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We calculate the main observables in Bu;d ! ��;!;K��� and Bs ! � �K�; ��� decays, i.e. branching
ratios and CP and isospin asymmetries. We include QCD factorization results and also the dominant
contributions beyond QCD factorization, namely, long-distance photon emission and soft-gluon emission
from quark loops. All contributions beyond QCD factorization are estimated from light-cone sum rules.
We devise, in particular, a method for calculating soft-gluon emission, building on earlier ideas developed
for analogous contributions in nonleptonic decays. Our results are relevant for new-physics searches at the
B factories, CERN LHC and a future superflavor factory. Using current experimental data, we also extract
jVtd=Vtsj and the angle � of the unitarity triangle. We give detailed tables of theoretical uncertainties of
the relevant quantities which facilitates future determinations of these Cabibbo-Kobayashi-Maskawa
parameters from updated experimental results.
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I. INTRODUCTION

The flavor-changing neutral-current (FCNC) transitions
b! s� and b! d� are among the most valuable probes
of flavor physics. Assuming the standard model (SM) to be
valid, these processes offer the possibility to extract the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
jVt�d;s�j, in complementarity to, on the one hand, the deter-
mination from B mixing and, on the other hand, the SM
unitarity triangle (UT) based on the tree-level observables
jVub=Vcbj and the angle �. These decays are also charac-
terized by their high sensitivity to new-physics (NP) con-
tributions and by the particularly large impact of short-
distance QCD corrections; see Ref. [1] for a review.
Considerable time and effort have gone into the calculation
of these corrections which are now approaching next-to-
next-to-leading-order accuracy [2,3]. On the experimental
side, both exclusive and inclusive b! s� branching ratios
are known with good accuracy, 5% for B! K�� and 7%
for B! Xs�, while the situation is less favorable for b!
d� transitions: measurements are only available for exclu-
sive channels. In Table I we give the branching ratios of all
established exclusive b! �d; s�� channels.

Whereas the inclusive modes can be computed pertur-
batively, using fixed-order heavy-quark expansion or soft-
collinear effective theory (SCET) [2,7], the treatment of
exclusive channels is more complicated. With presently
available methods, it is impossible to simulate the full
amplitude on the lattice, the reason being the occurrence
of nonlocal correlation functions associated with the in-
sertion of the electromagnetic interaction operator into the
effective Hamiltonian for b! �s; d��. Instead, one has to
resort to effective field theory methods, which yield an
expansion in inverse powers of the b quark mass, mb. It

was shown, in SCET, that the relevant hadronic matrix
elements factorize to all orders in �s and to leading order
in 1=mb and can be written as [8]
 

hV�jQijBi � e� �
�
TB!V1 �0�TIi

�
Z 1

0
d�duTIIi ��; u��B����?2;V�u�

�
� f1�O�1=mb�g: (1)

This formula coincides with that obtained earlier in QCD
factorization (QCDF) to next-to-leading order in �s [9–
14]. In (1), e� is the photon’s polarization four-vector,Qi is
one of the operators in the effective Hamiltonian for b!
�s; d� transitions, TB!V1 is a B! V transition form factor,
and �B, �?2;V are leading-twist light-cone distribution am-
plitudes (DAs) of the B meson and the vector meson V,
respectively. These quantities are universal nonperturba-
tive objects and describe the long-distance dynamics of
matrix elements, which is factorized from the perturbative
short-distance interactions included in the hard-scattering
kernels TIi and TIIi . B! V� decays have also been inves-
tigated in the alternative approach of perturbative QCD
factorization (pQCD) [15].

Equation (1) is sufficient to calculate observables that
are dominated by the leading-order term in the heavy-
quark expansion, like B�B! K���. For B�B!
��;!���, however, power-suppressed corrections play an
important role, for instance, weak annihilation (WA) which
is mediated by a tree-level diagram. In this case, the para-
metric suppression by one power of 1=mb is alleviated by
an enhancement factor 2�2 relative to the loop-suppressed
contributions at leading order in 1=mb. Power-suppressed
contributions also determine the time-dependent CP asym-
metry in B! V� (see Refs. [16–19]), as well as isospin
asymmetries [20]—all observables with a potentially large
contribution from NP. The purpose of this paper is to
calculate the dominant power-suppressed contributions to
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(1) and the resulting branching ratios and CP and isospin
asymmetries, using the most up-to-date hadronic input
parameters for form factors and light-cone DAs.
Although 1=mb effects are, in principle, accessible in
SCET, the vast majority of studies in this framework only
includes leading-order effects, the reason being a prolif-
eration of new effective operators at power-suppressed
accuracy (see Ref. [21]), whose matrix elements induce
subleading form factors and are largely unknown. For this
reason, in this paper we adopt a different approach not
based on SCET and calculate power-suppressed correc-
tions using the method of QCD sum rules on the light
cone (LCSRs). The present paper is an extension of our
previous work, Ref. [22], where we calculated the ratio of
branching ratios B�B! ��;!���=B�B! K��� in order
to determine the ratio of CKM matrix elements jVtd=Vtsj
from data. Some of these power corrections, namely, those
related to WA contributions and the isospin asymmetry in
B! K��, have already been calculated in QCDF [12–
14,20]. Other power corrections cannot be calculated in the
framework of QCDF. The most relevant of these come
from soft-gluon emission from quark loops and long-
distance photon emission from soft quarks. We have al-
ready calculated some of these contributions before, using
LCSRs: long-distance photon emission in Ref. [23] and
soft-gluon emission from charm loops in Ref. [19], using
heavy-quark expansion in powers of 1=mc. In this paper,
we complete these calculations and develop a method to
also calculate soft-gluon emission from light-quark loops,
thus allowing us to predict branching ratios and isospin and

CP asymmetries for exclusive B! V� transitions with
increased precision. We also include the Bs decays Bs !
��, which is a b! s� transition, and Bs ! K��, which is
b! d�. All these decays will be studied in detail at CERN
LHC, and those of Bu;d at future superflavor factories [24].

Our paper is organized as follows: in Sec. II we intro-
duce notations and recall QCDF formulas. In Sec. III we
calculate the WA contributions and in Sec. IV the long-
distance contributions to the B! V� amplitude from
heavy- and light-quark loops. In Sec. V we present results
for branching ratios and asymmetries; we summarize and
conclude in Sec. VI. The Appendix contains a discussion
of the longitudinal and transverse decay constants of vector
mesons.

II. FRAMEWORK AND BASIC FORMULAS

The effective Hamiltonian for b! D� transitions, with
D � s, d, reads

 Heff �
GF���

2
p

X
U�u;c

��D�U

�
C1Q

U
1 � C2Q

U
2 �

X
i�3...8

CiQi

�
; (2)

where ��D�U � V�UDVUb. This Hamiltonian implicitly relies
on the SM unitarity relation, also referred to as the
Glashow-Iliopoulos-Maiani (GIM) mechanism,

 ��D�t � �
�D�
c � �

�D�
u � 0; (3)

which enters the calculation of the penguin contributions.
The operators are given by

 QU
1 � �

�DiUj�V�A� �Ujbi�V�A; QU
2 � �

�DU�V�A� �Ub�V�A; Q3 � � �Db�V�A
X
q

� �qq�V�A;

Q4 � � �Dibj�V�A
X
q

� �qjqi�V�A; Q5 � � �Db�V�A
X
q

� �qq�V�A; Q6 � � �Dibj�V�A
X
q

� �qjqi�V�A;

Q7 �
e

8�2 mb
�D	�
�1� �5�F�
b�

e

8�2 mD
�D	�
�1� �5�F�
b;

Q8 �
g

8�2 mb
�D	�
�1� �5�G�
b�

g

8�2 mD
�D	�
�1� �5�G�
b;

(4)

where � �qQ�V�A��rR�V	A 
 � �q���1� �5�Q���r���1	 �5�R�. The sign conventions for the electromagnetic and strong
couplings correspond to the covariant derivative D� � @� � ieQfA� � igTaAa�. With these definitions the coefficients
C7;8 are negative in the SM, which is the choice generally adopted in the literature. The above operator basis, which we

TABLE I. Experimental branching ratios of exclusive b! �d; s�� transitions. All entries are
CP averaged. The first error is statistical, the second systematic. B! ��;!�� is the CP average
of the isospin average over � and ! channels: �B�B! ��;!��� � 1

2 f
�B�B	 ! �	�� �

�B	
�B0
�

� �B�B0 ! �0�� � �B�B0 ! !���g.

B� 106 BABAR [4] Belle [5] B� 106 HFAG [6]

B! ��;!�� 1:25�0:25
�0:24 	 0:09 1:32�0:34�0:10

�0:31�0:09 B� ! K��� 40:3	 2:6
B� ! ��� 1:10�0:37

�0:33 	 0:09 0:55�0:42�0:09
�0:36�0:08 B0 ! K�0� 40:1	 2:0

B0 ! �0� 0:79�0:22
�0:20 	 0:06 1:25�0:37�0:07

�0:33�0:06

B0 ! !� <0:78 0:96�0:34�0:05
�0:27�0:10
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shall label BBL after the authors of Ref. [25], is the same as
that of Ref. [12], except that Q1 andQ2 are exchanged. For
some applications, in particular, calculations of inclusive
b! D� transitions, a different operator basis proves more
suitable: the basis adopted, for instance, in Refs. [26,27],
labeled CMM in the following, has QCMM

7�8� � QBBL
7�8� , but

differs in Q1...6. It turns out that we need the Wilson
coefficients in both bases:

(i) CBBL
1...6 ��mb�, calculated according to Ref. [25],

for power-suppressed (WA and soft-gluon emission)
contributions;

(ii) CCMM
1...8 ��mb�, calculated according to Ref. [26],

for hard-vertex corrections in QCDF which are given
in terms of two-loop matrix elements for b! D�
transitions obtained in Ref. [27], in the CMM basis;

(iii) CBBL
1...6 �� 2 GeV� and CCMM

8 �� 2 GeV� for hard-
spectator corrections in QCDF; although these coef-
ficients refer to a different basis, it is correct to use
them together as the corresponding operators Q7;8

are identical in both bases and independent of the
basis chosen for the four-quark operators.

Numerical values of all Ci are given in Table II. Note that
the question of whether to use Wilson coefficients (and
other scale-dependent hadronic quantities) at LO or NLO
accuracy is actually nontrivial. Strictly speaking, NLO
accuracy is mandatory only for C7, as only for this term
is the hadronic matrix element also known to NLO accu-
racy (see below). We will evaluate all O��s� and power-
suppressed corrections using both LO and NLO scaling for
Wilson coefficients and hadronic matrix elements and in-
clude the resulting discrepancies in the theoretical
uncertainty.

The calculation of the decay amplitudes of exclusive
B! V� decays also requires the knowledge of hadronic
matrix elements of type hV�jQijBi. A complete calcula-
tion of these quantities is not possible to date, but the
leading term in an expansion in 1=mb is obtained from
QCDF; see Eq. (1). The factorization formula is valid in the
heavy-quark limit mb ! 1 and is subject to corrections of

order �QCD=mb. Some of these corrections are numerically
very relevant: for instance, the contributions from all op-
erators but Q2 are loop suppressed; hence, the tree-level
WA diagram in Fig. 1, which is suppressed by one power of
mb, comes with a relative enhancement factor 4�2. This
contribution, with the operator Q2, is doubly Cabibbo
suppressed for b! s� transitions, but carries no CKM
suppression factor in b! d� transitions. WA can also be
induced by the penguin operators Q3...6 and in this case
carries no CKM suppression in b! s�, but comes with
small (loop-suppressed) Wilson coefficients. Other ex-
amples for relevant power-suppressed corrections are CP
and isospin asymmetries, Refs. [16,19,20], which actually
vanish in the heavy-quark limit. This indicates that in B!
V� transitions simple 1=mb counting is, in general, not
sufficient to determine the numerical relevance of a par-
ticular contribution, but that all relevant factors,

(i) order of power suppression in 1=mb,
(ii) loop suppression or tree enhancement,

(iii) CKM suppression,
(iv) size of hadronic matrix elements,

have to be taken into account. This is a consequence of the
fact that in radiative transitions the ‘‘naively’’ leading term

TABLE II. NLO Wilson coefficients to be used in this paper, at the scales mb � 4:2 GeV and
�h � 2:2 GeV. The coefficients labeled BBL correspond to the operator basis of Ref. [25] and
given in Eq. (4), whereas CMM denotes the basis of Ref. [26]. We use �s�mZ� � 0:1176 [28]
and mt�mt� � 163:6 GeV [29]. Note that CBBL

1 and CBBL
2 are exchanged with respect to the basis

of Ref. [12] and that CBBL
7�8� � CCMM

7�8� ; see text. Following [13], the CMM set is used for
calculating hard-vertex corrections to the QCDF formulas and the BBL set at the lower scale
�h is used to calculate hard-spectator corrections. The BBL set at scale mb is used for the
calculation of power corrections.

CCMM
1 �mb� CCMM

2 �mb� CCMM
3 �mb� CCMM

4 �mb� CCMM
5 �mb� CCMM

6 �mb� CCMM
7 �mb�

�0:322 1.009 �0:005 �0:874 0.0004 �0:001 �0:309
CBBL

1 �mb� CBBL
2 �mb� CBBL

3 �mb� CBBL
4 �mb� CBBL

5 �mb� CBBL
6 �mb� CCMM

8 �mb�

�0:189 1.081 0.014 �0:036 0.009 �0:042 �0:170
CBBL

1 ��h� CBBL
2 ��h� CBBL

3 ��h� CBBL
4 ��h� CBBL

5 ��h� CBBL
6 ��h� CCMM

8 ��h�

�0:288 1.133 0.021 �0:051 0.010 �0:065 �0:191

 

B

q

B

q

VV

)b()a(

b

q

D
b D

FIG. 1. (a): WA diagram. The square denotes insertion of the
operator Qi. Photon emission from lines other than the B
spectator is power suppressed, except for emission from the
final-state quark lines for the operators Q5;6, denoted by crosses.
(b): soft-gluon emission from a quark loop. Again the square dot
denotes the insertion of the operator Qi. There is also a second
diagram where the soft gluon is picked up by the B meson.
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in Q7 is loop suppressed, which is qualitatively different
from other applications of QCDF, for instance in B� !
���0, where the leading hadronic matrix element de-
scribes a tree-level process.

The exclusive B! V� process is actually described by
two physical amplitudes, one for each polarization of the
photon:

 

�A L�R� �A� �B! V�L�R��;

AL�R� �A�B! �V�L�R��;
(5)

where �B denotes a �b �q� and V a �D �q� bound state.1In the
notation introduced in Ref. [12] in the context of QCDF,
the decay amplitudes can be written as

 

�A L�R� �
GF���

2
p ��Du au7�V�L�R�� � �

D
c ac7�V�L�R���hV�L�R�jQ

L�R�
7 j �Bi 


GF���
2
p ��Du au7L�R��V� � �

D
c ac7L�R��V��hV�L�R�jQ

L�R�
7 j �Bi;

AL�R� �
GF���

2
p ���Du ��au7R�L��V� � ��

D
c �
�ac7R�L��V��h �V�L�R�j�Q

R�L�
7 �yjBi:

(6)

The ac;u7 calculated in Refs. [12,13] coincide, to leading order in 1=mb, with our aU7L, whereas aU7R are set to zero in [12,13].
Our expression (6) is purely formal and does not imply that the aU7R�L� factorize at order 1=mb. As a matter of fact, they do
not. The operators QL�R�

7 are given by

 QL�R�
7 �

e

8�2 mb
�D	�
�1	 �5�bF�


and generate left- (right-)handed photons in the decay b! D�. The matrix elements in (6) can be expressed in terms of the
form factor TB!V1 as

 hV�p;���L�R��q; e�jQ
L�R�
7 j �Bi � �

e

2�2 mbTB!V1 �0���
�	e����
p�q	 	 if�e�����pq� � �e�p����q�g�


 �
e

2�2 mbT
B!V
1 �0�SL�R�;

h �V�p;���L�R��q; e�j�Q
R�L�
7 �yjBi � �

e

2�2 mbT
B!V
1 �0�SL�R�;

(7)

where SL;R are the helicity amplitudes corresponding to
left- and right-handed photons, respectively, and e����� is
the polarization four-vector of the photon (vector meson).
The definition of TB!V1 can be found in Ref. [36]; our
convention for the epsilon tensor follows that of Bjorken
& Drell: Tr����������5� � 4i����. Up-to-date values
for all decays studied in this paper are given in Table III.
The nonperturbative parameters are taken from experi-
ment, where available, from lattice (fB), from QCD sum
rules (a?i ) and from QCD sum rules on the light cone (T1);
for the decay constants f?, results are available from both
lattice and QCD sum rules; they are discussed in the
Appendix. No lattice results are available for a?i and
only partial results for T1 [46]. The numbers in Table III
differ slightly from those given in Ref. [36] because we
include updates of the hadronic input parameters. We do
not include isospin breaking in the form factors since it is
caused by the difference of quark masses and electric
charges and expected to be of the order of 1% only. This
is indeed the size of isospin breaking in the form factor
indicated by recent measurements of D0 ! �K�; ���e�

and D� ! � �K0; �0�e�
 at CLEO [47]. At this point we
would also like to comment on the UT angle �. The value
given in Table III comes from Belle’s Dalitz-plot analysis

of the CP asymmetry in B� ! �K0
S�
����K�, with

K0
S�
��� being a three-body final state common to both

D0 and �D0. This method to measure � from a new-
physics–free tree-level process was suggested in
Ref. [48] and has been implemented by both BABAR [49]
and Belle [40], but the BABAR result currently suffers from
huge errors. Other determinations of � from QCDF or
SCET analyses, or SU(3) or U-spin fits of nonleptonic B
decays, or global UT fits, all come with theoretical uncer-
tainties and/or possible contamination by unresolved new
physics, so we decide to stick, as a reference point, to the
tree-level result of Belle. For all observables with a pro-
nounced dependence on �, i.e. b! d� branching ratios
and isospin asymmetries, we will present results as a
function of �.

1Note that in this paper K� is an �s �q� bound state, in contrast to
the standard labeling, according to which K�0 � �d �s� and �K�0 �
�s �d�. This is because the calculation of form factors and other
matrix elements involves light-cone DAs of the vector meson V,
and in the standard notation used in that context, K� always
contains an s quark and �K� an �s quark. This distinction is
relevant because of a sign change of G-odd matrix elements
under �s �q� $ �q�s�; see Tables III, V, and VI.
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As for the a7 coefficients, the ac;u7L �V� are, in QCDF, of
order 1 in a 1=mb expansion,

 ac;u7L �V� � C7 �O��s; 1=mb�; (8)

whereas ac;u7R �V� are of order 1=mb [17,18]. It proves con-
venient to split these coefficients into three contributions
which we will investigate separately:

 aU7L�V� � aU;QCDF
7L �V� � aU;ann

7L �V� � aU;soft
7L �V� � . . . ;

aU7R�V� � aU;QCDF
7R �V� � aU;ann

7R �V� � aU;soft
7R �V� � . . . ;

(9)

where aU;QCDF
7L is the leading term in the 1=mb expansion;

all other terms are suppressed by at least one power of mb.
We only include those power-suppressed terms that are
either numerically large or relevant for isospin and CP
asymmetries. The dots denote terms of higher order in �s
and further 1=mb corrections to QCDF, most of which are
incalculable. Explicit formulas for aU;QCDF

7L , complete to
O��s�, can be found in Ref. [13]. aU;ann

7L encodes the

O�1=mb� contribution of the WA diagram of Fig. 1 which
drives the isospin asymmetries and has been calculated, in
QCDF, and to leading order in �s, in Refs. [13,20] for �
and K�, and in Ref. [14] for !. Preliminary results for the
O��s� corrections to WA in B! �� were presented in
Ref. [50]. This contribution is also relevant for the branch-
ing ratio of B! ��;!��; in this case, long-distance pho-
ton emission from the soft B spectator quark, which is
O�1=m2

b�, also becomes relevant and has been calculated
in Refs. [23,51]. We discuss the WA contributions in
Sec. III. The last terms in (9), aU;soft

7L�R� , encode soft-gluon
emission from a (light or heavy quark) loop as shown in
Fig. 1 and are particularly relevant for the CP asymmetry;
they will be discussed in Sec. IV. In Ref. [20] another class
of 1=mb corrections to B! K�� was also calculated,
namely, O��s� corrections to the isospin asymmetry in
this decay. As these corrections break factorization (that
is, they require an infrared cutoff in the momentum distri-
bution of the valence quarks in the K� meson) and are
numerically small, we do not include them in our analysis.
As for aU7R, the dominant contributions to ac7R�K

�� were
calculated in Ref. [19]. Here we extend this analysis to

TABLE III. Summary of input parameters. The value of jVubj is our own average over
inclusive and exclusive determinations and the result from UT angles; see Refs. [6,30,31].
None of our results is very sensitive to jVubj. For an explanation of our choice of the value of the
UT angle �, see text. �B is the first inverse moment of the B meson’s light-cone DA. �Bs is
obtained from �Bq as described in the text. The vector-meson decay constants fV , f?V are
discussed in the Appendix; the values of the Gegenbauer moments a?i are compiled from various
sources [22,32–34] and include only small SU(3) breaking, in line with the findings for
pseudoscalar mesons [35]. The form factors T1 are obtained from LCSRs and are updates of
our previous results [36], including the updated values of the decay constants f�;!;� and of
a?1 �K

�� [37,38]. Note that a?1 �K
�� refers to an �s �q� bound state; for a �q�s� state it changes sign.

All scale-dependent quantities are given at the scale � � 1 GeV unless stated otherwise.

CKM parameters and couplings

� [28] jVcbj [39] jVubj � [40] �s�mZ� [28] �
0.227(1) 42:0�7� � 10�3 4:0�7� � 10�3 �53	 20�� 0.1176(20) 1=137

B parameters
fBq [41] fBs [41] �Bq ��h� [22] �Bs ��h� �h

200(25) MeV 240(30) MeV 0.51(12) GeV 0.6(2) GeV 2.2 GeV
� parameters

f� f?� a?1 ��� a?2 ��� TB!�1 �0�
216(3) MeV 165(9) MeV 0 0.15(7) 0.27(4)

! parameters
f! f?! a?1 �!� a?2 �!� TB!!1 �0�
187(5) MeV 151(9) MeV 0 0.15(7) 0.25(4)

K� parameters
fK� f?K� a?1 �K

�� [37] a?2 �K
�� T

Bq!K
�

1 �0� TBs!
�K�

1 �0�
220(5) MeV 185(10) MeV 0.04(3) 0.15(10) 0.31(4) 0.29(4)

� parameters
f� f?� a?1 ��� a?2 ��� TBs!�1 �0�
215(5) MeV 186(9) MeV 0 0.2(2) 0.31(4)

Quark masses
ms�2 GeV� [42] mb�mb� [39] mc�mc� [43] mt�mt� [29]
100(20) MeV 4.20(4) GeV 1.30(2) GeV 163.6(2.0) GeV
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other vector mesons and also develop a method to include
light-quark loops.

We conclude this section by providing explicit results
for the QCDF contributions to a7, using the formulas of
Ref. [13] and the Wilson coefficients and hadronic input
parameters collected in Tables II and III. The decay con-
stants fV and f?V are defined as

 h0j �q��DjV�p�i � mVfV��;

h0j �q	�
DjV�p�i � i���p
 � p��
�f?V ;
(10)

their numerical values are discussed in the Appendix. The
other parameters in Table III pertaining to vector mesons
are a?1 and a?2 , the first and second Gegenbauer moments
of their transversal light-cone DAs of leading twist. In this
paper we do not want to go into any detail about light-cone
DAs, their conformal expansion in Gegenbauer polyno-
mials and the dependence of the Gegenbauer moments
on the renormalization scale, but simply refer to the rele-
vant literature [32–34].

It turns out that, at the level of two significant digits, all
ac;QCDF

7L are equal and so are the au;QCDF
7L . For central values

of the input parameters of Table III, we obtain

 ac;QCDF
7L �V� � ��0:41� 0:03i� � �0:01� 0:01i�;

au;QCDF
7L �V� � ��0:45� 0:07i� � �0:02� 0i�:

(11)

Here we have split the result into contributions from vertex
corrections (first term) and hard-spectator interactions
(second term). The size of the hard-spectator corrections
is set by the factor

 hV �
2�2

9

fBf?V
mBT

B!V
1 �0��B

: (12)

Note that our value of �Bs , the first inverse moment of the
twist-2 B-meson light-cone DA, is obtained from that of
�Bd by a simple scaling argument:

 

mBs

�Bs
��QCD �ms� �

mBq

�Bq
�QCD;

which follows from the assumption that the Bq DA peaks at
the spectator momentum k� � �QCD, whereas that of Bs
peaks at �QCD �ms.

The parameters aU;QCDF
7R , at tree level, were obtained in

Ref. [19] and read

 aU;QCDF
7R �K�;�� � C7

ms

mb
; aU;QCDF

7R ��;!; �K�� � C7
md

mb
:

(13)

III. WEAK ANNIHILATION CONTRIBUTIONS

The intrinsic WA diagram is shown in Fig. 1; the weak
interaction operator is one of the charged-current or QCD-
penguin operators. All these contributions are O�1=mb�;

photon emission from the b quark and the quarks in the
vector meson is further suppressed and O�1=m2

b�—unless
the weak interaction operator is Q5;6, which can be Fierz
transformed into � �D�1� �5�q�� �q�1� �5�b� and picks up
an additional factor mB from the projection onto the B
meson DA which results in this contribution being
O�1=mb�. In Table IV we show the relative weights of
these diagrams in terms of CKM factors and Wilson co-
efficients. The numerically largest contribution occurs for
B	 ! �	�: it comes with the large combination of Wilson
coefficients C2 � C1=3 � 1:02 and is not CKM sup-
pressed. For B0 ! ��0; !�� it comes with the factor C1 �
C2=3 � 0:17 instead and an additional suppression factor
1=2 from the electric charge of the spectator quark (d
instead of u). For all other decays, WA is suppressed by
small (penguin) Wilson coefficients. We evaluate the an-
nihilation diagrams at the scale � � mb. Apart from B!
��;!��, WA is not relevant so much for the total values of
a7L, but rather for isospin breaking, which is set by photon
emission from the spectator quark. WA is the only mecha-
nism to contribute to isospin asymmetries at tree level; see
Ref. [20] for O��s� contributions.

Formulas for aU;ann
7L ��;K�� in QCDF can be found in

Refs. [13,14]; in this approximation, there is no contribu-
tion to aU;ann

7R . In QCDF, the aU;ann
7L are expressed in terms of

the hadronic quantities

 bV �
2�2

TB!V1 �0�

fBmVfV
mBmb�B

;

dVv � �
4�2

TB!V1 �0�

fBf?V
mBmb

Z 1

0
dv
�?2;V�v�

v

(14)

and dV�v , obtained by replacing 1=v! 1= �v in the integrand;
�?2;V is the twist-2 DA of a transversely polarized vector
meson. For Bs decays one has to set fB ! fBs and corre-
spondingly for the other Bmeson parameters. Numerically,
one finds, for instance for the �, b� � 0:22 and d� �
�0:59, at the scale � � 4:2 GeV. As T1  1=m3=2

b and
fB m

�1=2
b in the heavy-quark limit, these terms are

O�1=mb�, but not numerically small because of the tree-
enhancement factors of �2.

TABLE IV. Parametric size of WA contributions to B! V�.
C denotes the charged-current operators Q1;2, P the penguin
operators Q3;4;5;6; their Wilson coefficients are small (see
Table II). CKM denotes the order in the Wolfenstein parameter
� with respect to the dominant amplitude induced by Q7.

WA B� ! K�� �B0 ! K�0 B! ��;!�Bs ! �Bs ! �K�

Induced by C (and P) P C and P P P
CKM �2 (and 1) 1 1 1 1
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For !, �K�, and � we obtain
 

au;ann
7L �!�jQCDF � Qdb

!�a1 � 2�a3 � a5� � a4�

�Qd�d
!
v � d

!
�v �a6;

ac;ann
7L �!�jQCDF � Qdb

!�2�a3 � a5� � a4�

�Qd�d
!
v � d

!
�v �a6;

aU;ann
7L ���jQCDF � Qsb

��a3 � a5� �Qs�d
�
v � d

�
�v �a6;

aU;ann
7L � �K��jQCDF � Qsb

�K�a4 �Qs�d
�K�
v Qd=Qs � d

�K�
�v �a6;

(15)

with a1 � C1 � C2=3, a3 � C3 � C4=3, a4 � C4 �
C3=3, a5 � C5 � C6=3, a6 � C6 � C5=3; note that a1 $
a2 as compared to [13], as in our operator basis (i.e. the
BBL basis) Q1 and Q2 are exchanged. The expressions for
� and �K� are new; for !, we do not agree with [14]. For
completeness, we also give the annihilation coefficients for
the �, K�, and !, as obtained in Ref. [13]:
 

au;ann
7L �K

�0�jQCDF�Qd�a4bK
�
�a6�dK

�

v �dK
�

�v ��;

au;ann
7L �K

���jQCDF�Qu�a2b
K� �a4b

K�

�a6�Qs=Qud
K�
v �d

K�
�v ��;

au;ann
7L ��

0�jQCDF�Qd��a1b
��a4b

��a6�d
�
v�d

�
�v��;

au;ann
7L ��

��jQCDF�Qu�a2b
��a4b

��a6�Qd=Qud
�
v�d

�
�v��;

ac;ann
7L �K

�0�jQCDF�Qd�a4bK
�
�a6�dK

�

v �dK
�

�v ��;

ac;ann
7L �K

���jQCDF�Qu�a4bK
�
�a6�Qs=QudK

�

v �dK
�

�v ��;

ac;ann
7L ��

0�jQCDF�Qd�a4b��a6�d
�
v�d

�
�v��;

ac;ann
7L ��

��jQCDF�Qu�a4b��a6�Qd=Qud
�
v�d

�
�v��: (16)

Apart from � and !, all these coefficients are numerically
small and do not change the branching ratio significantly;
the terms in a6, however, are relevant for the isospin
asymmetries.

In view of the large size of au;ann
7L ��� it is appropriate to

have a look at further corrections. The most obvious ones
are O��s� corrections to the QCDF expressions, shown in
Fig. 2. As it turns out, the corrections to the B vertex in
Fig. 2(a) are known: they also enter the decay B! �‘

and were calculated in Ref. [52]. Numerically, they are at
the level of 10%. Figure 2(b) shows the vertex corrections
to the V vertex, which are actually included in the decay
constant fV . For the nonfactorizable corrections shown in

Fig. 2(c), preliminary results have been reported in
Ref. [50]; according to [50], these corrections are of a
size similar to the B vertex corrections. Another class of
corrections is suppressed by one power of mb with respect
to the QCDF contributions and is due to long-distance
photon emission from the soft B spectator quark. A first
calculation of this effect was attempted in Ref. [51] and
was corrected and extended in Ref. [23]. The long-distance
photon emission from a soft-quark line requires the inclu-
sion of higher-twist terms in the expansion of the quark
propagator in a photon background field, beyond the
leading-twist (perturbative) contribution; a comprehensive
discussion of this topic can be found in Ref. [53]. The
quantity calculated in Ref. [23] is

 h���p���q�j� �du�V�A� �ub�V�AjB
��p� q�i

� e
m�f�
mB

���fFV�
�	e�
p�q	 � iFA�e���pq�

� q��e�p��g

� �e
m�f�
mB

�
1

2
FV�SL � SR� �

1

2
FA�SL � SR�

�
(17)

in terms of the photon-helicity amplitudes SL;R. The above
relation differs from the one given in [23] by an overall
sign, which is due to the different convention used in [23]
(and in [53]) for the covariant derivative: D� �

@� � ieQfA� instead of D� � @� � ieQfA� as in this
paper. In QCDF, FA;V are given by QufB=�B and induce a
term Qua2b� in au;ann

7L ��
��. The long-distance photon con-

tribution to FV;A was found to be [23]

 Fsoft
A � �0:07	 0:02 
 QuGA;

Fsoft
V � �0:09	 0:02 
 QuGV;

(18)

with GA �GV � �0:24	 0:06 and GV �GA �
�0:030	 0:015. Again, there is a relative sign with re-
spect to the results in [23]. This comes from the fact that
the product eFsoft

A;V is independent of the sign convention for
e, and as we have changed the overall sign of (17) with
respect to [23], we also have to change the sign of Fsoft

A;V .
Stated differently, the relative sign between Fsoft

A;V and Fhard
A;V

in [23] is wrong because of a mismatch in sign conventions
for e in the covariant derivative.

 

q

(a)

b

q

D

B V

q

b

q

D

B V

(b)

q

D

(c)

b

q

B V

FIG. 2. Example radiative corrections to weak annihilation. The corrections to the B vertex in (a) are known [52] and those to the V
vertex in (b) are included in fV . For the nonfactorizable corrections in (c), only preliminary results are available (see text).
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In order to obtain concise expressions for aU;ann
7L�R�, it

proves convenient to define one more hadronic quantity:

 g�L;R �
�2

T�1

m�f�
mbmB

�GV 	GA� (19)

and correspondingly for other mesons. gL is O�1=m2
b� as

GV �GA has the same power scaling in mb as T1, i.e.
m�3=2

b , as one can read off from the explicit expressions
in [51]. The difference GV �GA, on the other hand, is a
twist-3 effect due to three-particle light-cone DAs of the
photon and is suppressed by one more power of mb, i.e.
gR  1=m3

b. This quantity will enter the CP asymmetry.
Our final expressions for aU;ann

7L�R� then read

 aU;ann
7L �V� � aU;ann

7L �V�jQCDF�bV ! bV � gVL�;

aU;ann
7R �V� � aU;ann

7L �V�jQCDF�b
V ! gVR; d

V ! 0�:
(20)

Numerically, one has g�L=b
� � �0:3, so these corrections,

despite being suppressed by one more power in 1=mb, are
not small numerically and are larger than the knownO��s�
corrections to QCDF from B! �‘
. Based on this, we
feel justified in including these long-distance corrections in
our analysis, while dropping the radiative ones of Figs. 2(a)
and 2(c).

We conclude this section by listing the numerical values
of some of the annihilation coefficients, for central values
of the input parameters, including, in particular, those to
which Q1;2 contribute (with no Cabibbo suppression):

 ac;ann
7L �K

�0� � �0:013� 0:001 LD;

ac;ann
7L �K

��� � 0:004� 0:001 LD;

au;ann
7L ��

0� � �0:001� 0:004 LD;

au;ann
7L ��

�� � 0:149� 0:043 LD;

au;ann
7L �!� � �0:024� 0:003 LD:

(21)

The contribution from the long-distance photon emission is
labeled ‘‘LD’’ (LD! 1 at the end). The unexpectedly
small au;ann

7L ��
0� is due to a numerical cancellation between

the charged-current and penguin-operator contributions.
Comparing these results with those from QCDF,
Eq. (11), it is evident that WA is, as expected, largely
irrelevant for the branching ratios, except for B	 ! �	�.

IV. LONG-DISTANCE CONTRIBUTIONS FROM
QUARK LOOPS

In this section we calculate the soft-gluon emission from
quark loops shown in Fig. 1. Again, these contributions are
suppressed by one power ofmb with respect to aU;QCDF

7L , but
they also induce a right-handed photon amplitude which is
of the same order in 1=mb as aU;QCDF

7R . As we shall see in
the next section, this amplitude induces the time-dependent
CP asymmetry in B! V�. The asymmetry is expected to

be very small in the SM and / mD=mb due to chiral
suppression of the leading transition, but could be drasti-
cally enhanced by NP contributions. It was noticed in
Refs. [17,18] that the chiral suppression is relaxed by
emission of a gluon from the quark loop, which is the topic
of this section. The task is then not so much to calculate
these contributions to high accuracy, but to exclude the
possibility of large contributions to the CP asymmetry. For
this reason we will be very generous with the theoretical
uncertainties of the results obtained in this section—which
are currently unavoidable due to the uncertainties of the
relevant hadronic input parameters.

Historically, soft-gluon emission from a charm loop was
first considered in Ref. [54] as a potentially relevant long-
distance contribution to the branching ratio of B! K��, at
about the same time as similar effects were being discussed
for its inclusive counterpart B! Xs� [55–57]. It was
pointed out later, in Ref. [18], that the same diagram also
contributes dominantly to the time-dependent CP asym-
metry in B0 ! K�0�. The size of this contribution was
calculated only very recently, in Ref. [19]. The method
used in [19] relies on the local operator-product expansion
(OPE) of a heavy-quark loop in inverse powers of the quark
mass and hence cannot be used to calculate soft-gluon
emission from light-quark loops, which are doubly
Cabibbo suppressed for b! s� transitions, but not for
b! d�. In Sec. IVA we will briefly review the results
for heavy-quark loops and in Sec. IV B we will present a
new technique for calculating light-quark loops; however,
before we do so, we would like to fix our notation and give
explicit expressions for aU;soft

7L�R� .
Potentially the most important contribution to the soft-

gluon emission diagram in Fig. 1 comes from the charged-
current operatorQU

2 with the large Wilson coefficient C2 
1; it vanishes for QU

1 by gauge invariance. In order to
calculate the diagram, it proves convenient to decompose
QU

2 by a Fierz transformation into

 QU
2 �

1

3
QU

1 � 2 ~QU
1 with

~QU
1 �

�
�U
�a
2
U
�
V�A

�
�D
�a
2
b
�
V�A

:
(22)

The contribution of the U-quark loop to the �B! V�
amplitude can then be written as

 

A� �B! V��QU
2
�

�
GF���

2
p ��D�U

�
C2 � hV�p���q�j2 ~QU

1 j �B�pB�i

�

�
GF���

2
p ��D�U

�
C2 � ��ie�e���q�

X
q

Qf

�
Z
d4xeiq�xhV�p�jT� �q��q��x�

� 2 ~QU
1 �0�j �B�pB�i (23)
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�
GF���

2
p ��D�U

�
��eQU�C2 � �UVB; (24)

where the minus sign comes from the sign convention for e
as discussed in Sec. II. We decompose �UVB into contribu-
tions from the photon-helicity amplitudes SL;R, Eq. (7), as

 �UVB � lU�V�P� ~lU�V� ~P (25)

with

 P 
 �
�	e����
p�q	 �
1
2�SL � SR�;

~P 
 if�e�����pq� � �e�p����q�g � 1
2�SL � SR�:

(26)

In addition to QU
2 , the penguin operators Q3;4;6 give a

nonzero contribution to soft-gluon emission. Including all
these contributions, and comparing (24) with (6) and (7),
we obtain the following expression for aU;soft

7 :
 

aU;soft
7L�R� �V� �

�2

mbT
B!V
1 �0�

�
QUC2�lU 	 ~lU��V�

�QDC3�lD 	 ~lD��V�

�
X
q

Qq�C4 � C6��lq 	 ~lq��V�
�
: (27)

Here the sum over q runs over all five active quarks u, d, s,
c, b. D denotes the down-type quark in the b! D�
transition. The minus sign in front of C6 is due to Furry’s
theorem, according to which only the axial-vector current
in the �UU term in (22) contributes to �UVB. We do not
include the contribution from Q5 because its Fierz trans-
formation changes the chirality of the current so that the
resulting loop contribution is proportional tomD and hence
helicity suppressed. In the following we distinguish be-
tween heavy �b; c� and light �u; d; s� quark loops.
Assuming SU(3)-flavor symmetry, one has lu � ld � ls,
and ditto for ~lu;d;s, which causes a cancellation of these
contributions in the last term in (27). As to be discussed
below, in Sec. IV B, we estimate the SU(3)-breaking ef-
fects to be around 10%.

We now turn to the calculation of lb;c; ~lb;c and lu; ~lu.

A. Heavy-quark loops

The calculation of lc�K�� and ~lc�K
�� was presented in

Ref. [19]; here we briefly recapitulate the method and
present results also for lb, ~lb and for �, !, �K�, �.

It was first noticed in Ref. [54] that soft-gluon emission
from a charm loop, Fig. 1(b), is suitable for an OPE in
1=mc since the on-shell photon is far away from the
partonic threshold 4m2

c. The OPE reads, to leading order
in 1=mc [54],

 ie�
Z
d4xeiq�xT �c��c�x�2 ~Qc

1 � QF �O�1=m4
c� (28)

where

 QF 
 cF �D���1� �5�
�a
2
g ~Ga

��D
��F���b

with

 cF � �1=�48�2m2
c� (29)

and F�� � i�q�e
�
� � q�e

�
�� for an outgoing photon. Note

that here the sign of g corresponds to the covariant deriva-
tive D� � @� igTaAa� which differs from the sign con-
vention used in Sec. II, but agrees with that used as a
standard in hard-perturbative QCD calculations. Our final
results for lc, however, are independent of the sign of g, as
the matrix element of QF over mesons will be expressed in
terms of three-particle light-cone meson DAs containing
an explicit factor g which refers to the same convention.

The matrix element of QF can be expressed in terms of
lc, ~lc as

 �cVB � hV�p�jQFjB�pB�i � lc�V�P� ~lc�V� ~P: (30)

The parameters lc�K�� and ~lc�K
�� were first calculated in

Ref. [54] from three-point QCD sum rules. In Ref. [19] we
calculated them from LCSRs, which are more suitable for
the problem than three-point sum rules; see the discussion
in [19]. The sum rules were obtained for the quantities L
and ~L, which are related to lc and ~lc by

 cFL �
1
2lc; cF ~L � 1

2
~lc (31)

with cF given in Eq. (29). The LCSR for L reads [19]
 

m2
BfB
mb

Le�m
2
B=M

2
� m4

b

Z 1

u0

due�m
2
b=�uM

2�

�
fV

�
mV

mb

�
R1�u�

� f?V

�
mV

mb

�
2
R2�u�

�
; (32)

where R1 and R2 are given in terms of three-particle twist-3
and twist-4 DAs of the vector meson. Explicit expressions
are given in [19]. The sum rule for ~L is analogous.

In this paper we update the values of lc�K�� and ~lc�K�� as
determined in Ref. [19] and also calculate these parameters
for the other vector mesons. The twist-3 and twist-4 pa-
rameters entering R1;2 are given in Tables V and VI. The
results for lc and ~lc are given in Table VII.2 Those for lb and
~lb are obtained as

 lb �
m2
c

m2
b

lc; ~lb �
m2
c

m2
b

~lc: (33)

2The values obtained in [54] with local three-point sum rules
are lc�K

�� � ��1374	 250� keV and ~lc�K
�� � ��1749	

250� keV. The quoted uncertainty includes solely the variation
of the Borel parameter and therefore probably underestimates
the uncertainty. The central values are substantially larger than
those obtained from LCSRs, Table VII. It is well known that
three-point sum rules are inappropriate for b transitions since
higher-order condensate contributions grow with mb and destroy
the hierarchy of perturbative and nonperturbative contributions.
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Although the total uncertainties in these parameters are
rather large, their contribution to aU7L is of O�2%� at best
and only has a minor impact on the branching ratios. Soft-
gluon emission is also irrelevant for isospin asymmetries;
its main impact is on the CP asymmetry which is small by
itself, so even large uncertainties are acceptable if the aim
is to rule out a numerically sizable time-dependent CP
asymmetry in the SM. In obtaining these results we use the
one-loop pole massmb � �4:7	 0:15� GeV, fB and fBs as
given in Table III, the Borel parameter M2 � �12	
3� GeV2, the continuum threshold s0 � �35	 2� GeV2,
and the renormalization scale �2 � m2

B �m
2
b 	 1 GeV2

[36]. The uncertainties of the DAs are given in Table V.
Within the accuracy of the sum rules for these parameters it
is impossible to distinguish between �0 and !, so we
assume them to be equal. In view of the large uncertainties
associated with the parameters of the three-particle DAs,
we have adopted a conservative way to estimate the total
uncertainty of lc and ~lc in Table VII and added the un-
certainties linearly. The uncertainties are sizable in mb, fB,
�k3 , and M2. It is worth noting that the differences lc�V� �
~lc�V� hardly depend on the Borel parameter M2.

Let us turn to the issue of the convergence of the 1=mc
expansion which was discussed, for the inclusive case, in
Refs. [56,57]. Higher-order terms in the expansion of (28)

contain operators of type �D�q �D�n ~Gb; the expansion can
be resummed with the result given in Ref. [57]. For in-
clusive decays, the relevant matrix elements are
hBj �bDn ~GbjBi, which can be estimated, on dimensional
grounds, as hBj �bDn ~GbjBi � �n

QCDhBj �b ~GbjBi. The ex-
pansion parameter is then t 
 �mb�QCD�=�4m

2
c� � 0:2,

which is not power suppressed, but not large numerically.
For t � 0:2 the effect of resummation is to enhance the
leading-order matrix element by 15%, whereas for t � 0:4
it amounts to a 30% enhancement. We expect the resum-
mation to have a similar effect in exclusive decays. We
shall include the effect of truncating the 1=mc expansion
by doubling the theoretical uncertainty of our final result
for the CP asymmetries, which depend on lc � ~lc; the
impact of lc � ~lc on the branching ratios is small. We
also would like to mention, as noted in [57], that besides
the derivative expansion in the gluon field there are further
higher-twist contributions from e.g. two gluon fields.
These contributions, however, are truly power suppressed
and of order �2

QCD=m
2
c, so we feel justified neglecting

them.

B. Light-quark loops

For light-quark loops the photon is almost at threshold
and the local OPE does not apply, unlike the case of heavy
quarks discussed in the previous subsection. In this sub-
section we develop a method for calculating these contri-
butions which starts from the calculation of �uVB�q

2� from
LCSRs for an off-shell photon momentum q2 � 0. We then
shall use a dispersion relation to relate the off-shell matrix
element to �uVB�0�, which in turn can be expressed in terms
of the wanted quantities lu�V� and ~lu�V�, Eq. (25). The
starting point of the method developed here is similar to the
one used by Khodjamirian for the calculation of soft-gluon

TABLE VII. Soft-gluon contributions from c-quark loops in
keV units. The quantities lc and ~lc are defined in (24) and (25).
We assume equal parameters for � and !. lb is obtained as lb �
lcm

2
c=m

2
b and correspondingly for ~lb.

lc ~lc lc � ~lc lc � ~lc

B! K� �355	 280 �596	 520 242	 370 �952	 800
B! ��;!� �382	 300 �502	 430 120	 390 �884	 660
Bs ! �K� �347	 260 �342	 400 �4	 300 �689	 600
Bs ! � �312	 240 �618	 500 306	 320 �930	 750

TABLE V. Three-particle twist-3 hadronic parameters at the
scale � � 1 GeV. The parameters � and � are G odd whereas
the parameters � and ! are G even. The results for K� are
updates of those published in [19], those for � are updates of
[33], and those for � are new. We assume the parameters of �
and ! to be equal. A full derivation of these results will be
published elsewhere. Note that the absolute sign of all these
parameters depends on the sign convention chosen for the strong
coupling g (see text) and that K� refers to an �s �q� bound state.

�, ! K� �

�k3V 0.040(8) 0.026(6) 0.03(1)
~�k3V 0 0.08(3) 0
~!k3V �0:085�25� �0:07�2� �0:035�2�

�k3V 0 0.0005(5) 0
!k3V 0.20(7) 0.11(3) 0.045(3)
�k3V 0 �0:020�8� 0
�k3V 0 0.005(2) 0
!?3V 0.65(25) 0.35(10) 0.26(10)
�?3V 0 �0:05�2� 0

TABLE VI. Three-particle twist-4 hadronic parameters at the scale � � 1 GeV. The same
remark about the absolute sign and the meaning of K� applies as for twist-3 parameters.

�, !, � K� Remarks

�?4V 0:10	 0:05 0:10	 0:05 From [44], no SU(3) breaking; to be updated in [45]
~�?4V � ��?4V � ��?4V ditto
�?4V 0 0.012(4) G odd; quoted from [38]
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contributions to B! �� [58]. In order to simplify nota-
tions, we drop the superscript u on the correlation function.

A suitable correlation function for extracting �uVB�0� for
the weak interaction operator Q2 is
 

�V��q� k�
2; p2

B; P
2�

� i2e��
Z
d4xd4yei�q�k��xe�ipB�y

� hV�p�jT� �u��u��x�2 ~Qu
1�0�JB�y�j0i (34)

with ~Qu
1 defined as in the previous subsection and pB 


p� q, P 
 pB � k. The current JB � mb
�bi�5q is the

interpolating field of the B meson with

 hB�pB�jJBj0i � m2
BfB: (35)

The leading-order contribution to this correlation function,
with a soft gluon, is shown in Fig. 3. Following Ref. [58],
we have introduced an unphysical momentum k at the
weak vertex. This additional momentum serves to avoid
unphysical low-lying cuts in p2

B, also known as parasitic
terms. We will choose the momentum configuration in such
a way that k disappears when extracting �uVB�0�. The
kinematics of the correlation function describes a 2-2
scattering process and therefore depends on six indepen-
dent momentum squares. Three of those, namely,

 P2; �q� k�2; �p2
B �m

2
b� � ��2

QCD; (36)

are chosen to lie below their respective thresholds, assuring
that the correlation function is dominated by lightlike
distances and therefore suitable for a light-cone expansion.
The other three independent variables are p2, k2, and q2.
Neglecting higher-order corrections in the vector-meson
mass, we set p2 � 0 and, for simplicity, k2 � 0. We also
set q2 � �q� k�2, which will be necessary for avoiding a
subtraction constant in the dispersion relation in q2 and
also leaves only one remnant of the presence of the un-
physical momentum k: P2 � �pB � k�2 � p2

B. The ration-
ale for this choice of kinematics will become more
transparent below.

Inserting a complete set of hadron states, the correlation
function becomes

 �V�q
2; p2

B; P
2� � �m2

BfB�
��VB�q

2; P2�

m2
B � p

2
B

� . . . ; (37)

where the dots stand for higher states and the star on ��VB is
to remind one of the presence of the unphysical momentum
k in P2. We can decompose the correlation function as

 �V � �VP� ~�V ~P�O�k�;

with the projectors P and ~P given in Eq. (26). Additional
structures in k are unphysical and can be dropped.
Calculating the u-quark loop to twist-3 accuracy, we get

 �V �
fVm

2
bmV

48�2

Z
�v;��

v�P2 � �q� k�2�

l2�p2
b �m

2
b�

V ���; (38)

 ~� V �
fVm

2
bmV

48�2

Z
�v;��

v��q� k�2 � P2�

l2�p2
b �m

2
b�

A���; (39)

where l 
 q� k� v�3p and pb 
 q� ��1p, ��1 
 1�
�1 and therefore

 l2 � v�3P2 � �1� v�3��q� k�2;

p2
b � �1q2 � ��1p2

B;
(40)

where in our choice of kinematics �q� k�2 ! q2 in the
sequel. V and A are twist-3 three-particle DAs of the
vector meson; they are discussed in detail in Ref. [33]. The
quantities �V and ~�V also receive contributions of higher
twist, which we do not include in this paper. The integra-
tion measure is defined as

 

Z
�v;��
�
Z 1

0
dv

Z 1

0
d�1d�2d�3��1� �1 � �2 � �3�:

(41)

Equations (38)–(40) clearly show that the introduction of
the unphysical momentum k avoids a low-lying cut (para-
site) from the u-quark loop in the variable p2

B.
The parasitic term in q2, however, which originates from

the b-quark propagator going on shell, is not absent for our
choice q2 � �q� k�2. It induces a parasitic term to be
added to (37) which is of the form
 

hV�p�jJBjBD�q�i
e��

m2
BD
� q2

Z
d4xei�q�k��xhBD�q�jT2 ~O1�0�

� � �u��u��x�j0i �O�k�: (42)

The matrix element on the left-hand side is just the form
factor A0�p

2
B� for B! V transitions, which was calculated

from LCSRs in [36] and exhibits a pole 1=�m2
B � p

2
B� in

p2
B inducing a parasitic contribution to the first term in

Eq. (37). Before we can proceed any further, we need to
determine the size of this parasitic contribution. If we were
dealing with a c-quark loop, we could apply a local OPE to
the integral and calculate its value from (28) and the
following estimate based on dimensional analysis:

 

V
k

q−k

p
B

FIG. 3. Leading contribution to the correlation function �V in
(34). The black square denotes insertion of the operator Qi with
i � 1; . . . ; 6. The B meson momentum is pB � p� q and the
vector meson carries the momentum p.
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 hBDj �D���1� �5� ~G��bj0i ’ fB�pB��t�� ��2
QCD; (43)

where t�� is an antisymmetric dimensionless tensor. The
ratio of the parasitic term (42) to the main term in (37) is
then of order �2

QCD=m
2
b  1% and negligibly small. For the

u loop, on the other hand, the local OPE is not applicable
and one is back to our initial problem of devising a method
to calculate a nonlocal correlation function, although in
this case a simpler one than that in Eq. (23). Given, how-
ever, the smallness of the parasitic term for heavy quarks
1%, it is unlikely that this term is an order of magnitude
larger for light quarks, especially in view of the numerical
closeness of the light-quark and heavy-quark loops. For our
cases of interest, even a contamination at the level of 50%
would not constitute a major problem, as these contribu-
tions to B! V� are only relevant for the time-dependent
CP asymmetry which is expected to be near zero in the
SM. Our major aim is to confirm that this is indeed the case
and to exclude large contributions from soft-gluon emis-
sion, but not to give a precise determination of their size. In
view of this, even a large parasitic contamination is per-
fectly acceptable.

The next step is to write (38) and (39) in terms of a
dispersion relation in p2

B,

 �V�q2; p2
B; P

2� �
1

�

Z 1
m2
b

ds

s� p2
B

Ims�V�q2; s; P2�; (44)

in order to match them to the hadronic representation (37).
The quantity l�u�q2; P2� can then be obtained by applying
the standard QCD sum rule techniques, namely, Borel
transformation and continuum subtraction, which yield

 l�u�q
2; P2� �

1

m2
BfB

1

�

Z sB0

m2
b

dse�m
2
B�s�=M

2
Ims�V�q

2; s; P2�;

(45)

where the star again indicates the presence of the unphys-
ical momentum k in P2 � �pB � k�2; also note that the
photon is still off shell. Once Ims�V�q2; s; P2� is known,
l�u�q

2; P2� can be analytically continued in P2 ! m2
B � i0.

For the B-meson ground state, this removes the last trace of
the unphysical momentum k. The analytic continuation in
P2 is justified because it is far above the other hadronic
scales in the corresponding channel. This yields the physi-
cal u-quark amplitude, yet still for an off-shell photon.

After the conceptual outline given above, we will now
outline how to proceed from the intermediate results (38)
and (39). In order to obtain the imaginary parts of �V and
~�V , it proves convenient to perform some of the integra-
tions over the variables v and �i until logarithms appear
whose imaginary parts (cuts) can easily be identified. It
turns out that the integrals over dv and d�1 with �2 �
1� �1 � �3 are elementary since the involved variables
are spacelike which guarantees the absence of singularities.
We obtain an expression of the form

 

�V 
Z 1

0
d�3

1

�P2 � q2��p2
B � q

2�3
f��ln�m2

b � p
2
B�

� ln�m2
b � �3p

2
B � ��3q

2��P1 � P2��ln��q
2�

� ln���3P
2 � ��3q

2�P3 � P4�gP5; (46)

where Pi stands for polynomials. The poles in q2 are
integrable, i.e. removable. The dispersion representation
in p2

B is now obtained from the cuts of the logarithms. We
find
 

�
Z 1
m2
b

ds

s� p2
B

Z �m2
b�q

2�=�s�q2�

0
d�3��ln��q2�

� ln���3P2 � ��3q2��P3 � P4�

�
P1P5

�P2 � q2��p2
B � q

2�3
:

The integral over d�3 is elementary and we finally obtain
the imaginary part for the dispersion relation (44):
 

1

�
Ims�V�q

2; s; P2�

��������s�m2
b

�
fVm2

bmV

8�2�P2 � q2�3�s� q2�5

� �ln��q2� � ln�s� q2�

� ln��m2
bP

2 � q2�s�m2
b

� P2�� � P6�P7: (47)

This is the expression to be used in Eq. (45). As discussed
above, the momentum k completely disappears upon ana-
lytic continuation of P2 ! m2

B � i0 and we obtain the
amplitude for an off-shell photon. The analytic continu-
ation is rather straightforward: l�u acquires an imaginary
part from those logarithms whose arguments depend onP2.
The imaginary part is proportional to the mass of the u
quark and originates from the quark going on shell. After
the analytic continuation of (47), all remnants of the un-
physical momentum k have disappeared and we can drop
the star from now on:
 

lu�q2� 
 lu�q2; m2
B � i0�

�
1

m2
BfB

1

�

Z sB0

m2
b

dse�m
2
B�s�=M

2

� Ims�V�q
2; s; m2

B � i0�; (48)

for q2 ���2
QCD. It is interesting to note that, if one does

not project onto the B ground state, the analytic continu-
ation leads to unphysical cuts in negative q2 which come
from the fact that for higher states the unphysical momen-
tum k is still present.

There remains only one step to be done, namely, to put
the photon on shell, i.e. q2 ! 0. To do so, we follow the
method used in Ref. [59], where the pion-photon-photon
transition form factor F���� was estimated with one on-
shell photon. Since lu�q2� is an analytic function in q2, it
has the standard dispersion representation

PATRICIA BALL, GARETH W. JONES, AND ROMAN ZWICKY PHYSICAL REVIEW D 75, 054004 (2007)

054004-12



 lu�q2� �
1

�

Z 1
cut
dt

Imtlu�t�

t� q2 (49)

for q2 below the cut. Potential subtraction terms spoiling
the above representation are absent. This can be seen as
follows: for very large Euclidian values�q2 � �2

QCD, one
can perform a local OPE very much the same way as for
c-quark loops with the expansion coefficient 1=m2

c !
1=q2. Using this result we have explicitly verified that
lu�q

2�, ~lu�q
2� q2!1 1=q2. Another indication, although

not sufficient, is that the explicit calculation of l�u�q2; P2�
does not contain a constant or polynomial terms in q2. The
imaginary part in q2 comes from the logarithms in (47) and
the poles in 1=�q2 � s�. The poles in P2 � m2

B � i0 are
again integrable or removable.

The perturbative or parton representation has a cut start-
ing at 0, Eq. (49), and it is therefore impossible to set q2 �
0 because it is right below the perturbative threshold. The
idea is then to cut out this lower part by inserting reso-
nances that couple to the �u��u current; q2 � 0 is then
sufficiently below the resonances and the corresponding
continuum threshold. We shall content ourselves with the
two lowest resonances, � and !. Treating them as equal,
we have

 lu�q2� �
2r�

m2
� � q

2 �
1

�

Z 1
s�0

Imtlu�t�

t� q2 (50)

where

 r�P� ~r� ~P � e��
X
pol

h0j �u��uj�ih�Vj2 ~Q1jBi;

and the sum runs over the polarization of the �. It remains
to determine r� (and ~r�), so that Eq. (50) can be used to
extract lu�0�. This can be achieved by applying a Borel
transformation in the variable q2 which yields the estimate

 2r� �
1

�

Z s�0

0
dt Imlu�t�e

�m2
��t�=M

2
(51)

and finally

 lu 
 lu�0�

�
1

�

Z s�0

0

dt

m2
�
e�m

2
��t�=M2

Imlu�t� �
1

�

Z 1
s�0

dt
t

Imlu�t�:

(52)

The crucial point here is that for t below the continuum
threshold the factor 1=t gets replaced by e�m

2
��t�=M2

=m2
�.

At this point we would also like to clarify in what respect
our method to calculate soft-gluon emission in B! V�
differs from that developed in Ref. [58] for analogous
contributions to the nonleptonic B! �� decay. In both
cases the problem is a light-quark loop which is almost on
shell, the corresponding nonperturbative effects are esti-
mated from light-cone sum rules, and, in order to avoid
parasitic terms in the correlation function, an auxiliary
momentum is introduced into the weak vertex. The dis-
tinction is that, in contrast to the pion, the photon is a
perturbative state and therefore cannot be represented by
an interpolating current, but appears directly in the diagram
with on-shell momenta. In order to set the photon on its
mass shell, we use a dispersion representation, Eq. (49),
and estimate the truly nonperturbative part of the spectral
function from the corresponding sum rule, Eq. (51).
Moreover we have checked, by inspecting the OPE in the
deep Euclidian, that the dispersion representation has no
subtraction terms, which is implicitly assumed in (49). In
order to assure the absence of these terms we had to set the
two, in principle, independent momentum squares q2 and
�q� k�2 equal to each other. This reintroduced a parasitic
contribution of the form (42) which we estimated to be of
O�1%� as compared to the main contribution.

The sum rule (52) gives the numerical results collected
in Table VIII. We use the Borel parameter M2 � �1:2	
0:3� GeV2 and the threshold s�0 � �1:6	 0:1� GeV2.
Comparing these results with those from the c loop,
Table VII, we see that they are roughly of the same size,
but come with opposite sign. The smallness of �lu � ~lu����
is due to an accidental numerical cancellation. The uncer-
tainties are large, which is no cause for concern, however,
because we are only interested in the approximate size of
these contributions which set the size of the time-
dependent CP asymmetry in B! V�.

TABLE VIII. Soft-gluon contributions from u-quark loops in keV units. The quantities lu and
~lu are defined in (24) and (25). We assume lu��� � lu�!� and similarly for ~lu. The uncertainty
for lu � ~lu is given in absolute numbers because of cancellations. In the SU(3)-flavor limit
assumed in this calculation, one has lu � ld � ls 
 lq.

lu ~lu lu � ~lu lu � ~lu

B! K� 536	 70% 635	 70% �99	 300 1172	 70%
B! ��;!� 827	 70% 828	 70% �1	 300 1655	 70%
Bs ! �K� 454	 70% 572	 70% �118	 300 1025	 70%
Bs ! � 156	 70% 737	 70% �581	 300 893	 70%
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In the above, we have assumed SU(3)-flavor symmetry
which implies lu � ld � ls 
 lq. We can estimate the size
of SU(3)-breaking effects by taking into account that ls
couples to the �s��s current via the � and higher reso-
nances in (50) and requires a slightly higher continuum
threshold s�0 . This leads to a numerical difference with
respect to lu which is around 5%. The effect of neglecting
the quark masses is of order mq=mb and therefore even
smaller. We conclude that it seems unlikely that ls differs
from lu;d by more than 10%.

V. PHENOMENOLOGICAL RESULTS

In this section we combine the different contributions to
the factorization coefficients aU7L�R� calculated in Secs. II,
III, and IV and give results for the observables in B! V�
transitions, namely, the branching ratio, the isospin asym-
metry, and the time-dependent CP asymmetry.

A. Branching ratios

The (non-CP-averaged) branching ratio of the b! D�
decay �B! V� is given by
 

B� �B!V�� �
�B
c2
V

G2
F�m

3
Bm

2
b

32�4

�
1�

m2
V

m2
B

�
3
�TB!V1 �0��2

�

���������X
U

��D�U aU7L�V�
��������2
�

��������X
U

��D�U aU7R�V�
��������2
�

(53)

with the isospin factors c�	;K�;� � 1 and c�0;! �
���
2
p

. The
branching ratio for the CP-conjugated channel B! �V�
( �b! �D� at parton level) is obtained by replacing ��D�U !

���D�U �
�. Experimental results for B! K�� and B!

��;!�� are collected in Table I. For Bs ! �� there is
only an upper bound B�Bs ! ���< 120� 10�6 [28]. No
experimental information is available for Bs ! �K��.

With the input parameters from Table III and the life-
times given in Table IX, we find the following
CP-averaged branching ratios for B! K��, making ex-
plicit various sources of uncertainty:
 

�B�B� ! K���� � �53:3	 13:5�T1� 	 4:8��� 	 1:8�Vcb�

	 1:9�lu;c� 	 1:3�other�� � 10�6

� �53:3	 13:5�T1� 	 5:8� � 10�6;

�B� �B0 ! K�0�� � �54:2	 13:2�T1� 	 6:0��� 	 1:8�Vcb�

	 1:8�lu;c� 	 1:4�other�� � 10�6

� �54:2	 13:2�T1� 	 6:7� � 10�6: (54)

We have added all individual uncertainties in quadrature,
except for that induced by the form factor. The uncertainty
in � is that induced by the renormalization-scale depen-
dence, with � � mb�mb� 	 1 GeV. The uncertainty in lu;c
refers to the soft-gluon terms calculated in Sec. IV.
‘‘Other’’ sources of uncertainty include the dependence
on the parameters in Table III, on the size of LD WA
contributions and the replacement of NLO by LO Wilson
coefficients. The above results agree, within errors, with
the experimental ones given in Table I, within the large
theoretical uncertainty induced by the form factor.

As the uncertainties of all form factors in Table III are of
roughly the same size, one might conclude that the pre-
dictions for all branching ratios will carry uncertainties
similar to those in (54). This is, however, not the case: the
accuracy of the theoretical predictions can be improved by
making use of the fact that the ratio of form factors is
known much better than the individual form factors them-
selves. The reason is that the values given in Table III,
which were calculated using the same method, LCSRs, and
with a common set of input parameters, include common
systematic uncertainties (dependence on fB, mb, etc.)
which partially cancel in the ratio. In Ref. [22] we have
investigated in detail the ratio of the K� and � form factors
and found

 �� 

TB!K

�

1 �0�

TB!�1 �0�
� 1:17	 0:09: (55)

The uncertainty is by a factor 2 smaller than if we had
calculated �� from the entries in Table III; an analogous
calculation for ! yields

 �! 

TB!K

�

1 �0�

TB!!1 �0�
� 1:30	 0:10: (56)

The difference between �� and �! is mainly due to the
difference between f?! and f?� ; see Table III. For the Bs
form factors, we also need the ratio of decay constants
fBs=fBd . The status of fB from lattice was reviewed in
Ref. [41]; the present state-of-the-art calculations are un-
quenched with Nf � 2� 1 active flavors [60], whose av-
erage is fBs=fBd � 1:23	 0:07. Again, this ratio is fully
consistent with that quoted in Table III, but has a smaller
uncertainty. We then find the following ratios for Bs form
factors:

 �� 

TB!K

�

1 �0�

TBs!�1 �0�
� 1:01	 0:13;

� �K� 

TB!K

�

1 �0�

TBs!
�K�

1 �0�
� 1:09	 0:09:

(57)

The uncertainty of � �K� is smaller than that of �� because
the input parameters forK� and �K� are the same (except for
G-odd parameters like a?1 ) and cancel in the ratio; the
uncertainty is dominated by that of fBs=fBd .

TABLE IX. B lifetimes from HFAG [6].

�B0 �B	=�B0 �B0
s
=�B0

1.530(9) ps 1.071(9) 0.958(39)
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To benefit from this reduced theoretical uncertainty in
predicting branching ratios, one has to calculate ratios of
branching ratios, which mainly depend on �V and only
mildly on T1 itself: in addition to the overall normalization,
T1 also enters hard-spectator interactions and power-
suppressed corrections, whose size is set by hadronic
quantities / 1=T1. As these corrections are subleading (in
�s or 1=mb), however, a small shift in T1 has only very
minor impact on the branching ratios. The absolute scale
for the branching ratios is set by the CP- and isospin-
averaged branching ratio with the smallest experimental
uncertainty, i.e. B! K��; from Table I, one finds
 

�B�B!K��� �
1

2

�
�B�B	 ! K�	�� �

�B	

�B0

�B� �B0!K�0��
�

� �41:6	 1:7� � 10�6: (58)

That is, we obtain a theoretical prediction for �B�B! V��
as

 

�B�B! V��jth �
� �B�B! V��

�B�B! K���

�
th

�B�B! K���jexp;

(59)

where �. . .�th depends mainly on �V and only in subleading
terms on the individual form factors TB!K

�

1 and TB!V1 . It is
obvious that, except for these subleading terms, this pro-
cedure is equivalent to extracting an effective form factor
TB!K

�

1 �0�jeff from B! K�� and using TB!V1 �0�jeff �

TB!K
�

1 �0�jeff=�V for calculating the branching ratios for
B! V�. From (58) we find

 TB!K
�

1 �0�jeff � 0:267	 0:017�th� 	 0:006�exp�

� 0:267	 0:018; (60)

where the theoretical uncertainty follows from the second
uncertainty given in (54). Equations (55)–(57) then yield

 TB!�1 �0�jeff � 0:228	 0:023;

TB!!1 �0�jeff � 0:205	 0:021;

TBs!
�K�

1 �0�jeff � 0:245	 0:024;

TBs!�1 �0�jeff � 0:260	 0:036:

(61)

Note that all effective form factors agree, within errors,
with the results from LCSRs given in Table III, which
confirms the results obtained from this method; the crucial
point, however, is that the uncertainties are reduced by a
factor of 2 (except for TBs!�1 ). We would like to stress that
the motivation for this procedure is to achieve a reduction
of the theoretical uncertainty of the predicted branching
fractions in B! ��;!�� and Bs decays. The effective
form factors do not constitute a new and independent
theoretical determination, but are derived from the experi-
mental results for B! K�� under the following assump-
tions:

(i) there is no NP in B! K��3;
(ii) QCDF is valid with no systematic uncertainties;
(iii) LCSRs can reliably predict the ratio of form factors

at zero momentum transfer.
From (53) and (61), we then predict the following
CP-averaged branching ratios:
 

�B�B� ! ���� � �1:16	 0:22�T1� 	 0:13� � 10�6;

�B�B0 ! �0�� � �0:55	 0:11�T1� 	 0:07� � 10�6;

�B�B0 ! !�� � �0:44	 0:09�T1� 	 0:05� � 10�6;

�B�Bs ! �K��� � �1:26	 0:25�T1� 	 0:18� � 10�6;

�B�Bs ! ��� � �39:4	 10:7�T1� 	 5:3� � 10�6; (62)

where the first uncertainty is induced by the effective form
factors and the second includes the variation of all inputs
from Table III except for the angle � of the UT, which is
fixed at � � 53�. The total uncertainty in each channel is
20%, except for Bs ! ��, where it is 30%. The results
for � and ! agree very well with those of BABAR, Table I,
but less so with the Belle results, although present experi-
mental and theoretical uncertainties preclude a firm con-
clusion. Our prediction for Bs ! �� is well below the
current experimental bound 120� 10�6 [28]. A branching
ratio of the size given in (62) implies thatO�103� Bs ! ��
events will be seen within the first few years of the LHC. In
Table X we detail the contributions of individual terms to
the branching ratios. In all cases B is dominated by the
QCDF contribution, with WA most relevant for B� !
���. This is expected as WA enters with the large
Wilson coefficient C2  1. The effect is extenuated by
long-distance (LD) photon emission, which itself is com-
pensated by soft-gluon emission. The other channels fol-
low a similar pattern, although the size of the effects is
smaller.

Let us now turn to the determination of CKM parameters
from the branching ratios. In this context, two particularly
interesting observables are

 R�=! 

�B�B! ��;!���

�B�B! K���
; R� 


�B�B! ���
�B�B! K���

;

(63)

given in terms of the CP- and isospin-averaged branching
ratios of B! ��;!�� and B! ��, respectively, and B!
K�� decays; see Table I. R�=! has been measured by both
BABAR and Belle [4,5]; a first value of R� has been given
by BABAR [4]. The experimental determinations actually
assume exact isospin symmetry, i.e. ���B	 ! �	�� 

2 ���B0 ! �0��, and also ���B0 ! �0�� 
 ���B0 ! !��;
as we shall discuss in the next subsection, these relations
are not exact, and the symmetry-breaking corrections can

3Which is motivated by the results from inclusive B! Xs�
decays [2].
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be calculated. Hence, the present experimental results for
R�=! are theory-contaminated. As the isospin asymmetry
between the charged and neutral � decay rates turns out to
be smaller than the asymmetry between �0 and!, it would
actually be preferable, from an experimental point of view,
to drop the ! channel and measure R� instead of R�=!, as
done in the most recent BABAR analysis on that topic [4].
We will give numerical results and theory uncertainties for
both R�=! and R�.

One parametrization of R�=! often quoted, in particular,
in experimental papers, is

 R�=! �
��������VtdVts

��������2
�

1�m2
�=m2

B

1�m2
K�=m

2
B

�
3 1

�2
�
�1� �R�; (64)

with �R � 0:1	 0:1 [9] and again assuming isospin sym-
metry for � and !. This parametrization creates the im-
pression that �R is a quantity completely unrelated to and
with a fixed value independent of jVtd=Vtsj. We would like
to point out here that this impression is wrong: �R contains
both QCD (factorizable and nonfactorizable) effects and
such from weak interactions. In Ref. [22], we have ex-
pressed �R in terms of the factorization coefficients aU7L,
assuming isospin symmetry for �0 and !, as

 1��R �
�������� ac7L���
ac7L�K

��

��������2
�
1� Re��a	 � �a0�

�

�
R2
b � Rb cos�

1� 2Rb cos�� R2
b

�
�

1

2
�j�a	j2

� j�a0j
2�

�
R2
b

1� 2Rb cos�� R2
b

��
(65)

with �a0;	 � au7L��
0;	�=ac7L��

0;	� � 1. Here � is one of
the angles of the UT (� � argV�ub in the standard
Wolfenstein parametrization of the CKM matrix) and Rb
one of its sides:

 Rb �
�
1�

�2

2

�
1

�

��������VubVcb

��������:

Equation (65) shows explicitly that �R depends both on
QCD (�a	;0) and CKM parameters �Rb; ��. The point we
would like to make is that the calculation of �R requires
input values for Rb and �. Once these parameters (and the
Wolfenstein parameter �) are fixed, however, jVtd=Vtsj is
also fixed and given by
 ��������VtdVts

�������� � �
����������������������������������������
1� 2Rb cos�� R2

b

q �
1�

1

2
�1� 2Rb cos���2

�O��4�

�
: (66)

Hence, as jVtd=Vtsj and �Rb; �� are not independent of each
other, it is impossible to extract jVtd=Vtsj from (64) with a
fixed value of �R. We hasten to add that our arguments
rely on the unitarity of the CKM matrix, and its well-
known consequence, the existence of the UT. The unitarity
of the CKM matrix is, however, already hard wired into the
effective Hamiltonian (2); without it, the theory would look
quite different because of the absence of the GIM mecha-
nism, as mentioned in Sec. II, Eq. (3). Stated differently, as
long as Eq. (2) is adopted as the relevant effective
Hamiltonian for b! D� transitions, unitarity of the
CKM matrix is implied. Obviously, the unitarity of the
CKM matrix is subject to experimental scrutiny, but any
test of it has to involve the comparison of different mea-
surements described within the same framework (by the
same effective Hamiltonian), while a mixture of different
frameworks (unitary vs nonunitary CKM matrix) within
one observable, like R�=!, does not make any sense.

Of course R�=! and R� of (63) can be used in a mean-
ingful way to extract information about CKM parameters,
but in order to do so one has to settle for a set of truly
independent parameters. Based on (66), one can exchange,
say, � for jVtd=Vtsj.

4 So we can either consider RV as a
function of the CKM parameters Rb and � (let us call this

TABLE X. Individual contributions to CP-averaged branching ratios, using effective form
factors and central values of all other input parameters given in Table III (in particular, � �
53�). LD stands for the long-distance photon-emission contribution to WA. Each column labeled
‘‘�X’’ includes the contributions listed in the previous column plus the contribution induced by
X. The entries in the last column are our total central values.

QCDF �WA (no LD) �WA (incl. LD) � soft gluons

B� ! ��� 1.05 1.17 1.11 1.16
B0 ! �0� 0.49 0.53 0.53 0.55
B0 ! !� 0.40 0.42 0.42 0.44
B� ! K��� 39.7 38.4 38.3 39.4
B0 ! K�0� 37.1 39.7 39.9 41.0
B0
s ! �K�0� 1.12 1.22 1.23 1.26
B0
s ! �� 34.6 38.2 38.3 39.4

4Strictly speaking, (66) only fixes cos� as a function of
jVtd=Vtsj, leaving a twofold degeneracy of �. Equation (65),
however, only depends on cos�, so that indeed one can unam-
biguously replace � by jVtd=Vtsj.
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the � set of parameters) or as a function of Rb and jVtd=Vtsj
(to be called the jVtxj set). Using the � set, a measurement
of RV��; Rb� allows a determination of �, whereas
RV�jVtd=Vtsj; Rb� allows the determination of jVtd=Vtsj.
In either case, the simple quadratic relation (64) between
RV and jVtd=Vtsj becomes more complicated. In Figs. 4
and 5 we plot the resulting values of jVtd=Vtsj2 and �,
respectively, as a function of RV . Although the curve in
Fig. 4(a) looks like a straight line, as naively expected from
(64), this is not exactly the case, because of the dependence
of �R on jVtd=Vtsj. In Fig. 4(b) we plot �R for the jVtxj set
of parameters. The dependence of �R on jVtd=Vtsj is rather
strong. Apparently, indeed �R � 0:1	 0:1 in the expected
range 0:16< jVtd=Vtsj< 0:24, but this estimate does not
reflect the true theoretical uncertainty which is indicated by
the dashed lines in the figure.

It is now basically a matter of choice whether to use
R�=! to determine jVtd=Vtsj or �. Once one of these
parameters is known, the other one follows from
Eq. (66). In Fig. 5 we plot � as a function of R�=!, together
with the theoretical uncertainties. In Fig. 6 we also com-

pare the central values of R�=! with those of R�, as a
function of jVtd=Vtsj. Although the difference is small,
R� is expected to be larger than R�=!. In order to facilitate
the extraction of jVtd=Vtsj (or �) from measurements of
R�=! or R�, Tables XI and XII contain explicit values for
the theoretical uncertainties for representative values of
R�=! and R�. The uncertainty induced by �� is dominant.
As discussed in Ref. [22], a reduction of this uncertainty
would require a reduction of the uncertainty of the trans-
verse decay constants f?V of � andK�. With the most recent
results from BABAR, R�=! � 0:030	 0:006 [4], and from
Belle, R�=! � 0:032	 0:008 [5], we then find
 

BABAR:
��������VtdVts

�������� � 0:199�0:022
�0:025�exp� 	 0:014�th� $ �

� �61:0�13:5
�16:0�exp��8:9

�9:3�th��
�;

Belle:
��������VtdVts

�������� � 0:207�0:028
�0:033�exp��0:014

�0:015�th� $ �

� �65:7�17:3
�20:7�exp��8:9

�9:2�th��
�: (67)

These numbers compare well with the Belle result [40]
from tree-level processes, � � �53	 20��, quoted in
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FIG. 5. The UT angle � as a function of R�=! in the � set of
CKM parameters. Solid lines: central values of input parameters.
Dash-dotted lines: theoretical uncertainty induced by �� �
1:17	 0:09. Dashed lines: other theoretical uncertainties.
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FIG. 4. Left panel: jVtd=Vtsj2 as a function of R�=!, Eq. (63), in the jVtxj basis (see text). Solid line: central values. Dash-dotted lines:
theoretical uncertainty induced by �� � 1:17	 0:09, (55). Dashed lines: other theoretical uncertainties, including those induced by
jVubj, jVcbj and the hadronic parameters of Table III. Right panel: �R from Eq. (65) as a function of jVtd=Vtsj for the jVtxj set of CKM
parameters. Solid line: central values. Dashed lines: theoretical uncertainty.
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FIG. 6. Central values of R�=! (solid line) and R� (dash-dotted
line) as a function of jVtd=Vtsj.
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Table III, and with results from global fits [30]. We also
would like to point out that the above determination of � is
actually a determination of cos�, via Eq. (66), and implies,
in principle, a twofold degeneracy �$ 2�� �. This is in
contrast to the determination from B! D���K��� in [40],

which carries a twofold degeneracy �$ �� �.
Obviously these two determinations taken together remove
the degeneracy and select � � 55� < 180�. If � � 55� �
180� instead, one would have jVtd=Vtsj � 0:29 from (66),
which is definitely ruled out by data. Hence, the result (67)
confirms the SM interpretation of � from the tree-level CP
asymmetries in B! D���K���.

We would like to close this subsection by making ex-
plicit the dependence of the three B! ��;!�� branching
ratios on �. In Fig. 7 we plot these branching ratios, for
central values of the input parameters, as functions of �.
We also indicate the present experimental results from
BABAR [4], Table I, within their 1	 uncertainty.

B. Isospin asymmetries

The asymmetries are given by

 A��;!� �
���B0 ! !��
���B0 ! �0��

� 1; (68)

 AI��� �
2 ��� �B0 ! �0��
��� �B	 ! �	��

� 1; (69)

 AI�K�� �
��� �B0 ! K�0�� � ���B	 ! K�	��
��� �B0 ! K�0�� � ���B	 ! K�	��

; (70)

the partial decay rates are CP averaged; AI���, AI�K�� are
isospin asymmetries.

Let us first discuss A��;!� and AI��� which are relevant
for the experimental determination of �B�B! ��;!���,
which in turn is used for the determination of jVtd=Vtsj
(or �); see Sec. VA. The present experimental statistics for

TABLE XII. Ditto for R�. ��� is larger than in Table XI
because of the increased weight of B! �� in the isospin
average; �other th is smaller because �! does not enter.

R� jVtd=Vtsj ��� �other th � ��� �other th

0.028 0.186 	0:016 	0:005 52.4 �9:9
�10:3 	5:0

0.030 0.193 	0:016 	0:005 57.4 �10:2
�10:3 	3:9

0.032 0.201 	0:017 	0:005 62.0 	10:5 	3:1
0.034 0.208 	0:017 	0:004 66.4 �10:8

�10:7 	2:7

0.036 0.215 	0:018 	0:004 70.7 �11:3
�11:0 	2:5

TABLE XI. Central values and uncertainties of jVtd=Vtsj and �
extracted from representative values of R�=!, Eq. (63). ��� is the
uncertainty induced by ��, Eq. (55), and �other th is that by other
input parameters, including �! and jVubj.

R�=! jVtd=Vtsj ��� �other th � ��� �other th

0.026 0.183 	0:012 	0:007 50.8 �7:5
�8:2 	5:8

0.028 0.191 �0:012
�0:013 	0:006 56.0 �7:7

�8:3 	4:7

0.030 0.199 	0:013 	0:006 61.0 �7:9
�8:4 	4:0

0.032 0.207 �0:013
�0:014 	0:006 65.7 �8:1

�8:5 	3:6

0.034 0.214 	0:014 	0:006 70.2 �8:4
�8:8 	3:5

0.036 0.221 �0:014
�0:015 	0:006 74.5 �8:8

�9:0 	3:7
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FIG. 7 (color online). CP-averaged branching ratios of B! ��;!�� as a function of �, using the effective form factors and central
values of other input parameters. (a): B	 ! �	�; (b): B0 ! �0�; (c): B0 ! !�. The boxes indicate the 1	 experimental results from
BABAR [4], Table I. Note that the resulting value of � from the average of all three channels is � � �61:0�13:5

�16:0�exp��8:9
�9:2�

�, Eq. (67).
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b! d� transitions is rather low, so the experimental value
of �B�B! ��;!��� is obtained under the explicit assump-
tion of perfect symmetry, i.e. ���B	 ! �	�� � 2 ���B0 !

�0�� � 2 ���B0 ! !��. In reality, the symmetry between
�0 and ! is broken by different values of the form factors,
and isospin symmetry between neutral and charged � is
broken by photon emission from the spectator quark, the
dominant mechanism of which is WA, as discussed in
Sec. III. From the formulas for individual branching ratios,
Eq. (53), and the various contributions to the factorization
coefficients aU7L�R� collected in Secs. II, III, and IV, we find

 A��;!� � �0:20	 0:09�th�: (71)

The uncertainty is dominated by that of the form factor
ratio TB!!1 �0�=TB!�1 �0� � 0:90	 0:05.5 The dependence
on all other input parameters is marginal. AI���, on the
other hand, is very sensitive to �, whereas the form factors
drop out. It is driven by the WA contribution and, in the
QCDF framework, vanishes if WA is set to zero. In
Fig. 8(a) we plot AI��� as a function of �, including the
theoretical uncertainties. As suggested by the findings of
Ref. [50], these results are not expected to change consid-
erably upon inclusion of the nonfactorizable radiative cor-
rections of Fig. 2(c). In Table XIII, we give the
corresponding results for several values of �, together
with the theoretical uncertainty. Our result agrees very
well with that obtained by the BABAR Collaboration:
AI���BABAR � 0:56	 0:66 [4].

AI�K��was first discussed in Ref. [20], including power-
suppressed O��s� corrections which unfortunately violate
QCDF, i.e. are divergent. It is for this reason that we decide
to drop these corrections and include only leading-order
terms in �s. We then find

 AI�K
�� � �5:4	 1:0��� 	 0:6�NLO

$ LO� 	 0:6�fB� 	 0:6�other��%

� �5:4	 1:4�%; (72)

where NLO$ LO denotes the uncertainty induced by
switching from NLO to LO accuracy in the Wilson coef-
ficients and ‘‘other’’ summarizes all other sources of theo-
retical uncertainty. As can be inferred from the entries in
Table I, the present experimental result is AI�K��exp �

�3:2	 4:1�%. In Ref. [20], Kagan and Neubert pointed
out that AI�K�� is very sensitive to the values of the
Wilson coefficients CBBL

5;6 in the combination a6 
 CBBL
5 �

CBBL
6 =3. In the SM, varying the renormalization scale as

� � mb�mb� 	 1 GeV and switching between LO and
NLO accuracy for the Wilson coefficients, one has a6 �
�0:039	 0:008, which actually induces the bulk of the
uncertainty in (72). In Fig. 8(b) we plot AI�K�� as a
function of a6=a

SM
6 , with aSM

6 � �0:039. The figure
clearly indicates that, although there is presently no dis-
crepancy between theoretical prediction and experimental
result, a reduction of the experimental uncertainty of
AI�K

�� may well reveal some footprints of NP in this
observable.

C. CP asymmetries

The time-dependent CP asymmetry in �B0 ! V0� is
given by

TABLE XIII. Isospin asymmetry AI���, Eq. (69), for different values of �.

� 40� 50� 60� 70�

AI��� ��5:3	 6:9�% �0:4	 5:3�% �5:7	 3:9�% �10:5	 2:7�%
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FIG. 8 (color online). Left panel: isospin asymmetry AI���, Eq. (69), as a function of the UT angle �. Solid line: central values of
input parameters; dashed lines: theoretical uncertainty. Right panel: AI�K��, Eq. (70), in percent, as a function of the ratio r 
 a6=a

SM
6

of the combination of penguin Wilson coefficients a6 
 C6 � C5=3. Solid line: central value of input parameters; dashed lines:
theoretical uncertainty. The box indicates the present experimental uncertainty and the straight black lines the theory uncertainty in r.

5Note that this result is dominated by the ratio of decay
constants given in Table III and discussed in the Appendix.
The experimental results entering these averages have a large
spread which may cast a shadow of doubt on the averaged final
branching ratios for ��0; !� ! e�e� quoted by PDG [28].
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 ACP�t� �
�� �B0�t� ! V�� � ��B0�t� ! �V��

�� �B0�t� ! V�� � ��B0�t� ! �V��

� S�V�� sin��mBt� � C�V�� cos��mBt�; (73)

where we have neglected the width difference �� of the
two neutral B mesons. This approximation is well justified
for Bd, but less so for Bs. Although the above formula can
easily be adapted to nonzero ��s, we refrain from doing
so: the whole point in calculating the CP asymmetry is not
so much to give precise predictions for S and C, but rather
to exclude the possibility of large corrections to the naive
expectation SmD=mb. With this is mind, small correc-
tions from a nonzero ��s are irrelevant.

Let us briefly recall the reason for the expected small-
ness of S. In the process b! D�, in the SM, the emitted
photon is predominantly left-handed in b and right-handed
in �b decays. This is due to the fact that the dominant
contribution to the amplitude comes from the chiral-odd
dipole operator Q7, Eq. (4). As only left-handed quarks
participate in the weak interaction, an effective operator of
this type necessitates, in the SM, a helicity flip on one of
the external quark lines, which results in a factor mb (and a
left-handed photon) in bR ! DL�L and a factor mD (and a
right-handed photon) in bL ! DR�R. Hence, the emission
of right-handed photons is suppressed by a factor mD=mb,
which leads to the QCDF prediction (13) for aU7R.

The interesting point is not the smallness of the CP
asymmetry per se, but the fact that the helicity suppression
can easily be alleviated in a large number of NP scenarios
where the spin flip occurs on an internal line, resulting in a
factor mi=mb instead of mD=mb. A prime example is left-
right symmetric models [61], whose impact on the photon
polarization was discussed in Refs. [16–18]. These models
also come in a supersymmetric version whose effect on
b! s�was investigated in Ref. [62]. Supersymmetry with
no left-right symmetry can also provide large contributions
to b! D�R; see Ref. [63] for recent studies. Other poten-
tial sources of large effects are warped extra dimensions
[64] or anomalous right-handed top couplings [65]. Unless
the amplitude for b! D�R is of the same order as the SM
prediction for b! D�L, or the enhancement of b! D�R
goes along with a suppression of b! D�L, the impact on
the branching ratio is small, as the two helicity amplitudes
add incoherently. This implies there can be a substantial
contribution of NP to b! D� escaping detection when
only branching ratios are measured.

Although the photon helicity is, in principle, an observ-
able, it is very difficult to measure directly. It can, however,
be accessed indirectly, in the time-dependent CP asymme-
try in �B0 ! V�, which relies on the interference of both
left- and right-helicity amplitudes and vanishes if one of
them is absent. In terms of the left- and right-handed
photon amplitudes of Eq. (5), one has

 S�V�� �
2 Im�qp �A

�
L

�AL �A�
R

�AR��

jALj
2 � jARj

2 � j �ALj
2 � j �ARj

2
;

C�V�� �
jALj

2 � jARj
2 � j �ALj

2 � j �ARj
2

jALj
2 � jARj

2 � j �ALj
2 � j �ARj

2
:

(74)

Here q=p is given in terms of the B0
q- �B0

q mixing matrix
M12, in the standard convention for the parametrization of
the CKM matrix, by

 

q
p
�

���������
M�12

M12

s
� e�i�q

with, in the Wolfenstein parametrization of the CKM ma-
trix,

 �d 
 arg��V�tdVtb�
2� � 2�;

�s 
 arg��V�tsVtb�
2� � �2�

��������VubVcb

��������sin�:
(75)

This method of accessing the right-handed photon am-
plitude via S�V�� was first suggested in Ref. [16] and later
discussed in more detail in Refs. [17,18]. The direct CP
asymmetry C�V�� is less sensitive to �AR, but very sensi-
tive to the strong phase of �AL and vanishes if the radiative
corrections to aU;QCDF

7L , Eq. (11), are neglected. As the
accuracy of the prediction of strong phases in QCDF is
subject to discussion, and in any case C�V�� is less sensi-
tive to NP than S�V��, we shall not consider direct CP
asymmetries in this paper. S�V�� is rather special in the
sense that usually NP modifies the SM predictions for
time-dependent CP asymmetries by affecting the mixing
phase (as in Bs ! J= �; see for instance Ref. [66]), in-
troducing new weak phases or moderately changing the
size of the decay amplitudes which, in the absence of
precise calculational tools, makes it difficult to trace its
impact. In contrast, the time-dependent CP asymmetry in
�B0 ! V� is very small in the SM, irrespective of hadronic
uncertainties, and NP manifests itself by relieving this
suppression. The smallness of the asymmetry in the SM,
and the possibility of large effects from NP, makes the
asymmetry one of the prime candidates for a so-called
‘‘null test’’ of the SM, as recently advertised in Ref. [67].

The fly in the ointment, however, is that, in addition to
the helicity-suppressed contribution from Q7, �AR also
receives contributions from the parton process b! D�g,
which come without a helicity-suppression factor [17,18].
These contributions are dominated by soft-gluon and long-
distance photon emission in weak annihilation and are also
included in aU7R, Eq. (9). In Ref. [18] it was inferred from a
dimensional estimate that these contributions could be as
large as 10%, but a recent explicit calculation of the
contribution of Qc

2 to S�K��� has shown that their true
size is much smaller [19]. In this paper, we extend the
calculation of [19] to all �B0 ! V0� channels and include
the effects from all four-quark operators in the effective
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Hamiltonian (2) and also the contribution from weak
annihilation.

With AL;R and �AL;R as given in (6) we can calculate S
directly from (74) and obtain, making explicit the contri-
butions from different sources,6

 

S���� � � 0.01|{z}
mD=mb

� 0.02|{z}
LD WA

� 0.20|{z}
soft g

	 1:6�%

� �0:2	 1:6�%;

S�!�� � �0:01� 0:08� 0:22	 1:7�% � �0:1	 1:7�%;

S�K��� � ��2:9� 0� 0:6	 1:6�% � ��2:3	 1:6�%;

S� �K��� � �0:12� 0:03� 0:11	 1:3�% � �0:3	 1:3�%;

S���� � �0� 0� 5:3	 8:2� � 10�2% � �0:1	 0:1�%:

(76)

Including only the helicity-suppressed contribution, one
expects, for B! K��, neglecting the doubly Cabibbo-
suppressed amplitude in ��s�u , see Eq. (2),

 S�K���jno soft gluons � �2
ms

mb
sin�d � �2:7%: (77)

For Bs ! ��, one expects the CP asymmetry to vanish if
the decay amplitude is proportional to ��s�t , which, at tree
level, precludes any contributions of type sin��s�ms=mb
and also any contribution from WA.7

The actual results in (76) disagree with the above ex-
pectations because of the contributions from soft-gluon
emission, which enter aU7R, and, for S����, because the
soft-gluon emission from quark loops is different for u and
c loops (see Sec. IV), so that ac7R � au7R and hence �AR

(AL) is not proportional to ��s�t (���s�t ��). Note that a
substantial enhancement of S���� by NP requires not
only an enhancement of j �ARj (and jALj), but also the
presence of a large phase in (74); this could be either a
large Bs mixing phase which will also manifest itself in a
sizable CP violation in, for instance, Bs ! J= � (see
Ref. [66]), or it could be a new weak phase in �AR (and
AL), or it could be a nonzero strong phase in one of the
ac;u7R coefficients. Based on the calculation in Sec. IV B we
do not see much scope for a large phase in au7R (whose
contribution is, in addition, doubly Cabibbo suppressed),
but the situation could be different for ac;soft

7R , where we
only included the leading-order term in a 1=mc expansion,

which does not carry a complex phase; see Sec. IVA. It is
not excluded that a resummation of higher-order terms in
this expansion will generate a non-negligible strong
phase—which is not really relevant for our results in
Eq. (76), but could be relevant for the interpretation of
any NP to be found in that observable. For S�K���, on the
other hand, no new phases are required, and any enhance-
ment of j �ARj (and jALj) by NP will result in a larger
value of S�K���.

For all S except S�K���, the uncertainty is entirely
dominated by that of the soft-gluon emission terms lu;c �
~lu;c, whose uncertainties we have doubled with respect to
those given in Sec. IV. The smallness of S���;!��� is due
to the fact that the helicity factor is given by md=mb (we
use mu;d=ms � 1=24:4 from chiral perturbation theory).
For �K�, the suppression from the small mixing angle is
relieved by the fact that both weak amplitudes in ��d�U
contribute, with different strength, so that the CP asym-
metry is comparable with that of � and !. Despite the
generous uncertainties, it is obvious that none of these CP
symmetries is larger than 4% in the SM, which makes these
observables very interesting for NP searches. The present
experimental result from the B factories, S�K��� �
�0:28	 0:26 [6], certainly encourages the hope that NP
may manifest itself in that observable. While a measure-
ment of the b! d CP asymmetries is probably very
difficult even at a superflavor factory, S�K��� is a promis-
ing observable for B factories [24], but not for the LHC.8

Bs ! ��! K�K���, on the other hand, will be studied in
detail at the LHC, and, in particular, at LHCb, and any
largely enhanced value of S���� will be measured within
the first years of running.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented a comprehensive study
of the observables in B! V� decays, namely, branching
ratios, isospin and CP asymmetries, for all Bs and Bu;d
transitions,9 including the most recent results on form
factors from QCD sum rules on the light-cone and hadronic
parameters describing twist-2 and twist-3 two- and three-
particle light-cone distribution amplitudes of vector me-
sons. Our study is based on QCD factorization [9–14], but
goes beyond it by including power-suppressed nonfactor-
izable corrections from long-distance photon emission and
soft-gluon emission from quark loops which are also cal-
culated from light-cone sum rules. In Sec. IV B we have
devised a method for calculating such soft-gluon emission

6These results are obtained using LO Wilson coefficients. The
difference between LO and NLO results is marginal.

7This is because the mixing angle �s is given by arg����s�t �2�,
Eq. (75), and the interference of amplitudes in (74) also yields a
factor ���s�t �2, if the individual amplitudes are proportional to ��s�t
or ���s�t ��, respectively; this is indeed the case for the helicity-
suppressed term ms=mb induced by the operator Q7, Eq. (4), and
the WA contributions to aU7R���, Eqs. (15) and (20), so that the
phases cancel in (74).

8K� has to be traced via its decay into a CP eigenstate, i.e.
KS�

0. Neutrals in the final state are not really LHC’s favorites.
9We have not included pure annihilation decays, for instance,

Bd ! ��, as their SM branching ratios are tiny, O�10�11�, and
sensitive to higher-order effects in the electromagnetic interac-
tion, which are not considered in this paper, but are, for instance,
in Ref. [68].
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from a light-quark loop for an on-shell photon, building on
the calculation of related effects in B! �� [58]. The
main idea is to calculate the loop for an off-shell photon
and then use a dispersion representation to relate it to the
on-shell amplitude. For phenomenology, light-quark loops
are only relevant for b! d transitions, as otherwise they
are Cabibbo suppressed or come with small Wilson coef-
ficients. Our estimates may be of interest also for inclusive
b! d� transitions, where an interplay between exclusive
and inclusive effects could take place similar to that for
b! s� [55–57].

Our main results are given in Sec. V. We find that the
theoretical uncertainty of the branching ratios gets reduced
by exploiting the fact that ratios of form factors from QCD
sum rules on the light cone are known with better accuracy
than the form factors themselves. This allows us to predict
the branching ratios of all B! V� transitions with 20%
theoretical uncertainty (except for Bs ! �� which comes
with a30% uncertainty), based on the experimental input
from B! K��. The effect of power corrections beyond
QCD factorization is non-negligible for all decay channels,
although in some channels the net corrections nearly can-
cel. We have determined jVtd=Vtsj and, equivalently, �,
from the most recent BABAR [4] and Belle [5] results for
�B�B! ��;!���= �B�B! K��� as

 

BABAR:
��������VtdVts

�������� � 0:199�0:022
�0:025�exp� 	 0:014�th� $ �

� �61:0�13:5
�16:0�exp��8:9

�9:3�th��
�;

Belle:
��������VtdVts

�������� � 0:207�0:028
�0:033�exp��0:014

�0:015�th� $ �

� �65:7�17:3
�20:7�exp��8:9

�9:2�th��
�:

As the relation (66) between jVtd=Vtsj and � relies on cos�,
these results have a twofold degeneracy �$ ��. Taken
together with the tree-level CP asymmetries in B!
D���K���, for instance, � � �53	 20�� from Belle [40],
which comes with the discrete ambiguity �$ �� �,
our result removes the ambiguity and confirms that � <
180� as predicted in the SM.

As for the isospin asymmetries, we find a nonzero
asymmetry for the �0 and ! channels which are driven
by the difference of the corresponding form factors. The
asymmetry between the neutral and the charged � chan-
nels, on the other hand, is very sensitive to �, neglected
radiative corrections, and hadronic input parameters,
which precludes a precise statement about its size. The
isospin asymmetry in B! K�� depends only mildly on
the input parameters, but is sensitive to the contribution of
the penguin operators Q5;6. The sign of the asymmetry is
predicted unambiguously. Although the present experi-
mental uncertainty of the asymmetry is too large to allow
any definite conclusion, any reduction could be translated
into a constraint on NP contributions to the Wilson coef-
ficients of these operators.

The time-dependent CP asymmetry S�V�� in �B0 ! V0�
is sensitive to the photon polarization amplitudes and is
power suppressed in the SM. The contribution of Q7 is
helicity suppressed; the contributions of other operators
enter via the parton process b! D�g with no helicity
suppression, but are also found to be small. The largest
CP asymmetry� �2% is expected for B! K��, whereas
all other CP asymmetries are below the 1% level. Any
value significantly different from zero, measured either at
the LHC or a future flavor factory, will constitute an
unequivocal signal for NP with nonstandard flavor-
changing interactions.

We also would like to discuss other results for B! V�
available in the literature. Obviously, there are earlier
results from SCET [8] and QCD factorization, Refs. [11–
14], with which we agree apart from the effects of the new
nonfactorizable contributions calculated in this paper and/
or updated hadronic input. A variant of QCD factorization
has been advocated and pursued by Ali and Parkhomenko
(AP) [9,10]. Another approach is that of perturbative QCD
factorization (pQCD), which has been applied to B! V�
in Ref. [15]. Most observables discussed in this paper,
branching ratios, isospin, and CP asymmetries, have
been calculated in both approaches, for B! �K�; �;!��,
and we shall compare the corresponding results to ours in
turn. As for the branching ratios, it is evident from Eq. (53)
that the predictions depend primarily on the form factor T1

and only to a lesser extent on the specific implementation
of QCD factorization. For this reason, as AP use the same
form factors as we do, namely, our predictions from QCD
sum rules on the light cone [36], the results in their latest
update, Ref. [10], are very close to ours. The branching
ratios obtained in pQCD, on the other hand, are by more
than a factor of 2 larger than ours. This discrepancy is very
likely to be caused by larger values of their form factors,
calculated within the same formalism; a more detailed
comparison is, however, difficult because Ref. [15] does
not give any explicit numbers for the T1. Turning to isospin
asymmetries, AP obtain approximately the same asymme-
try A��;!�, Eq. (71), between �0 and ! as we do, for the
same reason as above. The isospin asymmetry between the
neutral and the charged �, Eq. (69), is more delicate, driven
by weak annihilation contributions and very sensitive to
the angle �; see Table XIII. Our value, �5:7	 3:9�% for
� � 60�, disagrees with that given by AP, AI��� �
��2:8	 2:0�% for the same angle. A likely reason is the
smaller size of the weak annihilation amplitude obtained in
Ref. [51], on which AP rely for that contribution, as
compared to the QCD factorization result. Indeed, reduc-
ing the size of the weak annihilation contribution in the
B! V� amplitude, our results move closer to those of AP.
Reference [15], on the other hand, obtains AI��� � �5:7	
6:0�% for � � 60�, which coincides with our result, but
comes with a larger uncertainty. As for the isospin asym-
metry in theK� system, Eq. (70), we obtain a slightly lower
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value than Kagan and Neubert, Ref. [20], which is mainly
due to their lower value �Bd � 0:35 GeV, compared to
0.51 GeV used by us; see Table III. In the pQCD approach,
the quoted asymmetry is about half of ours, but comes with
a similar relative uncertainty [15], so that we agree within
errors. Concerning, finally, the time-dependent CP asym-
metry S�K��� in (76), we find approximate numerical
agreement with Ref. [15], where the quark loops were
modeled by intermediate vector states. As emphasized
earlier, the exact size of the quark-loop contributions in
this channel is not crucial since it is small compared to the
leading term in ms=mb sin�2��, Eq. (77). The CP asym-
metries S���� and S�!�� were also calculated by AP, but
unfortunately their formulas miss the very crucial point
that in B! V� one has to deal with two physically dis-
tinguishable final states, namely, VL�R and VR�L, whose
amplitudes must be added incoherently, not coherently as
done in Refs. [9,10]. We therefore refrain from a direct
comparison with their results.

As for the relevance of our results for NP searches, the
time-dependent CP asymmetries are the cleanest observ-
ables since they are very small in the SM and constitute
‘‘quasi null tests’’ of the SM [67], in the sense that any
measurement of a significantly nonzero value of these
observables will be an unambiguous signal of NP. For
K�, the asymmetry has already been measured, but is
compatible with zero within errors. The asymmetry in
Bs ! �� is a very promising observable for the LHCb.
Also, the isospin asymmetry AI�K

��, Eq. (70), is very
interesting for NP searches, and would become even
more interesting upon completion of the NLO calculation
started by Kagan and Neubert, Ref. [20], by including, in
particular, the radiative corrections to the annihilation
contribution shown in Fig. 1, with the photon emitted
from the final-state quark lines. In contrast, neither the
isospin asymmetry between �0 and �	 nor the asymmetry
between �0 and ! are likely to be sensitive to NP. As for
the branching ratios, we have, motivated by the inclusive
B! Xs� result, assumed no significant NP effects in B!
K��, and as long as there is no breakthrough in the calcu-
lation of the absolute values of form factors, any moderate
NP effects in the branching ratios are likely to be obscured
by the uncertainties.

In summary, we feel that exclusive b! �s; d�� transi-
tions have a massive discovery potential for NP and envis-
age a great future at the LHC, which may be surpassed only
by that of b! �s; d����� decays.
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Note added.— After completion of the calculations
presented in this paper, Ref. [46] appeared which contains
a lattice calculation of TB!K

�

1 �0� and �� in the quenched
approximation. The results are TB!K

�

1 �0� � 0:24	
0:03�0:04

�0:01 and �� � 1:2	 0:1. The latter agrees with
ours, Eq. (55), but comes with a slightly larger central
value and uncertainty, while the former is a bit on the
low side of the LCSR prediction given in Table III.

APPENDIX A: VECTOR-MESON DECAY
CONSTANTS REVISITED

There are two types of decay constants for vector me-
sons: the vector coupling fV , for a longitudinally polarized
meson, and the tensor coupling f?V , for a transversely
polarized meson:

 h0j �q��DjV�p; e�i � e�mVfV;

h0j �q	�
DjV�p; e�i� � i�e�p
 � e
p��f
?
V ���:

(A1)

Note that f?V ��� depends on the renormalization scale.
The numerical values of these couplings are essential for

our calculations. Whereas the extraction of the charged
mesons’ vector couplings from experimental data is
straightforward, that of the neutral mesons’ �0, !, and �
is complicated by the mixing of these particles and de-
serves a more detailed discussion, which we will give in
Appendix A 1. The tensor couplings are not accessible
experimentally, but have to be determined by nonperturba-
tive methods, for instance, QCD sum rules and lattice
simulations. In Appendixes A 2 and A 3, we briefly review
the most recent results from these calculations.

1. Longitudinal decay constants from experiment

a. The charged decay constants f��;K�� from � decays

The longitudinal decay constants of charged vector me-
sons can be extracted from �� ! V�
�, with the measured
branching ratios [28]

 B ��� ! ��
�� � �25:2	 0:4� � 10�2;

B��� ! K��
�� � �1:29	 0:05� � 10�2:

The decay rate is given by
 

���� ! V�
�� �
m3
�

16�
G2
FjVuDj

2f2
V�

�
1�

m2
V�

m2
�

�
2

�

�
1� 2

m2
V�

m2
�

�
:

With jVudj � 0:9738	 0:0002 and jVusj � 0:227	 0:001
[28], we get

 f�� � �210	 2B 	 1��� MeV;

fK�� � �220	 4B 	 1�� 	 1jVusj
� MeV;

(A2)

where we have taken into account the uncertainties in the
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branching ratios, total decay rates, and CKM matrix ele-
ments. The uncertainties of other input parameters are
irrelevant and the size of neglected corrections to the decay
rate in � and higher powers in 1=m2

W is expected to be
smaller than the total uncertainty.

b. The neutral decay constants f�0;!;� from V0 ! e�e�

The decay constants of �0, !, and � can be extracted
from the electromagnetic annihilation process V0 !
e�e�, which is, however, complicated by the mixing of
these mesons. The states of definite isospin are given by
 

j�0
I i �

1���
2
p �j �uui � j �ddi�; j!Ii �

1���
2
p �j �uui � j �ddi�;

j�Ii � j �ssi;
(A3)

where � has isospin 1 and ! and � have isospin 0. In view
of the subtleties of mixing, let us state clearly that the
neutral decay constants f�0 , f!, and f� shall denote the
coupling of the real particles to their isospin currents, e.g.
h0j �s��sj�i 
 e�m�f�. �-! mixing violates isospin and
hence is a purely electromagnetic effect which can be
parametrized as

 j�i  j�Ii � �!j!Ii; j!i  j!Ii � �!j�Ii (A4)

with �! � ��!=��m! � i�!=2�2 � �m� � i��=2�2� and
��! � ��0:004	 0:002� GeV2 [69], which results in
�! � �0:036	 0:018�ie0:15i; since m� � m!, �! is al-
most purely imaginary. This parameter was also deter-
mined experimentally [70]. The mixing of ! and �, on
the other hand, is due to strong interactions:

 j!i  j!Ii � !�j�Ii; j�i  j�Ii � !�j!Ii:

(A5)

The mixing parameter has been determined to be !� �
0:045	 0:01 [71] by parametrizing the SU(3) breaking in
order to match the Gell-Mann–Okubo mass relation for
light mesons with the observed masses. A direct measure-
ment of this quantity was reported in !! e�e� decays
[72]. Evidently, a full description of the mixing would
involve all three states, but �-� mixing is expected to be
very small because it is a second-order effect that requires
both electromagnetic and strong interactions to be at work.

As the V0 ! e�e� transition is an electromagnetic de-
cay process, one needs the relevant electromagnetic cur-
rents of light quarks:

 jem
� � Qu �u��u�Qd

�d��d�Qs �s��s

�
1

3
���
2
p �jI�0

� � 3jI�1
� � �

1

3
�s��s; (A6)

the isospin currents are defined as jI�0=1
� � 1��

2
p � �u��u	

�d��d). The experimental rates are [28]

 B ��0 ! e�e�� � �4:7	 0:08� � 10�5;

B�!! e�e�� � �7:18	 0:12� � 10�5;

B��! e�e�� � �2:97	 0:04� � 10�5:

(A7)

The theoretical expression for the decay rate is given by

 ��V0 ! e�e�� �
4�
3

�2

mV
f2
VcV; (A8)

where the coefficients cV in the limit of no mixing can be
read off from (A3) and (A6): c�0

I
� �Qu �Qd�

2=2 � 1=2,
c!I
� �Qu �Qd�

2=2 � 1=18, and c�I
� Q2

s � 1=9. The
effect of, for instance, �-! mixing is to change c�0 to
c�0 � j

�������c�0
I

p
� �!

�������c!I

p
j2=j1� �!j2 and correspond-

ingly for c!. Including the mixing effects we finally get

 f�0 � �222	 2Br 	 1��� MeV;

f! � �187	 2Br 	 1�! 	 4!� 	 1�!� MeV;

f� � �215	 2Br 	 1�� 	 4!�� MeV;

(A9)

where again the uncertainties in the other input parameters
are irrelevant and the corrections to (A8) are expected to be
smaller than the total uncertainty. �-! mixing has a neg-
ligible effect on f�0 , but raises f! by 2 to 3 MeV. !-�
mixing is much more relevant and lowers f! by about
10 MeV and f� by about 13 MeV.

2. Decay constants from QCD sum rules

The calculation of decay constants from QCD sum rules
was one of the earliest applications of this method [73].
More recent determinations include more (radiative and
mass) corrections and updated values of input parameters.
The most recent results were obtained in Refs. [22,37] and
read

 

f� � �206	 7� MeV;

f?� �1 GeV� � �165	 9� MeV;

fK� � �222	 8� MeV;

f?K� �1 GeV� � �185	 10� MeV:

(A10)

Note that the determination of f?K� is more complicated
than that of the other couplings and requires the inclusion
of higher resonances in the hadronic dispersion relation
[37]. The above results refer to charged mesons; isospin
breaking and meson mixing are not included. For compari-
son with lattice results, it proves convenient to also quote
the results for the ratio of couplings10:

10Including the NLO scaling factor f?V �2 GeV�=f?V �1 GeV� �
0:876.
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�f?�
fk�

�
SR
�2 GeV� � 0:70	 0:04;

�
f?K�

fkK�

�
SR
�2 GeV� � 0:73	 0:04:

(A11)

3. Decay constants from lattice QCD

The ratio of decay constants f?V =fV has been calculated
by two lattice collaborations, in the quenched approxima-
tion. Reference [74] obtains

 

�f?�
fk�

�
latt
�2 GeV� � 0:72	 0:02;

�
f?K�

fkK�

�
latt
�2 GeV� � 0:74	 0:02;

�f?�
fk�

�
latt
�2 GeV� � 0:76	 0:01;

(A12)

in the continuum limit, whereas Ref. [75] quotes

 

�f?�
fk�

�
latt
�2 GeV� � 0:742	 0:014;

�f?�
fk�

�
latt
�2 GeV� � 0:780	 0:008;

(A13)

at the finite lattice spacing a � 0:10 fm.
The results from both lattice collaborations are roughly

in agreement. It is evident that the ratios depend only
weakly on the quark masses.

4. Discussion, conclusions and results

In this paper we use the experimental results (A2) and
(A9) for the longitudinal decay constants, averaging the
two results for the � meson. For the tensor couplings of �
and K� we use the sum rule results (A10). For !, we
assume isospin symmetry of the ratio of decay constants
and use f?! �2 GeV�=f! � 0:71	 0:03, which is the aver-
age of QCD sum rule and lattice results, to obtain a value
for f?! from the measured f!. Finally, for � we use the
lattice ratio (A12), with the more conservative uncertainty
	0:03, and the experimental value for f�. Our final results
which enter Table III are

 

f� � �216	 3� MeV;

f?� �1 GeV� � �165	 9� MeV;

f! � �187	 5� MeV;

f?! �1 GeV� � �151	 9� MeV;

fK� � �220	 5� MeV;

f?K� �1 GeV� � �185	 10� MeV;

f� � �215	 5� MeV;

f?� �1 GeV� � �186	 9� MeV:

(A14)

The experimental vector couplings, (A2) and (A9),
come with rather small uncertainties and indicate an iso-
spin breaking in f�0;	 of � 5%. Is it really justified to
average both results into only one decay constant for the
�? In order to answer this question, let us have a look at the
experimental information on isospin breaking in other
light-meson decay constants. For the �, PDG gives f�	 �
�130:7	 0:4� MeV, whereas f�0 is extracted from �0 !
�� as �130	 5� MeV which is perfectly compatible with
f�	 ; the uncertainty is dominated by that of the �0 lifetime
[76]. A further confirmation of the smallness of isospin
breaking comes from the CLEO measurements of D0 !
�K�; ���e�
 and D� ! � �K0; �0�e�
 [47]. These decays
are sensitive to the � and K meson decay constants via the
form factors, which, at least in the LCSR approach, are
directly proportional to f�;K; see e.g. Ref. [77]. The data
forD! Ke
 indicate that the isospin breaking of the form
factor is �3	 2�%. Although this result also includes po-
tential isospin breaking of both fD and the dynamical part
of the form factor, the corresponding effects are neither
expected to be sizable nor to cancel each other, so that
indeed for both � and K decay constants isospin breaking
is smaller than 5% at 1	. Taking this as an indication for
the generic size of isospin breaking in light mesons, we
conclude that a 5% difference between f�0 and f�	 is not
excluded, but on the large side. This implies that it is
indeed appropriate to average the experimental results for
neutral and charged � as done in (A14).

Note that the QCD sum rule results for the vector
couplings, (A10), agree rather well with the experimental
results, (A2) and (A9), which increases confidence in the
corresponding results for the tensor couplings, particularly
as the sum rule results for the ratios, (A11), also agree with
those from lattice, (A12). Nevertheless there is one fact
which remains somewhat puzzling, namely, the difference
of nearly 20% between the ! and �0 couplings from V0 !
e�e�, which is larger than the expectation from QCD sum
rules. This difference could be caused by electromagnetic
corrections, different values of the up- and down-quark
condensate, and differences in the continuum thresholds
and Borel windows. The latter effects should not exceed
the typical accuracy of sum rules themselves, which is
about 10%, and the former effects are expected to be
very small. On the other hand, the individual experimental
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results entering the PDG averages (A7) are spread over a
wide range, particularly for !, which indicates that the
uncertainties quoted in (A7) may be on the optimistic side.

There remains one subtle point to be discussed, namely,
that for LCSRs for b! d� transitions and �0 or ! in the
final state, one needs the decay constant

 

���
2
p
h0j �d��djV0�e�i � e�mV0f�d�

V0 ;

rather than fV0 . The quantity f�d�
V0 could differ from fV0

through mixing with the other neutral mesons. Fortunately,
!-� mixing is irrelevant because the coupling of � to the
down-quark current is highly suppressed, and �-! mixing
has a small effect because the mixing parameter is almost
imaginary. The total impact of mixing is hence below the
theoretical uncertainty and can safely be neglected.
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