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We study rapidity gap survival (RGS) in the production of high-mass systems (H � dijet, heavy
quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp! p� �gap� �H �
�gap� � p. Our approach is based on the idea that hard and soft interactions are approximately
independent because they proceed over widely different time and distance scales. We implement this
idea in a partonic description of proton structure, which allows for a model-independent treatment of the
interplay of hard and soft interactions. The high-mass system is produced in a hard scattering process with
exchange of two gluons between the protons, whose amplitude is calculable in terms of the gluon
generalized parton distribution (GPD), measured in exclusive ep scattering. The hard scattering process is
modified by soft spectator interactions, which we calculate neglecting correlations between hard and soft
interactions (independent interaction approximation). We obtain an analytic expression for the RGS
probability in terms of the phenomenological pp elastic scattering amplitude, without reference to the
eikonal approximation. Contributions from inelastic intermediate states are suppressed. The onset of the
black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact
parameters and is the main factor in determining the RGS probability. Correlations between hard and
soft interactions (e.g. due to scattering from the long-range pion field of the proton or due to possible
short-range transverse correlations between partons) further decrease the RGS probability. We also
investigate the dependence of the diffractive cross section on the transverse momenta of the final-state
protons (‘‘diffraction pattern’’). By measuring this dependence one can perform detailed tests of the
interplay of hard and soft interactions and even extract information about the gluon GPD in the proton.
Such studies appear to be feasible with the planned forward detectors at the Large Hadron Collider.
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I. INTRODUCTION

Hard processes in high-energy pp scattering are impor-
tant both as a laboratory for studying strong interaction
dynamics and the parton structure of the proton, and as one
of the main tools in the search for new heavy particles. Of
particular interest are so-called diffractive processes, in
which the produced high-mass system—e.g., a dijet, or
heavy particle—is separated from the projectile fragments
by large rapidity gaps. Double-gap exclusive processes
(i.e., without breakup of the protons)

 pp! p� �gap� �H � �gap� � p; (1)

are considered as an option for the Higgs boson search at
the Large Hadron Collider (LHC) [1–5]. Such processes
have lower cross section than inclusive double-gap pro-
cesses (with breakup of one or both protons) but offer
better chances for detection, and for determining the
mass of the produced particle and possibly even its quan-

tum numbers; see Ref. [5] and references therein. Double-
gap exclusive processes (1) also appear to be an effective
method for producing heavy quarkonia and investigating
their properties.

From the point of view of strong interactions, double-
gap exclusive events (1) arise as the result of an interesting
interplay of ‘‘hard’’ (involving momentum transfers much
larger than the typical hadronic mass scale) and ‘‘soft’’
(momentum transfers of the order of the typical hadronic
mass scale) interactions. The high-mass system is pro-
duced in a hard scattering process, involving the exchange
of two gluons between the protons. The requirement of the
absence of QCD radiation ensures the localization of this
process in space and time. This alone, however, is not
sufficient to guarantee a diffractive event. One must also
require that the soft interactions between the spectator
systems do not lead to particle production. This results in
a suppression of the cross section as compared to the hard
scattering process alone, the so-called rapidity gap survival
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(RGS) probability. While not directly observable, this
quantity plays a central role in the discussion of hard
diffractive processes and their use in new particle searches.

Diffractive final states are most favorably produced in
scattering at large impact parameters (peripheral colli-
sions), where the chances for the spectator systems not to
interact inelastically are large. Conversely, this means that
the selection of diffractive events changes the effective
impact parameters as compared to inclusive events with
the same hard scattering process. This effect is essential for
understanding the physical mechanism behind RGS. In this
sense, RGS is a manifestation of a general quantum-
mechanical phenomenon—the postselection of certain
initial-state configurations by conditions imposed on the
final state [6].

The concept of RGS can be viewed also in the context of
QCD factorization for the production of heavy particles in
pp scattering [7]. QCD factorization was formally proved
for inclusive scattering, pp! H � X. A crucial element
in the proof is the fact that initial-state and final-state QCD
radiation effects cancel when summing over all hadronic
final states. This cancellation becomes incomplete if addi-
tional conditions, such as rapidity gaps, are imposed on the
hadronic final state. The introduction of the RGS proba-
bility can be seen as an attempt to ‘‘restore’’ QCD facto-
rization for diffractive processes at the phenomenological
level, in a form analogous to the inclusive case.

In this paper, we study RGS in double-gap exclusive
hard diffractive processes (1) within a partonic description
of the structure of the proton, along the lines of Gribov’s
parton picture of high-energy hadron-hadron scattering [8].
The basic idea underlying our approach is that hard and
soft interactions are approximately independent because
they proceed over widely different time and distance scales
[7]. This so-called ‘‘factorization’’ of hard and soft inter-
actions has been extensively discussed in the literature, see
e.g. Refs. [9,10], and was used in a number of model
calculations of the RGS probability, in which soft inter-
actions were described using a Pomeron exchange parame-
trization [4,5]. The partonic formulation proposed in the
present paper offers several advantages over these previous
treatments. It permits a largely model-independent descrip-
tion of the interplay of hard and soft interactions and
explains the basic features of RGS on grounds of their
different transverse structure (impact parameter depen-
dence). More important, it allows us to incorporate various
effects of correlations between hard and soft interactions in
the calculation of the RGS probability.

In the approximation where hard and soft interactions in
diffraction are assumed to be completely independent
(‘‘independent interaction approximation’’), the hard scat-
tering process can be regarded as a ‘‘local operator’’ in
partonic states, and RGS appears as the ‘‘renormalization’’
of this operator due to soft interactions. At the amplitude
level, this leads to an absorption correction to the hard

production process due to elastic rescattering; contribu-
tions from inelastic intermediate states are suppressed
because of the different character of the states accessible
in hard and soft interactions. At the cross section level, we
recover a simple ‘‘geometric’’ expression for the RGS
probability, which was suggested on the basis of heuristic
arguments in Refs. [11–13]. In addition to providing a
transparent physical picture of RGS, this expression can
be evaluated readily in terms of two phenomenological
ingredients, both of which can be probed in independent
measurements: (i) The gluon generalized parton distribu-
tion (GPD) in the proton; more precisely its t dependence
(‘‘two-gluon form factor’’), whose Fourier transform de-
scribes the transverse spatial distribution of gluons.
Information about it comes from measurements of hard
exclusive processes in ep scattering, in particular J= 
photoproduction (HERA, FNAL). (ii) The pp elastic scat-
tering amplitude at high energies;, in particular, its profile
function in the impact parameter representation. It is
known from fits to pp= �pp total and elastic cross section
data up to the Tevatron energy, and constrained by general
theoretical arguments.

The framework provided by our partonic approach to
RGS allows us to take into account two basic facts about
the dynamics of hard and soft interactions at high energies,
which turn out to have a decisive influence on the numeri-
cal value of the RGS probability. These are

(i) Small transverse radius of hard interactions.—The
radius of the transverse distribution of hard gluons in
the proton is significantly smaller than the transverse
radius of soft interactions in high-energy pp colli-
sions (‘‘two-scale picture’’). This basic fact explains
many qualitative features of hard exclusive diffrac-
tive processes, such as the effective impact parame-
ters in diffractive events, the order of magnitude of
the RGS probability, and the pattern of the transverse
momentum dependence of the cross section.

(ii) Black-disk limit (BDL) in high-energy pp scatter-
ing.—Parametrizations of the data as well as general
theoretical arguments indicate that the profile func-
tion of pp elastic scattering becomes ‘‘black’’ at
small impact parameters at energies above the
Tevatron energy,

���
s
p

> 2 TeV. This circumstance
makes the description of pp scattering at small
impact parameters at LHC energies practically
model independent and is essential for the stability
of numerical predictions for the RGS.

The evidence supporting these statements is described in
detail in Ref. [11], and summarized in Secs. II and III
below.

An important aspect of our treatment is that it does not
rely on the eikonal approximation for describing the inter-
play of hard and soft interactions. On the practical side, this
allows us to express the RGS probability directly in terms
of the phenomenological pp scattering amplitude, which
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e.g. can be evaluated easily with different parametriza-
tions. On the theoretical side, it means that we do not
need to deal with the well-known subtleties of the eikonal
approximation in high-energy scattering [14,15] (details
will be given in Sec. IV).

In the independent interaction approximation, the RGS
probability unambiguously follows from QCD and can be
calculated in a model-independent way. Our numerical
results for the RGS probability in this approximation turn
out to be of the same order of magnitude as those obtained
previously within a model of soft interactions based on
eikonalized Pomeron exchange [4,5]. This can be attrib-
uted to the fact that the Pomeron parametrization of the pp
elastic amplitude reproduces the approach to the BDL at
small impact parameters. At the more quantitative level,
however, the agreement between our numerical results and
those of Refs. [4,5] is somewhat accidental, being due to
the fact that in that calculation the effect from inelastic
intermediate states (which in our approach are seen to be
strongly suppressed because of the small overlap of states
accessible via hard and soft interactions) is partly compen-
sated by the choice of a larger value of the t slope of the
gluon GPD, as will be discussed in detail in Sec. V.

Important modifications of the picture of RGS in the
independent interaction approximation can arise from the
fact that the amplitudes of hard processes in pp collisions
rapidly rise with the collision energy and approach the
maximum strength allowed by unitarity (BDL), because
of the increase of the gluon density in the colliding protons
at small x. As a result, the hard partons involved in the
production of the high-mass system or their ‘‘parents’’ in
the QCD evolution can experience additional absorptive
interactions, which are not accounted for by the GPDs or
the soft-interaction RGS probability. Such interactions
correspond to a local modification of the parton density
induced by the presence of the hard scattering process. We
estimate these corrections within our partonic picture and
find that they can result in an additional suppression of the
RGS probability by a substantial amount (factor 2–3).
These corrections have not been considered in previous
treatments of RGS in Refs. [5,9,10].

The partonic picture of diffraction also allows us to
incorporate effects of correlations between hard and soft
interactions in our studies of the RGS probability. Such
correlations can arise from various dynamical mecha-
nisms, e.g. from the long-range pion field of the proton,
or from possible short-range transverse correlations be-
tween hard partons, as suggested by the Tevatron CDF
data on inclusive pp scattering with multiple hard pro-
cesses [16]. We find that the inclusion of such correlations
decreases the RGS probability compared to the indepen-
dent interaction approximation. While these effects cannot
be calculated in a completely model-independent way, they
are important both for our general understanding of the
mechanism of RGS, and for obtaining reliable numerical

estimates of the RGS probability. These effects clearly
merit further study.

A unique feature of exclusive diffractive processes is
that the interplay of hard and soft interactions can be
studied experimentally, by measuring the dependence of
the cross section on the transverse momenta of the final-
state protons. The modification of the hard scattering am-
plitude by soft elastic rescattering can be viewed as an
interference phenomenon, which gives rise to a distinctive
‘‘diffraction pattern’’ in the final-state transverse momenta.
By measuring this dependence in exclusive diffractive
processes with relatively large cross section, such as dijet
production, one can perform a variety of tests of the
diffractive reaction mechanism and extract information
about the transverse radii of hard and soft interactions
and their energy dependence. In Higgs production, mea-
surements of the transverse momentum dependence would
allow one to obtain additional information about the parity
of the produced particle [5]. Experimentally, such studies
appear to be feasible with the planned forward detectors at
the LHC [17] and the Tevatron [18].

This paper is organized as follows. In Sec. II we review
the information about the transverse structure of soft inter-
actions from pp elastic scattering and the approach to the
BDL at central impact parameters. In Sec. III we discuss
the properties of the proton’s gluon GPD at small x and
summarize our knowledge of the transverse spatial distri-
bution of hard partons in the proton. Section IV describes
the basic framework of our approach to RGS. We outline
the properties of the hard scattering amplitude, describe the
theoretical formulation of the independence of hard and
soft interactions, and obtain a master expression for the
diffractive amplitude combining hard and soft interactions.
We then explain the suppression of inelastic intermediate
states and evaluate the diffractive amplitude in terms of the
gluon GPD and the pp elastic amplitude. In Sec. V we use
our result for the amplitude in the independent interaction
approximation to calculate the RGS probability. We re-
cover a simple geometric expression for the RGS proba-
bility and discuss the effective impact parameters in
exclusive diffraction. We then evaluate the RGS probabil-
ity numerically, estimate the uncertainty of the numerical
predictions due to the phenomenological input, and em-
phasize the crucial role of the BDL in stabilizing the
numerical predictions. We also comment on the results
for the RGS probability obtained within the eikonalized
Pomeron model for soft interactions [4] from the perspec-
tive of our approach. In Sec. VI we point out that inter-
actions between hard partons and spectators near the BDL
lead to an additional suppression of double-gap diffraction
beyond the soft-interaction RGS probability. Section VII
deals with the effect of correlations between hard and soft
interactions on the RGS probability, considering two spe-
cific mechanisms—diffractive scattering from the long-
range pion field and short-range transverse correlations
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between partons. In Sec. VIII we work out the dependence
of the exclusive diffractive cross section on the final proton
transverse momenta. We discuss which experimentally
observable features of this dependence furnish useful tests
of the diffractive reaction mechanism and how one can
extract information about the gluon GPD. In Sec. IX we
summarize our results. We comment on the implications
for the Higgs boson search and on the experimental feasi-
bility of measuring the transverse momentum dependence
of exclusive diffraction with the planned forward detectors
at the LHC.

II. BLACK-DISK LIMIT IN pp ELASTIC
SCATTERING

Information on the transverse radius of strong interac-
tions at high energies comes mostly from measurements of
the t dependence of the differential cross section for pp
and �pp elastic scattering. Combining these data with those
on the pp= �pp total cross section, and implementing theo-
retical constraints following from the unitarity of the
S-matrix, one can reconstruct the complex pp elastic
scattering amplitude, Tel�s; t�; see e.g. Refs. [19–21]. At
high energies, s� jtj � R�2

p (Rp denotes a typical proton
radius), angular momentum conservation in the center-of-
mass (CM) frame implies that the scattering amplitude is
effectively diagonal in the impact parameter of the collid-
ing pp system. Furthermore, the experimental data indi-
cate that in this region the amplitude is predominantly
diagonal in the proton helicities. It is convenient to repre-
sent the amplitude as a Fourier integral over a transverse
coordinate variable, b,

 Tel�s; t � ��2
?� �

is
4�

Z
d2be�i��?b� ��s; b�; (2)

where � is the (dimensionless) profile function. One can
then express the elastic, total, and inelastic (total minus
elastic) pp cross sections in terms of the profile function as

 

�el�s�
�tot�s�
�inel�s�

9>=>; �
Z
d2b�

8><>:
j��s;b�j2;
2 Re ��s;b�;
	1� j1� ��s;b�j2
:

(3)

The functions on the right-hand side describe the distribu-
tion of the respective cross sections over pp impact pa-
rameters, b � jbj [22]. In particular, we note that the
combination

 j1� ��s;b�j2 (4)

can be interpreted as the probability for ‘‘no inelastic
interaction’’ in a pp collision at impact parameter b; this
combination plays an important role in our calculation of
the RGS probability (see Sec. V below) [23]. A measure of
the transverse size of the proton is the logarithmic t slope
of the elastic pp cross section at t � 0,

 B �
d
dt

�
d�el=dt�t�
d�el=dt�0�

�
t�0
: (5)

At high energies, where the elastic amplitude is predomi-
nantly imaginary, and � is real, B is equal to half the
average squared impact parameter in the total pp cross
section,

 B �
hb2itot

2
�

1

2

R
d2b b22 Re ��s; b�R
d2b 2 Re ��s;b�

; (6)

which may be associated with the transverse area of the
individual protons. The data show that the slope increases
with the CM energy as

 B�s� � B�s0� � 2�0 ln�s=s0�; (7)

where �0 � 0:25 GeV�2. In the Pomeron exchange pa-
rametrization of the pp elastic amplitude this constant is
identified with the slope of the Pomeron trajectory.

In Gribov’s parton picture of high-energy hadron-hadron
interactions [8], the transverse size of the proton in pp
elastic scattering can be directly associated with the aver-
age transverse radius squared of the distribution of soft
partons mediating the soft interactions,

 B � h�2isoft: (8)

Here and in the following, we use � � j�j to denote the
transverse distance of partons from the center of the proton
and b � jbj for the impact parameter of the pp collision.
The growth of the proton’s transverse size with energy is
explained as the result of random transverse displacements
in the successive decays generating the distribution of soft
partons (Gribov diffusion). Below we shall compare this
distribution of soft partons to the distribution of hard
partons probed in hard exclusive processes (see Sec. III).

Parametrizations of the available data indicate that at
energies above the Tevatron energy,

���
s
p

*
����������������
sTevatron
p

�

2 TeV, the profile function at small impact parameters
approaches

 ��s; b� ! 1 for b < b0�s�: (9)

This corresponds to unit probability for inelastic scattering
for impact parameters b < b0�s�, cf. Eqs. (3) and (4),
similar to the scattering of a pointlike object from a black
disk of radius b0, and is referred to as the black-disk limit
[11,13,24].

The approach to the BDL in central pp scattering at high
energies is a general prediction of QCD, independent of
detailed assumptions about the dynamics. Studies of the
interaction of small-size color dipoles with hadrons, based
on QCD factorization in the leading logQ2 approximation,
show that the BDL is attained at high energies as a result of
the growth of the gluon density at small x due to
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution [24]. This result can be used to estimate the inter-
action of leading projectile partons with the small-x gluons

FRANKFURT, HYDE-WRIGHT, STRIKMAN, AND WEISS PHYSICAL REVIEW D 75, 054009 (2007)

054009-4



in the target in pp scattering; one finds that there is no
chance for the projectile wave function to remain coherent
in small impact parameter scattering at TeV energies
[11,13]. Similar reasoning allows one to predict the growth
of the size of the black region b0 with s [11,13]. As a by-
product, these arguments explain why the observed coef-
ficient in the Froissart formula for the total cross sections is
significantly smaller than that derived from the general
principles of analyticity of the amplitude in momentum
transfer and unitarity of the S-matrix [25]. We note that the
need for the approach to the BDL in high-energy scattering
at central impact parameters was understood already in the
pre-QCD period within the Pomeron calculus, where it was
noted that this phenomenon resolves the apparent contra-
diction between the formulas of the triple-Pomeron limit
and the unitarity of the S-matrix, especially in models
where the Pomeron intercept, �P�0�, exceeds unity [26].

For our studies of diffractive pp scattering it will be
useful to have a simple analytic parametrization of the pp
elastic amplitude at the LHC energy, which incorporates
the approach to the BDL at small impact parameters. The t
dependence of the pp elastic scattering cross section for
jtj & 1 GeV2 over the measured energy range is reason-
ably described by an exponential shape,

 

d�el

dt
/ exp	B�s�t
; (10)

where B�s� represents an effective slope, to be distin-
guished from the ‘‘exact’’ slope at t � 0, Eq. (5). A pa-
rametrization of the pp elastic amplitude which
reproduces this dependence is

 Tel�s; t� �
is
8�

�tot�s� exp
�
B�s�t

2

�
; (11)

corresponding to

 ��s; b� � �0�s� exp
�
�

b2

2B�s�

�
(12)

with

 �0�s� � ��s; b � 0� �
�tot�s�
4�B�s�

: (13)

Equation (11) takes into account that the amplitude at high
energies is predominantly imaginary and satisfies the opti-
cal theorem for the total cross section, �tot�s� �
�8�=s� ImTel�s; t � 0�. We may now incorporate the con-
straint of the BDL at small impact parameters by replacing

 �0 ! 1: (14)

The value of B we determine by comparing the profile
function (12) with phenomenological parametrizations of
the data, extrapolated to the LHC energy, which gives

 B � 20 GeV�2 �
���
s
p
� 14 TeV�: (15)

In particular, with B � 21:8 GeV�2 we obtain excellent

agreement with the Regge parametrization of Ref. [4].
Figure 1 shows the probability for no inelastic interaction,
j1� ��s;b�j2, Eq. (4), computed with the phenomenologi-
cal parametrization of Ref. [21] and our exponential pa-
rametrization incorporating the BDL, Eqs. (12) and (14).
One sees that the simple exponential parametrization is a
reasonable overall approximation to the phenomenological
parametrization over the b range shown in Fig. 1.

III. TRANSVERSE SPATIAL DISTRIBUTION OF
GLUONS

Information about the transverse structure of hard inter-
actions comes from studies of hard exclusive processes in
ep scattering, such as meson electroproduction or virtual
Compton scattering. Such processes probe the GPDs in the
proton, whose Fourier transform with respect to the trans-
verse momentum transfer to the proton describes the spa-
tial distribution of quarks and gluons in the transverse
plane; see Refs. [27,28] for a review. In this section we
summarize what is known about the gluon GPD at small x
from theoretical considerations and from measurements of
J= photoproduction and other processes at HERA and in
fixed-target experiments.

The gluon GPD can be formally defined as the transition
matrix element of the twist-2 QCD gluon operator between
proton states of different momenta, p and p0. Physically, it
describes the amplitude for a fast-moving proton to ‘‘emit’’
and ‘‘absorb’’ a gluon with given longitudinal momenta,
with transverse momenta (virtualities) integrated over up
to some hard scale Q2, and with a given invariant momen-
tum transfer to the proton, t � �p0 � p�2. The choice of
longitudinal momentum variables is a matter of conven-

 

 0

 0.5

 1

 0  1  2  3

|1
 -

 Γ
(s

, b
)|2

b  [fm]

Islam et al.

Exponential

FIG. 1. The probability distribution for no inelastic interaction,
j1� ��s; b�j2, Eq. (4), as a function of b � jbj, at the LHC
energy (

���
s
p
� 14 TeV). The curves are computed with different

parametrizations of the pp elastic scattering amplitude. Solid
line: parametrization of Islam et al. [21] (‘‘diffractive part’’
only). Dashed line: exponential parametrization, Eq. (12), with
�0 � 1 (BDL), cf. Eq. (14), and B � 21:8 GeV�2.
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tion. Instead of the initial and final gluon momentum
fractions (with respect to the initial proton momentum), x
and x0, we use as independent variables the initial gluon
momentum fraction x and the fractional longitudinal mo-
mentum transfer to the proton (‘‘skewness’’) [29]

 � � x� x0; (16)

and denote the gluon GPD by

 Hg�x; �; t;Q
2�: (17)

In the limit of zero momentum transfer, the gluon GPD
reduces to the usual gluon momentum density in the proton
[30]

 Hg�x; � � 0; t � 0;Q2� � xG�x;Q2�: (18)

For discussing the t dependence of the gluon GPD it is
convenient to write it in the form

 Hg�x; �; t;Q
2� � Hg�x; �; t � 0;Q2�Fg�x; �; t;Q

2�; (19)

where the function Fg is known as the ‘‘two-gluon form
factor’’ of the proton and satisfies Fg�t � 0� � 1. Note that
the two-gluon form factor still depends on x and �, i.e.,
Eq. (19) does not imply naı̈ve factorization of the t depen-
dence from that on the partonic variables.

The dependence of the gluon GPD on the QCD scale Q2

is governed by the QCD evolution equations. In applica-
tions to production of fixed-mass systems in high-energy
ep or pp collisions with M2  s (such as Higgs boson
production at the LHC) we shall be interested in the gluon
GPD in the region where

 x; x0  1; (20)

while at the same time Q2 is much larger than the typical
hadronic mass scale, Q2 � 1 GeV2. In this region the
gluon GPD can be calculated by applying QCD evolution
to a ‘‘primordial’’ distribution at a low scale Q2

0, in which
one neglects the skewness � � 0, or x � x0 (diagonal
approximation) [31,32]. QCD evolution degrades the indi-
vidual gluon momentum fractions with increasing Q2,
while their difference � � x� x0 remains fixed by kine-
matics, being equal to the longitudinal momentum transfer
to the proton; as a result, the primordial GPD at the low
scale is sampled in the region jx� x0j  x, x0, where the
diagonal approximation is justified. In the diagonal ap-
proximation, the GPD at t � 0 is completely determined
by the usual gluon density, cf. Eq. (18), leaving only the t
dependence (two-gluon form factor) and its correlation
with x up to modeling. This approximation makes for a
great simplification in applying GPDs at small x and has
been used extensively in the analysis of exclusive electro-
production processes; see Ref. [11] for a review.

For x 1, the two-gluon form factor permits a simple
interpretation in terms of a spatial distribution of gluons in
the proton. For � 1, the invariant momentum transfer is
dominated by the transverse momentum transfer between

the proton states,

 t � ��2
?; �? � p0? � p?: (21)

The two-gluon form factor can be represented as a Fourier
integral over a transverse coordinate variable, �,

 Fg�x; �; t � ��2
?;Q2� �

Z
d2� e�i��?�� Fg�x; �;�;Q2�:

(22)

For economy of notation we use the same symbol for the
two-gluon form factor and its Fourier transform, distin-
guishing the two functions by their arguments. The
�-dependent function describes the spatial distribution of
gluons in the proton in the transverse plane; see Ref. [33]
for a review. For � � 0 (i.e., x0 � x) it is positive definite
and can be interpreted probabilistically as the gluon den-
sity at transverse position � [34]; for � � 0 it describes the
nondiagonal transition matrix element of the gluon density
[35]. A measure of the gluonic transverse size of the
nucleon for given x and Q2 is the average of �2, which is
proportional to the t slope of the two-gluon form factor at
t � 0,

 h�2ig�x;Q
2� �

Z
d2��2Fg�x; � � 0;�;Q2� (23)

 � 4
@Fg
@t
�x; � � 0; t � 0;Q2�: (24)

The two-gluon form factor of the nucleon, and hence the
transverse spatial distribution of gluons, can directly be
extracted from the t dependence of the differential cross
section for hard exclusive vector meson production pro-
cesses probing the gluon GPD. QCD factorization implies
that the t dependence of the cross section resides solely in
the gluon GPD,

 

�
d�
dt

�
��p!Vp

/ F2
g�x; �; t;Q

2�; (25)

up to small higher-twist corrections related to the finite size
of the produced vector meson [11]. In particular, the t slope
at t � 0 is proportional to the proton’s average gluonic
transverse size,

 Bg �
d
dt

�
d�=dt�t�
d�=dt�0�

�
��p!Vp

t�0
�
h�2ig

2
: (26)

A crucial test of the applicability of QCD factorization is
provided by the observed convergence of the t slopes of
various gluon-dominated vector meson production pro-
cesses �J= ; �;�� at large Q2; see Ref. [11] for a detailed
discussion.

A particularly clean probe of the two-gluon form factor
is J= photoproduction, the t dependence of which has
been measured in experiments at the HERA collider (x�
10�2 � 10�4) [36,37], the FNAL fixed-target experiment
(hxi � 5� 10�2) [38], and a number of fixed-target experi-
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ments at lower energies (x� 10�1); see Refs. [39,40] for a
review of the data. This process probes the two-gluon form
factor at an effective scale Q2 � 3 GeV2. Analysis of the
data, combined with theoretical investigations, has pro-
duced a rather detailed picture of the gluonic transverse
size of the nucleon and its x dependence [11]. For x�
0:1–0:3, the gluonic transverse size suggested by the fixed-
target data is h�2ig � 0:25 fm2, close to 2=3 times the
proton’s axial charge radius, hr2iA. As x decreases from
�10�1 to �10�2, h�2ig increases by �30%. This can be
explained by the contribution of the nucleon’s pion cloud
to the gluon density at large transverse distances, ��
1=�2M��, which is dynamically suppressed for x >
M�=MN and reaches its full strength for x M�=MN
[41]. Finally, over the HERA range, x� 10�2–10�4, the
gluonic transverse size exhibits a logarithmic growth with
1=x,

 h�2ig � h�
2ig�x0� � 4�0g ln

x0

x
�x < x0 � 10�2�; (27)

with a rate �0g considerably smaller than that governing the
growth of the proton’s transverse size in pp elastic scat-
tering, which is dominated by soft interactions,

 �0g  �0: (28)

A recent analysis of the H1 data finds �0g � 0:164�
0:028�stat� � 0:030�syst� GeV�2 for J= photoproduction
and 0:019� 0:139�stat� � 0:076�syst� GeV�2 for electro-
production [36]; an analysis of ZEUS electroproduction
data quotes�0g � 0:07� 0:05�stat��0:03

�0:04�syst� GeV�2 [37],
significantly smaller than the soft value �0 � 0:25 GeV�2.
The smaller rate of growth of the nucleon’s size in hard
interactions can qualitatively be explained by the suppres-
sion of Gribov diffusion in the decay of hard (highly
virtual) partons as compared to soft partons.

A crucial observation is that the transverse area occupied
by partons with x * 10�1 is much smaller than the trans-
verse area associated with the proton in soft interactions
(see Fig. 2),

 h�2ig�x * 10�1�  h�2isoft; (29)

or

 2Bg  B: (30)

In high-energy pp collisions with hard partonic processes
one is thus dealing with a two-scale picture of the trans-
verse structure of the proton. Moreover, when considering
the production of a heavy particle with fixed mass,mH, in a
partonic process with x1;2 �mH=

���
s
p

, the soft area of the
proton increases with s faster than the hard area (which
changes as a result of the decrease of x), because �0 >�0g,
cf. Eq. (28). Thus, the difference of the two areas becomes
even more pronounced with increasing energy.

For our studies of hard processes in diffractive pp
scattering we require a parametrization of the t dependence
of the two-gluon form factor, viz. the shape of the trans-
verse spatial distribution of gluons. The x-values probed in
Higgs production at central rapidities are x� 10�2 at the
LHC energy. Taking into account the effect of DGLAP
evolution, even larger values of x are probed when parame-
trizing the two-gluon form factor at the J= production
scale, Q2 � 3 GeV2 (for a general discussion of the effect
of DGLAP evolution on the transverse spatial distribution
of gluons, see Ref. [24]). We thus need to look at the J= 
photoproduction data at x * 10�2, which are probed in
fixed-target experiments.

Theoretical arguments suggest that the two-gluon form
factor at x * 10�1 should be close to the axial form factor,
which is well described by a dipole form (we omit all
arguments except t),

 Fg�t� �
1

�1� t=m2
g�

2 ; (31)

with m2
g � 1 GeV2 [39]. The corresponding transverse

spatial distribution of gluons is given by

 Fg��� �
m2
g

2�

�mg�

2

�
K1�mg��; (32)

whereK1 is the modified Bessel function. We also consider
an exponential parametrization of the two-gluon form
factor,

 Fg�t� � exp�Bgt=2�; (33)

corresponding to

 Fg��� �
exp	��2=�2Bg�


2�Bg
: (34)

The relation between the parameters of the dipole and
exponential parametrization which would follow from
identifying h�2i � 4dFg=dt �t � 0� is Bg � 4=m2

g. Better
overall agreement between the squared form factors for
jtj< 1 GeV2 is obtained for somewhat smaller values of
Bg. Matching the squared form factors at jtj � 0:5 GeV2

we obtain

 Bg �
3:24

m2
g
; (35)

see Fig. 3. It was shown in Ref. [40] that both the dipole

 

B

Bg2

soft interactions
transverse area in

gluons with
x > 10 −1

FIG. 2. The ‘‘two-scale picture’’ of the transverse structure of
the proton in high-energy collisions.
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with m2
g � 1:1 GeV2 and the exponential with Bg �

3:0 GeV�2, as given by Eq. (35), describe well the t
dependence of the data from the FNAL E401/E458 experi-
ment at hE�i � 100 GeV in which the recoiling proton was
detected [38]. We also note that this value of Bg is con-
sistent with what one obtains from the extrapolation of the
HERA data towards larger x, using Eq. (27) with the
measured �0g. We shall use the dipole, Eqs. (31), with
m2
g � 1 GeV2 and the exponential, Eq. (33), with Bg �

3:24 GeV�2, as our standard parametrizations for calcula-
tions in the kinematics of Higgs production at the LHC
below; comparison between the two will allow us to esti-
mate the uncertainty of our numerical predictions with
respect to the shape of the two-gluon form factor.

IV. THEORY OF RAPIDITY GAP SURVIVAL

We now outline the basic steps in the calculation of the
amplitude of double-gap exclusive diffractive processes (1)
and develop the physical picture of RGS. The underlying
idea of our approach is that hard and soft interactions are
approximately independent because they happen over
widely different distance and time scales.

A. Hard scattering process

In the first step, one calculates the amplitude for double-
gap diffractive production of the high-mass system due to
hard interactions. For definiteness, we shall refer in the
following to Higgs boson production, keeping in mind that
the discussed mechanism applies to production of other
high-mass states as well (dijets, heavy quarkonia, etc.).
According to electroweak theory, the Higgs boson is pro-
duced predominantly through its coupling to gluons via a
quark loop; for a review and references see Ref. [42]. In

contrast to inclusive production, the amplitude for double-
gap diffractive production is in the lowest order in the QCD
running coupling constant �s given by the exchange of two
gluons with vacuum quantum numbers in the t-channel
(see Fig. 4). The Higgs boson is radiated from one of the
gluon lines. The role of the second exchanged gluon is to
neutralize the color charge in order to avoid gluon brems-
strahlung. However, global color neutrality alone is not
sufficient. To suppress radiation, one must require that
color be screened locally in space-time. Conversely, this
means that the selection of a diffractive process, without
accompanying radiation, guarantees some degree of local-
ization of the exchanged system.

Operationally, the localization of the exchanged two-
gluon system is ensured by Sudakov form factors, which
suppress configurations with low virtualities prone to emit
gluon bremsstrahlung. The actual calculation of the hard
scattering amplitude including Sudakov suppression is a
challenging problem, which was addressed in various ap-
proximations in Refs. [9,10]. Fortunately, for our purposes
we do not need to solve this problem at a fully quantitative
level, as only a few qualitative aspects of the hard scatter-
ing process turn out to be essential for the physics of RGS.

To discuss the hard scattering process, it is natural to
perform a Sudakov decomposition of the four-momenta,
using the initial proton momenta, p1 and p2, as basis
vectors, with 2�p1p2� � s (we neglect the proton mass).
As the transverse momenta of the final-state protons are
small compared to the Higgs mass, we can expand the final
proton four-momenta as

 p01 � �1� �1�p1 � p
0
1?; p02 � �1� �2�p2 � p

0
2?;

(36)

where �p01?p1�; �p01?p2� � 0 etc., and �1;2 parametrize the

 

p
1

k
1

k
2

p
1
’

p
2

p
2

k

’

FIG. 4. The hard scattering process in double-gap exclusive
diffractive Higgs boson production (1). Two gluons are ex-
changed between the protons. The gluon-Higgs coupling is
indicated as a local vertex. The upper and lower blobs denote
the gluon-proton scattering amplitude, which can be calculated
in terms of the gluon GPD in the proton.

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5

F
g2 (t

)

-t  [GeV2]

Dipole, mg
2 = 1 GeV2

Exp., Bg = 3.24 GeV-2

FIG. 3. Comparison of the dipole (solid line) and exponential
(dashed line) parametrizations of the two-gluon form factor with
the parameters related by Eq. (35). Shown is the squared two-
gluon form factor F2

g�t�, for both parametrizations, correspond-
ing to the t dependence of the cross section for J= photo-
production (see text for details).
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longitudinal momentum loss [cf. Eq. (16) and the footnote
before it],

 �1;2 �
mH���
s
p e�y; (37)

where y is the rapidity of the produced Higgs boson.
Assuming a Higgs mass of the order of 100–200 GeV,
the typical values of �1;2 are of the order of 10�2 for
production at central rapidities at the LHC (

���
s
p
� 14 TeV).

Consider now the two-gluon exchange process of Fig. 4
as a Feynman diagram, in which the upper and lower blobs
denote the gluon-proton scattering amplitudes, to be speci-
fied in more detail below. The four-momenta of the gluons
coupling to the Higgs we parametrize as

 k1 � x1p1 � x02p2 � k? � p01?; (38)

 k2 � x01p1 � x2p2 � k? � p
0
2?: (39)

The four-momentum of the screening gluon then follows
from four-momentum conservation,

 k � x01p1 � x
0
2p2 � k?; (40)

where

 x01 � �1 � x1; (41)

 x02 � �2 � x2: (42)

We want to identify the dominant region of integration in
the loop integral. First, analogy with inclusive production
of heavy particles at central rapidities suggests that the
momentum fractions of the gluons producing the Higgs
boson (with respect to their parent protons) are practically
the same as given by the naı̈ve parton model estimate, in
which one neglects the transverse momenta and virtualities
of the annihilating gluons,

 x1;2 �
mH���
s
p e�y: (43)

That is, the momentum fractions of the annihilating gluons
are equal to the protons’ fractional longitudinal momentum
loss, x1;2 � �1;2. Second, in the case of double-gap dif-
fractive production the Sudakov form factor associated
with the Higgs boson vertex, which accounts for the ab-
sence of gluon bremsstrahlung, restricts the (spacelike)
virtualities of the annihilating gluons and their transverse
momenta to values of the order of some ‘‘intermediate’’
hard scale,

 � k2
1;2;�k

2
? �Q

2
int; (44)

with

 m2
H=4� Q2

int � �2
QCD: (45)

This was demonstrated explicitly in Ref. [9], where the
distribution of transverse momenta in the loop integral was
studied in a model which included the LO Sudakov form

factor associated with the ggH vertex, and found to have a
saddle point at values of a few GeV2; see also
Refs. [10,43]. Expressing now the virtualities of the anni-
hilating gluons k2

1;2 in terms of the decompositions (38) and
(39), neglecting the proton transverse momenta relative to
k?, we find that Eq. (44) implies

 x01;2 �
k2

2;1 � k
2
?

x2;1s
�
Q2

int

x2;1s
�

Q2
int

mH
���
s
p  x1;2; (46)

i.e., the energy and longitudinal momentum fraction of the
screening gluon are substantially smaller than those of the
annihilating gluons. The screening gluon does not ‘‘belong
to’’ any of the two protons; its momentum is predomi-
nantly transverse, and it has spacelike virtuality,

 � k2 � �k2
? �Q

2
int: (47)

In the annihilating gluons, on the other hand, longitudinal
and transverse momenta contribute in equal amounts to the
virtuality,

 � k2
1;2 � x1;2x02;1s� k

2
? �Q

2
int: (48)

To summarize, the hard scattering process takes the form of
the exchange of two gluons with comparable virtualities
�Q2

int, and transverse momenta �Qint, between the pro-
tons. Of the two gluons, one carries substantial longitudinal
momentum fraction of the proton, �mH=

���
s
p

, and annihi-
lates with the corresponding other to make the Higgs, the
other gluon represents a ‘‘Coulomb-like’’ exchange with
small momentum fraction �Q2

int=�mH
���
s
p
�.

The important point about the two-gluon exchange pro-
cess is the appearance of the intermediate hard scale Q2

int
governing the virtualities and transverse momenta of the
exchanged gluons. This allows us to make a crucial sim-
plification in the description of the gluon-proton scattering
amplitudes, which we have not yet specified. Namely, we
argue that, in a partonic description of the proton, the
gluon-proton scattering amplitude is dominated by the
two gluons coupling to the same parton [44]. This approxi-
mation is analogous to the assumption of dominance of the
‘‘handbag graph’’ in virtual Compton scattering at large
photon virtuality Q2, which is well established and forms
the basis of QCD factorization for this process [45–49]. In
this approximation, the gluon-proton scattering amplitude,
which is predominantly imaginary at high energies, can be
calculated in terms of the generalized parton distributions
(GPDs)—here, predominantly, the gluon GPDs—in the
protons.

We do not attempt to calculate the absolute normaliza-
tion of the amplitude for double-gap hard diffractive pro-
duction through two-gluon exchange in terms of the GPDs;
doing so would require a substantially more accurate
evaluation of the two-gluon exchange graph than the quali-
tative estimates presented above. This is demonstrated by
the detailed calculations of Refs. [9,10], using unintegrated
gluon GPDs, which obtained substantially different results
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for the normalization with the naı̈ve collinear and kT
factorization approximations. Fortunately, for the theory
of RGS, the only information we require (in addition to the
qualitative properties of the hard process derived above) is
the dependence of the double-gap hard diffractive ampli-
tude on the transverse momentum transfers to the protons,
p1? and p2?. For sufficiently large scales Q2

int, this depen-
dence should be described by the GPDs, even if the gluon
momentum fractions in the hard amplitude and the virtual-
ity of the exchanges are subject to integration over a certain
range and determined only in order of magnitude. Thus, we
can state that the p1? and p2? dependence of the double-
gap hard diffractive amplitude is proportional to

 Thard / Hg�x1; �1; t1;Q2�Hg�x2; �2; t2;Q2�; (49)

where

 t1 � p0 21? < 0; t2 � p0 22? < 0 (50)

are the invariant momentum transfers to the proton. Here
the longitudinal momentum transfers �1;2 are kinemati-
cally fixed by Eq. (37), while the parton momentum frac-
tions x1;2 are determined by Eq. (43) with accuracy as
given by Eq. (46). The resolution scale Q2, at which the
GPD needs to be taken here, is parametrically of the order
Q2

int [cf. Eq. (45)], but numerically substantially larger,

 Q2 � several times Q2
int: (51)

This follows from the fact that, by convention, Q2 deter-
mines the upper limit of the transverse momenta in the
parton distribution, whileQ2

int is a measure of the dominant
(average) values in the distribution, which for a 1=k2

?

distribution is significantly lower than the upper limit.
To conclude this discussion, some comments concerning

QCD evolution and the modeling of the GPDs are in order.
First, in Higgs boson production at the LHC we are dealing
with the gluon GDP at x, �� 10�2, and x0  x, where it
can legitimately be calculated by applying QCD evolution
to a diagonal GPD at a lower scale (cf. the discussion in
Sec. III). Second, at LHC energies the typical momentum
fraction of the screening gluon reaches values x01;2 � 10�6

for Q2 � few GeV2, cf. Eq. (46). For such low values of x
the use of DGLAP evolution in principle requires justifi-
cation. However, as explained in detail in Ref. [11], for
such values of x the kinematic conditions still restrict the
actual number of radiated gluons to a few, so that NLO
DGLAP and resummed Balitsky-Fadin-Kuraev-Lipatov
evolution give similar results, see Ref. [50] for a review.
In this sense, the use of GPDs generated by DGLAP
evolution seems to be appropriate.

B. The independent interaction approximation

In the second step, we formalize the interplay of hard
and soft interactions in the amplitude of the hadronic
diffractive process, Eq. (1). To this end, we invoke the

parton picture of the proton wave function, as developed
by Gribov [8]. We consider the process (1) in the CM
frame, in which the two protons in the initial state have
longitudinal momenta�

���
s
p
=2 and zero transverse momen-

tum p1?, p2? � 0. Since mH 
���
s
p
=2, angular momen-

tum conservation implies that the reaction amplitude is
approximately diagonal in the transverse coordinates of
the colliding protons (i.e., in the impact parameter) as in
two-body elastic scattering at high energies. We thus con-
sider partonic configurations centered around the trans-
verse centers of the two protons, in which the partons
carry fractions of the longitudinal momentum of the re-
spective proton. We may regard the hard scattering process
as an operator in the basis of these partonic states, denoted
by V̂hard. Soft interactions, which build up the partonic
wave functions, are governed by a soft Hamiltonian,
Ĥsoft. While we do not know their explicit form, we can
nevertheless state some important properties of these op-
erators:

(1) V̂hard is local in time (instantaneous) on the typical
time scale of soft interactions;

(2) V̂hard is local in transverse position on the distance
scale over which the transverse spatial distribution
of partons in the protons changes due to soft
interactions;

(3) V̂hard preserves the number of partons, since cou-
pling of the exchanged gluons to the same parton
dominates in the hard regime;

(4) V̂hard preserves the helicity of the colliding partons,
because in a perturbative gauge theory the dominant
contribution to the interaction of partons over large
rapidity intervals comes from the parton helicity-
conserving component of the propagator of the ex-
changed gluon [14].

As a consequence of these properties, we conclude that the
operator of the hard reaction commutes with the
Hamiltonian of soft interactions,

 	V̂hard; Ĥsoft
 � 0: (52)

This is the mathematical statement of the independence of
hard and soft interactions in diffraction. A schematic illus-
tration of this picture is given in Fig. 5. We shall refer to
Eq. (52) and the formulas derived from it as the indepen-
dent interaction approximation.

The amplitude for the double-gap exclusive diffractive
process (1) is then determined by the matrix element

 Tdiff � hp01p
0
2jŜsoft�1; 0�V̂hardŜsoft�0;�1�jp1p2i; (53)

where

 Ŝ soft�t2; t1� � T
Z t2

t1
dt exp�itĤsoft� (54)

is the time evolution operator due to soft interactions (we
have put the time of the hard interaction at t � 0). Because

FRANKFURT, HYDE-WRIGHT, STRIKMAN, AND WEISS PHYSICAL REVIEW D 75, 054009 (2007)

054009-10



of Eq. (52), the operator V̂hard commutes with the soft time
evolution operator. Using the property

 Ŝ soft�1; 0�Ŝsoft�0;�1� � Ŝsoft�1;�1� � Ŝsoft; (55)

where Ŝsoft is the S-matrix due to soft interactions, we
obtain

 Tdiff � hp
0
1p
0
2jV̂hardŜsoftjp1p2i: (56)

Thus, the amplitude is expressed in terms of the observable
matrix elements of the soft S-matrix, and the operator
V̂hard, calculable in QCD at the partonic level.
Equation (56) is the fundamental expression for discussing
the physics of RGS within our approach.

C. Suppression of inelastic diffraction

In the next step, we evaluate the amplitude for the
double-gap exclusive diffractive process based on
Eq. (56), by inserting intermediate states (actually, states
at t � 1) between the operators. In principle, one needs to
sum over all diffractive states (elastic and inelastic) pro-
duced by the operator V̂hard. An important question is
which states can give large contributions to the matrix
element. In fact, it turns out that the different preferences
of hard and soft interactions severely restrict the range of
states which can effectively contribute.

Simple arguments show that large-mass diffractive
states should make a negligible contribution to Eq. (56).
If the two hard gluons in the hard interaction are attached to
two different partons in the proton, the inelastic states
predominantly produced are two jets and gluon brems-
strahlung. It is virtually impossible to produce such states
in soft interactions, hence they cannot contribute to
Eq. (56). This argument even applies when taking into
account the effects of QCD evolution: While ‘‘backward
evolution’’ of the hard gluon may reduce the transverse
momentum of the gluon to values of the order k? �
1 GeV, it increases the typical longitudinal momentum
of the parton to which the gluon is attached to values x�

0:1. Thus, one produces a state of large-x partons with still
sizable transverse momenta, which is again difficult to
reach through soft interactions. (Also, production of par-
tons with small kT is strongly suppressed because inter-
actions of these partons lead to disappearance of the
rapidity gap with very large probability, cf. Sec. VI.) If
the two hard gluons are attached to the same parton, the
cross section of inelastic diffraction is small for small t
because of the small overlap integral with the inelastic state
(most of the overlap is with the elastic state) [51], while for
large t one produces a single parton with transverse mo-
mentum p? �

������
�t
p

, which again is a state difficult to reach
through soft interactions. In addition, for t � 0 soft dif-
fraction at LHC energies is known to be dominated by the
spin-flip amplitude, which further suppresses the overlap
integral. Together, these arguments restrict the possible
mass range of diffractively produced states to M2

diff �
few GeV2.

For a more quantitative estimate, we suppose that the
state produced through inelastic diffraction has the form
jppi � �jpXi, where the state X is different from the
proton, and � is a small correction. We can then estimate
� from the Schwarz inequality:

 

�
2
�

��������������������������������������������������������������������
�soft�pp! Xp��hard�pp! Xp�
�soft�pp! pp��hard�pp! pp�

s
; (57)

where �hard�pp! pX� is the cross section for the produc-
tion of the state jpXi by the operator V̂hard. Analysis of the
Tevatron data (for a review, see Ref. [52]) shows that the
ratio of inelastic to elastic diffractive events decreases with
increasing energy, and that the distribution over the exci-
tation mass is / 1=M2

X. As a result, we expect that at the
LHC energy � � 2 � 10�2. Thus, the diffractively produced
state is actually the jppi state, and the contributions from
inelastic diffraction are small.

The small overlap between hard and soft diffraction also
can be understood as the result of the different impact
parameter dependence of both types of processes. Hard
diffraction occurs mostly at small impact parameters, b2 �

Bg. Soft diffraction, because of the approach to the BDL,
occurs mostly at large impact parameters, b2 � B, which,
moreover, rapidly grow with the collision energy. We note
again that the peripheral nature of soft diffraction was
established already within Reggeon field theory, where it
was found that the BDL solves the consistency problem
associated with the triple Reggeon formula [26].

The restriction to the pp intermediate state turns
Eq. (56) into a tool for quantitative evaluation of the
diffractive amplitude and the RGS probability. In particu-
lar, with the pp intermediate state we can approximate the
matrix element of the soft-interaction time evolution op-
erator by that of the full S-matrix, i.e., the pp elastic
scattering amplitude, which is known experimentally; see
Sec. II. For this approximation to be legitimate it is crucial
that scattering at small impact parameters turns out to be

 

(b)

hard

(a) soft

FIG. 5. Schematic illustration of hard and soft interactions in
the parton picture of double-gap exclusive diffractive pp scat-
tering. (a) The hard scattering process producing the large-mass
system (Higgs, dijet) is represented by a local operator in parton
degrees of freedom. (b) Hard and soft interactions are approxi-
mately independent since they proceed over widely different
time and distance scales.
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strongly suppressed due to the approach to the BDL in pp
elastic scattering, as will be seen from the results of Sec. V.
The diffractive process is thus dominated by large impact
parameters, where pp elastic scattering is dominated by
soft interactions.

In the studies of double-gap exclusive diffraction based
on the pomeron model of Ref. [4], inelastic intermediate
states were effectively included by way of a two-
component formalism (however, no explicit nondiagonal
‘‘transition GPDs’’ were introduced). We have argued here
that these contributions are strongly suppressed, because of
the small overlap of states accessible in hard and soft
interactions. We shall comment on the implications of
this for the numerical values of the RGS probability in
Sec. V B.

D. Evaluation of the diffractive amplitude

It remains to actually evaluate the matrix element (56)
with jppi intermediate states, using the specific form of the
hard scattering amplitude and the pp elastic scattering
amplitude. We insert a set of pp intermediate states in
the form

 

Z d3p001
�2��3

���
s
p

Z d3p002
�2��3

���
s
p jp001p

00
2 ihp

00
1p
00
2 j; (58)

where we have approximated the energy of the individual
protons by

���
s
p
=2. The matrix element of the operator V̂hard

between the two-proton states is, by definition, given by
[cf. Eqs. (49)]
 

hp01p
0
2jV̂hardjp

00
1p
00
2 i � 	�s; �1; �2�Fg�x1; �1; ~t1;Q2�

� Fg�x2; �2;~t2;Q2�; (59)

where

 

~t 1 � ��p
0
1? � p

00
1?�

2; (60)

 

~t 2 � ��p
0
2? � p

00
2?�

2: (61)

The factor

 	�s; �1; �2� � ChardHg�x1; �1; t1 � 0�Hg�x2; �2; t2 � 0�

(62)

represents the symbolic result for the absolute normaliza-
tion of amplitude of the hard scattering process; it contains
the amplitude of the two-gluon exchange process, Chard,
including the information about the ggH coupling given by
the electroweak theory, as well as the information about the
gluon GPD in the colliding protons at t � 0. The informa-
tion about the transverse momentum dependence of the
amplitude is contained in the two-gluon form factors, Fg,
cf. Eq. (19). Furthermore, we replace in Eq. (56)

 Ŝ soft ! Ŝ � 1� �Ŝ� 1�; (63)

and use the fact that the matrix element of the operator Ŝ�

1 is given by
 

hp001p
00
2 jŜ� 1jp1p2i � i�2��4
�4��p001 � p

00
2 � p1 � p2�

� �4��Tel�s; t�; (64)

with

 t � ��p001? � p1?�
2 � ��p002? � p2?�

2: (65)

Finally, taking into account that at high energies the
energy-conserving delta function in Eq. (64) effectively
conserves longitudinal momentum, and combining the
contributions from the two terms in Eq. (63), we obtain
 

Tdiff�p
0
1?;p

0
2?� � 	�s; ; �1; �2�

Z d2�?
�2��2

� Fg�x1; �1;~t1;Q2�Fg�x2; �2;~t2;Q2�

�

�
�2��2
�2���?� �

4�i
s
Tel�s; t�

�
; (66)

where now

 

~t 1 � ��p
0
1? ��?�2; (67)

 

~t 2 � ��p
0
2? ��?�2; (68)

 t � ��2
?: (69)

This result has a simple interpretation (see Fig. 6). The first
term in the brackets represents the amplitude of the hard
reaction alone. The second term represents the contribution
in which the hard reaction is accompanied by soft elastic
rescattering with transverse momentum transfer �?. The
total amplitude is the coherent superposition of the two
contributions. We note that the form of this result is analo-
gous to the well-known absorption corrections in Regge
phenomenology, in which an elementary Regge pole am-
plitude is modified by elastic rescattering.

It is instructive to convert the result (66) to the transverse
coordinate representation. Substituting the Fourier repre-
sentation of the gluon GPDs, Eq. (22), and the representa-
tion of the pp elastic amplitude in terms of the profile
function, Eq. (2), and using standard Fourier transform
manipulations, we obtain
 

Tdiff�p
0
1?;p

0
2?� � 	�s; �1; �2�

Z
d2b

Z
d2�1

Z
d2�2

� 
�2��b� �1 � �2�e
�i�p0

1?
�1��i�p

0
2?
�2�

� Fg�x1; �1;�1;Q2�Fg�x2; �2;�2;Q2�

� 	1� ��s;b�
: (70)

Here the scattering amplitude is represented as the coher-
ent superposition of amplitudes corresponding to pp scat-
tering at given transverse displacement (impact
parameter), b. The amplitude for the hard process is pro-
portional to the product of the transverse spatial gluon
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transition densities at positions �1;2 relative to the centers
of the respective protons, with the three transverse vectors
satisfying the triangular condition �1 � �2 � b (see
Fig. 7). The modifications due to elastic rescattering now
take the form of a multiplication of the hard scattering
amplitude with the ‘‘absorption factor,’’ 1� ��s; b�. Note
that the modulus squared of this factor can be interpreted as
the probability for ‘‘no inelastic interaction’’ in pp scat-
tering at a given impact parameter, cf. Eq. (4). This inter-
pretation will be explored further in Sec. V.

The treatment of RGS based on Eq. (56) makes no
reference to the eikonal approximation for describing the
interplay of hard and soft interactions. While the eikonal
approximation in high-energy scattering seems rather
straightforward at first sight, there are some theoretical
subtleties in this method. In particular, it is well-known
that within the Reggeon calculus the contribution of eiko-
nal diagrams is canceled completely as a consequence of
causality [14,15]; an eikonal-type structure of the ampli-
tude could emerge only from the contributions of non-
planar (Mandelstam-cross) diagrams. The same
cancellation of eikonal diagrams was recently found to
take place in perturbative QCD in amplitudes with
negative-signature exchange [53] as a result of the
Reggeon bootstrap, and for positive-signature exchange
as a result of causality and/or energy-momentum conser-
vation [54]. It has not been demonstrated so far that a
summation of Mandelstam-cross diagrams in perturbative

QCD would produce results similar to the eikonal
approximation.

Our partonic approach allows us to calculate the ampli-
tude for double-gap exclusive diffraction in a model-
independent way in terms of the gluon GPD and the
phenomenological pp elastic scattering amplitude; see
Eqs. (66)–(70). In Ref. [5] such processes were studied
using a model of elastic pp scattering which included the
enhanced eikonal series of single Pomeron exchanges and
the triple-Pomeron vertex to describe the soft spectator
interactions. The expression for the amplitude in the case
of a single Pomeron exchange in that model (and without
inelastic intermediate states) would formally coincide with
our expressions (66)–(70). Whether the same is true for the
full amplitude in that model is less clear; cf. the discussion
of the numerical results in Sec. V B below.

V. THE RAPIDITY GAP SURVIVAL PROBABILITY

We now use our general result for the amplitude of
double-gap exclusive diffractive processes in the indepen-
dent interaction approximation, Eq. (70), to calculate the
RGS probability for such processes. At this level of ap-
proximation, we shall recover a simple geometric expres-
sion for the RGS probability, which permits a probabilistic
interpretation and was heuristically derived in Refs. [11–
13]. We discuss the impact parameter dependence of RGS
and stress the crucial role of the BDL in stabilizing the
numerical estimates and ensuring a model-independent
result.

A. Impact parameter representation

In order to compute the cross section for double-gap
exclusive diffractive production of a given state at fixed
rapidity, we integrate the modulus squared of the amplitude
(70) over the final proton transverse momenta. By standard
Fourier transform manipulations we obtain

 

�diff � �kinematic factors�

�
Z d2p01?
�2��2

Z d2p02?
�2��2

jTdiff�p
0
1?;p

0
2?�j

2 (71)

 

ρ2
ρ1

b

process
Hard

FIG. 7. Illustration of the transverse coordinate representation
of the diffractive amplitude, Eq. (70). The hard scattering
process is local in transverse space. The centers of the colliding
protons are displaced by the distance b � jbj, and �1;2 � j�1;2j

are the distances from the centers to the point of the hard
process.
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FIG. 6. The amplitude for double-gap exclusive hard diffraction in momentum representation, Eqs. (66)–(69). The first term is the
amplitude of the hard reaction alone, the second term the correction due to soft elastic rescattering. Only the transverse momenta of the
protons are indicated; the momentum transfer due to soft elastic scattering is �?.
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� �const� �
Z
d2�1

Z
d2�2F

2
g��1�F

2
g��2�

� j1� ���2 � �1�j
2 (72)

(for brevity we suppress all arguments except the trans-
verse coordinates in Fg and �). The RGS probability due to
soft interactions [7], by definition, is given by the ratio of
the cross section of the physical double-gap diffractive
process (72) to the cross section of the hypothetical process
with the same hard scattering subprocess but with no soft
spectator interactions, corresponding to expression (72)
with � � 0,

 S2 �
�diff�physical�

�diff�no soft interactions�
: (73)

We can cast this ratio in a simple form. We rewrite the
convolution integral in Eq. (72) by inserting unity in the
form (cf. Fig. 7)

 

Z
d2b
�2��b� �1 � �2�; (74)

and introduce a normalized impact parameter distribution,

 Phard�b� �
Z
d2�1

Z
d2�2 
�2��b� �1 � �2�

�
F2
g��1�

	
R
d2�01F

2
g��

0
1�


F2
g��2�

	
R
d2�02F

2
g��

0
2�

; (75)

which satisfies

 

Z
d2bPhard�b� � 1: (76)

In terms of this distribution the RGS probability (73) is
expressed as

 S2 �
Z
d2bPhard�b� j1� ��b�j2: (77)

This result agrees with the expression for the RGS proba-
bility derived heuristically in Refs. [11–13,55]. For the
comparison of our result with that obtained with the pom-
eron model of Ref. [5], we refer to Sec. V B below; see also
the comments at the end of Sec. IV D.

Expression (77) for the RGS probability allows for a
simple probabilistic interpretation. Consider a pp collision
at given impact parameter, b � jbj. Since the hard two-
gluon exchange process is effectively local in transverse
space, the probability for it to happen is proportional to the
product of the squared transverse spatial distributions of
gluons in the two colliding protons, integrated over the
transverse plane, as given by the numerator of Eq. (75).
Consider now a hypothetical sample of pp events with the
two-gluon induced hard scattering process, but an other-
wise arbitrary (nondiffractive) final state. By the laws of
probability, the distribution of impact parameters in this
sample is given by the normalized distribution Phard�b�,

Eq. (75). A diffractive event results if the spectator systems
of the two protons do not interact inelastically. The proba-
bility for this to happen in a pp collision at fixed b is given
by j1� ��b�j2, cf. Eq. (4), in analogy to the well-known
formula for inelastic scattering in nonrelativistic theory
[56]. The RGS probability, which is defined as the fraction
of diffractive events in the sample of all events containing
the same hard scattering process, is then given by the
average of this function with the normalized b distribution
in the sample, Eq. (77).

It needs to be stressed that the impact parameter of a
single pp event is not observable, being a microscopic
quantity beyond the reach of any experimental apparatus.
In the above arguments, the impact parameter plays the
role of a randomly chosen external parameter. However,
using information about the transverse spatial distribution
of gluons in the proton from independent measurements,
we can calculate the probability for certain hard processes
in a pp collision as a function of the impact parameter, and
thus infer the distribution of impact parameters in a sample
of events with the same hard process. This logic was used
in Ref. [24] to devise a trigger on central collisions in
inclusive pp scattering by requiring hard dijet production
at small rapidities. Here we use the same strategy to model
soft spectator interactions in double-gap exclusive diffrac-
tive pp scattering.

The integrand in Eq. (77) describes the effective distri-
bution of impact parameters in a sample of double-gap
diffractive events and reflects the interplay of hard and soft
interactions at the cross section level. The probability for
the hard process, Phard�b�, favors small impact parameters,
which maximize the overlap of the large-x gluon distribu-
tions in the protons, and vanishes for b2 � 1=Bg. The
probability for no inelastic soft interactions, j1� ��b�j2,
favors large impact parameters, which increase the chances
for the protons to stay intact, and vanishes for b2  1=B
where pp scattering approaches the BDL. The product of
the two probabilities is suppressed both at small and at
large b and thus concentrated at intermediate values of b.

This point can be illustrated nicely with the Gaussian
parametrizations of the transverse spatial distribution of
gluons, Eq. (34), and the pp elastic profile function,
Eq. (12). With the Gaussian form (34), the convolution
integral in Eq. (75) can be computed analytically,

 Phard�b� �
exp	�b2=�2Bg�


2�Bg
: (78)

This function is shown by the dashed line in Fig. 8. The
integrand of Eq. (77) is given by
 

Phard�b� j1� ��b�j2 �
1

2�Bg
exp

�
�
b2

2Bg

�

�

�
1� exp

�
�
b2

2B

��
2
; (79)
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and is shown by the solid line in Fig. 8. It is suppressed both
for b2  1=B (because of the ‘‘blackness’’ of the pp
amplitude) and for b2 � 1=Bg (because of the vanishing
of the overlap of the two gluon distributions) and thus
concentrated at intermediate values of b. The maximum
of 2�b times the combined distribution is at

 b2 � 5Bg �Bg  B�: (80)

We see that within our two-scale picture of the transverse
structure of hard and soft interactions, cf. Fig. 2, the
dominant impact parameters in double-gap exclusive dif-
fractive processes are determined by Bg—the smaller of
the two areas—but may be numerically large because of a
large numerical factor. The RGS probability, Eq. (77), is
given by the integral of 2�b times Eq. (79) (i.e., the area
under the solid curve in Fig. 8) and can be computed
analytically,

 S2 �
2B2

g

�B� Bg��B� 2Bg�
�

2B2
g

B2 �Bg  B�: (81)

The gap survival probability is of the order �Bg=B�2, i.e., it
is proportional to the square of the ratio of the transverse
area occupied by hard gluons to the area corresponding to
soft interactions. Thus, our two-scale picture offers a para-
metric argument for the smallness of the rapidity gap
survival probability.

The approach to the BDL in pp scattering at high
energies, i.e., the fact that ��b� ! 1 at small b, plays a
crucial role in determining the numerical value of the RGS
probability and ensuring stability of our calculation with
respect to variation of the parameters. A small deviation of
the profile function from unity at b � 0, of the form ��b �
0� � 1� � with � 1, would change the result for the
gap survival probability to

 S2 ! S2jBDL � �
2 (82)

[here we have used that Bg  B, and that the integral of
Phard is unity, cf. Eq. (76)]. The approach to the BDL
effectively eliminates ��b � 0� as a parameter in our cal-
culation. We stress again that the experimental data as well
as theoretical arguments indicate that the BDL is indeed
reached in pp scattering at small impact parameters at the
LHC energy.

B. Numerical estimates

For a numerical estimate of the gap survival probability
we evaluate Eq. (77) with the dipole parametrization of the
two-gluon form factor, Eq. (31), and the parametrization of
the pp elastic amplitude of Ref. [21]. For Higgs production
at the LHC (

���
s
p
� 14 TeV) at central rapidities the mo-

mentum fractions of the annihilating gluons are x1;2 �
10�2 (at a scale Q2  m2

H). For such values of x in
principle the contributions of the nucleon’s pion cloud to
the gluon density at transverse distances �� 1=�2M��
need to be taken into account; see Sec. III. As we shall
explain below, these contributions to the gluon density
involve correlations in the nucleon wave function, which
effectively reduce their contribution to RGS, and should
not be included in the estimate based on Eq. (77). We
therefore use in our estimate at the LHC energy the simple
dipole form factor with m2

g � 1 GeV2, which does not
include the pion cloud contribution. With this choice of
parameters Eq. (77) gives for the RGS probability for
Higgs production at the LHC

 S2 � 0:027: (83)

The energy dependence of the RGS probability is shown in
Fig. 9, for various values of the mass parameter of the two-
gluon form factor, m2

g. At the Tevatron energy (
���
s
p
�

2 TeV), the gluon momentum fractions x1;2 are of the order
�10�1, for which the pion cloud contributions to the gluon
density are naturally absent. While a mass parameter m2

g �

1 GeV2 is still reasonable in this situation, even higher
values m2

g might be relevant in this case. Taking into
account this effective change of m2

g with s via the x1 and
x2 dependence, the actual variation of the RGS probability
between the LHC and the Tevatron energies is less pro-
nounced than it appears from the fixed-m2

g curves in Fig. 9.
Figure 10 (solid line) shows the dependence of the RGS

probability at the LHC energy on the mass parameter in the
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FIG. 8. The integrand (impact parameter distribution) in the
RGS probability, Eq. (77), for Higgs boson production at the
LHC energy. Dashed line: b distribution of the hard two-gluon
exchange, Phard�b�, Eq. (75), evaluated with the exponential
parametrization of the two-gluon form factor, Eq. (33) with
Bg � 3:24 GeV�2. Solid line: The product Phard�b�j1� ��b�j2,
evaluated with the exponential parametrization, Eq. (12), with
B � 21:8 GeV�2. The vanishing of j1� ��b�j2, at small b,
cf. Fig. 1, strongly suppresses contributions from small impact
parameters. Note that the plot shows 2�b times the functions of
impact parameter; the small-b part of the dashed curve [distri-
bution Phard�b�] would be close to the left boundary of the plot
and was omitted for better legibility. The RGS probability, S2, is
given by the area under the solid curve.
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dipole parametrization of the two-gluon form factor, m2
g,

Eq. (31). The value of S2 strongly increases with decreas-
ing m2

g, i.e., with increasing radius of the transverse spatial
distribution of gluons, similar to what was found with the
simple exponential parametrizations, Eq. (81). To illustrate
the sensitivity of our numerical predictions to the shape of
the two-gluon form factor, we also show the results for S2

obtained when replacing the dipole form factor by the

exponential, Eq. (33), with Bg � 3:24=m2
g, cf. Eq. (35)

(Fig. 10, dashed line). One sees that the numerical values
are rather different, in spite of the apparent similarity of the
two form factors over a wide range, jtj & 1 GeV2

(cf. Fig. 3). Comparing the two curves of Fig. 10, we
estimate the uncertainty of our numerical prediction for
the RGS probability due to the uncertainty of the shape of
the two-gluon form factor to be at least �30%.

In a similar way, we can estimate the uncertainty of the
RGS probability due to the uncertainty of the profile of the
pp elastic amplitude. Comparing the numerical values
obtained from Eq. (77) with the parametrization of
Ref. [21] and with the simple exponential parametrization,
Eqs. (11) and (12), for the same two-gluon form factor, we
again find variations of the order of �30%.

The relatively high sensitivity of the numerical estimates
to the shape of the two-gluon form factor and the profile
function of the pp elastic amplitude can be understood as a
result of the peculiar interplay of hard and soft interactions
in Eq. (77). The different impact parameter dependence of
hard and soft interactions (cf. Fig. 8 and the discussion
above) essentially eliminates contributions from the re-
gions corresponding to the ‘‘bulk’’ of the individual dis-
tributions, Phard�b� and j1� ��b�j2, allowing for
significant strength only in an intermediate region of im-
pact parameters, where there is considerable sensitivity to
the shape of the distributions. This seems to be a principal
feature of estimates of the RGS probability based on
Eq. (77).

Detailed numerical studies of the RGS probability were
made within the eikonalized Pomeron model for soft in-
teractions, see Ref. [4] for a summary. We would like to
comment on these estimates from the perspective of our
approach. As we already noted, the approach of Ref. [4]
includes contributions from inelastic intermediate states
(albeit without introducing nondiagonal transition GPDs).
We have argued that within the independent interaction
approximation these contributions are strongly suppressed
and should not be included, see Sec. IV C. Nevertheless,
the numerical result for the RGS probability in Higgs
boson production in double-gap diffraction at the LHC
quoted in Ref. [5], S2 � 0:023 [57], is rather similar to
our estimate (83). Note that Ref. [5] ascribes an uncertainty
of �50% to this value; we have estimated a similar uncer-
tainty for our result due to the combined uncertainties in
the profile function and the two-gluon form factor (see
above). It is interesting to ask why the results are so similar
when the two approaches differ in their treatment of in-
elastic diffraction. In order to clarify this question, we have
evaluated our expression for the RGS probability, Eq. (77),
with the profile function of the pp elastic amplitude ob-
tained within the model of Ref. [4], which was kindly
provided to us by M. Ryskin; we emphasize that this is
not the same as evaluating the expression for the RGS
probability given in Ref. [4]. Using the exponential form
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FIG. 10. Dependence of the RGS probability for double-gap
exclusive diffractive Higgs production at the LHC, Eq. (77), on
the mass parameter in the dipole parametrization of the two-
gluon form factor, m2

g, Eq. (31). Also shown are the results
obtained with the exponential parameterization, Eq. (33), with
Bg � 3:24=m2

g, cf. Eq. (35) and Fig. 3. The profile function of
the pp elastic amplitude in both cases is the one of Ref. [21].
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two-gluon form factor (31), for different values of the mass
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boson production at the LHC at central rapidities. The profile
function of the pp elastic amplitude was taken from Ref. [21]
(cf. Fig. 1).
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of the two-gluon form factor (33) with parameters Bg �
�4; 5:5; 10:1� GeV�2 we obtain in this way S2 �
�0:042; 0:069; 0:157�, which should be compared to the
results quoted in Ref. [4], S2 � �0:02; 0:04; 0:11�. One
sees that our Eq. (77) gives systematically larger values
than the approach of Ref. [4] for the same profile function
and the same two-gluon form factor. This difference should
be attributed to the effect of inelastic diffraction. What is
then quoted as the final estimate of S2 depends on the
preferred value of Bg. The RGS probability strongly de-
creases with Bg, cf. Eq. (81) and Fig. 10. For Higgs
production at the LHC we use a value of Bg �
3:24 GeV�2 (corresponding to a mass parameter in the
dipole parametrization of m2

g � 1 GeV2), which is based
on analysis of the J= photoproduction data over a wide
range of energies and takes into account the effects of QCD
evolution (cf. Sec. III). With this value we obtain S2 �
0:030 for the exponential two-gluon form factor and the
profile function of Ref. [4]. This value of Bg is lower than
the range of values considered in Ref. [4] (our Bg � 2b in
the notation of that paper). The value of Bg for Higgs
production at the LHC taken in Ref. [5] is Bg �
4 GeV�2, which results in S2 � 0:02 in their model. One
sees that the different values of Bg partly compensate the
differences due to the treatment of inelastic diffraction in
the two approaches. We thus conclude that the similarity of
the final numerical estimate of Ref. [5] with our results is
somewhat accidental. In any case, the differences between
the numerical results of both approaches are within the
estimated uncertainties.

Potentially more important than the uncertainties of our
calculation of the RGS probability within the independent
interaction approximation are the effects of hard interac-
tions near the BDL, and of possible correlations between
hard and soft interactions. These effects can naturally be
incorporated into our partonic picture and further decrease
the RGS probability compared to the independent interac-
tion approximation (see Secs. VI and VII).

VI. HARD INTERACTIONS IN THE BLACK-DISK
REGIME

A general feature of high-energy scattering is that the
rise of the gluon density at small x leads to a fast increase
of the amplitudes of hard processes with energy, eventually
causing them to reach the maximum strength allowed by
unitarity. Studies based on the dipole picture have shown
that in central pp collisions at LHC energies the interac-
tion of large-x partons in one proton with the small-x
gluons in the other proton are close to the BDL up to
transverse momenta of k1? � several GeV [11,24]. In pp
elastic scattering this effect explains the observed black-
ness of the pp elastic amplitude at central impact parame-
ters (see Sec. II) [13]. In diffractive scattering, the
approach to the BDL in hard interactions of large-x partons

leads to a further reduction of the RGS probability relative
to the estimates based on the independent interaction ap-
proximation (see Sec. V). This can happen in a number of
ways:

(a) interaction of the ‘‘parent’’ partons of the gluon
attached to the Higgs with the small-x gluon field
in the other proton;

(b) interaction of the hard gluons attached to the Higgs
boson vertex with the small-x gluon field in the other
proton;

(c) interactions between different partons in the ladder
producing the gluons attached to the Higgs, which
may approach the BDL because of the local en-
hancement of the gluon density caused by the hard
process.

A schematic illustration of the different mechanisms is
given in Fig. 11. Since the BDL corresponds to unit proba-
bility of inelastic interactions, any such interaction would
tend to destroy the rapidity gaps and result in a decrease of
the RGS probability. These corrections have not been
considered in previous treatments of RGS in Refs. [5,9,10].

It is obvious that the interaction effects of Fig. 11 are not
contained in the GPDs of the colliding protons, as they
involve interactions with gluons in the respective other
proton. They are also not contained in the RGS probability
due to soft spectator interactions, as they specifically in-
volve the gluons attached to the Higgs boson vertex or their
immediate parents in the partonic ladder and make no
reference to spectator interactions. The effects described
here represent genuine corrections beyond the independent
interaction approximation. In order to evaluate these ef-
fects one needs to follow in detail the space-time evolution
of the production of small-x, large-virtuality partons, and
must not restrict the discussion to the GPDs in the individ-
ual protons.

A quantitative treatment of the interaction effects de-
scribed here is beyond the scope of the present paper.
However, in view of their potential importance we would

 ...
...

...

...
...

(c)

...
...

(b)(a)

FIG. 11. Modifications of the amplitude for double-gap dif-
fraction resulting from hard interactions near the BDL.
(a) Absorption of parent partons of the gluon attached to the
Higgs. The crosses denote black interactions with the small-x
gluons in the other proton. (b) Absorption of the hard gluons
attached to the Higgs. (c) Absorption due to local interactions
within the partonic ladder. Shown is only the generic structure of
the partonic ladders; the dominant contribution comes from
gluons.
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like to make a rough estimate of the magnitude of the
additional reduction of the RGS probability. For the case
of interaction of the active gluons or their parents with
small-x gluons in the other proton [Fig. 11(a) and 11(b)]
this can be done on the basis of the results of numerical
studies of scattering in the BDL regime of Refs. [11,24]. In
Higgs production at the LHC, the gluons attached to the
Higgs boson vertex have momentum fractions x1;2 � 10�2,
and for their transverse momenta we can assume a charac-
teristic value of k? � 2 GeV, as suggested by the estimates
of Refs. [9,10] (see the discussion in Sec. IVA). The
parents of these partons in the ladder then have transverse
momenta k? � 1 GeV and momentum fractions of the
order x� 10�1; the invariant energy for their interaction
with the other proton is ŝ � xs� few� 107 GeV at the
LHC. According to Fig. 8, the typical impact pp parame-
ters at which the diffractive process happens are around
b � 0:8 fm, implying that in the hard process the partons
traverse the other proton on average at transverse distances
�1;2 � 0:4 fm from the center. Following Refs. [11,24]
(see, in particular, Fig. 13 of Ref. [11]), under these con-
ditions the interaction of the parent partons with the
small-x gluons in the other proton is deep inside the BDL
regime, making it impossible for such a parton to survive
and recombine with its children to produce an exclusive
final state. This suggests that exclusive double-gap diffrac-
tion is pushed to even larger impact parameters than those
estimated on grounds of the soft-interaction RGS proba-
bility. Since scattering at the previously dominant impact
parameters, b � 0:8 fm, seems to be suppressed strongly
by this kind of absorption, a conservative estimate would
be that the RGS probability is reduced at least by a factor of
2 compared to the independent interaction approximation.
(In fact, the strong suppression extends at least up to b &

1 fm, which corresponds to 2=3 of the integral representing
the RGS probability, so the reduction may be much more
substantial than this conservative estimate.) A similar,
albeit weaker, suppression results from absorption of the
active partons themselves [58].

The results of the studies of Refs. [11,24] indicate that
the absorption corrections due to interactions of partons
with the other proton near the BDL should be marginal at
the Tevatron energy (

���
s
p
� 2 TeV), but should become

significant at the LHC energy (
���
s
p
� 14 TeV). This needs

to be taken into account when extrapolating estimates of
the RGS probability to higher energies.

A closely related mechanism which can lead to addi-
tional suppression of the RGS probability is absorption of
partons by interactions with other partons in the ladder [see
Fig. 11(c)]. In this case the high gluon density is generated
by the hard process itself; i.e., by the need to produce two
gluons of significant virtuality. Diagrammatically, such
corrections correspond to the familiar attenuation of the
hard gluon exchange diagram for Higgs production, but by
a two-gluon ladder [see Fig. 11(c)]. Here the two-gluon

ladder is attached to the partons which emitted the gluons
involved in the Higgs production. Actually, in order to
regularize the infrared divergences present in the two-
gluon ladder we may consider instead the amplitude for
the scattering of two colorless dipoles, in which the typical
virtuality of the ‘‘constituents’’ is k2

?; a second parton with
such virtuality is anyway present as a result of QCD
evolution. The amplitude of the additional interaction is
then suppressed relative to the original hard amplitude by a
factor �2

s�k
2
?=

~k2
?��x0=x�

�, where ~k? is the characteristic
gluon transverse momentum in the absorptive ladder. The
characteristic ~k2

? increases with energy, and � � 0:2–0:25
at Q2 � 4 GeV2 [59,60]. Ultimately, the amplitude of the
additional interaction would thus reach a strength compa-
rable to the maximal one (BDL), resulting in complete
suppression of RGS.

We note that another perturbative screening correction
to the hard process, due to diffraction into high-mass states
(with the mass increasing with the collision energy) was
considered in Ref. [61]; see also Ref. [62]. These correc-
tions lead to a complementary suppression of the ampli-
tude for exclusive double-gap diffraction.

To summarize, our arguments indicate that absorption
corrections caused by hard interactions near the BDL may
result in a significant suppression of the RGS probability
compared to the independent interaction approximation. A
quantitative investigation of these effects is clearly of great
importance for the Higgs boson search and other diffrac-
tion studies at the LHC.

VII. CORRELATIONS BETWEEN HARD AND SOFT
INTERACTIONS

In our treatment of RGS in Sec. IV B we have not taken
into account effects due to correlations between partons in
the wave functions of the colliding protons. Generally
speaking, in the presence of such correlations the selection
of particular configurations by the hard scattering process
changes soft interactions as compared to ‘‘average’’ con-
figurations. The neglect of this change is basic to the
approximation (52), in which hard and soft interactions
are assumed to commute also with respect to transverse
degrees of freedom. A consistent treatment of correlation
effects requires a much more detailed description of hard
and soft interactions and the parton-hadron interface than
the one given in Sec. IV. Here we would like to discuss this
problem at the qualitative level, preparing the ground for a
future in-depth investigation.

A. The deuteron example

As a pedagogical example illustrating the effect of cor-
relations on the RGS probability, let us consider double-
gap diffractive proton-deuteron (pd) scattering—possibly
including the quasielastic channel—within the framework
of Eq. (77). The profile function for pd elastic scattering is
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significantly smaller than that for pp scattering even for
energies at which pp scattering is close to the black-disk
limit,

 �dp  �pp & 1: (84)

This follows from Eq. (3) when noting that the dp total
cross section is approximately equal to twice the pp cross
section, while the spatial size of the deuteron is much
larger than the proton radius, and can be understood simply
as the result of a ‘‘dilution’’ of the blackness of the indi-
vidual protons due to their transverse motion in the deu-
teron bound state. At the same time, the transverse spatial
distribution of gluons is now characterized by the trans-
verse size of the deuteron. Because of Eq. (84), the factor
j1� �dpj2 in Eq. (77) is always of order unity, and no
significant suppression takes place as it does in pp scat-
tering. Thus, one would conclude that the RGS probability
is much larger in dp than in pp scattering, which is clearly
nonsensical. The paradox is resolved by noting that hard
and soft interactions in diffractive pd scattering are highly
correlated. By considering events with a hard process, one
is effectively selecting configurations in which the projec-
tile proton scatters from one of the nucleons. Soft inter-
actions in these configurations are significantly larger than
in pd scattering in average configurations, in which there is
a substantial chance of the projectile ‘‘missing’’ the nucle-
ons in the deuteron [63].

The deuteron example shows that transverse correlations
in the wave functions can qualitatively change the picture
of RGS. In particular, positive spatial correlations between
hard partons and the opacity for soft interactions decrease
the RGS probability compared to the uncorrelated estimate
based on Eq. (77). In connection with pp scattering,
Eq. (1), we now discuss the effects of two types of trans-
verse correlations: (a) long-range correlations due to scat-
tering from the proton’s long-distance pion field (‘‘pion
cloud’’), and (b) short-range correlations related to parton
clustering in ‘‘constituent quarks.’’

B. Long-range correlations from the pion cloud

A distinctive contribution to diffractive pp scattering at
small p01? results from the process in which a soft pion,
emitted and absorbed by proton 1, scatters diffractively
from proton 2. This contribution could properly be calcu-
lated using the known pion-nucleon coupling, and applying
Eqs. (66)–(69) to the �p diffractive amplitude, with the
two-gluon form factor in the pion and the profile function
of �p elastic scattering. It is generally small, for two
reasons. First, the coupling of the soft pion to the nucleon
is small because it is the Goldstone boson of spontaneously
broken chiral symmetry. Second, softness of the pion
implies that its longitudinal momentum fraction in the
proton be small, y & m�=mp. In Higgs production at the
LHC, where x1;2 � 10�2, this puts the momentum fraction
of the gluons in the pion at relatively large values, z�

x1;2=y� 10�1, where the gluon distribution is not en-
hanced by DGLAP evolution.

In the partonic picture, the pion cloud contribution
represents the result of specific correlations between hard
and soft partons in the proton wave function. This obser-
vation has an interesting consequence for the estimate of
the RGS probability for pp diffractive scattering based on
Eq. (77). Namely, the gluon distribution in the proton
receives a contribution from the pion cloud at transverse
distances �� 1=�2m�� and momentum fractions x &

m�=mN [41]. Including this contribution in Eq. (77) would
be inconsistent, since a hard process involving these gluons
in the pion cloud should be accompanied by a very specific
modification of the soft interactions, which is not ac-
counted for in Eq. (77). For this reason, we have not
included an explicit pion cloud contribution in the two-
gluon form factor parametrization used in our estimate
leading to the value (83). More precisely, if we knew the
‘‘physical’’ gluon GPD, which by definition includes the
pion cloud contribution, we would need to remove this
contribution before using the GPD in Eq. (77), and thus
obtain a lower value for the RGS probability. This is just
another example of the general rule that correlations lower
the RGS probability compared to the independent interac-
tion approximation, Eq. (77).

To estimate the correction resulting from the removal of
the pion cloud contribution from the gluon GPD, we evalu-
ate Eq. (77) with a ‘‘two-component’’ parametrization of
the two-gluon form factor (viz. the transverse spatial dis-
tribution of gluons) including the pion cloud. We write

 Fg��� � N	Fbulk��� � Fcloud���
; (85)

where N is a factor which ensures overall normalization toR
d2�Fg��� � 1. The bulk contribution to the two-gluon

form factor we parametrize by the dipole form factor with
m2
g � 1 GeV2, Eq. (31), the ‘‘cloud’’ contribution as

 Fcloud��� � Ccloud
�2

�2 � �2
0

e�2m��

2m��
: (86)

This form is essentially the asymptotic form of the gluon
density at � * 1=�2m�� for x m�=mN (‘‘Yukawa tail’’)
[41], regularized at small � such as to avoid a large con-
tribution in the bulk region; the parameter �2

0 is chosen of
the order h�2ig;bulk � 8=m2

g � 0:3 fm2. The coefficient
Ccloud we determine such that the inclusion of the cloud
contribution increases the overall gluonic transverse size of
the proton by 30%, which is the value found in the calcu-
lation of Ref. [41] (based on the phenomenological gluon
distribution in the pion) and supported by the J= photo-
production data; see Sec. III. Figure 12 shows the trans-
verse spatial distributions for ‘‘bulk only’’ and
‘‘bulk� cloud,’’ multiplied by 2��3, the integral of which
determines h�2ig. Figure 13 shows the impact parameter
distributions in the RGS probability (cf. Fig. 8) obtained in
the two cases. One sees that removal of the pion cloud
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contribution indeed reduces the RGS probability. The nu-
merical effect turns out to be rather small,

 

S2�bulk only�
S2�bulk� cloud�

� 0:94: (87)

This can be explained by the fact that the pion cloud
contribution to the gluon density is noticeable compared
to the bulk only at transverse distances �� 1=�2m�� �
0:7 fm, while the RGS integral is dominated by rather short
distances, �eff � beff=2� 0:4 fm, cf. Figs. 7 and 8.

C. Short-range correlations between partons

Corrections to the rapidity gap survival probability as
given by Eq. (77) can also come from transverse short-
distance correlations in the proton wave function
(correlation length proton size). The Tevatron CDF
data on �pp collisions with multiple hard processes (three
jet plus photon production) [16] indicate the presence of
significant correlations between the transverse positions of
hard partons over distances r� 0:3 fm [12]. Given one
hard parton with x * 0:05 at a certain transverse position,
it is much more likely to find in the proton wave function a
second hard parton x * 0:05 within a distance �r than
elsewhere in the transverse plane. As a result, in pp events
with (at least) one hard process the probability for a second
hard interaction is substantially larger (by a factor of �2)
than it would be without correlations. One may also sup-
pose that the local cross section density (opacity) for soft
inelastic interactions is higher near the position of a hard
parton than elsewhere. Such correlations would result in a
higher probability for inelastic interactions in pp events
with a hard process (such as the hard two-gluon exchange
in double-gap diffractive production) as compared to ge-
neric pp collisions, and would thus decrease the RGS
probability compared to Eq. (77).

The corrections to Eq. (77) due to short-distance corre-
lations can be viewed as an effective reduction of the size
of the diffractively scattering system, from the proton
radius to the size of the transverse correlation, r. The
corrections could be particularly large in the situation
when the correlated areas are ‘‘black spots,’’ while the
proton overall is still ‘‘gray’’ because of the dilution by
the transverse motion. This situation would in a sense
correspond to the above example of the deuteron, with
the proton now playing the role of the deuteron. A quanti-
tative description of these effects would require detailed
modeling of the correlation between hard partons and the
opacity for soft inelastic interactions, including an analysis
of pp elastic scattering allowing local fluctuations in
opacity, which are outside of the scope of the present paper.

A model of the proton accounting for short-distance
correlations between partons is the so-called chiral
quark-soliton model [64], which describes the proton as a
system of constituent quarks bound by a classical pion
field, see Ref. [65] for a review. This model implements
the short-distance scale related to the spontaneous breaking
of chiral symmetry, which appears here as the ‘‘size’’ of the
constituent quark, r� 0:3 fm (in the Euclidean formula-
tion of QCD this scale can be associated with the average
instanton size in the vacuum). This model provides a
consistent description of the twist-2 quark and antiquark
distributions in the nucleon at the scale �� r�1 �
600 MeV [66]. It also suggests that the gluons at this scale
are ‘‘packaged’’ inside the constituent quarks and anti-
quarks [65]. Assuming perturbative QCD evolution to be
applicable starting from this scale one would thus expect
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significant correlations between the positions of hard
quarks and gluons and the opacity for soft interactions
over a transverse size r� 0:3 fm. Incorporating these cor-
relations into the description of the BDL in high-energy pp
scattering and the theory of RGS in diffractive processes is
an important problem for future studies.

To summarize, the dynamical mechanisms which we
have discussed here (and indeed all mechanism which we
are aware of) give rise to positive correlations between the
transverse position of hard partons and the opacity for
inelastic interactions. We can thus say with some confi-
dence that estimates based on the independent interaction
approximation, Eq. (77), represent an upper bound on the
RGS probability.

VIII. TRANSVERSE MOMENTUM DEPENDENCE

The interplay of hard and soft interactions in exclusive
double-gap diffraction not only causes the suppression of
the integrated cross section summarized in the RGS proba-
bility, but also gives rise to a distinctive dependence of the
cross section on the final proton transverse momenta. By
observing this ‘‘diffraction pattern’’ one can perform de-
tailed tests of the diffractive reaction mechanism, and even
extract information about the two-gluon form factors of the
colliding protons. The transverse momentum dependence
also contains information about the quantum numbers
(parity) of the produced system [5]. We consider here
production of a 0� system, for which the hard scattering
amplitude depends on the proton transverse momenta only
through jp01?j and jp02?j, and the diffractive amplitude is
given by Eq. (66); we comment on production of 0�

systems at the end of this section.
For a quick orientation over the transverse momentum

dependence, we evaluate the amplitude with the exponen-
tial parametrizations of the two-gluon form factor,
Eqs. (33), and the pp elastic scattering amplitude,
Eq. (12). In this case the convolution integral in Eq. (66)
reduces to a Gaussian integral, and we obtain a closed
expression for the amplitude,
 

Tdiff�p
0
1?;p

0
2?�� 	exp

�
�
Bg1p

0 2
1?

2
�
Bg2p

0 2
2?

2

�

�

�
1�

B
Btot

exp
�
�Bg1p

0
1?�Bg2p

0
2?�

2

2Btot

��
;

(88)

where Bg1 � Bg�x1� and Bg2 � Bg�x2� are the slopes cor-
responding to the momentum fractions x1;2 � �1;2, and

 Btot � Bg1 � Bg2 � B: (89)

[As a check, we note that the integral of the square of this
expression, divided by the corresponding expression for
B � 0 (no soft interactions), reproduces the result for the
RGS probability obtained in the coordinate space calcula-
tion, Eq. (81).] The amplitude (88) vanishes trivially for

large jp1?j or jp2?j, independently of the directions of the
momentum vectors. In addition, it has a zero at finite values
of the transverse momenta, namely, at
 

�Bg1p
0
1? � Bg2p

0
2?�

2 � 2Btot ln
Btot

B
� 2�Bg1 � Bg2�

�B� Bg1; Bg2�: (90)

This zero arises because of the destructive interference of
the amplitude of the hard scattering process alone and the
amplitude including soft elastic rescattering, cf. Fig. 6, and
directly reflects the interplay of hard and soft interactions.
It leads to a dip in the diffractive cross section, and thus to a
typical ‘‘diffraction pattern’’ in the dependence on the
transverse momentum of the first proton, p01?, at fixed
transverse momentum of the second proton, p02?.
Figure 14 shows this diffraction pattern in the kinematics
of Higgs production at the LHC at zero rapidity, for which
Bg1 � Bg2. One sees that the pattern in p02? evolves from a
rotationally symmetric one for p01? � 0 to a two-centered
one for large jp01?j. This basic feature of the diffractive
cross section does not depend on the details of the parame-
trization of the two-gluon form factor; similar results are
obtained with the dipole parametrization, cf. the detailed
comparison below.

The diffraction pattern of Fig. 14 implies a strong angu-
lar dependence of the cross section, which, moreover,
changes with the magnitude of the transverse momenta,
jp01?j and jp02?j. This is illustrated in Fig. 15, which shows
the dependence of jTdiff j

2 on the angle between the trans-
verse momenta � for various values of jp01?j � jp

0
2?j. For

small values of the transverse momenta the cross section is
maximal at zero angle; for large values (where the cross
sections as a function of angle runs through the diffractive
dip) it is maximal at � � �. This dependence needs to be
taken into account when attempting to maximize the dif-
fractive cross section in the search for new particles.

An interesting question is which specific features of the
transverse momentum dependence of the diffractive cross
section could be used to test the diffractive reaction mecha-
nism, and possibly extract information about the two-gluon
form factors of the colliding protons. Such studies would
be feasible in diffractive dijet production, which has a
relatively large cross section and also allows one to vary
the invariant mass of the diffractively produced system,
and thus the effective values of the gluon momentum
fraction, x1 and x2. To address this question, we again start
from the explicit expression for the amplitude obtained
with the exponential parametrization of the two-gluon
form factor, Eq. (88). We rewrite it in terms of the
center-of-mass and relative transverse momenta of the
final-state protons,

 P ? � �p
0
1? � p

0
2?�=2; r? � p

0
1? � p

0
2?; (91)

and obtain
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��
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(92)

For production at zero rapidity, for which x1 � x2 � x and
Bg1 � Bg2 � Bg, this simplifies to

 Tdiff�p
0
1?;p

0
2?� � exp

�
�BgP

2
? �

Bgr
2
?

4

��
1�

B
Btot

� exp
�B2

g

Btot
r2
?

��
; (93)

where now Btot � B� 2Bg. In this case the amplitude does
not depend on the variable �P?r?� � �p021? � p

02
2?�=2,

which is an obvious consequence of its symmetry with
respect to the interchange of p01? and p02?. Furthermore,
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one sees that the dependences of Eq. (93) on P2
? and r2

? are
very different. The dependence on P2

? is monotonic and
governed by the parameter Bg alone; it essentially probes
the square of the two-gluon form factors of the colliding
protons. The dependence on r2

?, however, is governed by
both Bg and B, and exhibits the diffractive zero (90); it
reflects the interplay of hard and soft interactions.

The qualitative differences between the P? and r?
dependence of the amplitude are not specific to the expo-
nential parametrization of the two-gluon form factor and
can be used to test the diffractive reaction mechanism and
extract information about the two-gluon form factor.
Figure 16 (left plot) shows the squared modulus of the
amplitude (for 	 � 1) as a function of r2

?, for P? � 0, in
the kinematics corresponding to dijet production with x �
10�2 at the LHC. One sees that the dependence in the
forward peak (near r2

? � 0), and even the position of the
diffractive dip, are not very different for the two parame-
trizations. Experimental observation of this structure
would thus constitute a stringent test of the diffractive
reaction mechanism.

Figure 16 (right plot) shows the dependence of the cross
section for double-gap diffractive 0� production on P2

?, for
r? � 0. Also shown is the fourth power of the two-gluon
form factor, F4

g�t� for the two parametrizations, which
would be the t dependence of the amplitude without soft
spectator interactions. For the exponential parametrization
the t dependence of the full diffractive amplitude is iden-
tical to that ofF4

g�t�, cf. Eqs. (33) and (93); one sees that the
two dependences are similar also for the dipole parametri-
zation. The different normalization of the two sets of
curves reflects the RGS probability, cf. Sec. VA.

The position of the diffractive zero in the r2
? dependence

(see Fig. 16, left plot) is correlated with the slope of the
monotonic P2

? dependence of the diffractive cross section;
both essentially reflect the two-gluon form factor of the
colliding protons. A sensible strategy for the analysis of
double-gap diffractive dijet production would be to first
establish the existence of the diffractive zero in r2

? at P? �
0, and then extract Bg from the P2

? dependence of the
diffractive cross section at r? � 0, where the cross section
is maximal. In the next step, one could change the dijet
mass (i.e., the momentum fractions x1 � x2 � x in the
two-gluon form factor) and verify whether both the posi-
tion of the zero and the P2

? slope change proportionately,
and whether the rate of change with lnx is consistent with
the value of �0g at the relevant scale, cf. Eq. (27).

The x1;2 dependence of the two-gluon form factor in the
protons can be probed more directly by extending the
measurements of diffractive production to nonzero rapid-
ity, y � 0, corresponding to different momentum fractions
of the annihilating gluons in the two protons,

 x1;2 � xe�y; x �
mH���
s
p : (94)

In this case the two-gluon form factors of the two protons
are different, and the diffractive cross section is no longer
invariant under exchange of the final proton transverse
momenta, p01? $ p02?. One sees that the expression for
the amplitude obtained with the exponential parametriza-
tion, Eq. (93), acquires a dependence on �P?r?� � �p021? �
p022?�=2, which is controlled by the difference of the slopes,
Bg1 � Bg2. With the x dependence of the individual slopes
given by
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FIG. 16. Left: Dependence of the cross section for double-gap diffractive 0� production on the square of the difference of the proton
transverse momenta, r2

?, for P? � 0 (i.e., p01? � �p
0
2? � 2r?). The kinematics corresponds to production of a system with M �

140 GeV at the LHC energy at zero rapidity (x1 � x2 � 10�2). The plot shows the modulus squared of the amplitude, jTdiff j
2, Eq. (66),

with 	 � 1, obtained with the exponential and dipole parametrizations of the two-gluon form factor. For the exponential
parametrization, the position of the diffractive zero is given by Eq. (90). Right: Dependence on the square of the sum of the
transverse momenta, P2

?, for r? � 0 (i.e., p01? � p
0
2? � P?). Also shown is F4

g�t� for the two parametrizations, which would be the t
dependence of the amplitude without soft spectator interactions.
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 Bg1 � Bg�x1� � Bg�x� � 2�0g ln
x1

x
; (95)

 Bg2 � Bg�x2� � Bg�x� � 2�0g ln
x2

x
; (96)

their difference is directly proportional to the rapidity
[cf. Eq. (94)],

 Bg1 � Bg2 � 2�0gy: (97)

For small rapidities, jyj & 1, and because of the relatively
small value of �0g this difference is substantially smaller
than the central value Bg�x�, and the dependence of the
amplitude on (P?r?) can be treated in first-order approxi-
mation. This implies that the cross section depends practi-
cally linearly on (P?r?) for jyj & 1.

A convenient observable to measure is the asymmetry of
the cross section with respect to r? ! �r? at fixed P?
(i.e., p01? $ p02?), at fixed x and y � 0 (i.e., fixed x1 �

x2),

 A �
�diff�p

0
1?;p

0
2?� � �diff�p

0
2?;p

0
1?�

�diff�p
0
1?;p

0
2?� � �diff�p

0
2?;p

0
1?�

; (98)

alternatively, one could exchange the rapidities and leave
the transverse momenta the same. This asymmetry is odd
in y and vanishes linearly for y! 0. For jyj & 1, it is
practically proportional to (P?r?). When calculating the
asymmetry at finite y, we have to take into account that, in
general, also the overall normalization of the cross section,
	�s; �1; �2�, changes with y, because of the change of
arguments in the t � 0 gluon GPDs of the protons, see
Eq. (62). However, this change relative to the value at y �
0 is of second order in y (the changes in the arguments of
the gluon densities cancel each other to first order) and can
be neglected for small y. This implies that for y 1. the
asymmetry is of the form

 A� Cy�0g�P?r?�; (99)

where the constant C is calculable solely from the con-
volution integral of the two-gluon form factor and the pp
elastic amplitude and does not contain information on the
gluon densities. For finite y, the asymmetry is still propor-
tional to �0g�P?r?�, but the coefficient is a more compli-
cated function of y, which depends also on the gluon
densities in the colliding protons. Figure 17 shows the
theoretical estimate of the asymmetry as obtained with
the exponential and the dipole parametrizations of the
two-gluon form factor, as a function of the rapidity y for
two representative values of �0g. In this calculation, for
simplicity, we have taken into account only the y depen-
dence of the cross section arising from the RGS integral,
not the y dependence arising from the overall normaliza-
tion, 	. The latter is / y2 at small y but may be numerically
important at y� 1; the curves in this region are shown for
illustrative purposes only.

In the above discussions we have considered production
of a 0� system. The cross section for production of a 0�

state is significantly suppressed compared to 0�. This is
because in the hard scattering process only one gluon
polarization state gives a large contribution in the LO
approximation [14], and from one gluon polarization it is
impossible to build a parity-conserving amplitude for the
production of a 0� state.

Our discussion of the transverse momentum dependence
here was based on the independent interaction approxima-
tion, Eqs. (66)–(70). One should expect that corrections to
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integral is taken into account, not the y dependence arising from
the overall normalization, 	.
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this approximation modify not only the RGS probability,
but also the transverse momentum dependence of the cross
section. In particular, corrections from absorptive interac-
tions of hard partons near the BDL (see Sec. VI) lead to an
additional suppression of small impact parameters in
double-gap diffraction, which would shift the transverse
momentum distribution towards smaller values of jp01?j
and jp02?j. Correlations between hard and soft interactions
(see Sec. VII) will likewise modify the transverse momen-
tum distribution. These interesting questions will be ad-
dressed elsewhere.

IX. DISCUSSION AND OUTLOOK

In this paper we have outlined an approach to RGS in
double-gap exclusive diffraction based on the idea that
hard and soft interactions are approximately independent
because they proceed over widely different time and dis-
tance scales. We have shown that this idea can be practi-
cally implemented in the framework of Gribov’s parton
picture of high-energy scattering, and gives rise to a con-
ceptually clear and quantitative description of RGS.

In the independent interaction approximation, the RGS
probability can be calculated in a model-independent way
in terms in two phenomenological ingredients—the gluon
GPD in the proton, and the pp elastic scattering amplitude.
At this level we recover a simple geometric picture of the
interplay of hard and soft interactions in the impact pa-
rameter representation. The fact that the pp elastic ampli-
tudes at TeV energies approaches the BDL suppresses
small impact parameters and ensures dominance of periph-
eral scattering in double-gap diffraction. This is crucial
both for justifying the approximations made in our deriva-
tion, and for determining the numerical value of the RGS
probability. Our numerical results for the RGS probability
in this approximation are close to those obtained previ-
ously with an eikonalized Pomeron exchange model of soft
interactions; however, the good agreement of Eq. (83) with
the best estimate quoted in Ref. [5] is accidental, being due
to the fact that these authors assume a larger radius of the
transverse spatial distribution of gluons with x� 10�2.

Our partonic formulation of RGS also allows us to
identify and discuss various dynamical effects beyond the
assumption of independence of hard and soft interactions,
which can lead to a substantial reduction of the numerical
value of the RGS probability. Absorptive interactions of
the hard partons with spectators near the BDL further
suppress diffraction at small impact parameters compared
to the independent interaction approximation and were
estimated to reduce the RGS probability at least by a factor
of 2. Correlations between hard and soft interactions like-
wise lower the RGS probability compared to the indepen-
dent interaction approximation. In the case of long-range
correlations due to the proton’s pion cloud, we estimated
this effect to be of the order of �10%. Potentially more
important are short-distance transverse correlations be-

tween partons, as are suggested by the analysis of pp
collisions with multiple hard processes. Such correlations
can be regarded as a change of the effective size of the
diffractively scattering systems and could reduce the RGS
probability by a substantial factor. Our treatment of these
effects beyond the independent interaction approximation
here has been of exploratory nature. In view of their
importance for the planned Higgs boson search at the
LHC (see Ref. [5] for detailed estimates of production
cross sections and discussion of the various decay modes)
these effects clearly merit further study.

Our estimates of Sec. VI indicate that the modifications
of RGS due to absorptive interactions of the hard partons
with spectators near the BDL rapidly increase with energy
between the Tevatron and the LHC. As a consequence, the
physical picture of RGS may change significantly between
the Tevatron and the LHC energy. This should be kept in
mind when trying to estimate the RGS probability at the
LHC using theoretical models tuned to the Tevatron re-
sults. Even if calculations based on the independent inter-
action approximation were found to reasonably describe
the results for double-gap diffractive processes at the
Tevatron, one cannot conclude that the same approxima-
tions work at the LHC energy.

An important ingredient in our description of RGS is the
profile function of the complex pp elastic scattering am-
plitude. This underscores the importance of the planned
measurements of pp elastic scattering and total cross
sections in the TOTEM experiment at the LHC [67], as
well as at RHIC [68]. In addition to providing input for
more accurate estimates of the RGS probability in diffrac-
tion, such measurements would allow us to further explore
the fascinating new regime of the BDL in high-energy
hadron-hadron scattering.

Measurements of the transverse momentum dependence
of double-gap exclusive diffractive processes with large
cross section (dijet production) would allow one to perform
detailed studies of the diffractive reaction mechanism.
Following the strategy outlined in Sec. VIII, once the
reaction mechanism has been established, one could even
use such processes to extract information about the trans-
verse spatial distribution of gluons in the colliding protons,
including its change with x. We emphasize once more that
our treatment of the transverse momentum dependence in
Sec. VIII was limited to the independent interaction ap-
proximation, and that detailed studies of the effects of hard
interactions near the BDL and of hard-soft correlations are
required before one can conclusively extract information
about GPDs from the diffractive data. Such studies would
complement the information on the two-gluon form factor
obtained from vector meson production at HERA or a
future electron-ion collider. Eventually, using QCD evolu-
tion as well as models of nucleon structure, these data on
the transverse spatial distribution of gluons also could be
correlated with the planned measurements of quark GPDs
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in hard exclusive processes in ep scattering in fixed-target
experiments (HERMES, JLab 12 GeV, COMPASS). One
of the advantages of Gribov’s parton picture of hard and
soft interactions is precisely that it unifies the description
of hadron-hadron and electron/photon-hadron scattering at
high energies. Other ways to probe GPDs in pp scattering
with hard processes (nondiffractive) have been described
in Ref. [12].

We would like to comment on some of the experimental
aspects of measuring the transverse momentum depen-
dence of double-gap exclusive diffraction with the pro-
posed forward detectors at the LHC. Such measurements
require good energy resolution in order to guarantee ex-
clusivity and determine the mass of the diffractively pro-
duced system, as well as sufficient transverse momentum
resolution to map the p01?, p02? distributions. An important
experimental problem is that the intrinsic transverse mo-
mentum distribution in the beams at the interaction point
(IP) puts a lower bound on the transverse momentum
transfers that can be resolved. This distribution is deter-
mined by the beam optics and thus closely correlated with
the luminosity. The proposed 420 m forward detectors for
the CMS and ATLAS experiments [17,69] can tag protons
in the range 0:002 � � � 0:015; in the TOTEM experi-
ment at CMS with detectors at 200 m the range will be
extended to � < 0:1 [70]. Both detectors can obtain a
longitudinal and transverse momentum resolution compa-

rable to the beam distributions. At a luminosity of
1033 cm�2 s�1 with � � 0:5 m, and a one-sigma normal-
ized emittance � � 3:75� 10�6�m, the one-sigma angu-
lar spread of the beams at the IP is 8�r, corresponding to a
transverse momentum spread of 56 MeV=c. This sets the
scale for experimental smearing of the transverse momen-
tum distributions. The TOTEM experiment also envisages
running at substantially larger � values (18, 90, and
1540 m). These values will reduce the transverse angular
spread of the beams at the IP by

������������������
�=����

p
, but with a

concomitant reduction in luminosity. Given that the typical
scale of the transverse momentum distributions is mg �

1 GeV, it seems feasible to make detailed and precise
measurements of the transverse momentum distributions
with the LHC420 and TOTEM detectors even when run-
ning in high-luminosity mode.
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