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The values of the presently available truncated perturbative expressions for the pressure of the quark-
gluon plasma at finite temperatures and finite chemical potential are trustworthy only at very large
energies. When used down to temperatures close to the critical one (Tc), they suffer from large
uncertainties due to the renormalization scale freedom. In order to reduce these uncertainties, we perform
resummations of the pressure by applying two specific Padé-related approximants to the available
perturbation series for the short-distance and for the long-distance contributions. In the two contributions,
we use two different renormalization scales which reflect different energy regions contributing to the
different parts. Application of the obtained expressions at low temperatures is made possible by replacing
the usual four-loop MS beta function for �s by its Borel-Padé resummation, thus eliminating the
unphysical Landau singularities of �s. The obtained results are remarkably insensitive to the chosen
renormalization scale and can be compared with lattice results—for the pressure p, the chemical potential
contribution �p to the pressure, and various susceptibilities. A good qualitative agreement with the lattice
results is revealed down to temperatures close to Tc.
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I. INTRODUCTION

The behavior of QCD matter at nonvanishing tempera-
ture and (quark or hadron) densities can be approached
theoretically from two sides, both technically and kine-
matically. On the one hand, QCD-lattice calculations allow
an analysis of the kinematic region of rather low tempera-
tures T (around but above the phase-transition temperature
Tc, presently T & 5Tc) and even lower values of the
chemical potentials �f (f denotes the different quark
flavors). The latter restriction is due to the fact that nonzero
values of the chemical potential � render the weight
function in the partition function complex, thus not permit-
ting direct application of the standard Monte Carlo tech-
niques. There are several tricks to circumvent this ‘‘sign-
problem’’: reweighting [1], Taylor expansion around � �
0 [2], analytic continuation from imaginary � values [3],
canonical formalism [4]. All of them are trustworthy only
for small � values. On the other hand, the behavior at high
T and �< 2�T is expected to be described reliably by
finite temperature (and density) perturbation theory
(FTPT). Significant progress has been made within this
latter approach during the last 20 years and the calculation
of the thermodynamic potential (free energy or, equiva-
lently, the pressure function p) has recently been pushed
forward to the four-loop level, both for � � 0 [5] and for
finite chemical potential [6]. This is a big achievement

because the corresponding truncated perturbation series
(TPS) is in powers of the QCD-strong coupling parameter
g rather than a � g2=�4�2� � �s=�, due to the well-
known necessity of removing finite temperature infrared
(IR) divergences by resumming the essential IR-sensitive
diagrams (‘‘daisy diagrams’’) to all orders. The final series
is up to 6th order in g, and that is essentially all that could
be expected from perturbation theory since terms propor-
tional to g6 (not g6 lng) and higher include genuine non-
perturbative contributions which could be accessed only by
nonperturbative methods, e.g. lattice calculations.

Of course, any perturbatively obtained result is expected
to represent the true physical situation only when the
coupling parameter is small enough, which is the case in
QCD at sufficiently high temperatures. Nevertheless,
evaluations of the 6th order result [for p and for �p �
p��� � p�0�] down to temperatures below 1 GeV have
been made in the literature, and the results could be
brought in accordance with nonperturbative lattice data
(available for T up to 1 GeV). At first sight, this could be
considered a triumph of finite temperature perturbation
theory, and might tentatively be attributed to the higher
order available. A second and more careful glimpse, how-
ever, reveals several sobering observations. The first prob-
lem is that the convergence behavior of the truncated
perturbation series is manifestly weak: if increasingly
higher orders in the series are added, the corresponding
partial sums are changing wildly, jumping up and down.
Only the step from 5th to 6th order has signs of moderation,
but it is by no means clear whether this happens by chance
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or indicates a systematic improvement of the situation.
Further, a common relatively high renormalization scale
(RScl)1 � � 2�T (� T) is used in such evaluations. For
comparison with independent lattice data, the TPS results
are used down to small T values where the lattice results
are available. But here, another problem occurs: in each
available order the corresponding TPS shows a dependence
of the chosen RScl �, which is particularly strong for lower
temperatures, thus making a consistent comparison of
perturbative results (when used at such low energies)
with lattice data doubtful. In fact we have no clear physical
motivation for the best choice of �. In general, � should be
chosen such that large (momentum dependent) logarithms
in the TPS coefficients are avoided, which means—within
an asymptotically free theory like QCD—that one is al-
ways on the safe side if � is taken to be near the lowest
energy scales involved in the considered quantity. For the
quark-gluon plasma at (high) temperature T (and for given
chemical potentials �f), what is the appropriate energy
scale? Usually in the literature, the energy 2�T of the
lowest nonzero mode is taken as a measure since it deter-
mines the average energy of the constituents. But due to the
collective effects, additional (lower) physical scales are
generated, namely, the electric and magnetic screening
masses (being of order gT and g2T, respectively). So
what to choose for �? This question is not a purely theo-
retical one, but of considerable practical importance, be-
cause of the mentioned strong dependence of the TPS on �.
And even if we neglect this intertwining of different scales
within the thermodynamic quantities, and stick to 2�T as
the relevant scale, we observe that a change of � by a single
factor of 2 implies such a wide variation of the perturbative
results at T � Tc that no firm conclusion can be drawn as to
the matching with lattice data (cf. Figs. 6 and 7). It is clear,
therefore, that no successful matching procedure can be
obtained unless the strong RScl dependence is pinched
down by improving the perturbative results.

Within the present paper we offer a way for avoiding
this unwanted (and unphysical) ambiguity by applying
perturbation-theory-improving resummations of the basic
TPS’s. In this way we obtain what we consider a more
reliable, but still perturbation-theory-based, description of
the interesting thermodynamic quantities (here the pres-
sure p) which, among other things, allow for a more
credible comparison with lattice results. The method rests
on replacing the (partially resummed) TPS by approxim-
ants which are much more stable under the variation of �
than the TPS’s themselves. It is well known that specifi-
cally Padé approximants [7] for physical (measurable)
quantities are stable under � variation [8], whereas similar
improved Baker-Gammel approximants show this stability

exactly [9].2 In a recent work [11] we have utilized Padé-
related approximants to produce RScl-stable expressions
for the pressure of the quark-gluon plasma at finite (large)
temperature and zero chemical potential. Here, we apply
the same technique to the case of finite nonzero quark
chemical potential. In both cases, the gratifying fact is
the high order of the available TPS which allows the use
of higher-order Padé-related approximants and the choice
of the most appropriate ones (see later).

From the technical point of view, we encounter a specific
problem when applying Padé-related approximants di-
rectly to finite temperature perturbation theory. This is
due to the fact that two different (infinite) classes of dia-
grams get involved in the whole mechanism: on the one
hand, those whose resummation is necessary for taming the
finite temperature IR divergences and which lead to con-
tributions in powers of g (the so-called ‘‘daisy diagrams’’);
on the other hand, the other diagrams, which give contri-
butions in powers of g2 and whose conversion from the
TPS (polynomials) into Padé approximants (rational func-
tions) had been known to result in RScl stability (which is
exact in the large-�0 limit in the case of the diagonal Padé
approximants [8]). Therefore, care has to be taken to avoid
double counting when performing both resummations. As
we have shown in Refs. [11], a safe method consists in first
decomposing the pressure into two parts, one containing
the low-energy (effectively zero) modes and being respon-
sible for the long-distance behavior of the correlation
functions, and the other stemming from the nonzero modes
and determining the short-range physics. Since both re-
gions are, in principle, separately accessible by experi-
ments, the corresponding expressions are physical in the
sense that they should be independent of the renormaliza-
tion scale � (at least up to the specified order in g). Further,
no (infinite) resummation enters into the perturbation ex-
pressions of those parts when dimensional reduction is
applied [12]. Therefore, one can safely apply Padé-related
resummation to both parts independently and thus obtain
two expressions which are both almost independent of the
RScl choice. When using them down to low energies (T �
Tc), we face another problem: the coupling parameter
a�Q2� acquires unphysical (Landau) singularities at low
energies Q & 1 GeV if using the MS TPS � function. We
circumvent this problem by again using appropriately re-
summed versions of �. We finally end up with expressions
for the pressure and for other measurable quantities (quark
number susceptibilities) which are almost free of the RScl
uncertainty and therefore apt for comparison with lattice
data.

In Sec. II we present the perturbative results on which
our analysis rests and describe how to perform the physical

1In our calculations we will denote the renormalization scale
as �, keeping the symbol � for the chemical potential. The
reader should be aware of the fact that in Refs. [5,6] the common
RScl (in MS scheme) is denoted by �� and ��, respectively.

2In addition, an extension of such RScl-independent approx-
imants can be constructed, giving results which are simulta-
neously RScl and scheme independent [10]. In the present work,
the MS scheme is being used throughout.
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separation of the pressure into the long-range and the short-
range parts. Section III contains an analysis of the possible
resummation procedures which leads to the optimal
choice. We then present the numerical results, where we
put the main emphasis both on the effect of finite � values
and on the comparison with the corresponding lattice data.
Appendix A compiles basic formulas and expressions,
available in the literature and adapted to our approach,
including expressions for the coefficients of the TPS’s.
Appendix B describes the method which allows us to
extrapolate the QCD renormalization-group equation
(RGE) to sufficiently low energies, thereby circumventing
the unphysical Landau singularities of the coupling
parameter.

II. SEPARATION OF LONG- AND SHORT-
DISTANCE PRESSURE

Our starting point is the FTPT results for the pressure of
the quark-gluon plasma which, for a homogeneous system,
is equal to the free energy per volume (up to a sign
difference)—considered as a function of its temperature
T and the chemical potentials of the various quark flavors
�f�f � 1; . . . ; n�. It has been calculated up to O�g6 lng� by
K. Kajantie et al. [5] for the case of vanishing chemical
potentials, and by A. Vuorinen [6] for the general case
(�f � 0). These high order results include the summation
of an infinite class of certain diagrams—necessary for
taming an IR singularity which occurs only at T � 0.
The final results could be practically achieved only by a
technical trick, namely, by separating the energy-
momentum region of the contributing modes into three
parts, characterized by the momentum scales 2�T, gT,
and g2T, such that the full pressure p is decomposed
according to

 p � pE 	 pM 	 pG: (1)

Note that this decomposition makes strict sense only for
high enough temperatures where g�T� & 1. Here, pE rep-
resents the contributions of all degrees of freedom associ-
ated with the nonvanishing Matsubara modes, whereas
pM 	 pG comprises the contributions of the zero modes
(of bosonic fields), thereby also implicitly representing the
necessary sum over all (daisy) diagrams. The latter ones
are static modes; hence their contributions can be effec-
tively described by a three-dimensional (in general,
d-dimensional) purely bosonic field theory (dimensional
reduction [12]) determined by the electrostatic QCD
(EQCD) Lagrangian
 

LEQCD �
1

2
Tr ~F2

ij 	 Tr
Di; ~A0�
2 	m2

E Tr ~A2
0 	 �

�1�
E �Tr ~A2

0�
2

	 ��2�E Tr ~A4
0 	 i

g3

3�2

�X
f

�f

�
Tr ~A3

0 	 � � � : (2)

Here ~A0 denotes an effective (d-dimensional) scalar field

and the ~Ai (i � 1; . . . ; d) define a d-dimensional vector
field, both in matrix notation ( ~A� � ~Aa�T

a)3; Di � @i �
igE

~Ai; ~Fij � �i=gE�
Di;Dj�. The parameters of this effec-
tive theory are the (electrostatic) screening massmE��gT�,
the effective coupling parameter g2

E��g
2T�, and the four-

vertex couplings ��1�E , ��2�E ��g
4T�. In the case of d � 3, ��1�E

and ��2�E are not independent and one can choose
��2�E � 0—this will be done in the following. There are
additional coupling parameters connected with Lagrangian
operators of higher dimensions, since LEQCD defines a
nonrenormalizable theory which makes sense only for
momenta below a certain (UV) cutoff �E. In our case �E

separates the region of momenta�2�T from the momenta
�gT and smaller.

The effective parameters can be connected to the pa-
rameters of the underlying QCD by means of the well-
known matching procedure [13], yielding

 m2
E � T2

�
g2

�
A4 	 �

�
A���5 ln

�c
2�T

	 A5

�
	O��2�

�

	
1

�4��2
g4

�
A���6 ln

�c
2�T

	 A6 	O���
�
	O�g6�

�
;

(3)

 

g2
E � T

�
g2 	

1

�4��2
g4

�
A���7 ln

�c
2�T

	 A7 	O���
�

	O�g6�

�
; (4)

 ��1�E � T
�

1

�4��2
g4
�E4 	O���� 	O�g6�

�
; ��2�E � 0:

(5)

Here, � � �3� d�=2; coefficients A4–A7, A���5 –A���7 , and
�E4 are complicated functions of the chemical potentials,
the latter appearing in the coefficients via the dimension-
less quantities ��f � �f=�2�T�. Their expressions are
collected in Appendix A, together with other coefficients
to appear in Eqs. (8)–(10). Note that the common RScl �c
appears in these expressions. The effective mass mE � gT
arises due to the color-electric screening.

Since there is, in addition, color-magnetic screening at
energies proportional to the corresponding magnetic
screening mass mM � g2T, the long-distance part of the
pressure can be further subdivided into pM and pG, where
pM is determined by LEQCD and pG by the (magnetostatic)
Lagrangian

 L MQCD �
1
2 Tr ~Fij 	 . . . (6)

3The fields ~Aa0 , ~Aai entering here are not identical to the gluon
fields in LQCD but are the effective fields obtained after the high-
energy modes have been integrated out.
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with ~Fij � �i=gM�
 ~Di; ~Dj� and ~Di � @i � igM
~Ai. This

Lagrangian defines the effective theory for energies below
�M, i.e., for energies �g2T and smaller. A similar match-
ing procedure as before determines gM in terms of the
parameters of the higher-energy Lagrangian LEQCD and
gives

 g2
M � g2

E 	O�g3�: (7)

In the case of nonzero chemical potentials, two scales
get involved (T and� � �f) and, therefore, the concept of
dimensional reduction is expected to be applicable only if
the magnitude of the chemical potentials is small compared
to 2�T [14]. From comparison with numerical results for
correlation lengths, it is expected that the restriction � 

4T is safe.

Based on Lagrangians (2) and (6), and on the ordinary
QCD Lagrangian, the various parts of the pressure have
been calculated perturbatively by Vuorinen [6]. The calcu-
lations are based on dimensional regularization with a

common RScl �c (the notation �� is used in Ref. [6] for
the common RScl).

The result for pE is

 

pE

T
� T3

�
A1 	 g2�A2 	O���� 	

1

�4��2
g4

�
1

�
6A4

	 A���3 ln
�c

2�T
	 A3 	O���

�
	

1

�4��4
g6��E1

	O���� 	O�g8�

�
: (8)

Coefficients Ai (i � 1; 2; 3) and A���3 are collected in
Appendix A. Coefficient �E1 at g6 is still unknown.
However, �E1 must include a term proportional to 1=�.
The 1=�-terms will be disposed of in the following because
such terms must cancel in the sum (1), and the finite part of
�E1 will contain a free (adjustable) parameter later in this
work.

The results for pM and pG, which can be obtained from
the effective Lagrangians (2) and (6), respectively, are [6]

 

pM

T
� m3

E

2

3�

�
1	

1

4�
32 g

2
E

mE

�
�

3

4
� ln

�c
2mE

�
	

1

�4��2
33

�
g2

E

mE

�
2
�
�

89

24
�
�2

6
	

11

6
ln2

�

	
1

�4��3
34

�
g2

E

mE

�
3
�
�M18 ln

�c
2mE

	 �M1 	
5

81

�X
f

��f

�
2
�
�M2 ln

�c
2mE

	
1

4
�M2

��
�

15

8�
��1�E

mE

�

	
1

�
m3

E

2

3�

�
1

4�
32 g

2
E

mE

�
�

1

4

�
	

1

�4��3
34

�
g2

E

mE

�
3
�
�M1 	

5

81
�M2

1

4

�X
f

��f

�
2
��
	O��� 	O�g8

E=mE�; (9)

 

pG

T
�

2

3�
1

�4��3
34�g2

M�
3

�
�G8 ln

�c
2mM

	 �G 	O���
�
	

1

�
2

3�
1

�4��3
34�g2

M�
3�G: (10)

Here, mM is the magnetic screening mass mM � 3g2
M

(� g2T), and the notation ��f � �f=�2�T� is used. We
observe that the chemical potentials show up both explic-
itly via ��f and implicitly via gE and mE. Coefficients �M1,
�M2, �G, �M1, �M2 are independent of �f (see
Appendix A), and only �M2 is not yet known. In Eqs. (9)
and (10) we have already separated all ‘‘divergent’’ terms
(proportional to 1=�) from the finite contributions. The
quantity pM=T starts effectively with order g3 and pG=T
with order g6. The full �g6 term in pG=T cannot be
determined in a perturbative way; however, �G was esti-
mated in Ref. [15] to be �G � �0:2� 0:6. Here, it will be
treated as a free parameter within the limits �G � 0� 1.
On the left-hand sides of Eqs. (8)–(10), the common
denominator T must in fact be replaced by T��2�

c ; how-
ever, the common factor ��2�

c reduces to unity in the �! 0
limit, and will be ignored because the sum pE 	 pG 	 pM

is finite in this limit.
Our main task now consists in deducing from these

formulas expressions for the physical short-range and
long-range parts of the pressure. Thereby the word ‘‘physi-

cal’’ indicates that they lead to measurable effects (for
instance, the long- and/or short-range behavior of static
correlation functions, etc.). We proceed in several steps
(see also Ref. [11]):

(i) Regularization:
The long-range part of the pressure is represented by
pM 	 pG � pM	G (both are due to zero mode con-
tributions). We regularize pM	G by adding to
pM	G=T the following counterterm:
 

CT �
1

�
6
�

1

�4��2
g2

Em
2
E

� 36
1

�4��4

�
g6

E

�
�M1 	 �M2

5

324

�X
f

��f

�
2
�

	 g6
M�G

��
: (11)

The same counterterm has to be subtracted from
pE=T. By expanding the effective-theory parameters
gE and mE in powers of g [cf. Eqs. (3) and (4)], one
can explicitly show that in this way the 1=�-term of
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order g4 in expression (8) for pE=T gets canceled.
Further, the 1=�-term of order g6 included in the
otherwise unknown �E1 coefficient must also get
canceled when counterterm (11) is subtracted from
pE=T of Eq. (8). Counterterm (11) contains one
finite term of O�g4� stemming from �1=��g2

Em
2
E since

m2
E includes a term proportional to g2�, Eq. (3). This

finite term then shows up in the new subtracted
expression for pE=T. In addition, counterterm (11)
contains several finite terms of O�g6� which show up
in the new subtracted expression for pE=T. Finally,
the limit �! 0 can be performed, yielding finite
results both for pE and for pM	G.

(ii) Reconstruction of the factorization scale and intro-
duction of various RScl’s:
We have already noted that a common renormaliza-
tion scale (denoted here as �c) has been used for the
perturbative calculations leading to Eqs. (8)–(10).
On the other hand, when constructing the physical
long- and short-range contributions, respectively,
we decompose the whole energy range in the way
addressed before, namely,

 O �g2T�<�M <O�gT�<�E <O�2�T�: (12)

Therefore, these factorization scales �E and �M

which separate the different energy regions have
to emerge in the physical expressions—but only
in such a way that, when adding all three contribu-
tions, they completely disappear. We bring the �E

factorization scale to light in the following way: the
scale �c in expressions (8)–(10), where pE=T and
pM	G=T are modified in the aforementioned way by
the counterterm (11), is interpreted simultaneously
as the factorization scale �E and as the common
RScl �c. We then evolve g�� � �E� in pE to g��E�
where � � �E is a new, physically more adequate,
higher RScl: �E � 2�T. On the other hand, in
pM	G, we evolve g�� � �E�, which appears implic-
itly there (explicitly in the RScl-independent gE,
mE, ��1�E ), to g��M� where � � �M is a new, physi-
cally more adequate, lower RScl: �M �mE (� gT).
The evolution is performed according to the pertur-
bative RGE, requiring RScl independence of pE, on

the one hand, and of g2
E and m2

E (and thus of pM	G),
on the other hand, since all these quantities are
physical. In pE this results in ln�E-dependent terms
in the coefficients of TPS, and in g2

E and m2
E (which

enter pM	G) this results in ln�M-dependent terms in
the coefficients of their TPS’s. The coefficients of
expansion of pE in powers of g2��E� then have
explicitly the ‘‘genuinely’’ �E-dependent parts,
and RScl-dependent parts. The coefficients of ex-
pansion of pM	G in powers of �g2

E=mE� remain
unchanged, with �E dependence as before, while
the coefficients of expansion ofm2

E and g2
E in powers

of g2��M� obtain RScl dependence and, at the order
considered, lose �E dependence.4 Formally, the two
RScl’s �E and �M can take on arbitrary values in
these expressions.

(iii) Determination of the �E-dependent part of the
coefficient at O�g6� in pE:
The sum pE 	 pM	G has to be independent of the
factorization scale �E. It can be checked explicitly
that this independence is true up to O�g4�.
Although the coefficient at g6 in pE is not known,
its �E dependence is dictated by the condition of
�E independence of pE 	 pM	G at O�g6�, when
the latter quantity is expanded in powers of a
common g � g���. Note that �E dependence of
pM	G at O�g6� is known; cf. Eqs. (9) and (10).
Further, � dependence of the coefficient at g6 in pE

is known from the requirement of the RScl inde-
pendence of pE. The remaining unknown part of
the coefficient at O�g6� in pE (we will call it �E) is
then independent of �E and of �, and can again be
freely adjusted.

Performing these steps we finally obtain the following
form of the physical decomposition of the pressure func-
tion into short- and long-distance parts (we denote these
physical parts by a bar),

 p � �pE 	 �pM	G: (13)

The long-distance part, representing the contributions of
momenta below the factorization scale �E (when gT <
�E < 2�T), takes the form

 

1

T
�pM	G �

2

3�
m3

E

�
1	

1

4�
32

�
g2

E

mE

��
�

3

4
� ln

�E

2mE

�
	

1

�4��2
33

�
g2

E

mE

�
2
�
�

89

24
�
�2

6
	

11

6
ln2

�

	
1

�4��3
34

�
g2

E

mE

�
3
�

8�M1 ln
�E

2mE
	 8�G ln

�E

6g2
E

	 �M1 	 �G �
20

35
n2
f ~�2

1

�
ln

�E

2mE
�

3

16
�M2

��
�

15

8�
��1�E

mE

�
; (14)

4This is not so in the scalar g2	4 theory, where the requirement of RScl independence of the Debye screening mass yields, at O�g4�,
a residual dependence on the factorization scale (cf. Ref. [11], second entry).
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where we used notations (A1) and (A2) for the chemical
potential parameter ~�1. The parameters mE, gE, and ��1�E of
the effective theory EQCD are defined by their expansion
into powers of g��� � g,

 m2
E � T2A4g2

�
1	

�
g

2�

�
2
�

2�0 ln
�
�

2�T

�
	

1

4

A6

A4

�

	O

��
g

2�

�
4
��
; (15)

 g2
E � Tg2

�
1	

�
g

2�

�
2
�

2�0 ln
�
�

2�T

�
	

1

4
A7

�

	O

��
g

2�

�
4
��
; (16)

 ��1�E � Tg4 2

3

1

�4��2
�9� nf�

�
1	O

��
g

2�

�
2
��
: (17)

Here, �0 � �1=4��11� 2nf=3� is the one-loop QCD RGE
coefficient, nf being the number of active quark flavors.
The RScl � in Eqs. (15)–(17) will be � � �M (�mE �
gT), and we fix it according to relation (27). Note that, by
the afore-described procedure, the expansion coefficients
of m2

E and g2
E at the considered order do not have any

dependence of the factorization scale �E, but are RScl
dependent. The last term in expansion (14) involves the
third EQCD matching parameter ��1�E [16,17], which is
independent of the chemical potentials �f. This term can
be expressed as a power series in powers of g, but only the
leading term is known, ��1�E =mE / g

3. We prefer to express
it in powers of the EQCD parameter g2

E=mE (Ref. [11]),

 ��1�E �
2

3

1

�4��2
�9� nf�A4mE

�
g2

E

mE

�
3
�

1	O

��
g2

E

mE

�
2
��
:

(18)

While coefficients �M1, �G, �M1 in Eq. (14) and Ai (i �
4; . . . ; 7) in Eqs. (15) and (16) are known and collected in

Appendix A, parameter �G is well estimated [15], and �M2

is unknown. The dependence on the chemical potentials
�f (f � 1; . . . ; n) in �pM	G appears explicitly in the term
proportional to ~�2

1 and implicitly via the parametersmE, gE

which contain�f-dependent coefficients Ai. The RScl � �
�M appears in �pM	G implicitly, via expansions (15) and
(16) for m2

E and g2
E.

The physical short-distance part, determined by the
energy-momentum range above the factorization scale
�E, can be written in a dimensionless form as follows:

 

1

T4
�pE � A1 	 4�2A2Rcan

E ; (19)

where Rcan
E denotes the canonically normalized perturba-

tion series in powers of g � g���:
 

Rcan
E �

�
g

2�

�
2
�
1	

�
g

2�

�
2
�

2�0 ln
�
�

2�T

�
	 6

A4

A2
ln
�
�E


T

��

	

�
g

2�

�
4
�

4�2
0ln2

�
�

2�T

�

	 2 ln
�
�

2�T

��
�1 	 12�0

A4

A2
ln
�
�E


T

��

	 6
A4

A2
K3 ln

�
�E


T

�
	 �E

�
	O�g6�

�
: (20)

Here, �1 � �1=16��102� 38nf=3� is the two-loop RGE
coefficent, � � �E (� 2�T) is the short-range RScl, and

 
 � 2� exp
�
�

1

24A4
�A3 � 6A5�

�
(21)

has been introduced for obtaining compact expressions.
The �f-dependent function K3 has been obtained by
requiring that the dependence of �pM	G on the factorization
scale �E at order g6 cancel with that in �pE. It arises in the
following way: inserting expansions (15)–(17) into (14)
yields to order g6 the �E-dependent term

 

1

T4
�pM	G�g6 ln�E� �

�
g

2�

�
6

ln
�

�E

2�T

�
24�2

�
�

1

4
�A6 	 A4A7� 	 18��M1 	 �G� �

5

27
n2
f ~�2

1

�
: (22)

Cancellation with the corresponding term in �pE is obtained
therefore if

 K 3 �
1

A4

�
1

4
�A6 	 A4A7� � 18��M1 	 �G� 	

5

27
n2
f ~�2

1

�
:

(23)

The remaining (unknown) coefficient at g6 within �pE,
which we denote by �E, is independent of �E; it may,
however, depend on the (small) ratios ��f � �f=�2�T�.

Since the true values of �pE, g2
E, m2

E, and �pM	G are RScl
independent, this motivates us to apply Padé-related re-
summations separately to the TPS’s of these quantities,
yielding expressions which are much less RScl dependent

than the corresponding TPS’s. In this context, we note that
the RScl independence of perturbation expansions (with
infinitely many terms) for the aforementioned quantities is
only formal, because these series diverge. They diverge
strongly at low temperatures when g��E� [and even more
so g��M�] gets large. Thus, at low temperatures, the formal
RScl dependence of the series does not help in direct
evaluations of the TPS’s since the (higher-order) RScl-
dependent corrections to the TPS’s are large. Therefore,
for this kinematical region, the only way out of this RScl-
dependence dilemma seems to be the conversion of the
perturbative expressions to other approximants which are
much less RScl dependent at each finite order, even at low
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temperatures. And that is exactly the main motivation for
applying Padé(-related) resummations.

Before doing so, we discuss the other uncertainties of the
TPS’s, namely, the uncalculated constants�M2 and �E, and
try to estimate their expected size. The constant �M2

appears in expression (14) in combination with the term
ln��E=mE�, where the latter is expected to dominate.
Therefore, j�M2j< 15 represents a rather generous uncer-
tainty bound for �M2. On the other hand, the constant �G

was estimated in Ref. [15] to be �G � �0:2� 0:6. Here, it
will be treated as a free parameter within the limits �G �
0� 1. Thus, we will allow the following variation of the
aforementioned parameters:

 � 1< �G <	1; �15<�M2 <	15: (24)

Concerning �E [see Eq. (20)], we note that the parameter

 was introduced in such a way that the
ln
�=�2�T��-independent part of the coefficient at g4 in
�pE is absorbed by a term proportional to ln
�E=�
T��. The
coefficient at g6 was then organized into a polynomial in
powers of the aforementioned two logarithms. It is reason-
able to expect that the ln
�=�2�T��-independent part of
this coefficient is absorbed to a large degree by a term
proportional to ln
�E=�
T��. Therefore, parameter �E is
expected to be small and the following variation of this
unknown parameter appears to be rather generous:

 � jk2j< �E <	jk2j; (25)

where

 k2 � 6
A4

A2
K3 ln

�
�E


T

�
: (26)

Parameter �E depends only on the small parameters ��f. On
the other hand, the bounds �jk2j will have an additional
slight dependence on temperature T because we take �E ������������������������

2�TmE�T�
p

(� g1=2T).
Formulas in this section are in close analogy with those

in our previous work [11], now involving additional (small)
parameters ��f � �f=�2�T�. Furthermore, up to terms g4,
they coincide with those of Ref. [13] when ��f � 0.
Further, reexpanding �pM	G of Eq. (14) in powers of the
coupling parameter g � g���, and adding it to expansion
(19) and (20) for �pE while using there the same RScl �,
gives the same expansion as the one obtained in Refs. [6]
for pE	M	G.

III. RESUMMATION AND NUMERICAL RESULTS

Our next step is to apply specific Padé related resumma-
tions to evaluate separately the long-distance (14)–(18)
and short-distance (19) and (20) contributions to the
pressure.

In principle, we could utilize Padé (P
N=M�) or Padé-
Borel (PB
N=M�) approximants5 of any possible order

N=M� which is compatible with the order n (the highest
power of expansion parameter) of the TPS: N	M 
 n.
So we have a certain freedom of choice. We use it for
achieving physically desirable features. These are as fol-
lows:

(a) Significantly suppressed RScl dependence of both
resummed �pM	G and �pE, with the two RScl’s �M

and �E varying in the regimes �M � gT and �E �
2�T. Minimal RScl dependence is achieved, in
general, for diagonal or near-diagonal approximants
(N � M); thus we expect that such approximants
will be preferred.

(b) �pE 	 �pM	G should have as little dependence on the
factorization scale �E as possible. Note that the sum
of the original TPS’s, Eqs. (14), (19), and (20), when
expanded in powers of a common g � g��� up to
�g6, is completely stable under variation of �E. On
the other hand, the individual parts show significant
�E dependence. Since these individual dependences
get (individually) changed by resummations, we
have to optimize the approximants in the sense of
maximally reducing the artificial �E dependence of
�pE 	 �pM	G.

(c) �pE 	 �pM	G should not surpass the value of pideal

(pressure of the ideal gas), even at low temperatures
close to the critical temperature Tc (see Ref. [11] for
arguments in this direction).

Since �pM	G is expanded in powers of �g2
E=mE�, we first

have to calculate the EQCD parameters m2
E and g2

E. We
evaluate them as Padé resummations P
1=1��g2� of TPS’s
(15) and (16), thereby banking upon the better convergence
behavior of Padé approximants and reducing the unphys-
ical RScl dependence dramatically.

Within our previous paper [11], we have shown for the
case of zero chemical potentials that, among the resumma-
tions of the Padé (P) and Borel-Padé (BP) types of pertur-
bation expansions (14) for �pM	G and (20) for Rcan

E , the only
physically acceptable ones in the aforementioned sense
(a)–(c) are as follows:

(I) The Padé approximant P
0=3� in terms of expansion
variable g2

E=mE for �pM	G=m
3
E of Eq. (14) without

the ��1�E -term. Note that, since g2
E=mE � g and m3

E �
g3, this partly emulates the diagonal P
3=3��g� for
�pM	G. Further, the ��1�E -term in �pM	G=m

3
E of

Eq. (14) is evaluated according to Eq. (18), making
it less RScl dependent.

(II) The Borel-Padé approximant BP
1=2� as a function
of a � g2=�2��2 for Rcan

E of Eq. (20) () �pE).

5For a short description of Padé and Borel-Padé approximants,
see the Appendix of Ref. [11].
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Explicit construction of the Padé P
1=1��a� for m2
E and

g2
E, P
0=3��g2

E=mE� for �pM	G=m
3
E, and BP
1=2��a� for Rcan

E
can be read off from the Appendix in Ref. [11].6 The
��1�E -term is not included in the aforementioned Padé-re-
lated resummations, but is evaluated separately [Eq. (18)]
and added, because it is expected to represent diagrams
with new, different topologies.

Since the chemical potentials in expressions (14), (19),
and (20) are assumed to be limited in the sense that ��f < 1,
they can be regarded as perturbations to the ��f � 0 case
[6]. Therefore, we will apply the same approximants as in
the ��f � 0 case of Ref. [11], i.e., those mentioned above.
Furthermore, just as in Ref. [11], we will fix the two RScl’s
�E and �M according to relations

 �E � 2�T; �2
M � m2

E�T; ��;�M� 
� m�0�2E �T; ����;

(27)

wherem2
E is taken to be the Padé approximant P
1=1��a� of

expansion (15), as mentioned before, with g � g��M�. We
note that now the long-distance RScl �M will depend on
both the temperature T and the chemical potential � �
2�T ��. At sufficiently high temperatures, we have �M �
gT; cf. Eq. (15). The factorization scale �E is chosen to be
just in between the two RScl’s (27) on the log scale

 �E �
������������
�E�M
p

�

������������������
2�Tm�0�E

q
: (28)

With all these quantities fixed, there still is a problem of
obtaining results at low temperatures close to the critical
temperature Tc � 0:2 GeV, where the values of the long-
distance RScl �M are much below 1 GeV. At such scales,
the usual perturbative MS couplant a��2� � 
g���=�2���2

diverges as a result of the unphysical Landau singularities,
the latter being the consequence of the beta function ��a�
occurring in the form of the (four-loop) TPS. A partial
remedy to the related problem of unreliability of evolution
of a��2� at low �was presented in our previous works [11],
where we used Padé P
2=3��a� for ��a�. However, the
problem of the Landau singularities in the low-energy
spacelike regime persists. Therefore, in Appendix B we
present another resummation of the MS four-loop beta
function, of the BP type. We show that BP
2=2� and
BP
1=3�, in MS, result in evolution which keeps a��2�
finite down to �2 � 0. The two BP’s give mutually similar
results. Even more so, when varying the scheme, e.g., by

changing the values of �2 and �3 coefficients by about
50%, the main qualitative features of the low-RScl evolu-
tion survive. We will adopt for �s��2;MS� � �a��2� (with
the spacelike RScl values q2 � ��2) the reference value

 g2�� � m��=�4�� � �s��2 � m2
�;MS� � 0:334

�nf � 2 or 3�;
(29)

which is approximately the value extracted from the had-
ronic � decay data [18,19]; and we will evolve a��2� by the
BP
2=2� beta function [see Appendix B, Figs. 13(a) and
17(a) for nf � 3, 2, respectively]. Sometimes, for com-
parison, the evolution by the BP
1=3� beta function will be
used [Figs. 13(b) and 17(b) for nf � 3, 2]. Details of the
definition of BP
i=j� for the beta function and other details
are given in Appendix B.

Most of the following calculations are performed for the
case of two active massless quark flavors (nf � 2), in order
to facilitate comparison with the lattice calculations of
Refs. [20,21]. Some of the calculations will be performed
for nf � 3 in order to see the nf dependence of the results.
We adopt the notations used in Ref. [21]:

 �p � p�T;�f� � p�T;�f � 0�; (30)

 �q �
1
2��u 	�d�; �I �

1
2��u ��d�; (31)

 nq �
@p
@�q

; (32)

 �q �
@2p

@��q�
2 ; �I �

@2p

@��I�
2 ; (33)

where the partial derivatives with respect to �X (X � q, I)
are taken at constant T and constant �Y (Y � I, q, resp.).
Here, nq is the quark number density (at �I � 0); �q and
�I are the quark number and isovector susceptibilities.
When nf � 3, we will take �s � 0, as in the lattice cal-
culations of Refs. [22,23]. Further, we will use for the
critical temperature the value Tc � 0:17 GeV as in
Refs. [20,21], both for nf � 2 and nf � 3. Unless other-
wise stated, the unknown parameters �G, �M2 [Eq. (24)],
and �E [Eq. (25)] will be set equal to their central value
(zero), and the RScl’s �E and �M for the short- and long-
distance parts of the pressure will take on the ‘‘canonical’’
values according to Eq. (27). Numerical calculations were
performed using MATHEMATICA [24].

In our calculation of �p we will resum separately, in the
aforementioned way, p�T;�f� and p�T;�f � 0�, and then
subtract the two quantities. We prefer this approach (in-
stead of trying various resummations of the perturbation
series of the quantity �p) because the directly measured
physical quantities are the full pressures.

Numerical resummations, performed in the way de-
scribed above, give us for the total pressure p �
�pE 	 �pM	G the results presented in Figs. 1, for various

6Figure 2(b) of Ref. [11], which shows RScl dependence of
various Padé-related resummations of �pE, has numerical errors
for RScl values �E � 2�T due to a mistake in one of our
programs; corrected curves show that, in addition, P
1=2� re-
summation for Rcan

E has an acceptably suppressed RScl depen-
dence. However, then p=pideal > 1 at T � 1 GeV, making it
unacceptable (where �pE is from P
1=2� of Rcan

E , and �pM	G
from P
0=3� of �pM	G=m

3
E). The conclusion in Ref. [11] that

only BP
1=2� for Rcan
E and P
0=3� for �pM	G=m

3
E are acceptable

remains unaffected.
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values of the ratio �q=T (where �q � �u � �d), as a
function of temperature in the vicinity of Tc. Comparison
of Figs. 1(a) and 1(b) further reveals that the results do not
change significantly when the type of BP resummation of
the beta function is changed. For better visualization, we
present in Fig. 2 a three-dimensional image, showing p=T4

as a function of T=Tc and of �q=Tc (�I � 0), for the
choice of parameters, RScl’s, and resummation approxim-
ants equal to that of Fig. 1(a). Note, however, that in Fig. 2
the second axis is �q=Tc and not �q=T [the latter quantity
is kept fixed in the separate curves of Fig. 1(a)].

In Fig. 3 we present the corresponding results for the
pressure difference �p � p�T;�q� � p�T;�q � 0�, for
five different values of �q=T ( � 0:2, 0.4, 0.6, 0.8, 1.).
We include, for comparison, the results of the evaluation of
the simple TPS in powers of g�� � 2�T� as dotted lines.
These were obtained by using for �pE the TPS in powers of
g2�� � 2�T�, and for �pM	G the TPS in powers of g�� �
2�T�. The latter TPS is obtained by using expansions

(15)–(17) in powers of g��� in expansion (14) for �pM	G

(also in the logarithms there), and setting the RScl � �
2�T. The unknown parameters �E, �G, and �M2, which
affect these TPS’s at O�g6�, were all set equal to zero here.
In addition, the TPS’s truncated at O�g5� are presented, for
the aforementioned five values of �q=T. We note that such
types of TPS evaluation (with the common high RScl
�2�T) have been often used in the literature to evaluate
p and/or �p. The TPS’s presented here do not diverge
when approaching even very low values of temperature
because for the beta functions we use BP
2=2� (or BP
1=3�
in Fig. 1(b)]. Figure 3 shows that our Padé-related evalu-
ations, while being somewhat higher, reproduce the lattice
results for �p=T4 to within 20%, even at low temperatures
T � Tc. On the other hand, the TPS results are very
unstable under the change of the truncation order. It ap-
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FIG. 1 (color online). Pressure p (divided by T4) as a function of temperature, at various values for the ratios �q=T involving the
chemical potential �q when (a) Borel-Padé BP
2=2� and (b) BP
1=3� is used for the beta function ��g2

s�.
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FIG. 2 (color online). Pressure p (divided by T4) as a function
of T=Tc and �q=Tc (with �I � 0). The choices of parameters,
RScl’s, and resummation approximants are the same as in
Fig. 1(a).
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FIG. 3 (color online). Same as in Figs. 1, but now for the
pressure difference �p divided by T4 (solid lines). In addition,
the TPS results are included as dotted lines, and the lattice
calculation results of Ref. [21] are included as crosses, where
the depicted error bars include only specific statistical errors.
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pears to be a coincidence that the TPS’s truncated at O�g5�
are in good agreement with the lattice data. Incidentally,
the latter TPS’s have values similar to those of O�g6� TPS’s
with �E � �k2 [in the latter case, �pE has the coefficient at
g6 equal zero; cf. Eqs. (20) and (25)]. Stated otherwise, the
O�g6� TPS’s are quite unstable under the variation of the
unknown parameter �E while our Padé-related resumma-
tions are quite stable (see also Figs. 4 and 5). Furthermore,
the TPS results show a strong RScl dependence, as will be
shown shortly.

A general remark on the lattice data (included in Fig. 3)
and their significance is in order here. The quoted error
bars denote only specific statistical errors and do not
represent further uncertainties. The aforementioned lattice
data have various uncertainties, among them the generic
uncertainties of lattice calculations coming from the con-
tinuum limit effects (of up to 10%; cf. [20]), from the finite
size effects (of about 5%; cf. [25]), and from the uncer-

tainties of the value of Tc (of 2%–3%). The results for �p
for finite chemical potentials suffer from additional prob-
lems: since finite �q values are treated in Ref. [21] by
applying a Taylor expansion in powers of �q=T
[cf. Eq. (3.1) of Ref. [21]], one has to calculate the corre-
sponding coefficients cn�T�—more of them when �q=T is
higher. In Ref. [21] only the first three nonvanishing co-
efficients (n � 2, 4, 6) have been calculated—with high
instabilities already for n � 6 (cf. Fig. 1 in [21]). The error
bars in the lattice data in Fig. 3, as well as in Figs. 8 and 9,
present only these specific uncertainties in the calculation
of the three cn’s. However, the terms with n � 8; 10; . . . are
not included. Consequently, the lattice results for large
�q=T values (�q=T � 0:8) have to be considered with
reservation. An educated guess leads to the expectation
that the data in Fig. 3 have an overall uncertainty of around
15%, and probably even higher when �q=T � 1.
Therefore, it is fair to say that our predictions are in
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FIG. 5 (color online). Same as in Figs. 4, but now for �p=T4.
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reasonable agreement with lattice data down to T � Tc, at
least as long as�q < T. Analogous statements are valid for
the comparison with lattice data in Figs. 8 and 9 (see later).
What we do not yet understand is the apparent systematics
of the lattice results: they lie systematically below our
predictions, in particular, for high �q values. Whether
this demonstrates a lattice artefact, possibly connected
with the rather large bare quark mass used there, has to
be further investigated. In this context, we further note that
the difference between our and lattice results could not be
significantly reduced by choosing different values for the
unknown parameters �E, �M2, �G (which were set equal to
zero in Fig. 3), at least if varying them within the generous
ranges specified in Eqs. (24) and (25). In fact, variation of
these parameters can decrease our results at 1< T=Tc < 2
by less than 1%; (see Fig. 5 below).

In Fig. 4(a) we present variations of our results for
p=T4 in a wide temperature regime when the unknown
parameters �G, �M2, and �E are varied according to
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Eqs. (24) and (25), for two different fixed values of the
ratio �q=T ( � 0:8, 0.). In Fig. 4(b), the analogous results
for the aforementioned simple TPS’s are shown. We see
that our results are remarkably stable under the rather
generous variations of the three unknown parameters,
whereas this is definitely not the case with the TPS’s.
The dependence on the unknown parameters �E and �G

is strong in the TPS’s, while the Padé-related resummation
results are almost independent of them. The dependence on
the parameter �M2 is too weak to be seen.

In Figs. 5(a) and 5(b) we present �p=T4 in the way
completely analogous to the presentation of p=T4 in
Figs. 4(a) and 4(b). The conclusions for the (in)stability
of the calculated �p under the variation of the unknown
parameters are similar to those for p. The independence of
the parameter �G in the TPS’s in Fig. 4(b) is a direct
consequence of the �q independence of �G. The depen-
dence on the parameter �M2 is weak in the TPS’s, and too
small to be seen in the Padé-type resummation. However,
while there is almost no dependence on the unknown
parameter �E in the Padé-related resummation results,
the dependence on �E is quite drastic in the TPS’s. This
behavior also makes plausible the fact that, by adjusting
the value of the unknown parameter �E, we can, in a way,
fine-tune the TPS results to come close to the lattice results
(see also Fig. 3).

After having shown that our results are fairly insensitive
to the still existing unknown parts of the perturbation series
(at�g6), we now come to the most important results of our
approach: the stability under variation of the (two) RScl’s,
even at very low temperatures. This is manifested in Figs. 6
and 7.

In Figs. 6(a) and 6(b), we present the behavior of our
evaluated results for p=T4 when the RScl’s �E and �M are
varied by factor 2 around the canonical values (27), for
nf � 2, 3, respectively. Two sets of curves are given, for

�q=T � 0:8 and zero, respectively. In addition, the corre-
sponding sets of curves for the aforementioned simple
TPS’s are shown, where now the common RScl � is varied
from�T to 4�T. We see that our evaluated results for p are
much more stable under the variation of RScl than the TPS
results, down to very low temperatures T � Tc. This is the
same conclusion as the one obtained in our previous work
[11] for the case of zero chemical potential (�q � 0). For
additional comparisons, we included in Figs. 6 the results
of our Padé-related evaluation of p=T4 with canonical
RScl’s (27) when the MS beta function ��a� is (four-
loop) TPS, and when it is Padé P
2=3��a�. We see that
the results in such cases, when they exist, almost coincide
with the solid lines, i.e., with those with ��a� �
BP
2=2��a�. However, due to the Landau singularities of
a��2� at low RScl’s in the aforementioned cases of � �
TPS or P
2=3� (cf. Appendix B), the corresponding curves
exist (i.e., do not blow up) only down to Tmin � 1:8Tc,
2:5Tc, respectively (when nf � 3: Tmin � 1:4Tc, 2:0Tc,
respectively). We note that the curve with � � P
2=3�
and �q � 0 in Fig. 6(b) corresponds to the central curve
with nf � 3 in Fig. 18 of our previous work [11] and to the
upper solid line of Fig. 19 of that work.7

Figures 7(a) and 7(b) contain similar results for �p=T4

(here only for the value �q=T � 0:8). The conclusions
about the RScl dependence of the results for �p=T4 are
virtually the same as for p=T4.

It is exactly this independence of � at T down to about
2Tc which makes our comparison with lattice data
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FIG. 9 (color online). The susceptibilities (a) �q and (b) �I as a function of temperature, for various values of the ratios �q=T
(�I � 0). Our results are in the form of curves. Included are the corresponding results of the lattice calculation of Ref. [21], in the form
of points (some with error bars).

7We mention that a numerical mistake was committed in the
mentioned curve of Ref. [11], in that the power of �g2

E=mE� in the
program there was taken to be 5 instead of 3 [cf. Eq. (18)]. The
curve with � � P
2=3� and �q � 0 in the present Fig. 6(b) now
represents the corrected version of the mentioned curve.
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(cf. Fig. 3) much more trustworthy than the simple TPS
evaluation.

In the remaining part, we present results for derived
quantities, specifically quark number densities and
susceptibilities.

Figure 8 contains results for the quark number density
(32) for various values of �q=T (�I � 0). Included are the
corresponding results of the lattice calculation of Ref. [21],
in the form of points (some with error bars). The values
were obtained by numerical differentiation of our results
for p with respect to �q (with �I � 0 and T constant).
Again, we see that our results, in general, agree with the
lattice results to within 20%, even at low temperatures,
T � Tc.

Finally, in Figs. 9(a) and 9(b) we present the values for
the susceptibilities �q and �I [cf. Eq. (33)] as a function of
temperature, for various values of the ratios �q=T, while
keeping �I � 0. The results are presented as various
curves, and were obtained, at a given T, by numerical
evaluation of the double derivatives of our results for the
pressure p with respect to �q (at constant �I � 0) and
with respect to�I (around�I � 0, at constant�q) [24]. In
Figs. 9(a) and 9(b) we included the corresponding results
of the lattice calculation of Ref. [21], as points with error
bars. Our curves, in general, give results which are by
roughly 20% higher than the lattice results.

In addition to the aforementioned susceptibilities, the
mixed susceptibility �ud which is related to the previous
two by

 

�I � �q
T2 � �4

�ud
T2 (34)

has been a subject of interest in the literature. Our numeri-
cal results give, for the above quantity (34), at �I � 0
(and nf � 2), values of about 4� 10�3 at �q � 0 and
at temperatures 1< T=Tc < 2 [these values turn negative
(��10�3) when �q=T � 0:2]. The authors of Ref. [20]
obtained, by their lattice calculations, for the above quan-
tity (34) at �I � �q � 0 (and nf � 2), decreasing values
as the temperature increases from Tc to 1:5Tc, and at
T=Tc � 1:36 they found a value of 6:6� 10�3. Our results
for this quantity are roughly in agreement with the lattice
results of Refs. [20,26], and with the hard thermal loops
perturbative estimates of Ref. [27]. The latter estimates
give, for the quantity (34), at 1< T=Tc < 2, values be-
tween 5� 10�3 and 1:4� 10�2, when using our values of
a�2�T� (with the beta function being BP
2=2�). The lattice
quenched results of Refs. [28] give, for this quantity, values
�10�6, i.e., 3 orders of magnitude lower.

Further, we performed numerical calculations of p, �p,
and nq in the case of three active flavors nf � 3, with
�u � �d � �q (T independent) and �s � 0, with our
approach described above. Comparisons with the corre-
sponding lattice calculations of Ref. [22] (their Figs. 3 and
6) revealed that, at their values of �B 
 0:53 GeV (�B �

3�q, nB � nq=3), our results for �p and nB are somewhat
higher than theirs, by less than 20% at T=Tc � 1:5, and by
30%–40% at T=Tc � 1:1. Direct comparison with the
lattice results of Ref. [23] is not possible, as no continuum
limit correction factor (c�) was applied there. In Ref. [22],
an estimated correction factor c� � 0:446 was applied to
�p.

IV. SUMMARY

Within the present paper we extended our recent ap-
proach [11] for improving perturbative expressions for the
quark-gluon pressure (obtained by FTPT) to the case of
finite (but still small) quark densities. Thereby, the main
aim was to find a consistent method for extrapolating
the FTPT-based results down to temperatures as low as
Tc ( � 200 MeV). For such low energies, the original
TPS’s are plagued by huge uncertainties, stemming mainly
from their strong RScl dependence which itself is partially
connected with the occurrence of, at least, two different
energy scales contributing to the thermodynamic potential
under investigation. Therefore, simple FTP series do not
permit a reliable comparison with existing (low-energy)
lattice data. Such a check can only be performed if the wild
RScl dependence is sufficiently tamed. Our method allows
such a taming. It rests mainly on two crucial points: First,
we performed a careful separation of the low-energy from
the high-energy contributions to the pressure, which are
responsible for the (in principle, measurable) long- and
short-range behavior, respectively. In this way, we can
clarify which values of the RScl are the natural ones—
they are different for the two parts. Second, for each of
these contributions we identified Padé-related approxim-
ants which—besides showing other physically desirable
features—led to (almost) RScl-stable expressions and thus
to predictions which can be safely used down to low
temperatures. However, the use of the approximants for
the low-energy (long-range) contributions at very low tem-
peratures �Tc is only possible if the unphysical perturba-
tive Landau singularities of the QCD coupling parameter at
low energies are eliminated; we did this by using similar
Padé-related approximants for the renormalization-group
beta function. As a result, we demonstrated that the ob-
tained expressions for the pressure p and the difference
�p � p��f� � p�0� are fairly insensitive to the (as yet)
unknown part of the contributions of O�g6� and to varia-
tions of the RScl’s, both of these features being in stark
contrast with the TPS expressions.

Our expressions show a surprisingly good agreement
with lattice data—not only for the pressure and its �f

dependence but also for derived quantities, in particular,
susceptibilities. In this context, we note that the unknown
relative deviations of the low temperature lattice results for
p and �p from the true values are expected to be roughly
in the range of 10%–20%. This is due to the well-known
lattice artefacts, in particular, the ones connected with
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finite-�f effects (truncated Taylor expansion in �f=T).
Our Padé-related evaluations give for �p=T4 results which
are by not more than 20% higher than the lattice results
when �q=T 
 0:8 and 1< T=Tc < 2; see Fig. 3.

Our approach is valid only for values of the chemical
potentials smaller than the temperature, because only in
this case can dimensional reduction be applied. For-
tunately, present day heavy ion collisions are probing the
region with values �f & 50 MeV, which are small com-
pared to the temperatures T & 5Tc typically involved. For
other kinematic situations, in particular, for small T and
larger chemical potentials, different reorganizations of
perturbation expansions are necessary and have been ap-
plied in the literature, the most prominent one being the
hard dense loop approximation which is genuinely four
dimensional but based on a nonlocal effective action [29].
Recently, a purely diagrammatic calculation of the pertur-
bative QCD pressure (i.e., without involving any effective
theory) has been performed [30] which, at least in princi-
ple, should be valid for all kinematic regions. As it should
be expected, these results—when applied to high tempera-
tures and (relatively) low chemical potentials—are in
accordance with those of the dimensional reduction
approach.
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APPENDIX A: RELEVANT COEFFICIENTS FOR
THE PRESSURE AT FINITE CHEMICAL

POTENTIAL

Here we compile expressions for parameters Aj,mE, and
gE which we obtained from expressions of Ref. [6] by
application of the method of separation of the long-
distance from short-distance contributions (i.e., introduc-
tion of factorization scale �E: mE <�E < 2�T), as ex-
plained in the beginning of Sec. II. We denote by � the
renormalization scale, and g � g��� in the MS scheme.
Other notations used in this appendix are

 �� f �
�f

2�T
; zf �

1

2
� i ��f; (A1)

 ~� k �
1

nf

X
f

��k
f; ~@�k��z� �

1

nf

X
f

��k
f@�z�;

~@�k��‘; z� �
1

nf

X
f

��k
f@�‘; z�;

(A2)

 ln 0
��n� �

 0��n�

��n�

; (A3)

where @�z� and @�‘; z� are the aleph functions defined in
Refs. [6] via digamma functions and derivatives of the
Riemann zeta functions.

Coefficients Aj (j � 1; . . . ; 7) and A���j , which appear in
Eqs. (3)–(5) and (8)–(10), and later in Eqs. (15)–(20), are
obtained from the ‘‘matching parameters’’ �Ei (i �
1; . . . ; 7) in Refs. [6] by separating appropriately the parts
proportional to ln�c ( ln �� in Refs. [6]), or proportional to
1=�, from the remaining (�c- and �-independent) parts.
They take the form

 A1 �
�2

45

�
8	 3nf

�
7

4
	 30 ~�2 	 60 ~�4

��
; (A4)

 A2 � �
1

6

�
1	

1

12
nf�5	 72 ~�2 	 144 ~�4�

�
; (A5)

 A4 � 
1	
1
6nf�1	 12 ~�2��; (A6)

 

A5 � 2�� ln2	 ln0
��1�� 	 1
6nf�1� 2 ln2��1	 12 ~�2�

	 4nf~@�0��1; z�; (A7)

 

A6 �

�
1

18

90� 396 ln2	 66�E�6	 nf� 	 nf�3� 42 ln2�

	 2n2
f�1	 2 ln2�� 	

�
nf ~�2

�
6	 44�E � 44 ln2

	 nf
4

3
�1	 2 ln2�

�
	

1

9
nf�nf 	 6�~@�0��z�

	 n2
f

4

3
~@�2��z�

��
; (A8)

 A7 � 
22��E � ln2� 	 1	 nf
4
3 ln2	 nf

2
3
~@�0��z��; (A9)

 A���5 � 2A4; (A10)

 A���6 � 22	 7
3nf �

2
9n

2
f 	 4�11� 2

3nf�nf ~�2; (A11)

 A���7 � 22� 4
3nf: (A12)

The most complicated coefficient is A3, which emerges
both in Eq. (8) and later in Eq. (20) via the quantity 

[Eq. (21)]. It can be expressed as

 A3 � A3;1 	 A3;2 � A
���
3 ln2; (A13)

where
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X
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and
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The constants �G,�M1, and�M2 were obtained in Ref. [5]:

 �G �
43

96
�

157

6144
�2 � 0:195 715;

�M1 �
43

32
�

491

6144
�2 � 0:555 017; �M2 � �

4

3
;

(A17)

and �M1 was obtained in Ref. [31]:

 �M1 � �1:391 512: (A18)

APPENDIX B: BETA FUNCTIONS OF THE
BOREL-PADÉ TYPE

In this appendix we present various resummations of the
QCD � functions as functions of x � a�Q2� � �s�Q

2�=�,
in the MS scheme. Further, the corresponding running of
a��2� as a function of x � �2 (in GeV2) is given, in the
various cases, always normalized to a�m2

�� � 0:334=� �
0:106316; cf. Eq. (29). We will denote the squared RScl �2

here as Q2�� �q2 > 0� to emphasize the spacelike char-
acter of the corresponding four-vector q.

The four-loop RGE for a�Q2� � �s�Q2�=� is
 

Q2 da�Q
2�

Q2 � ��0a2�Q2�
1	 c1a�Q2� 	 c2a2�Q2�

	 c3a3�Q2��; (B1)

where cj � �j=�0 (j � 1). The one- and two-loop coef-
ficients �0 and �1 [32,33] are scheme independent; in the
MS scheme [34] the three- and four-loop coefficients �2

and �3 were obtained in Refs. [35,36], respectively,

 �0 �
1

4

�
11�

2

3
nf

�
; �1 �

1

16

�
102�

38

3
nf

�
; (B2)

 �2 �
1

64

�
2857

2
�

5033

18
nf 	

325

54
n2
f

�
; (B3)

 �3 �
1

256
�29 243:0� 6946:30nf 	 405:089n2

f

	 1:499 31n3
f�; (B4)

and nf is the active number of quark flavors.
The solution of the RGE (B1), at low Euclidean energies

Q (with either nf � 3 or nf � 2), has the known unphys-
ical Landau singularities, i.e., singularities of a�Q2� for
Q2 
 Q2

pole. For example, if we choose the realistic value
of �s�Q2 � m2

�� � 0:334, the singularity in a�Q2� appears
already at Q2

pole � 0:662 GeV2 � 0:44 GeV2 when nf �
3, and Q2

pole � 0:752 GeV2 � 0:57 GeV2 when nf � 2—
cf. Figs. 12(a) and 16(a). The main reason for this unphys-
ical behavior of a�Q2� is the TPS form of the beta function
��x � a�—the right-hand side of RGE (B1). Such a form
of ��x� has its origin in the perturbative approach (powers
of x � a). The TPS j��x�j grows out of control when x �
a increases—cf. Figs. 10(a) and 14(a). This leads to the
appearance of the nonphysical singularities in a�Q2� at low
positive Q2 
 Q2

pole.
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These singularities prevent us from using, in the tradi-
tional perturbative QCD (pQCD), the coupling at squared
energies Q2 & Q2

pole. The problem can be avoided by
certain resummations of the TPS � function, i.e., by find-
ing such a ��a� function whose Taylor expansion around
a � 0 up to�a5 reproduces the TPS ��a� of Eq. (B1) and,

at the same time, ��a� remains more under control when a
increases.

One possibility is to construct diagonal ornear-to-
diagonal Padé approximants based on the TPS ��a�. For
example, the Padé
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3�: (a) Borel-Padé BP
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1=3��x� cases; x here stands for a�Q2�.
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 P 
2=3���a� � ��0
a2


1� c1a	 �c2
1 � c2�a2 	 ��c3

1 	 2c1c2 � c3�a3�
(B5)

gives us an expression which, up to a � 0:3, behaves
well—cf. Figs. 10(b) and 14(b). However, around a �
0:3, this ��a� goes abruptly out of control, because
the Padé expression has a pole there. The corresponding
running coupling a�x � Q2� achieves singularity already
at Q2

pole � 0:812 GeV2 � 0:65 GeV2 for nf � 3, and
Q2

pole � 0:922 GeV2 � 0:85 GeV2 for nf � 2—
cf. Figs. 12(b) and 16(b). In contrast to the TPS ��a�
case, however, a�Q2� seems to be well under control now
for virtually all Q2 larger than Q2

pole.
Another possibility, which avoids the aforementioned

pole problem of the Padé ��x � a�, would go in the
direction of first resumming the Borel transform B��y�
(the latter has, in general, significantly weaker singularities
than �), and then applying the inverse transformation via a
Borel integration. For example, we can try to apply diago-
nal or close-to-diagonal Padé resummation to B��y�. The
Borel transform is

 B ��y� � ��0

�
y
1!
	 c1

y2

2!
	 c2

y3

3!
	 c3

y4

4!
	 � � �

�
; (B6)

and the Padé P
2=2� and P
1=3� resummations of the above
TPS are

 P 
2=2�B�y� � ��0
y	 r2y2

1	 t1y	 t2y2 ; (B7)

 P 
1=3�B�y� � ��0
y

1	 s1y	 s2y
2 	 s3y

3 ; (B8)

where the coefficients rj, tj, sj are unique functions of ck’s
such that reexpansion of (B7) and (B8) reproduces expan-
sion (B6) up to (and including) the �y4 term:

 

r2 � �1=2��3c3
1 � 4c1c2 	 c3�=�;

t1 � �1=2���2c1c2 	 c3�=�;

t2 � �1=12��4c2
2 � 3c1c3�=�;

(B9)

 s1 � �1=2�c1; s2 � �1=12��3c2
1 � 2c2�;

s3 � �1=24���3c3
1 	 4c1c2 � c3�;

(B10)

and we used the notation � � �3c2
1 � 2c2�. However, the

inverse Borel transformation

 ��x� �
Z 1

0
dy exp��y=x�B��y� (B11)

cannot be constructed by inserting here directly the Padé
expressions (B7) or (B8) for the integrand. This is so
because the latter expressions have poles on the positive
axis: P
2=2�B�y� at yp: � 1:13, 1.01 for nf � 3, 2, respec-
tively; P
1=3�B�y� at yp: � 0:94, 0.88 for nf � 3, 2, re-
spectively. These ‘‘infrared renormalon’’ singularities
imply ambiguities in the integration: ���a� �
exp��yp:=a�
[� ��Q2da�Q2�=dQ2� � �a�Q2�]. This implies an ambi-
guity in the coupling a�Q2�: �a�Q2� � ��2

MS
=Q2��0yp: �

��2
MS
=Q2��. Numerically, for P
2=2�B, � � 2:55, 2.44 for

nf � 3, 2, respectively; for P
1=3�B, � � 2:11, 2.13 for
nf � 3, 2, respectively. We can fix the above ambiguity by
choosing a specific recipe for the Borel integration over the
pole yp:. We will choose the principal value (PV) prescrip-
tion

 BP 
i=j���x� � Re
Z 1�i"
�i"

dy exp��y=x�P
i=j�B�y�;

(B12)
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where 
i=j� � 
2=2� or 
1=3�. Numerically, this is difficult
to implement, as "! 	0 and we approach the pole yp:
down to the distance " during the integration. However, we
can use the Cauchy theorem, and the fact that the Borel
transforms (B7) and (B8) do not have any poles in the

complex semiplane Re�y� � 0 except the aforementioned
yp: > 0. This allows us to avoid the vicinity of the pole,
for example, by integrating along a ray y � r exp��i	�,
where 	 is any small but finite positive fixed angle
(cf. Refs. [11,19]),
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BP
i=j���x� � Re
�
exp��i	�

Z 1
r�0

dr exp��y=x�

� P
i=j�B�y�jy�r exp��i	�

�
: (B13)

This approach, which is numerically stable, gives us for the
BP-resummed ��x� functions values which are surpris-
ingly nonsingular and achieve at x � a � 1 value zero
(infrared fixed point)—cf. Figs. 11 and 15. Integration of
the RGE with these BP-resummed four-loop MS � func-
tions, with the phenomenologically acceptable initial con-
dition �s�m2

�� � 0:334 [Eq. (29)], gives us a�x � Q2�
running couplings which are presented in Figs. 13 and

17. Both choices BP
2=2� and BP
1=3� give similar behav-
ior for a�Q2�. There are no Landau singularities present
any more, and the coupling is analytic in the sense that
there are no unphysical singularities on the spacelike axis
of the squared momenta q2 � �Q2. Furthermore, due to
the aforementioned zero of the BP � functions, the cou-
pling a�Q2� remains finite down to Q2 � 0 where it has a
value � 1. The obtained ‘‘analytized’’ coupling a�Q2�
probably represents a version of analytic QCD.
Therefore, the skeleton-motivated method of Refs. [37]
can be applied as an alternative way of evaluating the
low-energy QCD observables.
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