 1. The leading tree-level taste-exchange interaction,
which involves the exchange of a gluon with momentum
{/a where each ¢, is 0 or 1 but 22 #0.

removing finite-a errors, as we discuss below (see also [§—
10]).

Sixteen tastes of quark from a single quark field is 15 too
many. Ignoring taste exchange for the moment, factors of
1/16 are easily inserted into simulations to remove the
extra copies. In particular, quark vacuum polarization is
corrected by replacing the quark determinant in the path
integral by its 1/16 root,

det(y - A + mg) — det(y - A + mg)'/1°, 9)

or, equivalently, by multiplying the contribution from each
quark loop by 1/16. This works because, absent taste
exchange, the naive-quark Dirac operator has in effect a
16 X 16 block-diagonal matrix structure,

D(U) 0 0
0 DUy --- 0
Ay +my~ : : . . . (10)
0 0 D)
with one
DWU)=D-y+my+ 0> (11)

for each of the 16 tastes. Thus

det(A - y + mg)'/10 = (det(D(U))')1/16  (12)

= [det(D))I 13)

which equals det(D - y + mg), up to a® errors, provided
mqy > 0 [17]. The treatment of valence quarks is illustrated
in Appendix G.

It is easy to see how the 1/16 root corrects for taste in
particular situations. For example, consider the vacuum
polarization of a single pion in a theory of only one mass-
less quark flavor. Still ignoring taste exchange, the domi-
nant infrared contributions come from the quark diagrams
shown in Fig. 2 (gluons, to all orders, are implicit in these
diagrams). The first diagram, with its double quark loop,
has contributions from 162 identical massless pions, cor-
responding to configurations where the quark and anti-
quark each carries a momentum close to an integer

PHYSICAL REVIEW D 75, 054502 (2007)

multiple of 77/a (and is therefore close to being on shell).
This diagram is multiplied by 1/16? since there are two
quark loops, thereby giving the contribution of a single
massless pion. The second diagram involves quark annihi-
lation into gluons, and has contributions from 16 identical
massless pions, corresponding to configurations where the
quark and antiquark each carries a momentum close to the
same {7/a (so they can annihilate into low-momentum
gluons). This diagram is multiplied by 1/16 since there is
only one quark loop, thereby giving the contribution again
of a single massless pion but now with an insertion from
the gluon decay. Inserting additional annihilation kernels
results in a geometric series of insertions in the propagator
of a single massless pion that shifts the pion’s mass away
from zero, as expected in a U(1) flavor theory.

Such patterns are disturbed by taste-exchange interac-
tions like that in Fig. 1. For example, these interactions
cause mixing between the different tastes of pion in Fig. 2.
This mixing lifts the degeneracy in the pion masses so that
different tastes of pion are only approximately equivalent.
Consequently the “1/16-root rule” gives results that cor-
respond only approximately to a single pion.

Our analysis of the 16-taste theory, without taking the
1/16 root, indicates that taste-exchange errors are O(a?),
as discussed above, and therefore vanish in the continuum
limit. It is not immediately obvious, however, that this is
the case when the 1/16 root is used to reduce the number of
tastes to one. Taste exchange generates O(a®) off-axis
matrix elements in Eq. (10), and one might worry that
taking the root could somehow enhance the importance
of such terms by canceling the explicit powers of a?
coming from the (dimension-six) taste-exchange operators.
The 1/16-root trick is certainly correct if the off-axis
elements are zero; the only question is whether the limit
is smooth. The off-axis elements can also lead to such
anomalies as unitarity violations with the 1/16 root, but
these will vanish in the continuum if the limit is smooth
(since they are not there when the off-axis elements are
zero); and short of the continuum limit, they will be
suppressed.

Although not proven conclusively, it seems very likely
that the continuum limit is smooth, and that taste-exchange
effects are suppressed by a”. A wide variety of possible
issues is discussed at length in [14]. Here we note just two.
First, one might worry that infrared divergences could
cancel explicit powers of a® from the off-axis elements
when using the 1/16 root. Such divergences are cut off by
the pion mass, however, and so cannot cancel a’s as a — 0
provided the continuum limit is taken before the chiral
limit. Chiral perturbation theory is the appropriate tool
for exploring infrared divergences, and explicit calcula-
tions, using chiral perturbation theory for several different
physical quantities, indicate that all effects from taste
exchange are suppressed by a® [18]. These calculations
are supported by detailed simulations at multiple lattice
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Infrared contributions from (naive lattice) quark vacuum polarization corresponding to a pion vacuum polarization loop in a

simulation of one flavor. The sums are over all infrared sectors, where quarks have momenta near p,, = ¢, 7/ a for one of the 16 {s
consisting of just Os and 1s. The factors of 1/16 are from the 1/16 rule (Eq. (10)) and cancel the sums. Gluons, to all orders, are

implicit in these diagrams.

spacings; for example, the measured splittings between
pions of different tastes vanish like a® (up to powers of
a,(m/a)) [16].

The infrared spectra of the naive-quark operator A -y
and improved versions of it have been studied carefully in
simulations at current lattice spacings [19]. These studies
show how eigenvalues cluster into increasingly degenerate
multiplets of 16 as the lattice spacing vanishes, which is
precisely what must happen if the 1/16-root trick is to
work. In particular it is clear from these studies that the
topological properties of improved naive quarks are correct
provided, again, the continuum limit is taken before the
chiral limit—that is, there is a minimum quark mass that
can be used for any given lattice spacing if one wants to
model quark-instanton interactions accurately, but this
minimum mass decreases like a? as a — 0 [20].

A second issue concerns the possibility that ultraviolet
divergences might cancel the explicit a’s from taste-
exchange amplitudes, leading to a nonsmooth continuum
limit. These divergences can be analyzed perturbatively,
however, because of asymptotic freedom. Although formal
proofs have yet to be completed, no pathologies are ex-
pected from perturbation theory [14], and none have ap-
peared in any of the many detailed perturbative
calculations, some through three-loop order, that have
been completed for the naive-quark theory and improved
versions of it (see, for example, [3]).

These arguments all reenforce our confidence in naive-
quark actions (and staggered quarks) and the 1/16-root
trick, and this confidence is greatly enhanced by the many
very accurate simulations to date that have been carefully
compared with the experiment (for example, [1-5]).
Consequently, while taste exchange can lead to anomalies,
we expect that these are suppressed in the continuum limit.
They are further, and more efficiently, suppressed through
Symanzik improvement of the action, which reduces taste-
exchange amplitudes even at constant lattice spacing. We
now discuss this strategy.

B. Tree-level Symanzik improvement

The discretization errors in the naive-quark action come
from two sources. The more conventional of these corrects
the finite-difference approximation to the derivatives in the
action: one replaces [6]

612 3
A=A, = TA (14)

in the naive-quark action (Eq. (1)). The a® correction is
often referred to as the “Naik term.”

Less conventional is a correction to remove leading-
order taste-exchange interactions [8—10]. As discussed in
the previous section, these interactions result from the
exchange of single gluons carrying momenta close to
[/ a for one of the 15 nonzero s ({,, € Z,). Since these
gluons are highly virtual, such interactions are effectively
the same as four-quark contact interactions and could be
canceled by adding four-quark operators to the quark
action. These operators affect physical results in @(a?)
since they have dimension six. A simpler alternative to
four-quark operators is to modify the gluon-quark vertex,
&yﬂ U, + -+, in the original action by introducing a
form factor f,(¢) that vanishes for (taste-changing) gluons
with momenta ¢ = {#/a for each of the 15 nonzero {s. In
fact the form factor for direction w need not vanish when
£, = 1 since the original interaction already vanishes in
that case. Consequently we want a form factor where

(@) 1 forg—0
Iuld {O for ¢ — {m/a, where {* #0,{, = 0.

15)
We can introduce such a form factor by replacing the

link operator U, (x) in the action with F,U,(x) where
smearing operator [, is defined by
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Fu= n<1+azi("z)>

pF

(16)

symm.

and 622) approximates a covariant second derivative when
acting on link fields:

1 . .
&?Uuu)EafaganMu+wunuyx+aM)—zUMu)
+ U}:(x —ap)U,(x —ap)U,(x —ap + ajr)).
(17)
This works because 622) ~ —4/a* (and JF, vanishes)

when acting on a link field that carries momentum ¢, =~
7r/a. This kind of link smearing is referred to as “Fat7”
smearing in [7].

Smearing the links with F,, removes the leading 0(a?)
taste-exchange interactions, but introduces new O(a?) er-
rors. These can be removed by replacing F,, with [10]

2(8 )2
j;fszTAD = :]:M — Z #’ (18)

pF

where 8, approximates a covariant first derivative:

1
6,U,(x)= Z(UP(X)U,U«('X + a[))U);(x +ajit)
~ Ubx = ap)U,(x = ap)U,(x — ap + afr)).
(19)

The new term has no effect on taste exchange but (obvi-
ously) cancels the O(a?) part of F,. Correcting the de-
rivative, as in Eq. (14), and replacing links by a’-accurate
smeared links removes all tree-level O(a?) errors in the
naive-quark action. The result is the widely used ASQTAD
action [10],

3 908,01~ G000+ w20

where, in the first difference operator,

V() = FR8PU, (x). 1)

In practice, operator V, is usually tadpole improved [21];
in fact, however, tadpole improvement is not needed when
links are smeared and reunitarized [22,23].

C. ¢ quarks

The tree-level discretization errors in the ASQTAD
action are O((ap,)*), which are negligible (< 1%) for
light quarks. When applied to ¢ quarks, however, these
errors will be larger. The most important errors in this case
are associated with the quark’s energy, rather than its 3-
momentum, since ¢ quarks are typically nonrelativistic in
s, Ds, and other systems of current interest. Consequently
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E =~ m > p and the largest errors are O((am)*) or 6% at
current lattice spacings (am, = 0.5). Such errors show up,
for example, in the tree-level dispersion relation of the
quark where:
2(n) — ;2
2(0) = lim )~ s
p—0 P

9 1
=1+_— d+ - 6.,
1 20 (am) 7(am) (22)
This dominant (tree-level) error can be removed by

retuning the coefficient of the azyﬂAfL (Naik) term in
the action:

> zﬁ@)@yﬂ(Aﬂ - %2(1 + e)Az) T mo)¢(x), (23)

where parameter € has expansion

27327 5843
= — + == 4 _ - 6
€= 730 T 10 (@) T 53760 (@)
153607 .
i ——— 24
3942400 @™ 24

With this choice of € and keeping just the terms shown,
¢ =1+ O((am)'?). Only the first term in €’s expansion is
essential for removing (am)* errors; the remaining terms
remove errors to higher orders in am but leading order in
v/c, the quark’s typical velocity. In practice, terms beyond
the first few are negligible though trivial to include.

Note that the bare mass m, in the quark action is related
to the tree-level quark mass and wave function renormal-
ization Z, by

mgy = mZ2 (25)

23
2240

for this choice of e. This formula is useful for extracting
the corrected bare quark mass, m, from a tuned value of m,.

To examine the tree-level errors in this modified
ASQTAD action, it is useful to make a nonrelativistic
expansion since, as we indicated, heavy quarks are gener-
ally nonrelativistic in the systems of interest. This expan-
sion is easy because the action is identical in form to the
continuum Dirac equation, and consequently has the same
nonrelativistic expansion but with

= m(l + %(am)4 - (am)® + - - > (26)

a2

D#—>AM—€(1 + €A, (27)
At tree level,
A, — sinh(aD, — am)/a, (28)
when we replace
t — exp(—m1), (29)

where m is the quark mass. This redefinition removes the
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rest mass from all energies. Expanding in powers of 1/m,
we then obtain the tree-level nonrelativistic expansion of
the modified ASQTAD action:

I
- CEgU L Xgiz_ ExD) - '>¢NR, (30)
where
cx = 1= Hlam)* + Fxlam)® — - -, 31
cp =1 —glam)* + 535(am)° — 32)

The coefficients of all terms through order 1/m have no am
errors at tree level. In particular the o - B term is correct at
tree level once m is tuned (nonperturbatively). The coef-
ficients of the remaining terms shown are off by less than
6% and 1% for charm quarks on current lattices (am =
1/2), which should lead to errors of order (am)*(v/c)* =
2% or less in charmonium analyses and less than 0.5% for
D physics. (Errors should actually be considerably smaller
than this because of dimensionless factors like the 1/8 in
the D* term.) Other tree-level errors, which are order (ap)*

and e(ap)?/6, should also be less than 1% for a =~ 0.1 fm.
|

d(SV)lj(SV)|2 + d(yzﬂy)|jglﬂv)|2

5 5
2A£c0ntact = dg M)|~7§ ,M)|2 Suv'Y Suv

+ d(]S#)|j(15M)|2 + dﬁfz)|\7'(3:)|2 + dSISMV)ljSISMV)P + d(S;:V)|j§l:/V)|2 + d(l/)

+ alﬁf)ljﬁf)l2 + (color octet Js withd!) — d),

where sums over indices are implicit and v # u. The
currents j »  in the first 14 operators are color-singlets
with taste s and spinor structure n, while the last 14
operators are the same but with color octet currents. The
precise definitions of these currents are given in
Appendix E.

We have computed the coupling constants d¥ and aN’ﬁf)
for the tree-level improved theory; the results are presented
in Table II (see also Appendix F). Armed with these one
could incorporate A L o into simulations, removing all
one-loop taste exchange. This procedure is complicated to
implement, however. A simpler procedure is suggested by
the results in [11]. That analysis shows that repeated
smearing of the links further reduces the mass splittings
between pions of different taste.

This result is not surprising given the perturbative ori-
gins of taste exchange. The dominant taste-exchange in-
teractions (in ASQTAD) come from the one-loop diagrams
in Fig. 3. The largest contributions to these diagrams come
from large loop momenta, k = O({7/2a). Smearing the

+ gt NTG R+ AT
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III. SYMANZIK IMPROVEMENT AT ONE-LOOP
ORDER

One-loop errors, which are O(a,(ap)?), should be no
more than a percent or so for light quarks and current
lattice spacings. Taste-changing errors, however, have gen-
erally been much larger than expected. These errors also
bear directly on the validity of the 1/16-root trick for
accounting for taste in the vacuum polarization. For this
reason it is worth trying to further suppress taste-exchange
errors beyond what has been accomplished at tree level.
We show how to do this in this section.

The only other one-loop effects that are important at the
level of a few percent are «,(am)? for heavy quarks, and, in
particular, the charm quark. We show how to correct for
these errors in the Sec. III B.

A. Light quarks

One-loop taste exchange comes only from the diagrams
shown in Fig. 3; other one-loop diagrams vanish because of
the tree-level improvements. Again the gluons in these
diagrams transfer momenta of order {7/a, and so are
highly virtual. Consequently, the correction terms in the
corrected action that cancel these will involve current-
current interactions that conserve overall taste (because
of momentum conservation). There are 28 such terms in
the massless limit for the staggered-quark action (see
Appendix F):

+ d(lﬂ)lj(lﬂ)lz + d(}ﬁ/ilj(S)'z

5MV|j(51;2V|2 + dg-“)|j(5“)|2

(33)

[

links introduces form factors that suppress high momenta,
leaving low momenta unchanged, and therefore should
suppress this sort of one-loop correction. The links in the
ASQTAD action are smeared, but the operator TASQTAD
which smears links in the w direction, introduces addi-
tional links in orthogonal directions (to preserve gauge
invariance) that are not smeared. Smearing the links mul-
tiple times guarantees that all links are smeared, and high
momenta are suppressed.

There are three problems associated with multiple
smearing. One is that it introduces new O(a?) discretiza-
tion errors, and these errors grow with additional smearing.
The action presented in [11] suffers from this problem. The
a? errors can be avoided by using an a’-improved smear-
ing operator, such as F ﬁSQTAD (Eq. (18)). Replacing
smearing operator

ASQTAD ASQTAD ,~ASQTAD
“ - Fu ©

(34)

054502-7



E. FOLLANA et al.
0 (m/a

PHYSICAL REVIEW D 75, 054502 (2007)

-t

0 ( (m/a

(d) A (e)

Cross-Box (c)

Bubble

-

Contact Counter-Term

FIG. 3. The only one-loop diagrams that result in gg — ¢g taste exchange for ASQTAD quarks. Diagrams with additional external

quark lines are suppressed by additional powers of a?.

TABLE II. O(«,) coefficients for the couplings in L e
(Eq. (33)) for three different light-quark actions and massless
quarks. Terms not listed have zero coefficients in this order.
Results are given for the unimproved (Wilson) gluon action, and,
in the ASQTAD case, also for the standard Liischer-Weisz
action. Results for the average coefficient are also given.

Unimproved gluons Improved gluons

ASQTAD  HISQ  HYP ASQTAD
Octet

avw 1.41 019 002 0.77
ay 0.46 0.00 008 0.25
ave 0.23 001  0.00 0.16
sy 0.38 002 001 0.27
aw 0.34 008 004 0.19
asm 035 003 002 0.19
ag 0.08 000 001 0.05
aw” 0.20 0.00 001 0.13
day) 0.20 001 002 0.11
ar 031 001 001 0.17
), 0.06 0.00 0.0 0.04
aw 0.07 0.00 001 0.04
d(j; 0.17 0.00 001 0.09
a3 0.06 0.00  0.00 0.04
Singlet

dor 0.76 010 001 0.41
dr 0.12 0.00 0.0 0.09
dy 0.18 005  0.02 0.10
o 0.04 000 0.0 0.03
dy) 0.11 001 001 0.06
dy), 0.03 0.00 0.0 0.02
ds) 0.09 0.00  0.00 0.05
Avg. d, d 0.23 002 002 0.13

in the quark action, for example, smears all links but does
not introduce new tree-level a® errors.

The second problem with multiple smearings is that they
replace a single link in the naive action by a sum of a very
large number of products of links. This explosion in the
number of terms does not affect single-gluon vertices on
quark lines, by design, but leads to a /N-growth in the size
of two-gluon vertices where N is the number of terms in the
sum. The +/N-growth enhances one-loop diagrams with
two-gluon vertices, canceling much of the benefit obtained
from smearing. This problem is remedied by reunitarizing
the smeared link operator: that is we replace

;AZSQTAD _ :FASQTAD U }-ASQTAD (35)
where operator U unitarizes whatever it acts on. A
smeared link that has been unitarized is bounded (by unity)
and so cannot suffer from the /N problem. Although we
verified that it is unnecessary to make the unitarized link
into an SU(3) matrix—simple unitarization is adequate—
the results given in this paper use links that are projected
back onto SU(3). Reunitarizing has no effect on the single-
gluon vertex, and therefore does not introduce new O(a?)
erTors.

The doubly smeared operator is simplified if we rear-
range it as follows

25 2
ﬁISQE<TM_ Za (Zp)

pPFu

)Uﬂ, (36)

where the entire correction for a? errors is moved to the
outermost smearing. Our new “HISQ” discretization of the
quark action is therefore

Z J(x)(y - DHISQ + m)y(x), 37)
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where
2
DU = A () - %(1 +eoAX)  (3®)

and now, in the first difference operator,

W, (x) = Fu®U,(x), (39)
while in the second,
X,(x)=UF,U,x). (40)

The third problem with smearing is that previous work
has only demonstrated its impact on the mass splittings
between pions with different tastes. For small masses, there
are only five degenerate multiplets of pion. Consequently
showing that smearing reduces the splittings between the
pion multiplets does not guarantee that all 28 taste-
exchange terms in the quark action (Eq. (33)) are sup-
pressed; and, therefore, it does not guarantee that taste-
exchange effects are generally suppressed (other than in
the pion mass splittings).

To examine this issue, we recomputed the one-loop
coefficients for all of the leading taste-exchange correction
terms in the action (Eq. (33)) using the HISQ action, as
well as the HYP action from [11]. These coefficients
provide a direct measure of the residual one-loop taste-
exchange errors in each theory. The results are derived in
Appendix F and presented in Table II. The HISQ coeffi-
cients are on average an order of magnitude smaller than
the ASQTAD coefficients. Thus the HISQ action
(Egs. (37)—(40)) has negligible one-loop taste-exchange
corrections, and the complicated contact terms of
Eq. (33) are not needed. In Sec. IVA we demonstrate that
this perturbative improvement leads to significantly im-
proved nonperturbative results, now that two-loop and
higher-order taste exchange, together with higher-
dimension contributions, are all that is left. The HYP
action gives coefficients similar in size to HISQ.

B. ¢ quarks

Many new taste-preserving operators would need to be
added to the HISQ action in order to remove all order a;a?
errors. The leading operators are listed in Table III. None of
these is relevant at the few-percent level for light quarks,
but terms that enter in relative order aj (am,)> might
change answers by as much as 5%-10% for ¢ quarks on
current lattices, where am, = 0.5 and «, =~ 1/3. High-
precision work requires that these errors be removed.

Nonrelativistic expansions of the various operators in
Table IIT show that only the first, the Naik term, can cause
errors in order a,(am,)?. All of the others result in harm-
less renormalizations or are suppressed by additional
powers of v/c, and so contribute only at the level of
2%—3% or less for ¢s and less than 1% for Ds. We can
remove all a (am,)? errors by including radiative correc-
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TABLE III. Relative errors associated with the leading (for
charm quarks) taste-preserving operators that enter the HISQ
action in one-loop order. Note that a; =~ 1/3, (am)? =~ 1/4, and
(v/c)? = 1/3 for s (1/10 for Ds) for lattice spacings of order
0.1 fm. The errors listed are relative to the binding energy which
is of order 500 MeV for both ¢s and Ds. Some of the operators
are related to others in the same grouping by the equations of
motion, and so are redundant.

Operator

a*yDyy ¢
a*mo - gF
a*yD*D - yi
a*§(D - y)*y
a’miyD>

a*yo - gFD -y
a*yD - gF -y
a*(yy)?
a(yysi)*

D physics
a(am)?

ay(v/c)(am)?

i physics
a,(am)’

a,(v/c)*(am)’

a,(v/c)*(am)? a,(v/c)(am)?

tions in the € parameter that multiply the Naik term
(Eq. (23)).

There are two ways to compute the radiative correction
to €. One is nonperturbative: € is adjusted until the rela-
tivistic dispersion relation,

2(n) — 172
A(p) = E(p)izm =1, 41)
p
computed in a meson simulation is valid for all low three-
momenta p.

A simpler procedure is to compute the one-loop correc-
tion to € using perturbation theory—by requiring, for
example, the correct dispersion relation for a quark in
one-loop order. The result would have the form

€ = € a, — Z(am)® + O(a?, (am)*), (42)

where €, depends upon (am)?. As we will show, €, turns
out to be negligibly small for the HISQ action (but not for
ASQTAD).

IV. APPLICATIONS: LIGHT QUARKS
A. Pion taste splittings

We tested our perturbative analysis of the suppression of
taste exchange by computing the mass splittings between
pions of different taste for ASQTAD, HISQ, and a few
other variations [24]. For each of these we also computed
the one-loop coefficients of the taste-exchange interactions
(Eq. (33)) in perturbation theory. We plot the pion mass
splittings versus the average size of the perturbative coef-
ficients in Fig. 4. As expected, large coefficients correlate
with large mass splittings (and, therefore, large taste-
exchange errors). One-loop contributions should dominate
when the coefficients are large, and the mass splittings
should be roughly proportional to the average coefficient.
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FIG. 4. The splitting between the 3-link and Goldstone (0-link)
pions plotted versus the average value of the coefficients of the
taste-exchange operators (Eq. (33)) from one-loop perturbation
theory. Results are shown for several different smearings of the
link field, including those used in ASQTAD (Eq. (18)) and HISQ
(Eq. (36)). The pion masses are from simulations with uncor-
rected gluons at ¢ = 1/10 fm and no sea quarks.

As the one-loop coefficients become very small, other
taste-exchange mechanisms will dominate—higher-
dimension operators, higher-order perturbation theory—
and splittings will be larger than would be expected from
just the one-loop coefficients. Our simulation data is con-
sistent with this pattern.

The pion simulations used in this analysis used uncor-
rected gluons and omitted quark vacuum polarization. We
have repeated our calculation for ASQTAD and HISQ
valence quarks in full QCD simulations with n; =3
light-quark (ASQTAD) vacuum polarization. We find that
the pseudoscalar splittings are 3.6(5) times smaller with
HISQ than with ASQTAD on lattices with a = 1/8 fm,
when both valence quarks are s quarks. The splittings are
3.1(7) times smaller on our 1/11 fm lattices.

The perturbative origins of taste exchange were already
evident from the threefold reduction observed in pion
splittings when uncorrected staggered quarks were re-
placed by ASQTAD quarks, which incorporate perturba-
tive corrections that remove taste exchange in tree-level
order. Our new results show a similar reduction when one-
loop corrections are effectively removed, providing further
nonperturbative evidence that taste exchange is perturba-
tive and therefore amenable to Symanzik improvement.

PHYSICAL REVIEW D 75, 054502 (2007)

Our results confirm our expectation that taste-exchange
errors from HISQ are smaller by at least a factor of order
ag = 1/3 than those from ASQTAD. Consequently the
HISQ action will be more accurate than other current
competitors because it has negligible one-loop taste ex-
change and no tree-level @(a?) errors.

B. Bounding taste-exchange errors

The main difference between the ASQTAD and HISQ
actions is that taste-exchange effects in the latter should be
3—4 times smaller at the same lattice spacing.
Consequently the taste-exchange error in an ASQTAD
measurement of some quantity should be bounded approxi-
mately by the difference between ASQTAD and HISQ
results for that quantity (measured at the same lattice
spacing). The bound on taste-exchange errors in the
HISQ measurement would then be 3-4 times smaller.
The ASQTAD-HISQ difference for any quantity provides
a very efficient indicator for the size and importance of
taste-exchange errors.

This procedure only provides a bound, not an estimate,
because HISQ and ASQTAD also differ in their radiative
corrections to currents and coupling constants. Thus an
observed ASQTAD-HISQ difference in some quantity
could be dominated by differences in uncalculated radia-
tive corrections if the taste-exchange effects are much
smaller.

To illustrate how such comparisons are done, we have
computed the mass of the ¢ meson and the pseudovector
decay constant f, of the n; meson using ASQTAD and
HISQ valence quarks for each of our two lattice spacings.

The ¢ is unstable and so its mass in a simulation is
unusually sensitive to the sea-quark masses and the volume
of the lattice (it is not “gold-plated” in the sense of [1]).
We have not corrected for this sensitivity, but have simu-
lated using fixed physical sea-quark masses and lattice
volume. Consequently results for the ¢ mass should ex-
trapolate to the same value as a — 0, but this value may be
a few tens of MeV larger than the physical mass. The 7, is
an easy-to-analyze substitute for a 7; it is a 0~ " 5 meson,
but without valence-quark annihilation (and therefore hy-
pothetical). We tuned the s mass so that the 7, masses in
each case were all identical (696 MeV) to within =1 MeV
(statistical/fitting errors only). We evaluated the 7, decay
constant by computing the matrix element of the pseudo-
scalar density and multiplying by the bare quark mass (see
[2], for example).

Our results, shown in Table IV, suggest significant taste-
exchange errors for ASQTAD, particularly in the 1/8 fm
simulation. Looking first at the decay constant, f, ,
ASQTAD and HISQ differ by 4.6(6)% (see the last column
of Table IV). Assuming ASQTAD taste-exchange errors
are 3—4 times larger, this difference implies that taste-
exchange errors could be 5%—-6% in the ASQTAD mea-
surement of this quantity, while only 1%-2% for HISQ.
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TABLE IV. Simulation results for decay constant f, and ¢
mass using either ASQTAD or HISQ for the valence quarks from
full QCD simulations (with ny = 3 ASQTAD quarks). The first
uncertainty quoted is statistical. The second, where quoted, is an
overall systematic error associated with setting the lattice spac-
ing scale (from r); it cancels in ratios. ASQTAD/HISQ ratios at
the same lattice spacing have still smaller statistical errors
because of strong correlations.

a (fm) ASQTAD

Sy, (MeV):
1/8 196(3)(3)
1/11  185(2)(3)

my (GeV):

HISQ ASQTAD/HISQ

187(3)(3)
182(2)(3)

1.046(6)
1.019(4)

1/8  1.119(14)(18)
/11 1.057(10)(16)

1.076(14)(16) 1.040(9)
1.052(7)(16)  1.005(6)

The errors should be half that size or smaller in the a =
1/11 fm simulation since these errors vanish like a® or
faster as @ — 0. This is consistent with what we observe in
our simulations.

The lattice spacing dependence of the separate quanti-
ties, as opposed to the ASQTAD/HISQ ratio, is consistent
with this picture although statistically much less compel-
ling. The ASQTAD result for f, on the coarse lattice is
5.9(1.8)% larger than the ASQTAD result on the fine
lattice, which is approximately what was suggested by
the ASQTAD-HISQ difference. The variation for HISQ,
on the other hand, is too small to measure given our
statistical errors. Results from both formalisms are consis-
tent with an extrapolated value of 180(4) MeV.

Results for the ¢ mass are very similar. These give a
final mass of 1.05(2) GeV, which is 30(20) MeV above the
mass 1.019 GeV from experiment (and consistent with
expectations, as discussed above). These analyses taken
together indicate that HISQ is delivering 1% —2% precision
already on the coarse lattice, while a significantly smaller
lattice spacing (and much more costly simulation) is
needed to achieve similar precision from ASQTAD.
HISQ taste-exchange errors should be less than 1% on
the 1/11 fm lattice for light quarks.

Our tests are only partial because ASQTAD quarks were
used for the vacuum polarization in both the HISQ and
ASQTAD analyses, but the effects of changes in the vac-
uum polarization are typically 3—5 times smaller than the
effects caused by the same changes in the valence quarks
[25]. The agreement between our HISQ results from differ-
ent lattice spacings indicates that finite-a errors from the
vacuum polarization are not large for these lattice spacings.

In past work, taste-exchange errors have been estimated
by comparing results from different lattice spacings, rely-
ing upon the fact that these errors vanish as a — 0. This
example illustrates how the same errors can be reliably
bounded by comparing ASQTAD with HISQ results from
simulations using only a single lattice spacing. This ap-
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proach to estimating taste-exchange errors is very efficient.
It is almost certainly the simplest way to quantify uncer-
tainties about taste exchange and the validity of the
1/16-root trick for vacuum polarization.

V. APPLICATIONS: ¢ QUARKS AND
CHARMONIUM

As argued in Secs. IIC and IIIB, we expect the
ASQTAD action and, especially, the HISQ action to
work well for ¢ quarks even though am, is typically of
order 0.4 or larger on current lattices. To achieve high
precision (few percent or better), we must tune the Naik
term’s renormalization parameter € (Eq. (23)). Here we do
this nonperturbatively by computing the speed of light
squared, c?(p) (Eq. (22)), for the 7, in simulations with
various values of € and tuning € until ¢> = 1. Our results
are summarized in Table V.

The ASQTAD results on the fine lattices show only
small errors in ¢? even with € = 0. Values for different
es are plotted in Fig. 5, together with an interpolating
curve. These data indicate that the optimal choice is € =
0.19(5) for this lattice spacing and mass. The tree-level
prediction for €, from Eq. (24), is —0.10, which indicates
that radiative corrections in € are of order 1 X «; = 0.3, as

expected.
The HISQ results show even smaller ¢? errors on the fine
lattices. Tuning to € = —0.1155, the tree-level value given

by Eq. (24) for am, = 0.43, removes all errors in ¢ at the

TABLE V. The speed of light squared, c2(p), computed from
the n.’s dispersion relation in simulations using different quark
actions. Results are given for different values of the Naik term’s
renormalization parameter € (Eq. (23)), the lattice spacings a,
and the meson’s three-momenta p (in units of the smallest
momentum on the lattice which was roughly 0.5 GeV in each
case).

€ am  (p/pmin)* (D)

ASQTAD (1/11 fm): 0 0.38 2 0.962(9)
03 038 2 1.020(11)

04 038 2 1.036(11)

HISQ (1/11 fm): 0 0.43 2 1.029(11)
—0.115 043 1 0.985(16)

—0.115 043 2 0.992(13)

—0.115 043 3 1.014(15)

—0.115 043 4 0.991(11)

HISQ (1/8 fm): 0 0.67 1 1.190(20)
-1 0.67 1 0.560(10)

—0.35  0.67 1 0.904(15)

—0.28  0.67 1 0.950(15)

—0.21  0.66 1 1.008(13)

—021  0.66 2 1.017(10)

—021  0.66 3 1.019(12)

—0.21  0.66 4 1.007(7)
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FIG. 5. The speed of light squared, c¢*(p), computed for an 7,
meson using the ASQTAD action with p = (P pin, Pmin, 0) and
different Naik-term renormalizations €, where p,;, is the small-
est lattice momentum possible (approximately 500 MeV here).
The correct value, € = 0.19(5), occurs at the intersection of the
interpolating line with the line ¢> = 1, as shown. Here am, =
.38.

level of 1%. This suggests that one-loop and higher-order
radiative corrections in € are negligible for HISQ com-
pared with the tree-level corrections. The dominance of
tree-level contributions is confirmed by our HISQ analysis
using the coarser lattice spacing, where am, = 0.66. Here,
we found the optimal value € = —0.22(3) again by tuning
€ until ¢> =1 for a low-momentum 7,. (We overshot
slightly and did simulations for € = —0.21 rather than
—0.22.) Our tuned € compares quite well with the tree-
level prediction of —0.246 from Eq. (24). Consequently it
is quite likely that the tree-level formula is sufficiently
accurate for most practical applications today.

Note that setting € = —1 cancels out the Naik term
completely. Tree-level errors are then order a” rather
than order a*, as in the HISQ action. Table V shows that
these a? errors cause ¢ to be off by almost a factor of 2.
This example underscores the importance of using
a’-improved actions in high-precision work.

On the coarse lattice, we use the ¢(p) with p = p i
the smallest nonzero momentum on our lattice, to tune €. It
is important to verify that the tuned action gives the correct
dispersion relation for other momenta as well. The data in
Fig. 6 demonstrate that errors are less than a couple percent
for meson momenta out to 1 GeV even on the coarse lattice
where am,. = 0.66. Indeed, the errors would probably have
been smaller (< 1%) had we tuned € a little more
accurately.

We examined the spectrum of the ¢ meson family to
further test the precision of our formalism. We used the
1/11 fm lattices where am, = 0.4, and therefore we ex-
pect errors of order 1%—2% of the binding energy, or 5—
10 MeV (see Sec. III B). A particularly sensitive test is the
hyperfine mass splitting between the ¢ and 7.. We tuned
the bare ¢ mass until the mass of the local (and lightest) 7,
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FIG. 6. The speed of light squared, c¢*(p?), for 7, mesons at
different momenta on a lattice where am, = 0.66 for the HISQ
action with € = —0.21. A comparison with other results from
Table V suggests that choosing € = —0.22 would move all
points down onto the line ¢> = 1 to within errors.

in our simulation agreed with the experiment. Since there
are no other free parameters in our action, the simulation
then predicts a mass for the . As is clear from Fig. 7, the
mass in the simulation is quite accurate—certainly within
the 5-10 MeV we expected.

The data shown in this last figure also bound taste-
exchange errors. As shown there, different tastes of the
7. have different masses, because of taste-exchange inter-
actions. The maximum spread in the masses for the HISQ
action, however, is only 9 MeV. This is much smaller than
the spread from the ASQTAD action, where the splitting
between, for example, the 0-link and 1-temporal-link 7,
masses is 40 MeV (compared to only 3 MeV for the same

HISQ ASQTAD

3.1 - eeww | e |

N
_._.._.__._.._,__._! _________

= - - _

FIG. 7. Masses for different tastes of the 5. and ¢ using HISQ
and ASQTAD c¢ quarks with e = O on a 1/11 fm lattice (am, =
0.4). For HISQ, n,.s are given (from left to right) for the 0, 1, 2,
and 3 spatial link tastes, without and then with a temporal link;
only the spatial splittings are given for the ¢. For ASQTAD, 7.
results are given for only the O-link and 1-temporal-link opera-
tors, and ¢ results for only the 0-link operator. The dashed lines
indicate the results from the experiment. Error bars are of order
the size of the plot symbols.
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splitting with HISQ). (Uncorrected staggered quarks also
show very large splittings [26].) Note also that the spread in
the s is 3 times smaller than the spread in the 7.s. This is
typical; the masses of mesons other than pseudoscalars are
much less sensitive to taste-exchange effects.

The ¢ — n,. hyperfine splitting, for 0-link mesons in
each case, is 109(3) MeV in our 1/11 fm simulation with
tuned € ( = —0.115). The 3% uncertainty is almost en-
tirely due to tuning uncertainties in the lattice spacings
since these uncertainties enter twice: once for converting
the splitting from lattice to physical units, and once
through uncertainties in the ¢ mass, which are themselves
controlled by uncertainties in a~! [12]. Our HISQ result is
somewhat smaller than the current experimental result of
117(1) MeV [27], but it needs three further corrections. (It
is also worth noting that the current Particle Data Group
average of 117 MeV is somewhat larger than the most
recent experiments which find values in the range 113-
115 MeV with uncertainties of 1-2 MeV, see [27].)

The first correction comes from the operators in Table I1I
that must be added to the HISQ Lagrangian in order to
remove further discretization errors. Of these the most
important for the hyperfine splitting is

8 Ly, = cppsa’motpo - Fif, (43)

where ¢y = O(a,). This will affect the hyperfine splitting
in relative order a,(am,)?, or at the level of +5 MeV. The
coefficient ¢y is readily computed in perturbation theory
and this calculation is underway.

The second correction comes from residual taste-
exchange interactions, which from the data in Fig. 7 could
be of order a few MeV. Both this error and that corrected by
8L, are approximately proportional to a®>. So we can
estimate them (together) by comparing to a calculation
with a different lattice spacing. We repeated our hyperfine
splitting analysis on the 1/8 fm lattice using the tuned e(=
—.21). The a? errors should be a little more than twice as
large on the coarser lattice since a? is almost exactly twice
as large. We obtained a splitting of 110(3) MeV on the
coarse lattice, which is essentially identical to the
109(3) MeV we obtained on the fine lattice. Combining
these results, together with our a priori expectation of
+5 MeV errors from a? corrections, we obtain an a2
corrected hyperfine splitting is 109(5) MeV.

The third correction is due to the fact that our simulation
does not include effects from the annihilation of the va-
lence c¢ quarks into two or more gluons. Such annihila-
tions are responsible for small shifts in the n. and ¢
masses, as well as for the (nonelectromagnetic) hadronic
decay rate of each meson. The dominant contribution
comes from c¢ — gg and affects only the 7,.. The shift
in the 7. energy is proportional to the perturbative ampli-
tude for c¢ — gg — cc at threshold [28] and therefore [29]
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AE, —il'(n, — hadrons)/2 «In(2) — 1 — ig + O(ay,).
(44)

This result implies that the leading correction to the 7,
mass due to c¢ annihilation can be computed from the
hadronic width:

Ne

AE, =T(n,— hadrons)(ln(z)T_1 + Cf)(as)>

—2.4(8) MeV, (45)

where we use experimental results from [27]. This correc-
tion increases our theoretical value for the ¢ — 71, splitting
to 111(5) MeV, which agrees well with the experiment.

The sea-quark masses in our simulations are not quite
correct, but both theoretical expectations and experience
with previous simulations indicate that this has negligible
effect on this hyperfine splitting. We redid the analysis
described above with the u/d mass doubled, and confirmed
that this is the case to our current level of precision.

This level of precision would be impossible using our
ASQTAD results because the taste-exchange errors are
tens of MeV—much larger than the £5 MeV expected
from other a® errors. This example confirms that taste-
exchange errors are likely the dominant source of a” errors
in the ASQTAD formalism. With HISQ, on the other hand,
taste-exchange errors have been suppressed to a level
commensurate with other errors.

3.8 |+ i
P(2s)
ne(2s) ||
3.6 i
Py ---1- Xel
>
O
)
= 34 L -+- - Xc0 i
w0
z
=
3.2 i
P(ls) ___,.
3 ne(ls) oo T

FIG. 8. Masses for different excitations of the ¥ meson from a
simulation at lattice spacing 1/11 fm. The dashed lines indicate
the results from the experiment.
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Finally we also computed the masses of some radially
and orbitally excited states in the ¢ family using HISQ,
although not as accurately as the ground-state masses.
High-precision determinations of excited-state masses re-
quire careful design of the meson sources and sinks used in
the simulation. Here we did not attempt high precision, but
rather used simple local sources to do a quick check on the
spectrum. Our results, shown in Fig. 8, agree well with the
experiment to within our statistical errors.

VI. SIMULATION TECHNIQUES FOR HIGHLY
SMEARED OPERATORS

It would be highly desirable to create new unquenched
gluon configurations using the HISQ action in place of the
ASQTAD action. The use of such configurations, with
lattice spacings of order a = 0.1 fm, would significantly
reduce any residual worries about errors due to taste-
exchange interactions.

Such simulations are complicated, however, by the
heavily smeared, reunitarized links in the action. The addi-
tional smearing and reunitarization have no effect on the
cost of the quark-matrix inversions required when updating
gluon configurations, but they complicate calculation of
the derivative D,,(x, u)S, of the quark action S, [U] with
respect to an individual link operator U, (x). Derivative
D, (x, p) is defined by

FEETU, () = f(U,() + €D,y (x, Wf(U,) + O()
(46)

for any function f of U, (x). We developed and tested both
an analytic and a stochastic version of the derivative for
this action [30].

The analytic version employs a unitary projection

Vv — (vvh-(2y 47)

to reunitarize each smeared link V. The main obstacle is
then computation of the gauge derivative of the inverse
square root. Using the product-rule identity for the matrix
M=VVt,

MI/Z(DMf(l/Z)) + (D]‘4*(1/2))]\41/2
=M V(DMM /D), (48)

we can solve for D(VV1)~(1/2) directly, both iteratively by
the conjugate gradient algorithm, and exactly by first di-
agonalizing VV1.

Using the chain rule, we combine D(VV1)=(1/2 with
standard derivatives of the base action and of the smeared
links V. We encode derivatives of the action and smeared
links generically, allowing for run-time changes indepen-
dently in either. The additional cost of computing and
combining D(VV1)~(/2) with these is minimal.

Several other analytic approaches have been developed
for unitarized smearings [31,32]. The authors of [31] ad-
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dressed the problem of computing the derivative of the
matrix inverse square root by replacing it with a rational
approximation. In [32], the smearing itself is unitary, ex-
plicitly avoiding the need to reunitarize and the inverse
square root. In both, the derivatives are then computed
straightforwardly.

In the stochastic approach, we define links

Ujl(x) = e my  (x), (49)

where n(x, u) is now a field of traceless, Hermitian 3 X 3
random matrices, each with normalization

<”7ij”’71m>n = (5im5jz - %aij‘slm)r (50)
and € is a very small number. Defining AS,(x, u) to be the
terms in S [U"] — S,[U] containing U ,(x), the derivative
can be computed efficiently from

26T D, (x, w)S, = (n(x, WAS,(x, 1)), (S1)

averaged over a finite number of sets of random 7s. Our
numerical experiments suggest that 10—100 sets of ns are
adequate for actions like HISQ. We will describe both our
stochastic and analytic techniques in a later paper.

VII. CONCLUSIONS

In this paper, we have demonstrated that taste-exchange
interactions are perturbative and we have shown how to use
Symanzik improvement to create a new staggered-quark
action (HISQ) that has greatly reduced one-loop taste-
exchange errors, no tree-level order a? errors, and no
tree-level order (am)* errors to leading order in the quark’s
velocity v/c. The HISQ action addresses one of the fun-
damental issues surrounding staggered-quark simulations
by allowing us to estimate taste-exchange interactions
through comparisons of HISQ with ASQTAD results. We
presented numerical evidence that taste-exchange interac-
tions in HISQ contribute less than 1% to light-quark quan-
tities, like meson masses and decay constants, at lattice
spacings as large as 0.1 fm.

The suppression of all order (am)* errors by powers of
(v/c)* makes HISQ the most accurate discretization of the
quark action for simulating ¢ quarks on current lattices. We
demonstrated this with a new lattice QCD determination of
the s — m,. mass splitting, which agrees well with the
experiment. This result could be improved by computing
the coefficient ¢y, in the correction 8 Ly, (Eq. (43)) to the
HISQ action.

Our final HISQ action is defined by Egs. (37)—(40). We
showed that the tree-level value (Eq. (24)) for the Naik-
term parameter € is adequate at the level of 1% errors for
lattice spacings at least as large as 1/8 fm.

The HISQ formalism will be most useful for D physics
and works very well for such mesons. In Fig. 9, for
example, we show the D} — D, spin splitting from simu-
lations with HISQ ¢ quarks using both our 1/8 fm and
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a=1/8fm a=1/11fm
. .
> 21 | YR b
2
9 L AL _
= N 20 2 P
Y Y ]

FIG. 9. Masses for two different tastes of the D, and one for
the D} using HISQ ¢ quarks on lattices with lattice spacings a =
1/8 fm (e = —0.21) and 1/11 fm (¢ = —0.115). For HISQ, D,s
are given (from left to right) for the O-link and 1-temporal-link
mesons; only the 0-link splitting is given for the D}. The dashed
lines indicate the results from the experiment. The error bars
shown are from the simulated values for m, —m, /2 and
mp: — m,, /2, since these quantities are insensitive to the c¢
mass and the ¢ mass was tuned to make the simulated value

for m,, exact.

1/11 fm lattices. As in the charmonium case, theory and
experiment agree well here to within errors. Another very
sensitive test of our simulations is to compare computed
and experimental values for the mass difference 2mp, —
m,, , which is quite insensitive to tuning errors in the ¢
mass. We obtain 956(14) MeV using HISQ on the 1/11 fm
lattice, and 978(20) MeV on the 1/8 fm lattice. Both values
agree well with the splitting 956(1) MeV from the experi-
ment. Finally, we measured the speed of light and found
c? = 1.00(4) for the D, on the coarse lattice (a = 1/8 fm
with e = —0.21), confirming that the same action, with the
same values for the coupling constants, works for both D
and 7, mesons. It is important to appreciate that there are
no free parameters available for tuning in the extraction of
any of these results; all QCD parameters were tuned using
other quantities.

As we will discuss in a later paper, the HISQ formalism
is particularly useful for accurate calculations of quantities
like fp, fp,, D — mlv, and so on. These all require cur-
rents and these currents, even though they are conserved or
partially conserved, have order a,(am)? renormalizations.
Consider, for example, cc annihilation into a (virtual)
photon. The electromagnetic current can be computed by
inserting photon link operators,

x+ 0
UFP = exp(—ieq/ P dx- AQED>,

X

(52)

into the HISQ action and then expanding to first order in
AQED to obtain

— ie, AR I, (53)
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Current J2P is not renormalized, because of QED’s gauge

symmetry, but it is not the only operator that contributes to
¢ annihilation. In addition there are O(a?) correction
terms that contribute,

cra,@mo - e FEPY + cra,a> (D - e, F)EP - yyh,
4

just as for the gluon fields. The first correction term re-
normalizes the quark’s magnetic moment, the second its
charge radius. Such terms are normally negligible since the
extra derivatives introduce extra powers of (ap)? and p is
small. For ¢ quark annihilations, however, the extra deriva-
tives become ¢ quark masses instead of small momenta,
and so are more important. It is easy to compute coeffi-
cients ¢ and ¢, in perturbation theory, but contributions to
annihilation from these operators are indistinguishable
from those coming from the leading operator JQEP,
Consequently we can omit the corrections and, instead,
introduce a renormalization constant for JEP:

J’SED,continuum _ Zeff J’SED,HISQ’ (55)

where
Zet = 1 + cay(am)* + O(a2(am)?). (56)

The situation is very similar for (partially conserved)
weak-interaction currents. Again the current derived from
the action requires O(a,(am)?*) corrections. Once these
one-loop corrections have been calculated and included,
however, the remaining terms are only O(a2(am)?).
Consequently one-loop radiative corrections are all that
is necessary to achieve 1%—2% precision for f,, D —
mly, and similar quantities. Other discretization errors in
these quantities should be of order 1% or less. With one-
loop renormalizations, lattice results will be more accurate
than current results from CLEO-c and the b factories.
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APPENDIX A: GAMMA MATRICES

The complete set of spinor matrices can be labeled by a
four-component vector n, consisting of Os and 1s (i.e.,
n, € 2,):

o

3
Yo = [[(ru)m (A1)
wu=0

We will also sometimes use the more conventional, but
equivalent (up to a phase) Hermitian set:
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1,

Vs = Vi¥xYyYo Y Ysu = 1Y5Y

i (A2)
Yur = 5[7#! 71/]
The vy,s have several useful properties:
(i) orthonormal:
Tr (v ¥m) = 43um, (A3)
(ii) closed under multiplication:
VoY = D" Vi, (A4)
where
m;, = Z m, mod 2 (A5)
r<u
and
n-m<=n"-m (A6)
with
n, = Z n, mod2; (A7)
V>0
(iii)) Hermitian or anti-Hermitian:
v = 0"y = v (A3)
(iv) commuting or anticommuting:
YnVYm = (_1)m.n7m7n’ (A9)
where
i, =my +myg = 2m,,m0d2
vE QR
e 2
_[my, if m* even
{(mﬂ + 1)mod2 ifm%odd, (A10)
and
m-n=in-m, (A11)
m=m (m - m)mod2 = 0; (A12)
(v) permutation operator: if one uses the standard repre-

sentation for gamma matrices, where

n=(o 1) v=(y ) @

O
and

0 1
"':<1 0)’
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then there is at most one nonzero element in any row
or any column of any v, and that element is =1 or
*i. Thus multiplying a spinor ¢ by 7, simply per-
mutes the spinor components of ¢, multiplying each
by *1 or *i.

A convenient notation, reminiscent of ys,,, is

Yam = YnVm- (A15)

APPENDIX B: STAGGERED QUARKS

The naive discretization of the quark action is formally
equivalent to the staggered-quark discretization.
Staggering is an important optimization in simulations; it
is also a remarkable property. Consider the following local
transformation of the naive-quark field:

P — Qx (), P = DQT(),

where

(BI)

3
QW = v, = [[r)™ (B2)
u=0

and we have set the lattice spacing a = 1 for convenience.
(We will use lattice units, where a = 1, in this and all
succeeding appendices.) Note that

Qx) =y, for n,, = x, mod2; (B3)

there are only 16 different ()s. It is easy to show that
a,(x) = 0 ()y, Q0+ 2) = (=1)%, (B4
1= 0tWO), (BS)

where xj; =x+x; + - +x,; (see Appendix A).
Therefore the naive-quark action can be rewritten

)y - A+ mp(x) = y()(ax) - A+ m)x(x). (BO)

Remarkably the y action is diagonal in spinor space; each
component of y is exactly equivalent to every other com-
ponent. Consequently the y propagator is diagonal in
spinor space in any background gauge field:

<X(X))_((y)>)( = s(x, y)lspinorr (B7)

where s(x, y) is the one-spinor-component staggered-quark
propagator. Transforming back to the original naive-quark
field we find that

Sk = WPy = s(x 1) QAT ().

This last result is a somewhat surprising consequence of
the doubling symmetry. It says that the spinor structure of
the naive-quark propagator is completely independent of
the gauge field. This is certainly not the case for individual
tastes of naive quark, whose spins will flip back and forth
as they scatter off fluctuations in the chromomagnetic field,
for example. The 16 tastes of the naive-quark field are

(B8)
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packaged in such a way, however, that all gauge-field
dependence vanishes in the spinor structure.

Doubling symmetry is immediately evident in the stag-
gered action, Eq. (B6), since the action is invariant under

X(x) = B (0) x(x), (B9)

which merely scrambles the (equivalent) spinor compo-
nents of y(x), and since

B ,(x)Q(x) = Q(x)B,(0). (B10)

In simulations one generally discards all but one spinor
component of y(x), resulting in highly efficient algorithms.
The Symanzik improvements discussed above are trivially
incorporated.

Note, finally, that Eq. (B10) implies

B ()Qx)QT () BL() = Q0T () (B11)
and therefore the naive-quark propagator Sy satisfies
Sp(x,y) = B(x)Sk(x, y)BL()

for any background gauge field. In momentum space this
becomes

Se(p, q) = BLO)Sy(p + {m, g + {m)BLO),

which is an exact relationship that is useful in perturbative
calculations. This last relation, which is easily checked at
tree level (but true to all orders in «;), shows that there is
only one 16th as much information in the naive-quark
propagator as naively expected.

(B12)

(B13)

APPENDIX C: TASTE, NAIVE VS. STAGGERED

The quark field (x) will typically contain contributions
from all 16 tastes. One can separate out (approximately)
the different tastes by blocking the field on hypercubes that
have two sites per side. One way to project out the { = 0
taste, for example, is to average over the hypercube:

1
Yp = 6 Z lxg + 6x),

ox, €7,

(ChH

where xp, with xp, mod2 = 0, identifies the hypercube,
and the sum is over all 16 sites in the hypercube. We are
ignoring gluons here, for simplicity. Any component of
(x) that has momentum p = {7 with / # 0 will be
strongly suppressed by the average: the suppression factor
is O(ap) for a mode with momentum p + {77, and so
vanishes only in the continuum limit. A { # 0 component
of the original field (x) can be isolated by applying a
doubling operator B, to transform that component to { =
0, and then, again, averaging over the hypercube to isolate
{=0:

0 _ 1 Z Bi(xg + 6x)p(xz + 6x)

B 16 eB B ’

ox,EZ,

(C2)
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The 16 blocked fields 1#@), with one for each £, describe
the 16 different tastes of quark, each now in the low-
momentum sector (i.e., with p, = 7/2). Here ¢ labels
the corner of the original field’s Brillouin zone (p = ()
that corresponds to the blocked field.

With staggered quarks, one keeps only one component
of x(x) since the components are equivalent and decouple:

x1(x)

0
x(x) — 0

0

(C3)

We can use our hypercube blocking (Eq. (C2)) to translate
this single field back into blocked fields for ‘“‘ordinary”
quarks of different tastes {:

Z By(xp + 8x)ih(xp + 6x)

ox,EZ,
xi1(xp + 6x)
= ZQ(&C)TB;(O) 8 (C4)
ox
0

Only four of the 16 blocked fields are independent, how-
ever, because B,(0) x(x) is always proportional to one of
only four different spinors:

X1(x) 0 0 0
0 xi1(x) 0 0
0o 0 [l xix [ 0 €5
0 0 0 X1(x)

(This is because B,(0) = y; and all y,s when applied to a
spinor merely permute the elements of the spinor, multi-
plying each by =1 or *i.) Consequently we can recon-
struct just four tastes, t = 1...4, of blocked quark from a
single staggered field:

b =S 0627 x1 (xp + 8x), (C6)
ox

A

where the ) are unit spinors with )(Et) = 0;,. This for-
mula defines the standard blocked-field flavor basis for
staggered quarks [33].

Formula (C4) shows that some {’s become indistin-
guishable in the staggered approximation. In fact, by ex-
plicit calculation (given our specific representation of the y
matrices), one finds that the /s fall into four equivalence
classes composed of indistinguishable {s:

A: 0000 0001 0110 O111
B: 0010 0011 0100 0101 7
C: 1000 1001 1110 1111
D: 1010 1011 1100 1101

These four classes correspond to the four tastes of stag-
gered quark; all the {s in a single class give the same

staggered-quark field J/S_;) (Eq. (C6)) from Eq. (C4).
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The equivalence of the s within a single class is pre-
served under addition of {s; for example, adding any two
{s from class B always gives a { in class A, while adding
any vector from class B to any vector from class C always
gives a vector in class D. The full addition table for these
classes is:

+ A B C D
A A B C D
B B A D C
C C D A B
D D C B A

This kind of structure is necessary for the fourfold reduction
in the number of tastes due to staggering—that is, 16 tastes of
naive quark are reduced to 4 tastes of staggered quark because
we can consistently identify certain corners of the Brillouin
zone with each other in the staggered case.

We note finally, for this section, that the naive-quark
action (and improved versions of it) can be rewritten in
terms of the flavor-basis blocked fields defined in Eq. (C2)
by substituting the inverse of that equation,

Y(xp + 6x) = ZZB;[(xB + x)yd), (C8)
e

into the action. The staggered-quark version of the result-
ing blocked-field action is frequently presented in peda-
gogical presentations of staggered quarks [33]. Such
blocked actions are not so useful for applications, however,
in part because of the complexity of including gauge fields.
And they are particularly misleading when analyzing
finite-a errors, as we do in this paper. This is because, as
noted above, one can only isolate different tastes up to
corrections of O(a) when averaging on a 2* hypercube.
Consequently, the blocked field for a given taste (Eq. (C2))
is contaminated by other tastes in @(a), and the action for
that blocked field must have O(a) terms that violate taste
symmetry, even for noninteracting quarks. These O(a)
terms, which are discussed in [33], apparently contradict
our assertion that taste changes arise only through hard-
gluon exchanges, which appear only in @(a?) and higher.
The O(a) terms in the blocked action are, however, entirely
an artifact of the definition of the blocked fields; they are
not a property of the underlying theory and cannot affect
physical results. Indeed it is obvious from the naive-quark
formalism that there can be no @(a) errors of any sort since
there are no dimension-5 operators in that formalism (see
Table IIT) that are consistent with the chiral, gauge, and
other symmetries of the theory [34].

The a”" errors are most easily understood in the original
naive-quark formalism, using momentum space to sort out
the different tastes, each of which corresponds to a differ-
ent corner of the Brillouin zone. Contrary to what happens
in the blocked-field actions, there can be no violations of
taste symmetry in the free naive-quark theory, because of
momentum conservation [33]. All taste changes must in-
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volve exchange of hard gluons (¢,, = {7/a for {,, € Z,)
between two or more quark lines—and therefore are O(a?)
or higher. Working in momentum space is also particularly
convenient for the matching calculations needed for
Symanzik improvement, and, as we show in the next
section, there is no practical need for the blocked-field
formalisms.

APPENDIX D: NAIVE-QUARK CURRENTS

Naive quarks lead to huge numbers of nearly equivalent
mesons. Where in ordinary QCD one might consider a
single meson operator, J, = 7y, ¥, one has 16 point-split
operators in the naive theory each of which couples to a
different meson:

TG = §)yDe(x) = Py, pix + 6x,,)

< y(x)ysx(x + 8x,), (D1)

where s is any one of the 16 four-vectors consisting of Os
and 1s only,

éx,, = (s + n)mod 2, (D2)

and link operators U, are implicit (and a = 1 still). Each
of these operators creates a different version of the J,
meson; they are orthogonal. This is because

T — (= 1)) (D3)

under a doubling transformation where
Y(x) = By (OP(x),  Px) = J0)BL(x). (D4

Thus the four-vector s determines the bilinear’s transfor-
mation properties under arbitrary doubling transforma-
tions; it specifies the bilinear’s ‘‘signature’ under
doubling transformations. Since doubling transformations
are symmetries of the naive theory, the doubling signature
is conserved; for example,

DIy =0 if r# s, (D5)

which proves that each of our point splittings creates a
different meson.

Different signatures correspond to different variations of
the same continuum meson, typically with slightly differ-
ent masses, etc. These are the different tastes of the meson.
We label different tastes by the corresponding signature s
in the meson’s rest frame.

Additional mesons are made by boosting particles into
other corners of the Brillouin zone:

P = L (D6)

for one of the 16 {'s. Such mesons would be highly rela-
tivistic in the continuum, but here they are equivalent to
low-energy mesons because of the doubling symmetry; for
example, the antiquark in the meson might carry a mo-
mentum near zero, while the quark carries {7 but is then
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equivalent to a zero-momentum quark state through the
doubling symmetry. Pushing such momenta through a
naive-quark bilinear, using for example

Seira g (x), (D7)

changes the quantum numbers of the meson created by the
operator. To see this, consider current

TEV@) = GOyl = d0BHD Y )
(D8)

o ¥ ylyx(x + 8x,) (D9)
which has signature (£ + s)mod 2. This current obviously
carries momentum p,, = {7 if averaged over all x. It is
easy to show that flavor-nonsinglet mesons created by JE
with different s are all identical, and therefore all carry
taste s. For a i#td meson, for example, we can use the

separate doubling symmetries of the u and d to prove that
EIEN ) = @By ddys Bu)

= (ayyddyuy = P 0)IT()
(D10)

for all {s.

The labeling on J,(f"‘) is intuitive (and therefore useful)
only if the current is averaged over x in such a way that
Pt = {7+ p where —7/2 <p, = /2 for all u; the
combination of all {s and ps covers all of momentum
space, so nothing is lost by this restriction and double
counting is avoided. We can enforce this restriction on
the momenta by redefining the current on a blocked lattice
with one site at the center of every 2* hypercube on the
original lattice, just as we did for the quark field
(Appendix C):

I =3 I e + ),

ox, €7,

(D11)

where xp identifies the hypercube (with xp, mod2 = 0).
The blocked current creates a meson of taste s with mo-
mentum in the {7 corner of the Brillouin zone.

Note that momentum and taste conservation imply

S U@ () = 0

X,y

(D12)

unless { = ¢’ and s = s'. Consequently the different op-
erators are orthogonal when analyzed in momentum space.
Typically we sum over space, however, but not time. In that
case operators with the same signature, but where ¢’ —
{ = *1, can mix. This mixing leads to components in
meson propagators that oscillate in time, as we discuss
below.
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To summarize, there are 16 sets, each set labeled by taste
s, of 16 identical mesons, each meson labeled by ¢, for
each flavor-nonsinglet meson in the continuum. Each cor-
ner { of the Brillouin zone has a single representative of
each taste of meson.

Flavor-singlet mesons are slightly more complicated. In
a uu meson, for example, the quark and antiquark are
created by the same field, and so do not have separate

doubling transformations. Therefore the argument relating

{95 with different {'s does not work. The only contribu-

tions that spoil this argument are from annihilation, where
the meson’s quark and antiquark annihilate into gluons.
Annihilation gluons that contribute to, for example,

S UEY I 0) (D13)

carry total momentum {7 and so are far off shell unless
{ = 0. This has two implications: First, annihilation con-
tributions will be different for different {s. And, second,
only the = 0 case has the correct coupling between the
flavor-singlet quarks and purely gluonic channels. In fact,
only the taste-singlet state, among the { = 0 states, cou-
ples to the gluons since

() o Tr(y,) = 0 unlesss = 0. (D14)

A similar condition applies to nonzero {s as well. For
each { there is only one taste that can couple to gluons. The
gluons are highly virtual if { is nonzero. These last con-
tributions are taste violating because they change quark
taste along quark lines; they are removed by the contact
terms discussed in this paper.

It is not surprising that the flavor-singlet mesons are
more complicated. They usually have to be, particularly
in the pseudoscalar channel where the U(1) problem must
be resolved. In our naive-quark theory, only the { = s =0
mesons couple properly to gluons. The masses of pseudo-
scalars with = s = 0 are shifted properly by instantons
in the chiral limit, so that the U(1) problem is resolved. The
{ = s = 0 neutral pion is also the only pion that decays to
two photons. The corresponding axial-vector current is
only approximately conserved, even in the chiral limit, so
anomalies are not needed to mediate the photon decay.

APPENDIX E: STAGGERED-QUARK CURRENTS

The 256 different mesons created by the naive-quark
bilinears J,(f’s) include 16 identical copies of each distinct
taste of meson. Staggering the quark fields discards iden-
tical copies, leaving just 16 distinct tastes. The naive-quark
bilinears corresponding to the staggered-quark bilinears
are the ones that become diagonal after they are staggered.
Any other operator creates mesons that mix different
spinor components of the staggered-quark operator y(x)
(Eq. (B1)), and so is discarded when we stagger.
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We can identify the bilinears that survive staggering by
noting that
T o xybyox = xx (E1)

after staggering provided ¢ = 5. The staggered-quark op-
erator is therefore

IS = (=) y yap(x + bx,,)
= BY ) x () x(x + x,,), (E2)

where again 6x,, = (s + n)mod 2 (with a = 1), and

BY ) = 1Tty vy visin)
— (_ 1)x~(s<+n>)(_ l)n~(s+n)<. (E3)
Each taste s in the staggered theory corresponds to a
specific corner of the Brillouin zone, with p,, = 57, in
the naive-quark theory. These operators have zero signa-
ture and so are unchanged under doubling transformations
(Eq. (6)).

It is useful for formal analyses, though less so for
simulations, to introduce a slightly different definition for
these bilinears by defining a new operator on our naive-
quark field:

Ya®EY) = (D" yly @ +5), (B4

where ® adds vector n + s to x “modulo” the hypercube
that x lies in—that is,

(xe®n), = xp, + (x, —xp, +n,)mod2 (E5)

when x is in the hypercube labeled by site xp (with
xp, mod?2 = 0). Thus x @ n is in the same hypercube as
x. With this definition, we can redefine the staggered-quark
current with spin n and taste s to be:

P(x)y, ® &(x). (E6)

The ® means that the new operators y, ® £, have a
simple algebra. If, for example,

Px) = v, ® £(x) (E7)
then, using Eq. (A9),

Vi ® E5(x) = 7,7, ® £,E(x), (E8)

which implies that in general

Y ® &EYn ® &g = Vi ¥n ® &€ (E9)

Note that these definitions also imply that &s anticommute
just as 7ys; for example,

’y}l ® frgs = (_l)iYYH ® gsfr'

We can effectively restrict our current to the { =35
corner of the Brillouin zone by again blocking on 2*
hypercubes to obtain

(E10)
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1
J.(vn)(xB) =Tz

16 Z P(xp + 8x)y, ® Eh(xp + 8x),

Ox,EZ,

(E11)

where xp,, mod2 = 0. This formula is related to a more
standard formula by staggering the meson operator:

&(x)’)/n ® §s¢(x) = X/(X)YT 'y)-fr Yn’yx+6xm/\/(x ® 6xsn)’
(E12)

where the shift dx,, guarantees that the product of 7ys is
proportional to the unit matrix. We can rewrite this in terms
of a sum over 6xs in the positive unit hypercube:

o
> W5 Ty ivlyuyeisdx(x@ 8x).  (E13)
ox,EZ, 4

Averaging over the hypercube gives a standard formula for
T
1

_ 1
— > xlep + 8x) 5 Tr(ylyl v, ver) x(xp + 8x).
16 8x,6x 4

(E14)

Taste and spinor structure in ¢(x)y, ® &,¢(x) are both
described by the same kind of four vector consisting of Os
and 1s. For this reason it is common practice to use the
same terminology for describing taste as we do for spinor
structure. Thus, for example, (x)ys ® &sip(x) creates a
pseudoscalar meson with “pseudoscalar taste.” In this case
n=s=(1,1,1,1), and, from Eq. (E2),

J()ys ® Esp(x) = B () () x(x) = (= 1) (x) x(x).
(E15)

A different pion is created by #(x)ys ® &, 4(x), this one
with axial-vector taste:

F0)ys ® &, 4(0) = oM (g x(x @ 4).  (E16)

The pion created by this operator is sometimes called a5 ®
5w or “1-link pion” since the operator is split by one link
or lattice spacing. Similarly ¢/(x)ys ® &si/(x) creates a 5 ®
5 or 0-link pion.

Other naive-quark operators can be recast in terms of the
spinor/taste operators. For example, the naive-quark action
has a chiral symmetry in the massless limit under trans-
formations

P(x) — exp(ifys ® &s)i(x),

_ _ (E17)
P(x) = P(x) exp(ifys ® &5),

where the £5s express the fact that the symmetry operation
does not translate (move) (x).
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APPENDIX F: ONE-LOOP TASTE CHANGING

The Symanzik procedure for removing O(a?) one-loop
taste-exchange effects from the ASQTAD action involves
two steps: (1) we compute taste-changing amplitudes for
qq — qg with massless quarks in one-loop order using
lattice perturbation theory; and (2) we design local taste-
changing counterterms for the staggered-quark action that
cancel these one-loop amplitudes. We find it easiest to
work with the naive-quark theory, converting to staggered
quarks only at the end.

In order a®> we need only consider quarks at threshold—
that is, quarks with momentum p = =/ for one of the 16
{’s with {,, € Z, (where, again, a = 1). Taste-changing
amplitudes are ones where the incoming and outgoing
momenta along any particular quark line differ by {7 for
one of the {s. For gg — qg, overall momentum conserva-
tion demands that the opposite change occur along the
other quark line. Consequently while taste changes along
individual quark lines, total taste is conserved. It is enough
to compute amplitudes A(0, 0; {7, — ) where the initial
quarks have zero momentum and the final quarks have
momenta {7 for any . (Recall that {7 and — {7 are the
same momentum on the lattice.) Amplitudes with other
quark tastes in the initial state are related to these ampli-
tudes by applying the doubling symmetry to each quark
line separately:

A('m, {"m (& + D (" = D) = A0, 0; {m, —{m),
(F1)

where ¢, {,, € Z,.

Tree-level contributions come from Fig. 1, but these
vanish (by design) in the ASQTAD action because of
ASQTAD’s quark-gluon vertex. The only one-loop contri-
butions that are nonzero are those shown in Fig. 3; all other
one-loop amplitudes have at least one quark line with only
one gluon attached, and these vanish, again, because of
ASQTAD’s quark-gluon vertex. The internal quarks and
gluons in the remaining diagrams are all highly virtual, and
therefore these contributions can be canceled by a sum of
four-quark counterterms each consisting of a product of
two quark bilinears (with one bilinear per quark line).

The types of quark bilinear that can arise from these
diagrams are greatly restricted by color conservation, chi-
ral symmetry, and the doubling symmetry of the
Lagrangian. Quark bilinears can only carry singlet or octet
color: thus color structure is either ¢ or yT¢) where T¢
is an SU(3) generator in the fundamental representation.
The standard chiral symmetry of the naive-quark action in
the massless limit implies that only vector and axial-vector
bilinears can arise in that limit: thus spinor structure is
either ¢y, i or ys,y. Finally doubling symmetry
(Eq. (F1)) requires that the bilinears in the counterterms
must be point-split so that they are invariant under any
doubling transformation of their quark fields (Eq. (6)): that
is, we have
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(x)y,(x + 6x(n)) (F2)

or

Y)Y, T%(x + 6x(n)), (F3)

where n is u or 5u, and Sx(n) is chosen to make the
bilinear invariant under ¢ — B4 for all {. This last
restriction implies that the bilinears must be staggered-
quark operators J ff), as defined in Appendix F.

The one-loop amplitude, A(0, 0; {7, —{ ), for a given ¢
is canceled by a specific set of counterterms,

%ngf)lj Sf’|2 + color octet version, (F4)

n

where s = ¢ (from Eq. (E2)). Consider, for example, the
case where {,, = 1 for some u while {, = Oforall v # u.
The taste is s = ¢ or 5u. The spin n depends upon the
spinor structure of A. For this { there are four different
spinor structures, each corresponding to a different
staggered-quark operator:

Gyl = (TSN Wy, ) — (TS, -
Bysu)> = (T2 (ys,)? — (Tal)>.

Each of these operators comes in color octet and color
singlet versions, so eight counterterms are required to
cancel A for {2 = 1.

The coefficients dff) in the counterterms are computed
by on-shell matching of the scattering amplitude
A(0,0; l7r, — () to the sum of counterterms for each /.
Our results are summarized in Table II. Only the bilinears
shown in Eq. (33) are needed here. The chiral perturbation
theory devised by Lee and Sharpe [35] has ten additional
bilinears, but eight of these are not invariant under dou-
bling transformations for each quark line separately, and
two do not involve taste exchange.

APPENDIX G: MESON PROPAGATORS

The fact that the single naive-quark field encodes 16
different, identical tastes of quark has practical implica-
tions for simulations. For example, the operator

J5(x) = (x)ys Py (x),

where W, is an unstaggered b-quark field and ¢ is a light-
quark field, couples only to J¥ = 0~ mesons in the con-
tinuum, including the B. If ¢ is a staggered field, however,
it also couples to 0" mesons [36].

The doubling-symmetry formula, Eq. (6), is useful in
decoding such situations. The second contribution from J5
arises from high-energy states that couple to it. In simula-
tions one normally forms correlators like

Gss(1) = > (0lJs(x, 1)71(0,0)10),

X

(GD)

(G2)
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where the sum over x guarantees that total three momen-
tum p = 0. The operators, however, are not smeared in
time, and so can create arbitrarily high-energy states. The
b-quark resists large energies, as these drive it far off shell,
but the staggered quark is on shell when its energy E = 0
or when E = 7r. These two possible states of the light
quark correspond to two different tastes. Consequently J5
couples to two different mesons: one whose light quark has
taste { =0, and one whose light quark has taste { =
(1,0,0,0) or E = 7.

The first of these two meson states is the normal 0~ B
meson. To interpret the second state, we transform the
high-energy staggered-quark field back to a low-energy
field (which we understand, since it behaves normally)
using the doubling-symmetry formula, Eq. (6):

)= — P Gysyo)(— 1) (G3)
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Substituting in J5 we see that this component of the opera-
tor is

bysVylper = Plivsye)ysWp(—=1) = =iy W, (—1)".
(G4)

The operator iy,V,,, now with low-energy fields, couples
to 0 mesons. (It is J/ = 0 because there is no three-vector
index. Itis P = + because PyyP = vy, where P = vy, is the
parity operator.) The full correlator has two components:

Gss(t) = [Olys W, 107 )|>e £

— (= D'KOlgriyo W, |0%)Pe 5+ (G5)

The second component, rather unconventionally, oscillates
in sign from time step to time step.
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