
Quark number fluctuations in a chiral model at finite baryon chemical potential

C. Sasaki,1 B. Friman,1 and K. Redlich2

1Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt, Germany
2Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wrocław, Poland

(Received 10 November 2006; published 21 March 2007)

We discuss the net quark and isovector fluctuations as well as off-diagonal quark flavor susceptibilities
along the chiral phase transition line in the Nambu-Jona-Lasinio (NJL) model. The model is formulated at
nonzero quark and isospin chemical potentials with nonvanishing vector couplings in the isoscalar and
isovector channels. We study the influence of the quark chemical potential on the quark flavor
susceptibilities in detail and the dependence of the results on model parameters as well as on the quark
mass. The NJL model findings are compared with recent lattice results obtained in two-flavor QCD at
finite chemical potential. On a qualitative level, the NJL model provides a consistent description of the
dependence of quark number fluctuations on temperature and baryon chemical potential. The phase
diagram and the position of the tricritical point in the NJL model are also discussed for different parameter
sets.
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I. INTRODUCTION

During recent years the phenomenological importance
of fluctuations in finite temperature/finite density QCD has
been widely recognized [1]. The analysis of fluctuations is
a powerful method for characterizing the thermodynamic
properties of a system. In particular, enhanced fluctuations
are an essential characteristic of phase transitions [2–8].
Therefore, modifications in the magnitude of fluctuations
have been suggested as a phenomenological probe of
deconfinement and chiral symmetry restoration in heavy-
ion collisions [1,9]. In this context, fluctuations related to
conserved charges, like baryon number, electric charge and
isospin, are particularly relevant [1]. This is due mainly to
the difference in mass gap of the effective degrees of
freedom in the confined (hadronic) and deconfined
(quark-gluon plasma) phases. Thus, a large change in
charge fluctuations is to be expected when a system is
passing from quark-gluon plasma to hadronic medium
[1,9]. In heavy ion collisions fluctuations may also reveal
information on expansion dynamics of the medium created
in the initial state and its electromagnetic emissivity as the
fluctuations of isospin charge are connected with spacelike
screening limit of the retarded photon self-energy [10].

A measure of the intrinsic statistical fluctuations in a
system close to thermal equilibrium is provided by the
corresponding susceptibilities �. Hence, fluctuations in a
thermodynamic system may be explored, at least in a
limited scope, by finding the dependence of � on the
thermal parameters. The properties of a strongly interact-
ing statistical system are characterized by the temperature
and a set of chemical potentials. The latter are related to the
conservation laws, which follow from the global symme-
tries of QCD. For an isospin symmetric and electrically
neutral system the thermodynamical ensemble depends
only on two parameters, the temperature T and the quark
chemical potential.

One of the consequences of QCD is the existence of a
phase transition between the confined, chirally broken
hadronic phase and the deconfined, chirally symmetric
quark-gluon plasma phase. The two phases are separated
by a phase boundary in the �T;�q�-plane. The existence of
the phase boundary for 0 � �q=T � 1 has recently been
established by first principle lattice gauge theory (LGT)
calculations at finite baryon chemical potential [11–14].

Arguments based on effective models [15–22] indicate
that at large �q the transition is first order. On the other
hand, for small �q and two massless quark flavors, the
chiral transition is expected to be second order with the
critical exponents of the O(4) spin model [23]. For finite
quark masses, the second order transition is, due to explicit
chiral symmetry breaking, most probably replaced by a
rapid crossover. The different nature of the phase transition
at low and high �q suggests that the QCD phase diagram
should exhibit a critical end point (CEP), where the line of
first order phase transitions end. Beyond the critical end
point the transition would then be continuous, i.e., second
order or crossover. The critical properties of the second
order critical end point are expected to be determined by
the Ising model universality class [20,24].

The existence of a critical end point in QCD has been
recently studied in lattice calculations at nonvanishing
chemical potential by either considering the location of
Lee-Yang zeros in (2� 1)-flavor QCD [11,25] or by ana-
lyzing the convergence radius of the Taylor series for the
free energy in 2-flavor QCD [12,26]. Recent results [11]
obtained within the first approach suggest that a critical end
point indeed exists and that it is located at T ’ 164 and
�q ’ 120 MeV. On the other hand, in Ref. [26] no direct
evidence for the existence of a critical end point has been
found in 2-flavor QCD with relatively large quark masses,
in the range where the Taylor expansion is applicable, i.e.,
for �q < T.
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The critical behavior and the position of the critical end
point can also be extracted from observables, that reflect
the singular part of the free energy. Such an observable is
the quark susceptibility �ij, defined as the second deriva-
tive of the thermodynamical potential ��T; ~�; V� with
respect to quark-flavor chemical potential �f,

 �ff0 � �
1

V
@2�

@�f@�f0
; (1.1)

where for two light �u; d�-quarks, ~� � ��u;�d�. In par-
ticular, it was recently argued that the net quark number
susceptibility �q may be used to identify the chiral critical
point in the QCD phase diagram [6,7,27]. The flavor off-
diagonal susceptibility was also investigated at finite tem-
perature in perturbative QCD [28]. In two-flavor QCD, for
an isospin symmetric system, �q is given by the sum of the
uu and ud susceptibilities: �q � 2��uu � �ud�. According
to universality arguments, �q diverges at the critical end
point in the chiral limit as well as for finite quark masses,
while away from the critical end point, the net quark
number fluctuations are expected to be finite. Con-
sequently, one expects a nonmonotonic structure in �q
along the phase boundary if the QCD phase diagram
features a critical end point.

The quark susceptibilities have been computed also in
lattice QCD [13,26,29,30]. Recently results for the quark
number and isovector susceptibilities, or equivalently for
the diagonal and off-diagonal quark flavor susceptibilities
have been obtained on a lattice with two light quark flavors
using a p4-improved staggered fermion action with a quark
mass mq=T � 0:4 [12,26]. Results for finite quark chemi-
cal potential were obtained by means of a Taylor series
expansion. The susceptibilities were calculated up to
fourth order in the quark chemical potential [26,31,32].

In general the net quark number susceptibility �q shows
a strong suppression of the corresponding fluctuations in
the confined phase and a strong increase with temperature
near the transition temperature T0. Furthermore, the sus-
ceptibility near the transition temperature T0 shows a
strong increase with increasing quark chemical potential,
leading to cusplike structure at�q ’ T. Besides, the lattice
results confirm the expectation that the isovector quark
susceptibility �I does not exhibit a peaked structure near
the transition temperature and shows rather weak depen-
dence on �q. This behavior of the susceptibilities is con-
sistent with the existence of a singularity of the
thermodynamic potential close to �q � T � T0, the chiral
end point. However, the enhancement of �q at finite �q

below the transition temperature can also be interpreted in
terms of an enhanced contribution from baryon reso-
nances; a very good description of the T and �q depen-
dences of the various quark susceptibilities in the confined
phase is provided by the resonance gas partition function
[26,31–33].

Lattice calculations also show a strong correlation be-
tween fluctuations in different flavor components. This is
particularly clear in the LGT results for the off-diagonal
susceptibility �ud, which shows a strong increase of u-d
correlations near the transition temperature T0 and an
abrupt loss of correlations just above T0 [26,31,32].

In this paper we explore the properties of different quark
susceptibilities in terms of an effective chiral model. Of
particular interest is the characteristics of the quark number
susceptibilities in different channels along the phase
boundary and in the vicinity of the critical end point. The
calculations will be done in the two-flavor Nambu-Jona-
Lasinio (NJL) model [34] formulated at finite temperature
and chemical potentials for the baryon number and isospin
densities.

The NJL model has been used as a model for exploring
qualitative features of the restoration of chiral symmetry in
QCD [16,35–38]. In the particular case of SUc�2� color
symmetry this model has been recently argued to provide a
realistic description of some of the lattice results [39].
However, in the SUc�3� case it is rather unlikely that the
NJL model can provide a quantitative understanding of
LGT thermodynamics, since it does not exhibit confine-
ment.1 Consequently, the hadronic degrees of freedom, in
particular, the baryonic resonances, which provide a quan-
titative interpretation of the LGT results in the confined
phase [31,32], are missing in the model. Furthermore, there
are no gluon degrees of freedom in the NJL model. In QCD
thermodynamics, in the chirally symmetric/deconfined
phase, the gluons play an essential rôle. Finally, the model
suffers from a strong dependence on the ultraviolet cutoff.

In the chiral limit, the phase diagram of the NJL model
shows a phase separation line, where the spontaneously
broken chiral symmetry is restored. At small densities the
transition is second order, while for an appropriate choice
of the coupling constants, the transition at large densities is
first order. Thus, the model reproduces the gross structure
of the phase diagram expected for QCD. Consequently, the
NJL model, formulated at finite T and ~�, can be used to
explore the qualitative behavior of quark susceptibilities
and, more generally, universal features of the chiral phase
transition in the �T;�q�-plane.

The net quark number susceptibility has been computed
in the NJL model at finite T some time ago [2] and recently
also at finite quark chemical potential �q [7]. Our analysis
is going beyond previous studies by extending the NJL
Lagrangian to finite quark and isospin chemical potential
as well as to nonvanishing vector coupling among the
constituent quarks. This allows us to model the net quark
number susceptibility �q, the isovector one �I or equiv-
alently the diagonal and off-diagonal quark flavor suscep-

1Recently an interesting extension of the NJL model was
proposed that mimics confinement by including the Polyakov
line as dynamical field which couples to constituent quarks [40].
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tibilities �ff0 and to study their dependence on temperature
and chemical potential as well as on model parameters. On
a qualitative level the results can then be confronted with
recent lattice results.

The paper is organized as follows: In Sec. II, we intro-
duce the NJL model Lagrangian and its thermodynamics.
In Sec. III, we introduce the flavor diagonal and off-
diagonal susceptibilities and calculate their T and �q as
well as model parameters dependences. We discuss the
qualitative comparison of the model results with the recent
lattice findings. Finally in Sec. IV, we give a brief summary
and discussion of our results.

II. THE TWO-FLAVOR NJL MODEL

For two quark flavors and three colors the Lagrangian of
the Nambu-Jona-Lasinio (NJL) model reads [16,35,37,38]:

 L � � �i@6 �m� �GS�� �  �2 � � � i ~��5 �2�

�G�S�V � � �� �2 �G
�V�
V ��

� ~��� �2

� � � ~����5 �
2� � � ��0 ; (2.1)

where m � diag�mu;md� is the current quark mass matrix,
� � diag��u;�d� the chemical potential matrix and ~�
denotes Pauli matrices. The strength of the interaction
between the constituent quarks in the scalar and vector
channels is parametrized by the dimensionful coupling
constants GS, G�S�V and G�V�V . We note that while the
strength of the scalar-isoscalar and pseudoscalar-isovector
interactions are equal, due to constraints from chiral sym-
metry, the vector-isoscalar and vector-isovector interaction
terms are separately invariant, and hence the corresponding
interaction strengths can be chosen independently. In the
following calculations focused on the quark number sus-
ceptibility, we choose the axial-vector condensate to be
zero since it does not couple to the vector current.

The constraints imposed by the conservation of the net
quark number of different flavors are controlled by the
chemical potential � � diag��u;�d�. The chemical po-
tentials for the total net quark density nq and the isovector
quark density nI are obtained as linear combinations of �u
and �d

 �q �
1
2��u ��d�; �I �

1
2��u ��d�: (2.2)

In terms of �q and �I, the last term of the Lagrangian can
be expressed as

 L � � � ��0 � �q y ��I y�3 : (2.3)

In addition to the current quark masses and the three
coupling constants introduced above, one additional pa-
rameter is required to complete the model. This is the
momentum cutoff (��, which regulates the ultraviolet
divergencies. In vacuum the values of � and GS are fixed
by requiring that the pion decay constant f� � 92:4 MeV
and the pion mass m� � 135 MeV are reproduced.

Choosing the current quark masses mu ’ md � 5 MeV
one finds for a three-momentum cutoff � � 664:3 MeV
and GS�2 � 2:06 [38].

In the chirally broken phase, the ratio of the coupling
constants of ! and � mesons to nucleons is empirically
given by g!NN=g�NN ’ 3. This value is also consistent
with the naive quark model for the nucleon, where the
corresponding couplings to quarks are identical, i.e.,
g!QQ=g�QQ � 1. We account for this on a qualitative level

by setting G�S�V ’ 3G�V�V in the broken phase and G�S�V �
G�V�V in the symmetric phase. Thus, we consider G�V�V =G�S�V
in the range from 1

3 to 1, keeping the vector-isoscalar

coupling fixed G�S�V � 0:3GS.
The thermodynamics of the NJL model (2.1) at finite

temperature and non vanishing net quark and isospin
chemical potentials is obtained from the partition function
Z�T;�q;�I; V�. In the mean field approximation [16] the
partition function is obtained from the effective
Lagrangian
 

L � � �i@6 �M� ~��0� �
1

4GS
tr��M�m�2�

�
1

4G�S�V
� ~�q ��q�

2 �
1

4G�V�V
� ~�I ��I�

2; (2.4)

whereM � diag�Mu;Md� and the trace tr is in flavor space.
In Eq. (2.4) we have introduced a dynamical massM and

a shifted chemical potential ~� given by

 M � m� 2GSh �  i; (2.5)

 ~� � ~�q � ~�I�3; (2.6)

where
 

~�q � �q � 2G�S�V h � �0 i;

~�I � �I � 2G�V�V h � �3�0 i:
(2.7)

The resulting thermodynamic potential density2 is of the
following form
 

!�T;�;M; ~�� �
X
f�u;d

!f�T;�;Mf; ~�f�

�
1

4GS
tr��M�m�2�

�
1

4G�S�V
� ~�q ��q�

2 �
1

4G�V�V
� ~�I ��I�

2;

(2.8)

where

2The thermodynamic potential is given by � � !V, where V
is the volume of the system.
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!f�T;�;Mf; ~�f� � �2Nc
Z d3p

�2��3

	 �Ef� ~p� � T ln�1� n���f � ~p; T; ~�f��

� T ln�1� n���f � ~p; T; ~�f���: (2.9)

In Eq. (2.9), Ef� ~p� �
�������������������
~p2 �M2

f

q
is the scalar part of the

quasiparticle energy. The contributions of the vector po-
tentials are absorbed in the shifted chemical potential ~�f.

Furthermore, n�
�f is the distribution function for particle
(� ) and antiparticle (� ) states

 n�
�f � ~p; T; ~�f� � �1� exp��Ef� ~p� � ~�f�=T��
�1: (2.10)

The condensates appearing in Eqs. (2.6), (2.7), and (2.8)
are determined by extremizing the thermodynamic poten-
tial3 with respect to the dynamical mass and the shifted
chemical potentials at a given temperature T and chemical
potential �

 

@!
@M
�

@!
@ ~�q

�
@!
@ ~�I

� 0: (2.11)

These conditions yield the scalar condensate and the quark
densities as functions of temperature and chemical poten-
tial. Furthermore, they imply that the scalar and vector
fields can be fixed when computing thermodynamic de-
rivatives. Thus, one obtains the standard thermodynamic
relations for instance for the quark density

 nq � �
@!�T;��
@�

��������T
� �

@!�T;�;Mf; ~�f�

@�

��������T;M; ~�
:

(2.12)

However, as discussed below, the dependence of M and ~�
on temperature and chemical potential yields nontrivial
contributions to second derivatives of the thermodynamic
potential, e.g., susceptibilities.

The stationarity conditions (2.11), together with
Eqs. (2.6), (2.7), and (2.8), imply
 

Mf � mf � 4GSNc
X
f�u;d

Z d3p

�2��3
Mf

Ef

	 �1� n���f � ~p; T; ~�f� � n
���
f � ~p; T; ~�f��; (2.13)

 

�q � ~�q � 4G�S�V Nc
X
f�u;d

Z d3p

�2��3

	 �n���f � ~p; T; ~�f� � n
���
f � ~p; T; ~�f��; (2.14)

 

�I � ~�I � 4G�V�V Nc
Z d3p

�2��3

	 ��n���u � ~p; T; ~�u� � n
���
u � ~p; T; ~�u�� � �u! d��:

(2.15)

By comparing Eqs. (2.7), (2.14), and (2.15), we find ex-
plicit expressions for the quark number density nq �
h � �0 i and the isovector density nI � h � �3�0 i

 nq � 2Nc
X
f�u;d

Z d3p

�2��3
�n���f � ~p; T; ~�f� � n

���
f � ~p; T; ~�f��;

(2.16)
 

nI � 2Nc
Z d3p

�2��3

	 ��n���u � ~p; T; ~�u� � n
���
u � ~p; T; ~�u�� � �u! d��:

(2.17)

In practice, one first solves the gap equation (2.13) for fixed
T, ~�q and ~�I and then computes �q and �I as well as nq
and nI using (2.14), (2.15), (2.16), and (2.17).

In Fig. 1 we show the dynamical quark mass Mf and the
net quark number density nq in the �T;�q�-plane for
vanishing isovector chemical potential�I � 0 in the chiral
limit. For �I � 0 the isovector density nI vanishes for all
values of T and �q. In Fig. 2 the phase diagram of the NJL
model in the �T;�q�-plane is shown for an isospin sym-
metric system in the limit of vanishing current quark
masses. The boundary between the chirally broken and
symmetric phases was located by finding the onset of chiral
symmetry restoration, M�T;�q� � 0, when approaching
from the broken phase. As discussed in the introduction,
the order of chiral phase transition is, in the chiral limit,
expected to change from second order at low to first order
at high net baryon densities. Thus, somewhere along the
phase boundary one expects a tricritical point (TCP),
where the order of the chiral transition changes. Close
to the phase boundary, the thermodynamic potential, may
be expanded in a power series in the order parameter M as
in Landau theory [41]: !�T;�q;M� � !0 �

1
2aM

2 �
1
4bM

4 �O�M6�. At a second-order transition a � 0 and
b > 0, while at a first order one a > 0 and b < 0. (In the
latter case, the coefficient of M6 should be positive for
stability.) Thus, the tricritical point can be identified by
a � b � 0.

In the NJL model the position of the phase boundary and
the TCP depends on the model parameters [38,42– 44]. In
Fig. 2 we illustrate the dependence on the vector and scalar
couplings G�S�V and GS as well as on the momentum cutoff
�. In the left panel the critical line is shown for different
strengths of the vector coupling G�S�V , keeping GS and �

fixed. With increasing G�S�V , the phase boundary at fixed T
is shifted to larger �q. This is expected, since at nonzero

3The thermodynamic potential is minimized with respect to
variations of the scalar field and maximized with respect to
variations of the (zeroth component) of the vector fields.
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net baryon density, the vector coupling G�S�V provides a
repulsive contribution to the energy of a quark and thus
to the chemical potential [see Eqs. (2.7) and (2.14)]. In fact,
in the �T; ~�q�-plane the position of the line of second order

phase transitions is independent of G�S�V . This is clear from
the fact that the gap equation Eq. (2.13) depends on G�S�V
only through ~�q. On the other hand, the location of the first
order transition and the position of the TCP do depend on
the vector coupling G�S�V . This dependence is reflected in
the shift of the TCP to smaller temperatures with increas-
ing strength of the vector coupling. We note that forG�S�V >
0:6GS, the transition is everywhere second order and there
is no TCP. In the right panel of Fig. 2 we show the

dependence of the phase boundary on the cutoff �. We
have chosen three parameter sets, summarized in Table I,
where the cut off is varied from our standard value, � �

664:3 MeV, up to almost 1 GeV, keeping G�S�V � 0. The
corresponding values of GS are chosen such that all pa-

TABLE I. Set of cutoff � and scalar coupling constant GS
used in the model calculations.

� (MeV) GS�2

set (a) 664.3 2.060
set (b) 797.2 1.935
set (c) 995.5 1.829
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FIG. 2. The NJL model phase diagram in the chiral limit for G�S�V � 0, 0.3 and 0:6GS (left panel) and for the set of parameters (a)–(c)
of Table. I (right panel). The dashed (solid) line shows the location of the second-order (first-order) transition. The tricritical point,
indicated by a dot ( � ), is located at �T;�q� � �65; 275� MeV for G�S�V � 0 and at �T;�q� � �42; 305� MeV for G�S�V � 0:3GS. Both
phase diagrams correspond to a vanishing isovector chemical potential, �I � 0.
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FIG. 1. The left-hand figure shows the dynamical u-quark mass Mu in the chiral limit as a function of temperature T and the quark
chemical potential �q. The right-hand figure represents the quark number density nq in the chiral limit in the �T;�q�-parameter space.
The calculations were done for isospin symmetric matter, i.e. �I � 0, with G�S�V � 0:3GS.
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rameter sets yield the same critical temperature at �q � 0,
i.e. Tc � 177 MeV, in agreement with lattice results for
two-flavor QCD [45]. With increasing �, the phase bound-
ary is again shifted to slightly larger values of the chemical
potential and the TCP to smaller temperatures.

In appendix A we give a closed expression for the
integrals appearing in the gap Eq. (2.13) at the phase
boundary. Furthermore, by requiring that the critical tem-
perature at � � 0 remains fixed, as in the right panel of
Fig. 2, we obtain a relation between the chemical potential
at the T � 0 transition and the cut off �

 �� �
2

e�=T � 1

�

�
��: (2.18)

This relation is derived under the assumption that the
transition is second order everywhere. Nevertheless, it is
well satisfied also when the transition is weakly first order
at high quark densities. Thus, (2.18) provides a quantitative
interpretation of the shift of the phase boundary found in
Fig. 2.

We conclude that in the limit of vanishing vector cou-
pling (GV ! 0), the TCP in the NJL model is located at
T ’ 65 and �q ’ 275 MeV. For nonzero G�S�V the position
of the TCP moves towards lower temperature and higher
chemical potential, and for sufficiently large vector cou-
pling, the chiral transition is second-order everywhere.

The phase diagram in the �T;�q�-plane shown in Fig. 2
applies to the chiral limit. A nonzero quark mass in the
Lagrangian (2.4) will modify the position of the phase
boundary. Furthermore, a finite quark mass breaks the
chiral symmetry of the Lagrangian explicitly. Con-
sequently, the second order transition at high T and small
� is replaced by a crossover transition and the TCP by a
critical end point. The critical behavior of the NJL model
for finite quark masses is consistent with the results ob-
tained in other effective models [6,17,38,42,44].

The position of the phase boundary and the order of the
chiral phase transition can be also identified through ther-
modynamic observables. In the Introduction we argued
that quark number fluctuations are sensitive probes of the
phase transition. Furthermore, fluctuations of conserved
charges are directly accessible in experiments. Thus, it is
of interest to explore the behavior of the quark number
fluctuations in the vicinity of the phase boundary in effec-
tive models, like the NJL model.

In the next sections we formulate quark susceptibilities
in the NJL model and explore their dependence on thermal
and model parameters. We also consider the influence of
finite quark masses on the quark fluctuations and discuss
the NJL model results in the context of the recent lattice
findings.

III. QUARK NUMBER SUSCEPTIBILITIES

The net quark number and isovector susceptibilities �q
and �I describe the response of the quark density nq and
the isovector density nI to the change of the corresponding
chemical potentials. Thus, �q and �I are defined as deriva-
tives of nq and nI with respect to �q and �I

 �q �
@nq
@�q

; �I �
@nI
@�I

: (3.1)

The net quark and the isovector densities are in the NJL
model given by Eqs. (2.16) and (2.17). The evaluation of
the derivatives in (3.1), taking the implicit dependence of
the dynamical masses Mf and the shifted chemical poten-
tials ~�f on �q and �I into account, yields
 

�q �
2Nc
T

X
f�u;d

Z d3p

�2��3

�
�
Mf

Ef

@Mf

@�q
�n���f �1� n

���
f �

� n���f �1� n
���
f �� �

@ ~�f

@�q
�n���f �1� n

���
f �

� n���f �1� n
���
f ��

�
; (3.2)

 

�I �
2Nc
T

Z d3p

�2��3

�
�
Mu

Eu

@Mu

@�I
�n���u �1� n

���
u �

� n���u �1� n
���
u �� �

@ ~�u

@�I
�n���u �1� n

���
u �

� n���u �1� n
���
u �� � �u! d�

�
: (3.3)

In Eqs. (3.2) and (3.3) we have suppressed the T and ~�f

dependence of the distribution functions n�
�f . The deriva-
tives of the dynamical masses Mf and the reduced chemi-
cal potentials �f entering in Eqs. (3.2) and (3.3) are given
in Appendix B.

In addition to the fluctuations of the net quark and
isovector densities we also introduce the flavor diagonal
and off-diagonal susceptibilities defined by

 �ff � �
@2!

�@�f�
2 ; �ff0 � �

@2!
@�f@�f0

; (3.4)

with f � f0 2 fu; dg.
In isospin symmetric matter the susceptibilities

�uu�� �dd� and �ud are related to �q and �I by

 �uu �
1
4��q � �I�; �ud �

1
4��q � �I�: (3.5)

In the following section we compute the susceptibilities
introduced in Eqs. (3.2), (3.3), (3.4), and (3.5) in the NJL
model and discuss the dependence of the quark number
fluctuations on temperature and chemical potentials in the
vicinity of the phase boundary.
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A. Quark susceptibilities in the NJL model

As discussed above, the NJL model does not exhibit the
confinement property of QCD. Thus, there are no hadronic
bound states and resonances in the chirally broken phase.
Instead we are dealing with constituent quarks which can
be viewed as quasiparticles, with a temperature and density
dependent mass. At the chiral transition the composition of
the medium is not changed in the NJL model; the dynami-
cal quark masses Mf vanish and above Tc the medium is
populated by interacting massless quarks. Furthermore,
high momentum quark modes are suppressed due to the
ultraviolet cutoff. This suppression is particularly relevant
at high temperatures. The differences in the mass spectrum
between the NJL model and QCD, as well as the suppres-
sion of high-momentum states, results in different quanti-
tative properties of the quark number fluctuations. In spite
of these differences, the NJL model is useful for exploring
general features of the susceptibilities close to the phase
boundary and, in particular, near the TCP.

In Fig. 3 we show the quark number susceptibility �q as
a function of T for different values of �q, normalized to

that of an ideal quark gas ��free�
q � NcNf�T2=3��2

q=�2�.
The temperature dependence of �q shows characteristic

features, which vary rapidly with �q. The phase boundary
is signaled by a discontinuity in the susceptibility. The size
of the discontinuity grows with increasing �q up to the
TCP, where the susceptibility diverges. Beyond the TCP
the discontinuity is again finite. On the other hand, at�q �

0 the discontinuity vanishes and the susceptibility shows a
weaker nonanalytic structure at the transition temperature,
corresponding to a discontinuity in @�q=@T. The critical
properties of �q are consistent with a second order phase

transition belonging to the universality class of O(4) spin
model in three dimensions [6,31]. Because of the lack of
confinement in the NJL model, the leading contribution to
the thermodynamic potential and to fluctuations of con-
served charges is due to single-quark loops. The model can
be improved by including the interaction of quarks with the
Polyakov loops. In the resulting PNJL model [40,46],
confinement is mimicked in the sense that three-quark
states are the leading thermodynamic modes below the
phase boundary, in the ‘‘confined’’ phase. In this model
the fluctuations of the net quark number in the chirally
broken phase are suppressed [46] compared to the results
of the NJL model shown in Fig. 3. Furthermore, in the
PNJL model the dependence of the fluctuations on the
value of the quark chemical potential is also stronger.
Recently, it was shown [47] that by an appropriate choice
of the parametrization of the effective Polyakov loop po-
tential, it is possible to quantitatively reproduce some LGT
results on fluctuations of conserved charges. Nevertheless,
the critical properties of the net quark number fluctuations
near the phase transition in the NJL and in PNJL models
are similar, since both models belong to the same univer-
sality class.

We now explore the qualitative features of the critical
region within Landau theory [41]. As already indicated in
Sec. II, we construct an effective thermodynamic potential,
valid in the vicinity of the chiral transition. The thermo-
dynamical potential !�M;T;�q� is expanded in a power
series in the order parameter M, the dynamical quark mass,
around M � 0:
 

!�T;�q;M� ’ !0�T;�q� �
1
2a�T;�q�M

2 � 1
4b�T;�q�M

4

�O�M6�: (3.6)
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Here we neglect the M6 term for simplicity. Although it is
crucial for the calculation of critical exponents (see
Appendix C), it does not affect the present argument. We
assume that b 
 0, i.e., that we are above or at the TCP,
where the transition is second order. For a > 0, the
effective potential (3.6) has a minimum at M � 0, which
corresponds to the symmetric phase, where !�T;�; 0� �
!0�T;��. On the other hand, for a < 0 the minimum is
located at M0 �

�������������
�a=b

p
and the system is in the broken

symmetry phase, where

 !�T;�q;M0� � !0�T;�q� �
1

4

a2�T;�q�

b�T;�q�
: (3.7)

The second-order phase boundary [the O(4) critical line]
is determined by the requirement a � 0 and b 
 0. Above
the critical line, in the symmetric phase, M � 0 and the
quark number susceptibility �q is given by

 ��sym�
q � �

@2!0

@�2
q
: (3.8)

The coefficient a�T;�q� may be expanded around any
point �Tc;�c� on the O(4) critical line. Close to the critical
line, it is sufficient to keep only the leading terms

 a�T;�q� ’ A�T � Tc� � B��q ��c�; (3.9)

where the expansion coefficients A and B depend on Tc and
�c.

Using Eqs. (3.7) and (3.9) obtains the quark susceptibil-
ity in the broken phase

 ��broken�
q � ��sym�

q �
B2

2b�T;�q�
; (3.10)

where we have dropped terms that vanish on the critical
line. The discontinuity of �q across the O(4) critical line at
finite �q is given by the second term in (3.10). At �q � 0
the coefficient B, and thus the discontinuity of �q, vanishes
by symmetry. Keeping the next term in the expansion of
a�T;�q� ’ A�T � Tc� � B2�2

q, one finds ��broken�
q ��q �

0� � ��sym�
q ��q � 0� � �T � Tc�AB2=b. Thus, at �q � 0

the susceptibility at T � Tc is continuous, while its tem-
perature derivative is discontinuous, as seen in Fig. 3.

Finally at the TCP both a�T;�q� and b�T;�q� vanish.
Consequently, the susceptibility in the broken phase (3.10)
diverges at the TCP, in agreement with the results shown in
the right panel of Fig. 3. With the present choice of
parameters, the TCP is located at �TTCP; �TCP� �
�42; 305� MeV. Beyond the TCP, the phase transition is
first order. There the susceptibility again exhibits a finite
discontinuity at the phase boundary. The susceptibility in
the symmetric phase, ��sym�

q , is expected to vary smoothly
along the phase boundary.

From the perspective of heavy ion experiments, several
susceptibilities are of interest. In particular, this applies to

fluctuations of conserved charges, which may be directly
accessible in experiment. Furthermore, those susceptibili-
ties that reflect the critical behavior, may possibly be used
to explore the QCD phase transition experimentally. As we
have stressed repeatedly, the quantitative structure of the
phase diagram and the position of the critical end point are
model dependent. Consequently, in detail the QCD phase
diagram most likely differs from that found in the NJL
model. Nevertheless, such a model study can still answer
phenomenologically relevant questions concerning e.g. the
size of the critical region, where the fluctuations are domi-
nated by the singularity at the conjectured critical end
point.

In Fig. 4 we show the net quark and isovector suscepti-
bilities �q and �I along the phase boundary, given in Fig. 2.
The position of the TCP is signaled by the singularity of the
net quark susceptibility �q. The corresponding nonmono-
tonic behavior of the fluctuations with increasing beam
energy may give rise to observable effects in heavy-ion
collisions [4].4 We find that the critical region, where the
fluctuations are dominated by the singularity, corresponds
to a window �T ’ 30 MeV and �� ’ 10 MeV around the
TCP. In the absence of a TCP, the net quark susceptibility
would be a monotonic function of T along the phase
boundary, as illustrated by the dashed-dotted line in
Fig. 4. We note that the qualitative behavior of the suscep-
tibility is consistent with the results of Landau theory
discussed above. First, the discontinuity across the phase
boundary vanishes at �q � 0. Second, the singularity of
�q shows up only in the chirally broken phase, while the
susceptibility in the symmetric phase is monotonous along
the phase boundary and shows no singular behavior.

In nucleus-nucleus collisions a change of the collision
energy

���
s
p

is correlated with a corresponding change of the
temperature and the chemical potential. An increase of

���
s
p

results in an increase of the temperature T and a decrease
of the baryon chemical potential �q. Thus, the critical
region around tricritical point/critical end point ��T;���
can be (approximately) converted to a range of center-of-
mass energies in A–A collisions. Assuming for simplicity
that the relation of Tc and

���
s
p

is the same as for the
chemical freeze-out parameters extracted from data [48],
we find that �T ’ 30 MeV corresponds to �

���
s
p
� 1 A �

GeV. Consequently, this crude estimate implies that in
order to observe effects of critical fluctuations in A–A
collisions one would need to measure an excitation func-
tion with an energy step �

���
s
p

smaller than 1 A � GeV.

4A similar nonmonotonic behavior appears in any observable,
directly related to the net quark number density-density corre-
lator. Thus, measurements of the corresponding nonmonotonic
structure in the baryon number or electric charge density, net-
proton number density or in the mean transverse momentum
would be excellent experimental probes of the critical end point
in the QCD phase diagram.
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In the calculation of the critical properties we have
employed the mean-field approximation, which in general
does not yield the correct critical exponents [49]. We
note however that the non-mean-field critical behavior is
suppressed near the TCP, since the quartic coupling
b�TTCP; �TCP� vanishes [6,50]. Thus, the critical exponents
of the TCP are close to the mean-field exponents [51] and
mean-field theory provides a good description of e.g. the
susceptibilities near the TCP. Since the physical quark
masses are small, the critical end point is influenced by
the tricritical point. Thus, one expects the region near the
critical end point, where mean-field theory breaks down, to
be relatively small [6].

Both at the TCP and at the critical end point the quark-
number susceptibility �q diverges. However, the critical
exponents differ. The mean-field exponents of the TCP and
the CEP can be obtained from Landau theory. As discussed
in Appendix C, the critical exponent for paths approaching
the TCP asymptotically tangential to the phase boundary,
the susceptibility diverges with the critical exponent �q �
1. Approaching the TCP along the first-order transition, the
prefactor is twice as large as along the O(4) critical line.
For other paths the critical exponent is �q �

1
2 . At the O(4)

critical line, the susceptibility remains finite. The corre-
sponding critical exponent of the O(4) universality class is
� ’ �0:2, while in the NJL model we obtain the mean-
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field value for this critical exponent, � � 0. Finally we
mention that for nonzero quark mass, at the critical end
point, the mean-field critical exponent along a path not
tangential to the phase boundary is 2=3, while along the
phase boundary it remains equal to unity [6]. When fluc-
tuations are included, the first exponent is renormalized
to that of the 3D Ising model universality class [51], i.e.
	 � 0:78.

In Fig. 5 we illustrate the critical behavior near the O(4)
critical line and at the TCP. The dependence on the reduced
temperature t is consistent with the exponents and relative
prefactors obtained in Landau theory. The different behav-
ior of the quark number susceptibility at the critical end
point and at the O(4) critical line can be traced to the
critical behavior of the dynamical quark mass. In
Appendix C we compute the mean-field exponents for
the dynamical quark mass in Landau theory. At the O(4)
critical line M2 � jtj, while at the TCP M2 � jtj1=2. The
scaling of M2 obtained in the NJL model are consistent
with this, as shown in the right panel of Fig. 5.

Furthermore, in Fig. 6 we also show the ‘‘critical’’
region, where the susceptibility exceeds the free one by
more than an order of magnitude.5 The different critical
exponents along the phase boundary and perpendicular to it
are reflected in the shape of the critical region. It is elon-
gated along the phase boundary, where the singularity is
strongest.

In heavy-ion collision an additional complication to
explore and map the QCD phase diagram experimentally
appears due to expansion dynamics, finite system size and
secondary hadronic rescattering in a medium. All these

effects can dilute observation of the critical fluctuations
along the chiral phase transition line [52].

An interesting observable that characterizes thermal
fluctuations related with isospin conservation is the iso-
vector susceptibility �I defined in Eq. (3.1). The NJL
model results for �I in the isospin symmetric system are
shown in Fig. 7 as a function of T for different �q. The
isovector fluctuations, contrary to net quark fluctuations,
are neither singular nor discontinuous at the chiral phase
transition for finite chemical potential. As shown in Fig. 4,
we find a rather smooth increase of �I with increasing �q

along phase boundary line. At the TCP where the net quark
number susceptibility diverges, �I remains finite. The non-
singular behavior of �I at the TCP is consistent with the
observation that there is no mixing between isovector
excitations and the isosclar sigma field due to SU�2�V
isospin symmetry [53]. Also recent LGT results [26]
show a smooth change of the isovector fluctuations around
the deconfinement transition and a fairly weak dependence
of �I on the quark chemical potential �q.

The net quark number �q and the isovector �I suscep-
tibilities are related with fluctuations of the electric charge
�Q

 �Q �
1

36
�q �

1

4
�I �

1

6

@2P
@�q@�I

: (3.11)

Here P is the thermodynamic pressure. For isospin sym-
metric system the last term in Eq. (3.11) vanishes. Hence in
this case all relevant susceptibilities are linearly dependent.
Clearly, since �I is finite at the TCP, the electric charge
fluctuations �Q diverge with the same critical behavior as
�q. However, at finite �I the properties of �I at the chiral
phase transition in general and at the TCP, in particular,
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change. At nonvanishing �I, the SU�2�V symmetry is
explicitly broken. Thus, the isoscalar sigma field mixes
with the isospin density [53]. Consequently, the isovector
susceptibility exhibits a similar structure as �q, with a
singularity at the TCP. Furthermore, at finite �I and
away from TCP one expects a peak in �I at the chiral
phase transition. This is due to the exponential dependence
of the susceptibility on �I for massive constituent quarks
in the broken phase and the power-law dependence in the
chirally symmetric phase where the quarks are massless.

B. Model parameter dependence of quark
susceptibilities in the chiral limit

In the previous section, where we considered the net
quark and isovector susceptibilities, the coupling constants

of the effective interaction between constituent quarks
were fixed by requiring that the model reproduces vacuum
observables. In the following we discuss the influence of
changes in the model parameters on the critical properties
of the quark flavor fluctuations. We also present results for
the flavor diagonal and off-diagonal susceptibilities �uu
and �ud and discuss their properties.

In Fig. 8 the temperature dependence of the flavor
diagonal susceptibility �uu is shown for several values of
the quark chemical potential for two choices of the vector
couplings G�V�V . The susceptibility is normalized to the free
one ��free�

uu , which is defined by ��free�
uu � ��free�

q =Nf.
At vanishing chemical potential there are generic fea-

tures in the temperature dependence of the quark flavor
susceptibilities. Consider the net quark �q, the isovector �I
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and flavor diagonal �uu susceptibilities shown in Figs. 3, 7,
and 8. Clearly all these susceptibilities are strongly en-
hanced near the chiral phase transition point T0, while
above T0 the fluctuations are suppressed. The increase of
the quark susceptibilities with temperature seen in the
broken symmetry phase reflects a decrease of the dynami-
cal quark mass as the chiral transition is approached.
Consequently, the enhancement of the quark fluctuations
is, in this model, mainly due to the amplification of
the Boltzmann factor exp��M=T� as the constituent
quark mass is reduced. The suppression of �q, �I and
�uu above Tc is due to the finite momentum cutoff of the
NJL model. Indeed, the flavor-diagonal susceptibility �uu
in an ideal massless quark gas with momentum cutoff � is
given by

 ��free�
uu =T2 �

12

T3

Z �

0

d3p

�2��3
ep=T

�1� ep=T�2

’ 1�
12

�2 e
��=T

�
1�

�

T
�

1

2

�2

T2

�
� . . . ;

(3.12)

where the ellipsis in the second stands for terms that are
exponentially suppressed for T <�. For �! 1 one ob-
tains the ideal gas result ��free�

uu =T2 � 1, while for finite �
the fluctuation are suppressed. At low temperature T � �,
the correction terms in Eq. (3.12) are negligible, and � is
independent of �. However, for temperatures on the order
of � there is a strong dependence on the cutoff. With
increasing temperature the suppression of �q, �I and �uu
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grows stronger, as seen in Fig. 10. As seen in Fig. 10 this
holds also for �q and �I. However, the cutoff dependence
of �ud is different. Here, since �ud / �q � �I, the cutoff
dependence of �q and �I partly cancel. Thus, the trend
above and below T0 is different. At low temperatures the
magnitude of �ud is reduced and at high temperatures
enhanced with increasing �. We remind the reader that
both parameter sets (a) and (b) yield the same transition
temperature T0 � 177 MeV at �q � 0 (see Table I).

In Figs. 8 and 9 we also show the dependence of �uu and
�ud on the choice of vector couplings. The dependence of
�uu onG�V�V is fairly weak, as seen in Fig. 8. This is because
in isospin symmetric matter (�I � 0) G�V�V contributes
only to �I, which is much smaller than �q (cf. Fig. 4).
Consequently, �uu is essentially determined by �q, which

depends on GS and G�S�V .
A comparison of Fig. 8 and 9 shows that the off-diagonal

susceptibility �ud is much smaller in magnitude than �uu.
Still, �ud is an interesting observable, which may be used

to identify the transition point. This is particularly the case
at finite �q where the off-diagonal susceptibility is chang-
ing sign when crossing the critical temperature. This be-
havior is consistent with the recent LGT findings which
shows negative values of �ud below and above deconfine-
ment for �q � 0. At finite �q and at T � Tc the LGT
results show [26] an abrupt change of �ud from negative to
positive value. At the tricritical point, �ud, being propor-
tional to �q � �I, diverges as �q [see Fig. 9(d)]. Also seen
in Fig. 9 is a rather strong variation of �ud with the strength
of G�S�V =G

�V�
V ratio. Above the chiral phase transition, �q

and �I are equal for G�S�V � G�V�V . Hence, the fact that in
LGT �ud is very small above T0, may be interpreted as a
signature of the universality of the isoscalar and isovector
current-current interaction in the chirally restored phase.
For �q � 0, �ud vanishes also in the chirally broken phase

if G�S�V � G�V�V . The fact that in LGT �ud is negative in this
temperature range, is consistent with G�S�V > G�V�V , as ex-
pected for baryons from large Nc arguments.
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FIG. 11. The diagonal and off-diagonal susceptibilities normalized to T2 for different values of the current quark mass as a function
of T=T0. For the pseudocritical temperature for m � 5 MeV we find T0 � 179 MeV. The results correspond to �q � 0 and 100 MeV
and the vector coupling constants G�S�V � 0:3GS with G�V�V =G�S�V � 1=3 and 1.
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C. Susceptibilities at finite current quark mass

So far, we have computed the susceptibilities in the
chiral limit, i.e., using an effective Lagrangian with an
exact symmetry, the chiral symmetry. However, the chiral
symmetry of the QCD Lagrangian is only approximate due
to the finite current quark masses. In the following, we
account for the explicit chiral symmetry breaking and
explore its influence on the quark number fluctuations.
This study could be also interesting from the perspective
of recent LGT results [26] where the susceptibilities were
calculated for finite and large quark masses.

In Fig. 11 we show results obtained with the NJL model
for the flavor diagonal �uu and off-diagonal �ud suscepti-
bilities for different values of the current quark mass.
These calculations were done both for vanishing and finite
chemical potential as well as for several sets of the vector
coupling constant.

A comparison of the results for different quark masses
clearly shows that �uu exhibits a peak structure at finite
temperature, indicating the phase change, for all values of
m. However, at finite m the �uu is a smooth function
everywhere, whereas in the chiral limit it exhibits a non-
analytic structure at the phase transition. This behavior
indicates that the second order transition at m � 0 is con-
verted into a smooth crossover at finite m. The above is
even more transparent at finite �q where the discontinuity
of �uu at Tc disappears at finite quark mass. The behavior
of the NJL model at finite m is in accord with recent LGT
finding in 2-flavor QCD, which also shows a crossover
transition at finite quark mass. We note, however, that the
second-order transition expected in the NJL model in the
chiral limit is still not confirmed by LGT calculations.
Some recent results even suggest that in 2-flavor QCD
this transition could be weakly first order [54].

With increasing quark mass the peak position of �uu=T2

is shifted towards larger T, both at vanishing and at finite
�q. The height of the peak also depends on m and de-
creases with increasing current quark mass. The shift of the
peak position in �uu indicates an increase of the pseudo-
critical temperature with increasing quark mass. Such an
effect was observed in lattice calculations already some
time ago [45]. Also the suppression of quark number
fluctuations with increasing quark mass is found in recent
LGT calculations both at vanishing and at finite �q. This
suppression is related to an upward shift of the hadronic
mass spectrum [31], which leads to a reduction of the
number of thermally excited hadrons � exp��Mh=T�.
The suppression of �uu in the NJL model is of similar
origin; the number of thermally excited quarks is cut back
by the corresponding increase of the dynamical quark
mass. The increase of �uu with �q seen in Fig. 11 can be
understood in terms of the corresponding increase of the
thermal factors � exp��q=T�. Finally, at large tempera-
tures T > T0 the NJL model shows a very weak depen-
dence of the susceptibilities on the current quark mass

independently of the value of �q. In lattice calculations
of QCD the mq-dependence of thermodynamic quantities
was also found to be weak for mq=T < 1.

The influence of a nonzero current quark mass on the
off-diagonal susceptibility �ud for different values of �q

and vector couplings is illustrated in Figs. 11(c)–11(f). For
�q � 0 andG�V�V =G�S�V < 1, �ud is finite and negative for all
T, and approaches zero for large temperatures. A similar
behavior is observed in 2-flavor QCD on the lattice [26].
When G�V�V =G�S�V is increased towards unity, �ud ap-
proaches zero at all temperatures. At finite �q, the tem-
perature dependence of �ud changes qualitatively. Below
Tc it is negative, while above Tc it is positive, in qualitative
agreement with the results of LGT calculations [26]. The
off-diagonal susceptibility �ud is finite near the pseudo-
critical transition for all values of m.

When discussing the influence of the model parameters
on quark number susceptibilities we have allowed for
variations of the parameters. However, we have not con-
sidered a possible T and ~� dependence ofGS,GV and �. It
was recently argued that such a dependence is important
for a quantitative comparison of NJL model results with
LGT findings [55]. However, so far systematic calculations
of the variation of these parameters with temperature and
chemical potential are lacking. A possible temperature
dependence of these parameters was obtained phenomeno-
logically by comparing some observables with lattice
results.

IV. SUMMARY AND CONCLUSIONS

We have discussed the properties of quark number fluc-
tuations within the framework of the Nambu-Jona-Lasinio
(NJL) model. The model was formulated at finite tempera-
ture and chemical potentials for baryon number and iso-
spin. In a mean field approach, we have shown how the
fluctuations of different quark flavors are changing across
the phase boundary. Such a study is of interest from the
perspective of both heavy-ion phenomenology and lattice
gauge theory. In the first case we have explored the
nonmonotonic structure of net quark, diagonal and off-
diagonal susceptibilities along the phase transition line.
We have also discussed the critical region around
the tricritical point in the context of heavy-ion
phenomenology.

The results on different quark susceptibilities at finite
quark mass are in qualitative agreement with recent find-
ings on the lattice. Our study may give some insight into
how lattice results may change when one approaches the
chiral limit at vanishing and at large baryon chemical
potential. This expectation is supported by the fact that
the NJL model exhibits the same critical properties as one
expects for QCD.

Obviously, the NJL model differs substantially from
QCD. This model does not contain all relevant hadronic
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degrees of freedom, which in QCD contribute substantially
to the quark number susceptibilities. Moreover, the phase-
space of dynamical quarks is suppressed by the ultraviolet
cutoff. Consequently, the perturbative regime of QCD at
high temperature and density is not reproduced by this
model. Nevertheless, features of the quark number suscep-
tibilities that probe the restoration of chiral symmetry can
be studied in some detail in NJL model calculations. In
particular the change in the behavior of the quark fluctua-
tions near the critical point can be interpreted as an effec-
tive change of the vector interaction associated with the
chiral phase transition.
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APPENDIX A: ANALYTICAL RESULTS FOR THE
PHASE BOUNDARY

For massless quarks, the gap equation (2.13) at the chiral
transition can be obtained in closed form. At the second-
order transition, the gap equation has a nontrivial solution
at M � 0, i.e.

 1 � 4GSNc
X
f

Z d3p

�2��3
1

p
�1� n���f � ~p; T; ~�f�

� n���f � ~p; T; ~�f�� (A1)

is satisfied. After some rearrangement one finds for ~�u �
~�d � ~�

 

�2

2
�

�2

4GSNc
� I�T; ~��; (A2)

where the quadratically divergent term on the left-hand
side is due to the vacuum loop and I�T; ~�� to the thermal
loops. The explicit form of the latter is given by

 

I�T;�� �
Z �

0
dpp

�
1

e
�p��� � 1
�

1

e
�p��� � 1

�

�
�2T2

6
�
�2

2
� T2�L2��e

�
������

� L2��e
�������

� T� log��1� e�
�������1� e
�������; (A3)

where L2�z� �
P
1
n�1 z

n=n2 is Euler’s dilogarithm [56].

We now use (A3) to explore the dependence of the phase
boundary on the cut off �. A general variation of (A2)
yields

 ����
�2

4G2
SNc

�Gs �
@I
@�

���
@I
@T

�T �
@I
@�

��:

(A4)

At � � 0, @I=@� � 0 by symmetry and

 

@I
@�
�

2

e
� � 1
�: (A5)

Thus, the requirement that the critical temperature at van-
ishing net quark density remains fixed, as in the right panel
of Fig. 2, implies the following relation between the cut off
� and the coupling constant GS

 ����
�2

4G2
SNc

�GS �
2

e
� � 1
���: (A6)

Assuming that the transition is second order everywhere,
the shift of the critical value of the chemical potential at
T � 0 is given by

 �� �
1

�

�
����

�2

4G2
SNc

�GS

�
�

2

e�=T � 1

�

�
��:

(A7)

This relation, which remains approximately valid also
when the transition is weakly first order, provides a quan-
titative interpretation of the shift of the phase boundary
shown in the right panel of Fig. 2.

Using the fact that for reasonable parameter choices,
e
�
���� � 1 along the phase boundary, useful approx-
imative expressions may be obtained for I�T;��. Retaining
the first two terms in the expansions of the dilogarithms
and the logarithm in (A3), we find

 

I�T;�� �
�2T2

6
�
�2

2
� T�T ����e
����� � e�
������

�
1

4
T�T � 2���e2
����� � e�2
������: (A8)

Within this approximation, one finds the critical tempera-
ture at � � 0 with an accuracy of �10�5. For nonzero �
the approximation becomes increasingly better, since the
�-dependent terms drop out for T ! 0. We note in passing
that a solution of Eq. (A2) is possible only if the left-hand
side is positive, i.e., for GS�2 >�2=�2Nc� ’ 1:64. For
smaller values of the scalar coupling constant, chiral sym-
metry is never broken.
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APPENDIX B: DERIVATIVES OF EFFECTIVE CONDENSATES

In this appendix, we summarized derivatives of the dynamical massesMf and the shifted chemical potentials ~�f. These
results are obtained from the gap equations (2.13), (2.14), and (2.15) by taking derivatives with respect to �q and �I as

 

@Mf

@�q;I
�
@Mf

@�q;I
Af �

@Mf0

@�q;I
Af0 �

@ ~�f

@�q;I
Bf �

@ ~�f0

@�q;I
Bf0 ;

1 �
@ ~�u

@�q;I
�
@Mu

@�q;I
C�S�u �

@Mu

@�q;I
C�V�u �

@Md

@�q;I
C�S�d �

@Md

@�q;I
C�V�d �

@ ~�u

@�q;I
D�S�u �

@ ~�u

@�q;I
D�V�u �

@ ~�d

@�q;I
D�S�d �

@ ~�d

@�q;I
D�V�d ;


1 �
@ ~�d

@�q;I
�
@Mu

@�q;I
C�S�u �

@Mu

@�q;I
C�V�u �

@Md

@�q;I
C�S�d �

@Md

@�q;I
C�V�d �

@ ~�u

@�q;I
D�S�u �

@ ~�u

@�q;I
D�V�u �

@ ~�d

@�q;I
D�S�d �

@ ~�d

@�q;I
D�V�d ;

(B1)

where f � f0 2 fu; dg and the functions Af, Bf, C�S;V�f and D�S;V�f are defined by
 

Af � 4GSNc
Z d3p

�2��3
1

Ef

��
1�

M2
f

E2
f

�
�1� n���f � n���f � �

M2
f

TEf
�n���f �1� n

���
f � � n

���
f �1� n

���
f ��

�
;

Bf � 4GSNc
Z d3p

�2��3
�Mf

TEf
�n���f �1� n

���
f � � n

���
f �1� n

���
f ��;

C�S;V�f � 4G�S;V�V Nc
Z d3p

�2��3
�Mf

TEf
�n���f �1� n

���
f � � n

���
f �1� n

���
f ��;

D�S;V�f � 4G�S;V�V Nc
Z d3p

�2��3
1

T
�n���f �1� n

���
f � � n

���
f �1� n

���
f ��:

(B2)

Solving Eq. (B1) one gets,
 

@Mu

@�q;I
� �Bu�1� 2D�V;S�d � 
 Bd�1� 2D�V;S�u ��=F;

@Md

@�q;I
�
@Mu

@�q;I
;

@ ~�u

@�q;I
� �1� �Au � Ad��1� 2D�V;S�d � � 2Bd�C

�V;S�
u � C�V;S�d � � 2D�V;S�d �=F;

@ ~�d

@�q;I
� 
�1� �Au � Ad��1� 2D�V;S�u � � 2Bu�C

�V;S�
u � C�V;S�d � � 2D�V;S�u �=F;

(B3)

with the function F expressed by
 

F � 1� �Au � Ad��1�D
�S�
u �1� 2D�V�d � �D

�V�
u �1� 2D�S�d � �D

�S�
d �D

�V�
d � � Bu�C

�S�
u � C

�S�
d � C

�V�
u � C

�V�
d �

� Bd�C
�S�
u � C

�S�
d � C

�V�
u � C

�V�
d � � 2�BuD

�S�
d � BdD

�S�
u ��C

�V�
u � C

�V�
d � � 2�BuD

�V�
d � BdD

�V�
u ��C

�S�
u � C

�S�
d �

�D�S�u �1� 2D�V�d � �D
�S�
d �1� 2D�V�u � �D

�V�
u �D

�V�
d : (B4)

The �q and �I susceptibilities are obtained by substituting
Eq. (B3) into Eqs. (3.2) and (3.3).

APPENDIX C: CRITICAL EXPONENTS IN
LANDAU THEORY

In this appendix we compute the mean-field critical
exponents of the TCP in Landau theory. Since the fourth
order term b�T;�q� in (3.6) vanishes at the TCP, it is
necessary to include a sixth-order term in the expansion

of the thermodynamic potential

 

!�T;�q;M� ’ !0�T;�q� �
1
2a�T;�q�M

2 � 1
4b�T;�q�M

4

� 1
6cM

6; (C1)

where M is the dynamical quark mass. We assume that
c > 0 and neglect its dependence on the temperature and
chemical potential. At the TCP the coefficients a and b
both vanish. Close to the TCP we retain the leading terms,
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 a�T;�� � A�T � TTCP� � B����TCP�;

b�T;�� � C�T � TTCP� �D����TCP�:
(C2)

Along the second-order phase boundary, the coefficient a
vanishes, while at the first-order transition a > 0 and
b < 0. The dynamical mass is determined by minimizing
the thermodynamic potential. The solutions of the gap
equation

 

@!
@M
� M�a� bM2 � cM4� � 0 (C3)

are given by M � 0 and M2 � � b
2c


1
2c

��������������������
b2 � 4ac
p

. The
quark number susceptibility is given by

 �q � �
@2!

@�2
q
� �0 �

1

2
�B�DM2�

@M2

@�q
: (C4)

As the TCP is approached, a, b and M ! 0. Thus, the
singular part of the susceptibility is given by

 �sing
q �

1

2

B2��������������������
b2 � 4ac
p : (C5)

When the TCP is approached along the second-order phase
boundary, a � 0. Consequently �sing

q � B2=2jbj � j�q �

�TCPj
�1. In order to compute the critical exponent along

the first-order transition, we must first determine the rela-
tion between a, b and c along this path. At the first-order
transition there are three degenerate minima of the ther-
modynamic potential, one at M � 0 corresponding to the
symmetric phase, and two at finite M corresponding to the

two realizations of the broken phase. Thus, we are looking
for a solution to the two equations

 aM2 � 1
2bM

4 � 1
3cM

6 � 0; a� bM2 � cM4 � 0;

(C6)

for nonvanishing M. Such a solution, M2 � �3b=4c, ex-
ists when the coefficients satisfy the relation 16ac � 3b2.
This relation defines the location of the phase boundary in
the �T;�q� plane. Furthermore, it implies that the first-
order phase boundary is asymptotically parallel to the
second-order one. Using the relation in (C5), we find
�sing
q � B2=jbj � j�q ��TCPj

�1. Thus, the critical expo-
nent is identical to that along the second-order line, but the
prefactor is twice as large. If the TCP is approached from
the broken phase, along any path which is not asymptoti-
cally tangential to the phase boundary at the TCP, b2 �
4ac for points close to the TCP. This implies that the
critical exponent is different, namely �sing

q � B2=4
������
ac
p

�

j�q ��TCPj
��1=2�.

Finally, we explore the scaling behavior of the dynami-
cal quark mass near the O(4) critical line and at the
tricritical point. As discussed in the text, this behavior
determines the critical properties of the quark number
susceptibility. The nontrivial solution of the gap equation
implies that for constant chemical potential M2 � a�
jTc � Tj at the O(4) critical line, where b � 0. On the
other hand, at the critical end point, where also b! 0,
M2 �

���
a
p
� jTTCP � Tj

1=2.
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