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We use the interacting instanton liquid model (IILM) as a tool to study the role played by the chiral
interactions in the lowest-lying vector and axial-vector meson resonances. We find that narrow a1 and �
meson resonances can be generated by instanton-induced chiral forces, even in the absence of confine-
ment. In the IILM, these hadrons are found to have masses only about 30% larger than the experimental
value and small width & 10–50 MeV. This result suggests that chiral interactions are very important in
these systems and provide most of their mass. We explore the decaying patterns of the � meson, in the
absence of confinement. We argue that, in our model where only chiral forces are switched on, this meson
decays dissociating into its quark-antiquark constituents.
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I. INTRODUCTION

Hadron spectroscopy provides basic constraints on the
structure of nonperturbative QCD dynamics. Since gluons
interact with quarks in a way which depends dramatically
on the quark mass, we expect the light- and heavy-hadron
sectors of the spectrum to be sensitive to different dynami-
cal correlations. For example, while the charmonium spec-
trum is well understood in terms of a linearly rising
confining potential and perturbative gluon exchange, the
description of the light-hadron spectra in terms of QCD
degrees of freedom must take into account also the inter-
actions responsible for spontaneous breaking of chiral
symmetry. In particular, we expect the mass and the struc-
ture of the lowest-lying hadrons such as pion, nucleon,
vector, and axial-vector mesons to be strongly influenced
by the chiral interactions, because the splitting between
parity partners in this part of the spectrum is as large as
500–600 MeV. On the other hand, Regge trajectories
suggest that resonances with large angular momentum
are predominantly influenced by the physics of color con-
finement, and it has been conjectured that chiral symmetry
breaking may be even restored up in the spectrum (see e.g.
[1] and references therein). In this paper we address the
following questions: are any of the light-hadron resonances
generated predominantly by chiral forces, with confine-
ment playing a subleading role? Could any of such hadrons
exist even in the complete absence of confinement? In this
case, would such systems still decay predominantly in
colorless hadrons? What is the microscopic dynamical
mechanism underlying the splitting between the different
lowest-lying multiplets?

The answers to these questions root in the nonperturba-
tive sector of QCD. Although lattice field theory provides
the only available ab initio tool for computing nonpertur-
bative QCD correlation functions, the mechanism by
which the hadron structure arises is not directly evident
in such a framework. In particular, it is difficult to disen-

tangle the contribution to the correlation functions arising
from the different types of interaction, such as the confin-
ing forces, the chiral forces, and the perturbative gluon
exchange. Hence, in order to gain physics insight, in the
present work we focus on the role played by chiral sym-
metry breaking and we do so by restricting the path integral
to a sum over gauge field configurations which generate the
near zero-mode zone of the Dirac operator. To this end, we
adopt the interacting instanton liquid model, developed in
[2]. Instantons have been long argued to be the dominant
fluctuations generating the zero-mode zone of the Dirac
operator, hence providing the correlations which break
spontaneously chiral symmetry. In the IILM, the QCD
path integral over all gluon configurations is replaced by
an effective theory in which the gauge fields accounted for
are those generated by integrating over the positions, color
orientations, and sizes of singular-gauge instantons.

Several features of the instanton picture have been ob-
served in a number of lattice studies [3–6]. In particular, it
has been observed that chiral symmetry breaking in QCD
is strongly correlated with smooth lumps of topological
gauge fields, with a shape compatible with that of singular-
gauge instantons [7,8].

Instanton-induced correlations in hadrons have also
been studied through several phenomenological model
calculations. It has been shown that instanton models
provide a good description of the mass and the electroweak
structure of pions, nucleons, and hyperons [9–18]. In a
recent work [19], we have used the IILM to study the
dependence of the Dirac spectrum and of the pion and
nucleon masses on the current quark mass. We have found
that the dependence of these observables on the pion mass
is in quantitative agreement with both chiral perturbation
theory and lattice simulations.

The main shortcoming of the instanton liquid model is
that it does not lead to the correct behavior of the Wilson
loop, i.e. it does not predict a linearly rising potential
between static color sources, at large distances. This fact
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implies that, while singular-gauge instantons accounts well
for the nonperturbative QCD correlations at the chiral
symmetry breaking scale �� � 1 GeV, they do not gen-
erate sufficient long-range correlations at the confining
scale ��QCD � 0:2 GeV. As a result, we expect the chiral
forces generated by these topological fluctuations to play
only a marginal role in heavy-quark systems—which are
insensitive to chiral dynamics—or in highly excited had-
rons—whose wave functions are expected to extend for
several fm. On the other hand, just because of the lack of
confinement, the IILM can be used as a tool to single out
the contribution of chiral forces in the different hadronic
systems. By studying where the model works well, we can
identify the properties of the hadrons which are almost
completely determined by the chiral dynamics.
Conversely, by studying where the model fails, one can
in principle gain information about the structure of the
additional interaction which is needed in order to repro-
duce the experiment. In this context, a1 and � resonances
represent the ideal test systems: being in between the
pion—which is strongly related to chiral symmetry break-
ing—and highly excited states—which are dominated by
color confinement—they are expected to be sensitive to
both chiral and confining interactions. In addition the
splitting between these two resonance masses is a direct
measure of the effect of spontaneous chiral symmetry
breaking.

An exploratory study of the contribution of instanton
forces to the lowest-lying hadrons was performed in
[10,11], where several hadronic Euclidean point-to-point
correlation functions were calculated in the IILM up to
sizes of the order of several fractions of a fm. It was shown
that instanton-induced chiral forces are very strongly at-
tractive in the nucleon and pion, but much weaker in the �
and �. Their study provides indications that hadron reso-
nances might exist in the instanton vacuum. In fact �, a1,
and � masses extracted from a fit of the corresponding
point-to-point correlation functions using a pole-plus-
continuum ansatz for the spectral function, were found to
be within 20%–30% from their experimental value.

In this model, the dynamical origin of the splitting
between the hadron multiplets which are not connected
via chiral transformations is well understood in terms of
the diluteness of the instanton liquid. In fact, the instanton
zero-mode contribution to the two-point correlation func-
tions associated to the pion and to the nucleon comes at the
lowest order in the instanton liquid diluteness �� 10�1.
On the other hand, the analog contribution to the correla-
tion functions associated to vector- and axial-vector me-
sons and to decuplet baryons masses comes at the next-to-
leading order, i.e. to O��2�. The splitting between chiral
partners is provided by the spontaneous chiral symmetry
associated with the delocalization of the fermion zero-
modes (see [20] and references therein).

In this context an interesting question is whether, in the
presence of only instanton-induced chiral forces, the a1

and � resonances predominantly tend to decay into color-
less pions, or rather dissociate into free quarks and anti-
quarks. In the present work we address this and other
related issues concerning the contribution of chiral dynam-
ics to the structure of hadronic resonances by computing
momentum projected correlation functions at Euclidean
times up to �1:2 fm and we focus on the effective-mass
plot.

This method is usually employed in lattice QCD simu-
lations to extract the masses of the stable bound-states only,
i.e. when the lowest-lying hadron contributes to the spec-
tral density through a �-function.

In this case, the effective-mass plot displays a flat pla-
teau in the large Euclidean time limit. We extend this
method to include the case in which the lowest-lying
hadron is not a stable bound-state but rather a resonance
with a finite width. In this case then effective-mass plot
displays an approximately linear and mild falloff at inter-
mediate Euclidean times. This behavior can be distin-
guished both from the flat plateau associated to stable
bound-states and from the strong exponential decay asso-
ciated to the filtering of a perturbative continuum. As a
result both the mass and the width of the lowest-lying
mesons and baryons can be extracted.

In addition, some information about the decay patterns
of these resonances can be gained by studying the behavior
of the effective mass in the asymptotically large Euclidean
time. In this regime, the effective mass converges to the
smallest eigenvalue in the transfer matrix. If the simulation
box is sufficiently large, the lowest eigenvalue of the trans-
fer matrix in the � and a1 channels corresponds to the
invariant mass of the branch-cut singularity in their two-
point function. In QCD these are expected to be at the
threshold for decaying into two and three pions, respec-
tively. In models which do not account for confinement,
these hadrons could also decay into free quarks and the
branch-cut may be shifted.

We apply the effective-mass plot analysis to determine
the mass of the lowest-lying vector and axial-vector meson,
using several values of the quark mass. Our results clearly
show that the instanton-induced chiral forces are suffi-
ciently strong to generate the � meson and the a1 meson
resonances even in the absence of confinement.

On the other hand, while our previous studies have
shown that the nucleon and pion masses are correctly
reproduced in this model [19], the vector and axial-vector
mesons resonances are found to be about 30% heavier than
their experimental value, with M� ’ 1 GeV and Ma1

’

1:7 GeV. These results support a picture in which the
mass and binding of the nucleon and pion is almost entirely
provided by chiral forces, while the mass of the vector and
axial mesons receive a significant contribution from con-
finement interactions of the order of 30%.

For some of the quark masses we have used, the result-
ing mass of the � and a1 resonances turn out to be sig-
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nificantly smaller than the threshold for decaying into three
and two pions, respectively. In the presence of confinement
such hadrons would be stable. However, in our IILM
calculations we find a � meson width of 10 MeV. Our
interpretation of these results is that, in the presence of
chiral interaction only, the � meson eventually tends to
dissociate into its constituents.

In the next section we present our phenomenological
approach to extract information about hadron resonances
from the effective-mass plot. In Sec. III we present and
discuss the results of our calculations. Section IV is de-
voted to the summary and conclusions.

II. RESONANCES AND THE EFFECTIVE-MASS
PLOT

In QCD the information about the hadron spectrum is
encoded in the two-point correlation functions, defined as

 �H�x; �� � h0jT�JH�x; ��J
y
H�0; 0��j0i: (1)

JH�x; �� is an overlap operator that creates states with the
quantum numbers of the hadron H. The lowest-
dimensional overlap operators generating states with quan-
tum numbers of �, �, a1 mesons are:

 JH�x� � �q�x��Hq�x�; (2)

 �� � ��i�5; �� � ����; �a1
� ��i�5��:

(3)

In the following we consider the effective mass Meff
H ���,

defined as

 Meff
H ��� � lim

��!0

1

��
ln
�

GH���
GH��� ���

�
; (4)

where GH��� is the zero-momentum-projected hadronic
two-point function,

 GH��� �
Z
d3x�H�x; ��; (5)

which can be written in the spectral representation:

 GH��� �
Z ds

2
���
s
p �H�s�e�

��
s
p
�; (6)

where �H�s� is the spectral function.
In the large Euclidean time limit, the effective mass

filters out the lowest singularity in the two-point function,
i.e. the smallest eigenvalue of the transfer matrix. If the
lowest-lying state in a given channel is a stable hadron,
then the two-point function develops a pole at the bound-
state mass below the threshold of the branch-cut associated
to multiparticle production. Then, the effective mass
asymptotically approaches the value of the mass of the
bound-state:

 lim
�!1

Meff
H ��� � MH: (7)

In QCD the only bound-states are pions and nucleons. In
all the other channels, the two-point functions display
branch-cut singularities only.

It is instructive to study the behavior of the effective-
mass plot if the spectral function �H�s� displays a narrow
resonance with a finite-width, emerging above a continuum
background at small s and converging to the asymptotic
perturbative continuum, in the large s limit. As a working
example, we consider the effective-mass plot for the
vector-meson channel. In this case, the spectral function
can be extracted from the ALEPH Collaboration data [21]
for � decays in two pions. A reasonable parametrization of
such data can be constructed from a Breit-Wigner function
for the � meson resonance, supplemented by a term simu-
lating the perturbative continuum (see Fig. 1, left panel)
[22]:

 ���s� � C�1
���=2�2

���=2�2 � �
���
s
p
�m��

2

�
C�2

1� exp��E0 �
���
s
p
�=0:2�

: (8)

The right panel shows the effective-mass plot obtained
from a phenomenological parametrization of the two-point
function, using Eqs. (4), (6), and (8). At small Euclidean
times, � & 0:4 fm, the effective mass MH

eff��� drops expo-
nentially. Such a rapid falloff is due to the exponential
suppression of the perturbative continuum of excitations
induced by the propagation in the imaginary time. At larger
Euclidean times, 0:5 fm & � & 2 fm, the effective mass
displays a linear, nearly flat region. In this regime, the
spectral representation of MH

eff��� is dominated by the �
meson resonance peak. In fact, it is easy to check that, in
the limit of vanishing width, one recovers a completely flat
straight line, i.e. the familiar signature of a stable bound-
state. Eventually, at even larger �, the effective mass slowly
converges to the threshold energy for multiparticle produc-
tion.1 We stress the fact that the effective-mass plot analy-
sis is much more efficient than the corresponding point-to-
point correlation function study in distinguishing a reso-
nance peak from a stable bound-state.

From this discussion it follows that it is in principle
possible to extract the width of the resonance from the
effective-mass plot in the intermediate Euclidean time
region. We note that, in (unquenched) lattice simulations,
the stability of all hadrons except nucleon and pions de-
pends on the size of the simulation box and on the value of
the pion mass used. For example, at large pion masses
2m� >m� the � meson is a stable state, because there is
no phase-space available for decaying into two pions. In

1Note that, since our simple phenomenological parametriza-
tion (8) does not vanish below the two-pion threshold, s �����������

2m�
p

, the resulting effective mass converges to 0 in the asymp-
totically large Euclidean times.
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this case, one can simply read off its mass from the plateau
in the effective-mass plot, at large Euclidean times.

On the other hand, for sufficiently small pion masses, the
phase-space for decaying into two pions opens up and the
� meson appears in the spectral density as a resonance. In
this case, the smallest eigenvalue of the transfer matrix
filtered out by the propagation in imaginary time is related
to the two-pion p-wave state. Note however that, if the
periodic box is too small, the quantization of momentum
may shift the p-wave two-pion state threshold above the �
meson mass. As an example, let us consider a simulation
performed in a box with size of L � 2:5 fm and with a pion
mass of 500 MeV. In this case, the smallest nonvanishing
unit of momentum is 2�=L ’ 500 MeV, and the threshold
for decay into a two-pion p-wave state is at

2
����������������������������
m2
� � ��=L�2

p
’ 1:1 GeV which can be above the �

meson mass.
Note that in our IILM calculations we do not have to

worry about effects related to quantization of momentum,
as we do not adopt periodic boundary conditions. Instead,
we choose simulation boxes which are sufficiently large for
the integrand �H�x; �� in the momentum projection inte-
gral (5) to become very small and negligible near the
borders of the box.2 Under such conditions, the lowest

point in the branch-cut for the � meson two-point correla-
tion function is located at the threshold for two-pion pro-
duction, i.e.

���
s
p
� 2M�.

Let us now discuss the axial-vector channel. In this case,
the hadronic current has an overlap with both the pion state
and the a1 resonance. A rough parametrization of the
ALEPH Collaboration data [21] for � decays into three
pions (see the left panel of Fig. 2) leads to the spectral
function [22]:
 

��s� � Ca1
1

��a1
=2�2

��a1
=2�2 � �

���
s
p
�ma1

�2
� f2

�m
2
���s�m

2
��

�
Ca1

2

1� exp��E0 �
���
s
p
�=0:2�

; (9)

where the pion pole arises from the matrix element
h0jJ�5 �0�j�i � ip�f�. We note that the pion contribution
to this spectral function comes with an opposite sign with
respect to that of the a1 resonance. Using (9) and dialing
the physical value for m� and f�, we obtain the effective-
mass plot shown in the central panel of Fig. 2. This plot
displays a structure which is qualitatively similar to that of
the vector-meson channel. On the other hand, dramatic
differences emerge when the width of the a1 is reduced
(for instance because of heavy pions in the spectrum). For
example, if we reduce �a1

by 1 order of magnitude we
obtain the effective-mass plot shown in the right panel of
Fig. 2. In the limit of stable a1 (vanishing width), a singu-
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FIG. 1. Left panel: parametrization of the ALEPH Collaboration [21] data for the vector spectral density. Right panel: the
corresponding effective-mass plot.
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FIG. 2. Left panel: parametrization of the ALEPH Collaboration data [21] for � decays in three pions using Eq. (9). Center panel: the
corresponding phenomenological effective-mass plot for the a1 meson. Right panel: effective-mass plot for the a1 meson with reduced
width �a1

� 0:03 GeV.

2Note that this is different from imposing Dirichlet boundary
conditions, as we do not impose wave functions or correlators to
vanish at the border of the box.
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larity develops at the Euclidean time

 � �
1

Ma1
�M�

log
�

�2
a1

f2
�m2

�

�
; (10)

where �a1
is the coupling of the axial-vector current to the

a1 state. This is a consequence of the cancellation between
the contributions of the pion and axial-vector poles in the
denominator of Eq. (4).

In the next section we compare these phenomenological
representations of the effective-mass plot with the results
of calculations performed in the IILM.

III. RESULTS AND DISCUSSION

In the IILM, hadronic correlation functions are eval-
uated by means of Monte Carlo averages over instanton
ensemble configurations. The only phenomenological pa-
rameters of the model are the instanton average size �� �
0:33 fm and the dimensionless strength of the instanton-
anti-instanton bosonic short-distance repulsion (for a con-
cise review of this model see [19], for an extended treat-

ment see [20]). In the present calculations we used five sets
of ensemble configurations, corresponding to quark masses
ranging from 20 to 90 MeV and we estimated statistical
errors using jackknife technique, with bin size of 10 con-
figurations. In order to isolate the instanton-induced chiral
interactions, we have adopted the so-called zero-mode
approximation, in which the part of the quark propagator
which does not receive contribution from the instanton
zero-modes has been replaced by a free propagator (for
further details, see the discussions in [19,20]). For com-
parison, we have performed the same calculations also
including the nonzero-mode part of the propagator and
we have not found significant differences, hence
instanton-induced correlations not associated to the chiral
zero-mode zone play only a marginal role.

Our results for the calculation of the � meson effective
mass for several quark masses are shown in Fig. 3, where
they are compared with the best fit obtained from the
phenomenological representation of the spectral function
(8). The IILM points can be very well interpolated through-
out the entire region 0:4 fm & � & 1:2 fm. On the other
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FIG. 3. Effective-mass plots in the � meson channel evaluated in the IILM at different quark masses and compared to the
phenomenological parametrization (solid line). The dashed straight line represents the expected asymptotic plateau if the � meson
decays into two pions, while the solid straight line represents the expected asymptotic plateau if the � meson decays into two
constituent quarks with masses estimated from the IILM calculation in [24].
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hand, it should be noted that a fit of these points using a
spectral function which does not account for a narrow
meson resonance would be inconsistent with our IILM
points. The � meson contribution is needed to explain
the nearly flat behavior of the effective mass for � >
0:6 fm.

Our results for the calculation of the a1 meson effective
mass for several quark masses are shown in Fig. 4, where
they are compared with the best fit obtained from the
phenomenological representation of the spectral function
(9). In order to reduce the number of free fitting parame-
ters, we have chosen to neglect the contribution of the
continuum, and to restrict the fit of the IILM points to
the region � > 0:6 fm. In addition, we have used the value
for the pion mass and decay constant calculated in the
IILM in [19]. The qualitative behavior predicted in the
previous section is very well reproduced by our model.
In particular, we observe that the singularity arising from
the cancellation of the � and a1 contribution to the two-
point correlator is clearly developed. This result provides a
clean evidence that both the pion and the a1 meson exist in
the instanton vacuum. We note that, in this channel, the

simple parametrization (9) of the ALEPH Collaboration
data [21] is quite poor in the low s region. This is presum-
ably the source of the small discrepancy observed for some
quark masses, at the largest Euclidean times.

For comparison, in Fig. 5 we show our effective-mass
plots for the pion, which were obtained in [19] and display
a completely flat behavior at large Euclidean times.

The complete list of � meson and a1 masses extracted
from the fit of the effective-mass plot are summarized in
Table I. In general the masses obtained in the IILM are
about 30% larger than the corresponding experimental

TABLE I. �, �, a1 masses (in GeV units) calculated in the
IILM for different quark masses.

mq M� M� Ma1
�� �a1

0.02 0:30	 0:04 1:0	 0:1 1:6	 0:1 ’ 0:01 <0:02
0.03 0:36	 0:04 0:9	 0:1 1:6	 0:1 & 0:01 <0:03
0.05 0:46	 0:04 1:0	 0:1 1:7	 0:1 ’ 0:05 <0:01
0.07 0:53	 0:04 1:0	 0:1 1:7	 0:1 ’ 0:05 <0:01
0.09 0:60	 0:04 0:9	 0:1 1:8	 0:2 ’ 0:05 <0:01

 

FIG. 4. Effective-mass plots in the a1 meson channel, evaluated in the IILM at different quark masses and compared to the
phenomenological parametrization (solid line). The latter does not include the contribution from the perturbative continuum (see
discussion in the text).
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values. This discrepancy suggests that about 1=4 of the
resonance mass is due to correlations which are not related
to chiral symmetry breaking. This hypothesis is confirmed
by the fact that the chiral asymmetry,

 � �
ma1
�m�

ma1
�m�

; (11)

which has been suggested as a parameter quantifying the
contribution of chiral forces to hadron mass splittings [23],
is remarkably well reproduced in this model. At the lightest
quark mass we find �IILM ’ 0:2, which should be con-
fronted with the experimental value �exp � 0:23.

Let us now look in more detail on the mechanism of
meson decay and we focus on the � meson in the IILM.
The effective-mass plots in the vector-meson channel cal-
culated at different quark masses are consistent with a
small width spanning from 10 MeV to 50 MeV.
Interestingly, the vector meson is always unstable in this
model, even at quark masses for which there is no phase-
space for decaying into pions, since 2M� >M�. A natural
explanation of this fact is that, in the absence of confine-
ment, these hadrons decay into their quark-antiquark con-
stituents. In the instanton vacuum, quarks acquire an
effective mass as a consequence of the spontaneous break-

ing of chiral symmetry. Such a ‘‘constituent’’ quark mass at
rest Mq was calculated in several approaches and found to
range from ’ 400 MeV to 200 MeV, depending on the bare
quark mass (see e.g. [24] and references therein). In Fig. 3,
we compare the effective-mass plot for the � meson with
the 2M� line, and the 2Mq line calculated in our model. We
can see that, for the two largest quark masses, the effective
mass falls below the 2M� line, but always remains above
the 2Mq line. Hence, there is always phase-space available
to decay into constituent quarks.

IV. CONCLUSIONS

In this work we have studied the contribution of
instanton-induced chiral forces in the a1 and � meson
resonances.

We have provided clean evidence that the a1 and �
meson can exist even in the presence of instanton forces
only (i.e. in the instanton vacuum). Their masses extracted
from a fit of the effective-mass plot have been found to be
about 30% larger than the corresponding experimental
values. This deviation should be confronted with the ex-
cellent agreement with the experimental masses previously
found in the case of the pion and the nucleon [19]. These

 

FIG. 5. Effective-mass plots for the pion evaluated in the IILM in [19].
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results suggest that chiral forces are weaker in these reso-
nances, but still represent the leading source of
interactions.

On the other hand, the confining forces are very impor-
tant to determine the width of these resonances and their
decay properties. In fact, we have observed that, in this
model, the vector meson is unstable even when quark
masses are large and there is no phase-space to decay
into two pions. This can be explained assuming that—as
a consequence of the absence of confinement—mesons
can dissociate into their constituents.

In the future, it would be interesting to study how the
stability of the meson is restored, once confinement is

introduced in the model. Away to do so would be to extend
the ensemble of gauge configurations to include regular-
gauge instantons and to study the behavior of the effective
mass as a function of the density of such pseudoparticles
[25].
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