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In this work we use the heavy-quark-light-diquark picture to study the semileptonic decay �b !
�c � l� ��l in the so-called hybrid scheme. Namely, we apply the heavy quark effective theory (HQET)
for larger q2 (corresponding to small recoil), which is the invariant mass square of l� ��, whereas the
perturbative QCD approach for smaller q2 to calculate the form factors. The turning point where we
require the form factors derived in the two approaches to be connected, is chosen near �cut � 1:1. It is
noted that the kinematic parameter � which is usually adopted in the perturbative QCD approach, is in fact
exactly the same as the recoil factor ! � v � v0 used in HQET where v, v0 are the four velocities of �b
and �c respectively. We find that the final result is not very sensitive to the choice, so that it is relatively
reliable. Moreover, we apply a proper numerical program within a small range around �cut to make the
connection sufficiently smooth and we parametrize the form factor by fitting the curve gained in the
hybrid scheme. The expression and involved parameters can be compared with the ones gained by fitting
the experimental data. In this scheme the end-point singularities do not appear at all. The calculated value
is satisfactorily consistent with the data which is recently measured by the DELPHI collaboration within 2
standard deviations.
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I. INTRODUCTION

The general theory of QCD has been developed for more
than 40 years, and at present, nobody ever doubts its
validity. However, on the other side there is still not a
reliable way to deal with the long-distance effects of
QCD which are responsible for the quark confinement
and hadronic transition matrix elements, because their
evaluations cannot be done in perturbative approach.
Thus, one needs to factorize the perturbative subprocesses
and the nonperturbative parts which correspond to different
energy scales. The perturbative parts are, in principle,
calculable to any order within the framework of quantum
field theory, whereas the nonperturbative part must be
evaluated by either fitting data while its universality is
assumed, or invoking concrete models.

The perturbative QCD method (PQCD) has been applied
to study processes where transitions from heavy mesons or
baryons to light hadrons are concerned [1–3], namely, the
PQCD which includes the Sudakov resummation, is proved
to be successful for handling processes with small 4-
momentum transfer q2. Indeed the processes involving
heavy hadrons may provide us with an opportunity to study
strong interaction, because compared to �QCD there exist
natural energy scales (heavy-quark masses) which can be
used to factorize the perturbative contributions from the
nonperturbative effects. On the other hand, for the pro-
cesses involving heavy hadrons, at small recoil region,
where v � v0 is close to unity (v and v0 denote the four-
velocities of the initial and final hadrons), i.e. the momen-
tum transfer q2 is sufficiently large, the heavy-quark effec-
tive theory (HQET) works well due to an extra symmetry
SUf�2� � SUs�2� [4]. Therefore the HQET and PQCD

seem to apply at different regions of q2. For a two-body
decay, the momentum transfer is fixed by the kinematics,
however, for a three-body decay, q2 would span the two
different regions.

Among all the processes, the semileptonic decay of
hadrons plays an important role for probing the underlying
principles and employed models because this process is
relatively simple and less dependent on the nonperturbative
QCD effects. Namely leptons do not participate in strong
interaction, and there is no contamination from the crossed
gluon-exchanges between quarks residing in different had-
rons which are produced in the weak transitions, whereas
such effects are important for the nonleptonic decays. Thus
one might gain more model-independent information, such
as extraction of the Cabibbo-Kobayashi-Maskawa matrix
elements from data. In the semileptonic decays of heavy
hadrons it is expected to factorize the perturbative and
nonperturbative parts more naturally. Recently the
DELPHI collaboration reported their measurement on the
�b decay form factor in the semileptonic process �b !
�c � l� ��l and determined the parameter �̂2 in the Isgur-
Wise function ��v � v0� � 1� �̂2�1� v � v0� [5].

There is a flood of papers to discuss the semileptonic
decays of heavy mesons and the concerned factorization.
By contraries, the studies on heavy baryons are much
behind [6–8], because baryons consist of three constituent
quarks and their inner structures are much more compli-
cated than mesons. In this work, we are going to employ
the one-heavy-quark-one-light-diquark picture for the
heavy �b and �c to evaluate the form factors of this
semileptonic transition �b ! �c � l� ��. Even though
the subject of diquark is still in dispute, it is commonly
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believed that the quark-diquark picture may be a plausible
description of baryons [9], especially for the heavy baryons
which possess one or two heavy quarks.

The kinematic region for the semileptonic decay �b !
�c � l� �� can be characterized by the quantity �, which
is defined as

 � �
p � p0

M�b
M�c

; (1)

where p; p0 are the four-momenta of �b and �c respec-
tively. It is noted that this parameter � which is commonly
adopted in the PQCD approach is exactly the same as the
recoil factor! � v � v0 used in the HQET. The momentum
transfer q2 in the process is within the range of �ml �

m��
2 	 q2 	 �M�b

�M�c
�2, equivalently, it is 1 	 � 	

�M2
�b
�M2

�c
�

2M�b
M�c

� �max. In the framework of the HQET [4], this

process was investigated by some authors [6–8,10]. For
larger q2, the HQET works well, whereas one can expect
that for smaller q2, the PQCD approach applies. In this
work, following Ref. [2], we calculate the contribution
from the region with small q2, i.e. �! �max, to the am-
plitude in PQCD. One believes that the PQCD makes better
sense in this region. Körner et al. discussed similar cases
and suggested that the symmetry for smaller recoil is
different from that for larger recoil, so they used the
Isgur-Wise function to obtain the amplitude in the kine-
matic region of smaller recoil, but Brodsky-Lepage func-
tion for larger recoils [11]. Our strategy is similar that we
apply the PQCD for small q2 while apply HQET for large
q2 where the PQCD is no longer reliable, instead.

Concretely, when integrating the amplitude square from
minimum to maximum of q2 to gain the decay rate, we
divide the whole kinematic region into two parts, small and
large q2 (�, equivalently). We phenomenologically adopt a
turning point at a certain � value, to derive the form factors
(defined below in the text) in terms of PQCD in the region
from �max to this point and then beyond it we use the
HQET instead [8]. We let the two parts connect at the
turning point. From Ref. [3], we notice that as � 	 1:1,
the PQCD result is not reliable, so that we choose the
turning point at vicinity of � � 1:1. To testify if the choice
is reasonable, we slightly vary the values of the turning
point as choosing � � 1:05, 1.10 and 1.15 to see how
sensitive the result is to the choice. Moreover, it is noted
that as �cut � 1:1 and 1.15 are chosen, the two parts
connect almost smoothly. Even though, to make more
sense, we adopt a proper numerical program to make the
connection sufficiently smooth, namely, we let not only the
two parts connect, but also the derivatives from two sides
are exactly equal. In fact, small differences in the deriva-
tives are easily smeared out by the program. Later in the
text, we will explicitly show that the final result is not much
sensitive to it, thus one can trust its validity. We name the
scheme as the ‘‘hybrid’’ approach. We also parametrize the

form factor with respect to � based on our numerical
results. In fact, when we integrate over the whole kinematic
range of �, we just use the parametrized expression.

Moreover, we not only reevaluate the form factors f1

and g1 of the exclusive process in the diquark picture, but
also calculate the form factors f2 and g2 which were
neglected in previous works [3]. So far, the data on the
�b semileptonic decay are only provided by the DELPHI
collaboration [5] and not rich enough to single out the
contributions from f2 and g2. More accurate measurement
in the future may offer information about them. Our treat-
ment has another advantage. In the pure PQCD approach,
there is an end-point divergence at �! 1, even though it is
mild and the decay rate which includes an integration over
the phase space of final states, i.e. over �, is finite. As
calculating the contribution from the region with large q2

(�! 1�1 to the form factors in terms of the HQET, the end-
point divergence does not exist at all.

We organize our paper as follows, in Sec. II, we derive
the factorization formula for �b ! �cl ��. Our numerical
results are presented in Sec. III. Finally, Sec. IV is devoted
to some discussions and our conclusion.

II. FORMULATIONS

The amplitude of �b ! �cl �� decay process is written as

 

M �
GF���

2
p Vcb �l���1� �5��lh�c�p

0�


 j �c���1� �5�b j �b�p�i; (2)

where p and p0 are the momenta of �b and �c respectively.
According to its Lorentz structure, the hadronic transition
matrix element can be parametrized as

 

M� � h�c�p
0� j �c���1� �5�b j �b�p�i

� ��c�p
0�

�
���f1�q

2� � �5g1�q
2��

� ���
q�

M�b

�f2�q
2� � �5g2�q

2��

�
q�
M�b

�f3�q
2� � �5g3�q

2��

�
�b�p�; (3)

where q � p� p0 and ��� � ���; ���=2.
For the convenience of comparing with the works in

literature, we rewrite the above equation in the following
form according to Ref. [8]

1If ml is not zero, � cannot be exactly 1, thus the superficial
singularity does not exist at all, but the form factors are obvi-
ously proportional to 1=ml which has the singular property.
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M� �
��c�p

0�

�
���F1�q

2� � �5G1�q
2�� �

p�
M�b

�F2�q
2�

� �5G2�q
2�� �

p0�
M�c

�F3�q
2�

� �5G3�q2��

�
�b�p�: (4)

For the case of massless leptons,

 q� �l���1� �5��l � 0; (5)

thus the form factors f3 and g3 result in null contributions.
The contributions from f2 and g2 were neglected in pre-
vious literature [3], nevertheless in our work, we will
consider their contributions to the matrix elements and
calculate them in terms of the diquark picture and our
hybrid scheme.

The kinematic variables are defined as follows. In the
rest frame of �b

 p � �p�; p�;pT� �
�M�b���

2
p ;

M�b���
2
p ; 0T

�
; (6)

and

 p0 �
�
��

���������������
�2 � 1

p
���
2
p M�c

;
��

���������������
�2 � 1

p
���
2
p M�c

; 0T

�
; (7)

the diquark momenta inside �b and �c are parametrized,
respectively, as

 k1 �

�
0;
M�b���

2
p x1;k1T

�
; k2 �

�M�c���
2
p �1x2; 0;k2T

�
;

(8)

where � � p�p0

M�b
M�c

, �1 � ��
���������������
�2 � 1

p
, x1 � k�1 =p

� and

x2 � k�2 =p
0�. According to the factorization theorem [1–

3,12,13], the hadronic matrix element is factorized in the b-
space as

 M � �
Z 1

0
dx1dx2

Z d2b1

�2��2
d2b2

�2��2
���c
�x2;b2; p

0; ��


 ~H��x1; x2;b1;b2; r;M�b
; ����b

�x1;b1; p;��;

(9)

where r � M�c
=M�b

. The renormalization group evolu-
tion of the hard amplitude ~H� is shown as follows [14]
 

~H��x1; x2;b1;b2; r;M�b
; ��

� exp
�
�4

Z ta�b�

�

d ��
��
�q��s� ����

�


 ~H��x1; x2;b1;b2; r;M�b
; ta�b��; (10)

where �q��s� ���� is the anomalous dimension.
The wave function of �b which has the heavy-quark and

light-diquark structure, is given as [11,15]

 ��b
�x1;b1; p;�� � fS�b

�S
�b
�x1;b1; p;��	

S
�b

�b�p; 
�;

(11)

where �b�p; 
� is the baryon spinor, and the superscript S
denotes scalar diquark (spin � 0, isospin � 0). fS�b

is a
constant introduced in literature. 	S�b

is the flavor compo-

nent of the baryon, namely 	S�b
� bySy

�u;d�j0i, where by

and Sy
�u;d� are the creation operator of b-quark and the scalar

diquark of ud-quarks.
The �c distribution amplitude bears a similar form,

 ��c
�x2;b2; p

0; �� � fS�c
�S

�c
�x2;b2; p

0; ��	S�c
�c�p

0; 
2�:

(12)

Including the Sudakov evolution of hadronic wave func-
tions, i.e. running the scale of wave function from � down
to !1�!2� [14]:

 �S
�b
�x1;b1; p;�� � exp

�
�s�!1; �1� xl�p��

� 2
Z �

!1

d ��
��
�q��s� ����

�
�S

�b
�x1;b1�;

�S
�c
�x2;b2; p0; �� � exp

�
�s�!2; �1� x2�p0��

� 2
Z �

!2

d ��
��
�q��s� ����

�
�S

�c
�x2;b2�;

(13)

where !i � 1=bi�i � 1; 2�.
In our work, the effective gluon-diquark vertices are

defined as [11,15]
 

SgS: igst��p1 � p2��FS�Q2�;

FS�Q
2� � �s

Q2
0

Q2
0 �Q

2 ;

�s � �s�Q
2�=�s�Q

2
0��ifQ

2  Q2
0�;

�s � 1�ifQ2 <Q2
0�;

(14)

where Q2 � ��p1 � p2�
2.

According to the factorization scheme which is depicted
in Fig. 1, it is straightforward to obtain the analytic ex-
pressions of the form factors F1, G1, F2,G2, F3 and G3, by
comparing Eqs. (4) with (9). In the above derivation, the
following transformation has been used:

 k1 � Ap� Bp0; k2 � Cp�Dp0 (15)

and the explicit expressions of A, B, C and D are given in
the appendix.

Then we can obtain the analytical form of fi and gi�i �
1; 2; 3� making use of the relations between them and
Fj; Gj�j � 1; 2; 3� listed below
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 f1 � F1 �
1

2

�
F2

M�b

�
F3

M�c

�
�M�b

�M�c
�; g1 � G1 �

1

2

�
G2

M�b

�
G3

M�c

�
�M�b

�M�c
�;

f2 � �
1

2

�
F2

M�b

�
F3

M�c

�
M�b

; g2 � �
1

2

�
G2

M�b

�
G3

M�c

�
M�b

;

f3 �
1

2

�
F2

M�b

�
F3

M�c

�
M�b

; g3 �
1

2

�
G2

M�b

�
G3

M�c

�
M�b

:

(16)

We do not display the expressions of f3 and g3 for the
reason given above. The form factors are integrations
which convolute over three parts [12]: the hard-part kernel
function, the Sudakov factor and the wave functions of the
concerned hadrons as
 

fi�gi� � 4�CFf�b
f�c

Z 1

0
dx1dx2

Z 1
0
b1db1b2db2



Z 2�

0
d���c

�x2;b2� 
 kernSgSfi�gi���b
�x1;b1�


 exp��S�x1; x2;b1;b2; r;M�b
��; (17)

where the explicit expression of the kernel functions
kernSgSfi�gi� is given in the appendix for concision of the

text. The explicit form of the Sudakov factor appearing in
the above equations is given in Ref. [12] as

 

S�x1; x2;b1;b2; r;M�b
� � s�!1; �1� xl�p��

� s�!2; �1� x2�p0��

� 2
Z ta�b�

!1

d ��
��
�q��s� ����

� 2
Z ta�b�

!2

d ��
��
�q��s� ����; (18)

where CF � 4=3 is the color factor.
The wave function ��b

�x1;k1T� is [13,16]

 ��b
�x1;k1T� �

2Nbx
6
1�1� x1�

3

���1� ab � x1�
2x2

1�1� x1� � "pb�1� x1�
2x2

1 � k2
1T�

3 ; (19)

and

 ��b
�x1; b1� �

Z
d2k1T��b

�x1;k1T�e
ik1T �b1 �

Nbx
6
1�1� x1�

3b2
1K2�

�����������������������������������������������������������������������������������������
�1� ab � x1�

2x2
1�1� x1� � "pb�1� x1�

2x2
1

q
b1�

2��1� ab � x1�
2x2

1�1� x1� � "pb�1� x1�
2x2

1�
;

(20)

where K2 is the modified Bessel function of the second
kind. If neglecting the transverse momentum k1T , i.e. set
k1T � 0, the wave function can be simplified as

 ��b
�x1� ’

Nbx2
1�1� x1�

��1� ab � x1�
2 � "pb�1� x1��

2 : (21)

The normalization conditions are set as [13]
 Z 1

0
��b
�x1�dx1 � 1;

Z 1

0
��b
�x1�x1dx1 �

��

M�b

;

Z 1

0
��b
�x1�x2

1dx1 �

� ��2

M2
�b

�

1

3M2
�b

�
:

(22)

The first formula determines the normalization of the
parton distribution of the baryon, whereas the second one
is related to the effective mass of the light diquark ���
M�b

�mb, and the third formula reflects connection be-
tween hadronic matrix element of the kinematic operator

1 � �

1
2M�b
h�b j �bv�iD?�

2bv j �bi and hadronic distri-
bution amplitude. To satisfy the above three normalization
conditions, the parameters would take the following values
�� � 0:848 GeV, 
1 � �0:76 GeV2, ab � 0:916, "pb �
0:0051 and Nb � 0:0219, and in the following numerical
evaluation, we will use them as inputs.

For the wave function of �c, the expressions are the
same as that for �b, while the corresponding parameters
are �� � 0:8849 GeV, 
1 � �1:87 GeV2, ac � 1:48,

 

cb

dudu

(a)

cb

dudu

(b)

FIG. 1. The lowest order diagrams of the hard parts of the transition processes in the quark-diquark picture.
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"pc � 0:080 and Nc � 12:14. Thus we can write the dif-
ferential decay width as
 

d�

d�
�
G2
FjVcbj

2

24�3 M5
�b
r3

��������������
�2� 1

q
�jf1j

2��� 1��3r2� 4�r

� 2r� 3� � jg1j
2��� 1��3r2� 4�r� 2r� 3�

� 6f1f2�r� 1���� 1��r2� 2r�� 1�

� 6g1g2�r� 1��r2� 2r�� 1� � jf2j
2��� 1�


 �3r2� 2�r� 4r� 3��r2� 2�r� 1�

� jg2j
2��� 1��3r2� 2�r� 4r� 3��r2� 2�r� 1��;

(23)

with

 1 	 � 	 �max �
1

2

�M�b

M�c

�
M�c

M�b

�
: (24)

III. NUMERICAL RESULTS

A. The results of PQCD

In the one-heavy-quark-one-light-diquark picture, the
�ud��3 diquark in �b is considered as a scalar of color
antitriplet. To calculate the form factors in the framework
of PQCD, one can adjust the product fS�b

fS�c
to fit the

empirical formula f1��max� � 1:32=�5:18
max given by the au-

thors of Ref. [3].2 Then the corresponding parameters are
obtained as
 

mb ’ M�b
� 5:624 GeV; mc ’ M�c

� 2:2849 GeV;

Vcb � 0:040; fS�b
fS�c
� 0:0096 GeV2;

Q2
0 � 3:22 GeV2; �QCD � 0:2 GeV:

(25)

Using these values, we can continue to numerically esti-
mate the form factors f1 and g1. Figure 2(a) shows that the
form factor f1 is exactly equal to jg1j in the heavy-quark
limit. The form factor f2 and g2 are much smaller than f1

and jg1j, thus they can in fact be safely neglected for the
present experimental accuracy.

In Fig. 2(b), we plot the dependence of the differential
width d�=d� on �. Although both f1 and g1 have an end-
point divergence at �! 1 in PQCD approach, the differ-
ential decay rate is finite.

If one extrapolates the PQCD calculation to the region
with smaller � values, we obtain the form factors f1;2 and
g1;2 in that region where there are obvious end-point sin-
gularities at �! 1. Redo the computations with the ex-
trapolation (in the original work [3], the authors extend the
tangent of the PQCD result at a small � value to � � 1, so

the end-point singularity is avoided) and obtain BR��b !
�cl�� which is about 1.35% (slightly smaller than the
value of 2% guessed by the authors of Ref. [3], because
then no data were available.).

Obviously, the calculation in PQCD depends on the
factor fS�b

fS�c
, which regularly must be obtained by fitting

the data of semileptonic decays, so that the theoretical
predictions are less meaningful. Instead, we will use our
hybrid scheme where we do not need to obtain the factor
fS�b

fS�c
by fitting data, since the connection requirement

substitutes the fitting procedure (see below for details).

B. The results of HQET

The transition rate was evaluated in terms of HQET by
the authors of Ref. [8]. According to the definitions given
in Eq. (16), we recalculate f1, f2, g1, g2 while dropping out
f3 and g3 and also obtain similar conclusion that f1 and g1

are the same in amplitude, but opposite in sign, as shown in
Fig. 2(a), whereas f2 is very small and g2 is exactly zero in
HQET. The theoretical prediction on the rate of the semi-
leptonic decay �b ! �c � l� �� in the HQET is

 ���b ! �cl ��� � 1:54
 10�14 GeV;

without contributions from f2 and g2;

���b ! �cl ��� � 1:56
 10�14 GeV;

with contributions from f2 and g2;

(26)

and the branching ratio is 2.87%.
The transition rate of �b ! �cl �� has recently been

measured by the DELPHI Collaboration [5], and the value
of BR��b ! �cl�� is 5:0�1:1

�0:8�stat��1:6
�1:2�syst�%. It is noted

that the result calculated in terms of HQET is only con-
sistent with data within 2 standard deviations.

C. The hybrid scheme: Reconciling the two approaches

As widely discussed in literature, in the region with large
q2 (small �-values), the result of HQET is reliable,
whereas for the region with small q2 (larger �-values)
the PQCD is believed to work well. Therefore, to reconcile
the two approaches which work in different � regions, 1 	
� < �max, we apply the HQET for small �, but use PQCD
for larger �. Our strategy is that we let the form factors f1,
g1 derived in the PQCD approach be equal to the value
obtained in terms of HQET at the point �cut. The numerical
results of the form factor f1 � jg1j in the hybrid scheme
are shown in Fig. 3 for three different �cut-values: 1.05,
1.10 and 1.15, respectively. It is noted that for �cut � 1:1
and 1.15, the left- and right-derivatives are very close and
the connection is smooth, whereas, as �cut is chosen as
1.05, a difference between the derivatives at the two sides
of �cut � 1:05 obviously manifests. We then adopt a proper
numerical program to smoothen the curve, namely, let the
derivatives of the two sides meet each other for any
�-value near the cut point. Figure 3 shows that such treat-

2When first calculating the form factors, there were no data
available, the authors of [3] used a reasonable estimate of
BR��b ! �cl�� as about 2%. Nowadays, measurements have
been done and with the data, we have made a new fit.
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ment in fact does not change the general form of the curve,
but makes it sufficiently smooth for all � values including
the selected cut point �cut.

Another advantage of adopting such a hybrid scheme is
that there does not exist end-point singularity for the form
factors at � � 1. Since at the turning point, we let the form
factors derived in terms of PQCD be connected with that
obtained in HQET, the product f�b

f�c
is automatically

determined by the connection. With the value, we calculate
the form factors within the range of small q2 in PQCD. In
this hybrid scheme, one does not need to invoke the data on
the semileptonic decay to fix the parameter f�b

f�c
at all.

By our numerical results obtained in the hybrid scheme,
the form factors f1 (or g1) can be parametrized in a
satisfactory expression, here we only present the expres-
sion for �cut � 1:10 as

 f1��� � 1� 3:61��� 1� � 7:24��� 1�2� 5:83��� 1�3;

(27)

and similar parametrized form factors were discussed in
Ref. [17].

The expression can be described by only one ‘‘Isger-
Wise function’’ for the transition �b ! �� l�l at the
heavy-quark limit, and it is done by the DELPHI collabo-
ration based on their data on �b ! �cl ��. It is parametrized
as [5]

 ��!� � 1� �̂2�!� 1� �O��!� 1�2�; (28)

where �̂2 � 2:03� 0:46�stat��0:72
�1:00�syst�.

Obviously, this expression is only valid to the leading
order, i.e. linearly proportional to !� 1 where ! exactly
corresponds to the parameter � which is commonly
adopted in the PQCD language. By contrast, our result
includes higher power terms because the 1=M corrections
are automatically taken into account in our work. It is
noted that the coefficient of the linear term in our numeri-
cal result is reasonably consistent with the �̂2 obtained by
fitting data.

To obtain the total decay width, we integrate over the
whole range � from 1 to �max, the integrand is the parame-
trized form factor in Eq. (27). We obtain
 

���b ! �cl�� � 1:65
 10�14 GeV;

BR � 3:08% with �cut � 1:10;

f�b
f�c
� 0:0149 GeV2:

(29)

For a comparison, we present the results corresponding to
other two �cut values where the smoothing treatment is
employed, and they are
 

���b ! �cl�� � 1:54
 10�14 GeV; BR � 2:87%

�cut � 1:05; f�b
f�c
� 0:0142 GeV2;

���b ! �cl�� � 1:67
 10�14 GeV; BR � 3:12%

�cut � 1:15; f�b
f�c
� 0:0150 GeV2: (30)

One can notice that the factor f�b
f�c

does not change
much as �cut varies and they are about 1.5 times larger than
the value obtained in pure PQCD (Eq. (25)). When the

 

FIG. 3 (color online). Form factors f1 � jg1j in the hybrid
scheme.

 

FIG. 2. (a) Form factors f2, f1 and jg1j (b) Differential decay width of �b ! �cl�.
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turning point is chosen at �cut � 1:05, the branching ratio
calculated in the hybrid scheme is very close to the result
obtained in pure HQET, while for �cut � 1:10 and �cut �
1:15, the resultant branching ratio is slightly larger than
that obtained in pure HQET, but more coincides with the
data.

In our scenario, the HQET is applied for smaller �, and
the values of the form factors at �cut are fixed by the theory.
The values can also determine f�b

f�c
which will be used

for the PQCD calculations for larger �. The HQET is an
ideal theoretical framework, but there is an unknown func-
tion which is fully governed by the nonperturbative QCD
effects, that is the famous Isgur-Wise function. The func-
tion can be either obtained by fitting data, or evaluated by
concrete models. Various models would result in different
slopes. The authors of Ref. [8] used the Drell-Yan type
overlap integrals to obtain the slope which is what we
employed to get the parametrization Eq. (27) and the slope
is �3:6. Instead, the authors of [6] evaluated the slope in
the Isgur-Wise function by means of the QCD sum rules.
According to their result, we reparametrize the form factor
f1��� and have

 f1���� 1:01�1:57���1��2:59���1�2�6:99���1�3:

(31)

Correspondingly, we obtain
 

���b ! �cl�� � 2:38
 10�14 GeV;

BR � 4:45% with �cut � 1:10;

f�b
f�c
� 0:0213 GeV2:

(32)

The fitted slope by the DELPHI collaboration is �̂2 �
2:03� 0:46�stat��0:72

�1:00�syst� [5], which is between the two
theoretical evaluated values. In these references, only lin-
ear term remained, due to uncertainties in the approxima-
tions the deviations are understandable. Therefore, one can
note that there is a model-dependence which mainly mani-
fests in the slope of the Isgur-Wise function. Even though
they deviate from each other at the linear term, the high
power terms would compensate the deviation slightly and
the predicted values on the branching ratio in two ap-
proaches Eqs. (27) and (31) are qualitatively consistent
with data. There indeed is a byproduct which brings in
an advantage that more accurate measurements can help to
make judgement on validity of the models by which the
Isgur-Wise functions are evaluated.

To make more sense, we purposely present the ratio
G1=F1 obtained in the hybrid scheme in Fig. 4, it is noted
that the ratio is qualitatively consistent with that given in
Ref. [11] which was shown on the left part of Fig. 3 of their
paper [11].

The authors of Ref. [11] extended � into the unphysical
region (� > �max for �b ! �cl ��), while we only keep it
within the physical region. It is noted that in the physical
region, numerically our result is very close to that obtained

in Ref. [11]. But if one extends the curve to larger �, he will
notice that our curve is convex, but theirs is concave,
namely, the coefficient of the quadratic term has an oppo-
site sign, but the difference is too tiny to be observed or
bring up substantial difference for the evaluation of the
decay width.

IV. DISCUSSION AND CONCLUSION

In this work, we investigate the semileptonic decay
�b ! �c � l� ��l in the so-called ‘‘hybrid scheme’’ and
the diquark picture for heavy baryons �b and �c. The
hybrid scheme means that for the range of smaller q2

(larger �-values) we use the PQCD approach, whereas
the HQET for larger q2 (near � � 1), to calculate the
form factors. We find that the form factors f2 and g2 can
be safely neglected as suggested in the literature. Besides,
we do not need to determine the phenomenological pa-
rameters f�b

and f�c
by fitting data in the hybrid scheme as

one did with the pure PQCD approach. Our result is gen-
erally consistent with the newly measured branching ratio
�b ! �c � l� ��l within 2 standard deviations and the
end-point singularities existing in the PQCD approach are
completely avoided. In fact, the final result somehow de-
pends on the slope in the Isgur-Wise function of the HQET,
which is obtained by model-dependent theoretical calcu-
lations. Therefore, we may only trust the obtained value to
this accuracy, the further experimental data and develop-
ment in theoretical framework will help to improve the
accuracy of the theoretical predictions.

The quark-diquark picture seems to work well for deal-
ing with the semileptonic decays of �b, and we may expect
that the quark-diquark picture indeed reflects the physical
reality and is applicable to the processes where baryons are
involved, at least for the heavy baryons [18]. This picture
will be further tested in the nonleptonic decays of heavy
baryons. We will employ the diquark picture and PQCD to

 

FIG. 4. The G1=F1 ratio obtained in our hybrid scheme.
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further study the nonleptonic decay modes in our future work.
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APPENDIX: EXPLICIT EXPRESSIONS OF HARD KERNEL

 

kernSgSf1
� f��BC� AD��1� r� � �C2 � A�2� C�Dr� � �B�D�r�Dr� 2��

� C�Br� 2Br�� 2Dr�� 2���hha� ��BC� AD�r�1� r� � �A2 � A�C� r�D� 2�� 2B���

� r�B2r� 2�Dr� C�� � B�C� ��2�D�r� 2C�����hhbgM2
�b
FS��;

kernSgSg1
� f��BC� AD��r� 1� � �C2 � A��2� C�Dr� � �B�D�r�Dr� 2��

� C�rB� 2Dr�� 2rB�� 2���hha� ��BC� AD�r�1� r� � �A2 � A�C� r�D� 2�� 2B���

� r�B2r� 2�Dr� C�� � B���2�D�r� C� 2C�����hhbgM2
�b
FS��;

kernSgSf2
� �AD� BC��hha� rhhb�M2

�b
FS��;

kernSgSg2
� �AD� BC��hha� rhhb�M2

�b
FS��;

(A1)

where

  � M�b
M�c

x1x2�1: (A2)

The explicit expressions of A, B, C and D

 A �
x1�1

�1 � �2
; B � �

x1M�b

M�c
��1 � �2�

;

C � �
x2M�c

M�b
��2 � �1�

; D �
x2�1

�1 � �2
;

(A3)

with

 �1 � ��
���������������
�2 � 1

q
; �2 � ��

���������������
�2 � 1

q
: (A4)

The explicit expressions of hha, hhb are

 

hha � �s�ta�K0�
��������������������������������
x1x2�1M�b

M�c

q
b1�


 K0�
����������������������������
x2�1M�b

M�c

q
jb1 � b2j�;

hhb � �s�tb�K0�
��������������������������������
x1x2�1M�b

M�c

q
b2�


 K0�
����������������������������
x1�1M�b

M�c

q
jb1 � b2j�; (A5)

with

 ta � max�
����������������������������
x2�1M�b

M�c

q
; 1=jb1 � b2j; 1=b1; 1=b2�;

tb � max�
����������������������������
x1�1M�b

M�c

q
; 1=jb1 � b2j; 1=b1; 1=b2�:
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