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Using data from the FOCUS (E831) experiment at Fermilab, we present new measurements for the
Cabibbo-suppressed decay mode D0 ! ��������. We measure the branching ratio ��D0 !
���������=��D0 ! K�������� � 0:0914� 0:0018� 0:0022. An amplitude analysis has been
performed, a first for this channel, in order to determine the resonant substructure of this decay mode.
The dominant component is the decay D0 ! a1�1260����, accounting for 60% of the decay rate. The
second most dominant contribution comes from the decay D0 ! ��770�0��770�0, with a fraction of 25%.
We also study the a1�1260� line shape and resonant substructure. Using the helicity formalism for the
angular distribution of the decay D0 ! ��770�0��770�0, we measure a longitudinal polarization of PL �
�71� 4� 2�%.

DOI: 10.1103/PhysRevD.75.052003 PACS numbers: 13.20.Fc, 13.30.Eg, 13.87.Fh

I. INTRODUCTION

Hadronic decays of charm mesons are an important tool
for understanding the dynamics of the strong interaction in
the low energy regime. Hadronic decays of D mesons
typically have a rich resonant structure and a small non-
resonant component. Scalar mesons are abundant products
of three-body decays which have a pair of identical pions in
the final state. Because of these features, three-body decays
of D mesons have been extensively used to study the ��
and K� systems, with emphasis on the S-wave component
of their amplitudes and on the scalar resonances [1–5].
WithD decays one can continuously cover the �� and K�
mass spectra from threshold up to 1:7 GeV=c2 (MD �
m�), filling the existing gaps between the Ke4 [6] and the
CERN-Münich data [7], in the �� case, and between
threshold and 825 MeV=c2, where the LASS data [8] on
K� scattering start. Another interesting feature of D de-
cays is that the bulk of the hadronic decay width can be
described in terms of simple tree-level quark diagrams.
There seems to be, at least for the vector, axial-vector
and tensor mesons, a strong correlation between the final
state quarks—the spectator valence quark plus the ones
resulting from the weak decay of the c quark—and the
quark content of the observed resonances in the intermedi-
ate states. This connection allows some insights on the
nature of light mesons. The information provided by D
decays is, therefore, complementary to that of traditional
scattering experiments.

Much less information is available concerning the
���=K�� systems and the axial-vector resonances. The
picture emerging from many different Dalitz plot analyses
of D decays reveals a well defined pattern: final states that
can be associated with a simple spectator amplitude
(W-radiation), in which the virtual W couples to a vector
or axial-vector meson, have large branching fractions com-

pared to final states in which the W is coupled to a
pseudoscalar meson. Following this pattern, one expects
the a1�1260���� channel to be the dominant resonant
component of the D0 ! �������� decay (charge con-
jugation is always implied, unless stated otherwise). This
decay, therefore, can be used to study the resonant sub-
structure of the axial-vector meson a1�1260�, as well as its
line shape, from threshold up to 1:72 GeV=c2.

In the study of light mesons from D decays there is one
potential difficulty: in hadronic decays the �� and K�
pairs, as well as the ���=K�� systems, are part of a few-
body strongly interacting system. In principle one must
account for final state interactions (FSI) between all decay
particles. It is still an open question whether the FSI are
strong enough in three-body decays to distort the pure
��=K� scattering amplitudes. In any case, the effects of
the FSI should become more important as the number of
final state particles increases.

Most amplitude analyses employ the so-called isobar
model: a coherent sum of resonant amplitudes weighted
by constant complex coefficients. The constant phases
account for rescattering effects between the isobar and
the other decay particles. This approach to FSI may be
sufficient in some cases, but may be too simplistic in four-
body decays. In the most general case, the FSI would
depend on energy, with a smooth variation across the phase
space. A correction to the isobar model would then be
necessary in order to incorporate the energy dependent
FSI. As we will show, the energy dependent FSI can
probably not be ignored in four-body decays of D mesons.

There is an additional motivation for the study of four-
bodyDmeson decays. Charmless decays ofBmesons are a
promising tool for the study of CP violation. In particular,
the decays B! �� have been used to extract the CKM
angle � [9–12]. The B! a1�1260�� mode, however,
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also leads to the same ���� final state. The B0 !
a1�1260���� channel has a branching fraction which is
one order of magnitude larger than that of B0 ! �0�0

[13,14]. There is no measurement of the B� !
a1�1260���0 branching ratio, but since this decay pro-
ceeds mainly via the same tree-levelW radiation amplitude
as that of the ���0 channel, one expects these two modes
to have comparable rates. The B! a1�1260�� decay, thus,
accounts for a large fraction of the B! ���� decay, and
a full amplitude analysis would be necessary in order to
isolate the B! �� contribution, as in the case of theD0 !
�������� decay. All the systematics—form factors,
resonance line shapes, representation of the S-wave com-
ponents, angular distributions, FSI, etc.—are common to
both decays. One can think of the D0 ! ��������

decay as a prototype of the B! ���� decay.
In this paper, we present a new measurement of

the relative branching ratio (BR) ��D0 !
���������=��D0 ! K�������� using data from
the FOCUS experiment. For the first time an amplitude
analysis has been performed to determine the D0 !
�������� resonant substructure.

II. THE FOCUS EXPERIMENT

FOCUS, an upgraded version of E687 [15], is a charm
photo-production experiment which collected data during
the 1996–97 fixed target run at Fermilab. Electron and
positron beams (typically with 300 GeV endpoint energy)
obtained from the 800 GeV Tevatron proton beam produce,
by means of bremsstrahlung, a photon beam which inter-
acts with a segmented BeO target [16]. The mean photon
energy for reconstructed charm events is �180 GeV. A
system of three multicell threshold Čerenkov counters
performs the charged particle identification, separating
kaons from pions up to a momentum of 60 GeV=c. Two
systems of silicon micro-vertex detectors are used to track
particles: the first system consists of 4 planes of micro-
strips interleaved with the experimental target [17] and the
second system consists of 12 planes of micro-strips located
downstream of the target. These high resolution detectors
allow the identification and separation of charm primary
(production) and secondary (decay) vertices. The charged
particle momentum is determined by measuring the de-
flections in two magnets of opposite polarity through five
stations of multiwire proportional chambers.

III. THE D0 ! �������� SAMPLE

The final states are selected using a candidate driven
vertex algorithm [15]. To minimize systematic errors on
the measurements of the branching ratio, we use identical
vertex cuts on the signal and normalizing mode.

Secondary vertices are formed from the four candidate
tracks. The momentum of the resultant D0 candidate is
used as a seed track to intersect other reconstructed tracks

and to search for a primary vertex. The confidence levels of
both vertices are required to be greater than 1%. The mean
energy of the D0 candidates in the LAB frame is 85 GeV.
This is equivalent to an average decay length of 1 cm,
allowing a good spatial separation between the production
and decay vertices. Once the position of the production and
decay of the D0 candidate is determined, the distance L
between the vertices and its uncertainty �L are computed.
The ratio L=�L is the most important variable for separat-
ing charm events from noncharm prompt backgrounds.
Signal quality is further enhanced by cutting on the iso-
lation variables, Iso1 and Iso2. The isolation variable Iso1
requires that the tracks forming the D candidate vertex
have a confidence level smaller than the cut to form a
vertex with the tracks from the primary vertex. The Iso2
variable requires that all remaining tracks not assigned to
the primary and secondary vertex have a confidence level
smaller than the cut to form a vertex with the D candidate
daughters. In addition, we require the secondary vertex to
lie outside of the segmented targets (out-of-material cut, or
OoM), in order to reduce contamination due to secondary
interactions. The OoM variable is actually the distance
between the secondary vertex and the edge of the nearest
target segment divided by the uncertainty on the secondary
vertex location. We have also applied a cut on vtxscore, a
variable built from the OoM, L=�L and the confidence
level of the secondary vertex, in order to explore the
correlations between these variables. Each of these varia-
bles is normalized to its maximum value, so vtxscore ranges
from 0 to 1. This cut allows us to further reduce the
background without applying tighter cuts on each of these
variables. The set of cuts that yield theD0 ! ��������

signal with the best statistical significance is L=�L > 10,
Iso1 and Iso2 <10%, vtxscore > 0:15 and OoM > 1.

The only difference in the selection criteria between the
D0 ! �������� andD0 ! K������� decay modes
lies in the particle identification cuts. The Čerenkov iden-
tification cuts used in FOCUS are based on likelihood
ratios between the various particle identification hypoth-
eses. These likelihoods are computed for a given track
from the observed firing response (on or off) of all the
cells that are within the track’s (� � 1) Čerenkov cone for
each of our three Čerenkov counters. The product of all
firing probabilities for all the cells within the three
Čerenkov cones produces a �2-like variable Wi �
�2 log�Likelihood� where i ranges over the electron,
pion, kaon, and proton hypotheses [18]. The kaon track
is required to have �K � W� �WK > 3, and all pion
tracks are required to be separated by less than 5 from
the best hypothesis, that is �� � Wmin �W� >�5.

Using the set of selection cuts just described, we obtain
the invariant mass distribution for �������� shown in
Fig. 1. Although the Čerenkov cuts considerably reduce the
reflection peak (fromD0 ! K�������) to the left of the
signal peak, there is still a large distortion of the back-
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ground due to this surviving contamination. The
�������� mass plot is fit with a function that includes
two Gaussians with the same mean but different sigmas to
take into account the variation in momentum resolution of
our spectrometer as a function of particle momentum [15],
and two exponential functions for the combinatorial
background and for the D0 ! K������� reflection. A
log-likelihood fit gives a signal of 6360� 115 D0 !
�������� events, over a background of 769� 15
events.

The large statistics K������� mass plot is also fit
with two Gaussians with the same mean and different
sigmas plus a second-order polynomial for the background.
A log-likelihood fit gives a signal of 54156� 267 D0 !
K������� events.

IV. RELATIVE BRANCHING RATIO

The evaluation of relative branching ratios requires
yields from the fits to be corrected for detector acceptance
and efficiency. These differ among the various decay
modes, depending on the Q values and Čerenkov identi-
fication efficiency.

From the Monte Carlo simulations, we compute the
relative efficiencies (with statistical error only):

 

��D0 ! K��������

��D0 ! ���������
� 0:7891� 0:0004: (1)

Using the previous results, we obtain the following value
for the branching ratio:

 

��D0 ! ���������

��D0 ! K��������
� 0:0914� 0:0018: (2)

Systematic uncertainties on the branching ratio mea-
surement may come from different sources. We estimate
the systematic uncertainty on the yields and on the effi-
ciencies considering three independent types of contribu-
tions: the split sample component, the fit variant com-
ponent, and the component due to the particular choice
of the vertex and Čerenkov cuts.

The split sample component takes into account the
systematics introduced by a residual difference between
data and Monte Carlo, due to a possible mismatch in the
reproduction of the D0 momentum and the changing ex-
perimental conditions of the spectrometer during data col-
lection. This component has been determined by splitting
data into four independent subsamples, according to theD0

momentum range (high and low momentum) and the con-
figuration of the vertex detector, that is, before and after the
insertion of the upstream silicon system. A technique,
employed in FOCUS and modeled after the S-factor
method from the Particle Data Group [19], was used to
try to separate true systematic variations from statistical
fluctuations. The branching ratio is evaluated for each of
the four statistically independent subsamples and a scaled
error ~� (that is the errors are boosted when �2=�N � 1�>
1) is calculated. The split sample error �split is defined as
the difference in quadrature between the statistical error
returned by the fit on the unsplit data set, �stat, and the
scaled error, if the scaled error exceeds the statistical error,

�split �
���������������������
~�2 � �2

stat

p
.

Another possible source of systematic uncertainty is the
fit variant. This component is computed by varying, in a
reasonable manner, the fitting conditions for the whole data
set. In our study we fixed the widths of the Gaussian to
the values obtained by the Monte Carlo simulation, we
changed the background parametrization (varying the de-
gree of the polynomial), and we use one Gaussian instead
of two. The latter is the dominant contribution to the fit
variant error. Finally the variation of the computed effi-
ciencies, both for D0 ! �������� and the normalizing
decay mode, due to the different resonant substructure
simulated in the Monte Carlo has been taken into account.
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FIG. 1 (color online). Invariant mass distributions used to
determine the ratio of branching fractions. The upper plot is
the �������� signal; the lower plot is the normalizing
channel K�������. The fits (solid curves) are explained in
the text; the dashed line shows the background. The hatched area
on the �������� signal corresponds to the events used in the
amplitude analysis.

TABLE I. Contributions to the systematic uncertainties of the
branching ratio ��D0 ! ���������=��D0 ! K��������.

Source Systematic error

Split sample 0.0010
Fit variant 0.0012
Set of cuts 0.0016
Total systematic error 0.0022
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The BR values obtained by these variants are all a priori
equally likely, therefore this uncertainty can be estimated
by the r.m.s. of the measurements.

We estimate the cut component systematic error by
varying vertex and particle identification cuts one at a
time. We varied the confidence level of the secondary
vertex from 1% to 50%, Iso1 and Iso2 from 10�6 to 1,
L=�L from 6 to 20, �� from�6 to�2, and vtxscore from 0
to 0.2. Analogously to the fit variant, the cut component is
estimated using the standard deviation of the several sets of
cuts. Actually, this is an overestimate of the cut component
because the statistics of the cut samples are different.

Finally, adding in quadrature the three components, we
get the final systematic errors which are summarized in
Table I.

The final result is shown in Table II along with a com-
parison with previous measurements.

V. AMPLITUDE ANALYSIS

A fully coherent amplitude analysis was performed in
order to determine the resonant substructure of the D0 !
�������� decay. This is, to our knowledge, the first
such measurement for this channel. The amplitude analysis
was performed in the framework of the isobar model on a
sample of 6153 events, corresponding to the hatched area
in Fig. 1 (events with m4� within 20 MeV=c2 of the D0

mass).

A. A model for the D0 ! �������� decay

The decay mode D0 ! �������� is Cabibbo-
suppressed and may proceed through many intermediate
resonant states. Considering only tree-level amplitudes,
possible contributions come from two-body decays
such as D! a1�1260����, D! ��770�0��770�0, D!
��770�0S and D! SS, where S is a scalar meson (S �
f0�600� or �, f0�980�, f0�1370�). The �������� can
also result from three-body nonresonant decaysD! R��
(R � f0�600� or �, ��770�0, f0�980�, f2�1270�, f0�1370�,
��1450�0). Including all possible contributions, one could
have over 20 different resonant amplitudes leading to the
�������� final state.

In addition to the resonant modes, the�������� final
state could also result from a four-body nonresonant decay.
Usually the nonresonant component is assumed to be
uniform, but this may not be a reasonable assumption

even in the simpler case of three-body decays [23]. To
our knowledge there is no phenomenological model for a
nonuniform nonresonant amplitude in four-body decays.

The existence of many possible intermediate states lead-
ing to the �������� final state makes the amplitude
analysis of this decay very challenging. Many of these
intermediate states involve broad resonances that populate
the whole phase space. A model having a large number of
overlapping amplitudes gives rise to large interference
terms which are difficult to control in a five-dimensional
space. The presence of these interference terms is easily
detected when the sum of decay fractions greatly exceeds
100%. In such cases many local minima exist in the
parameter space, with very similar likelihood values.
With such a model one may find a mathematical solution
to the fit problem, losing, however, the physical meaning
of it. An additional difficulty comes from the fact that
in the �������� final state there are two pairs of
identical pions and therefore amplitudes must be Bose-
symmetrized. In the chain D0 ! a1�1260����,
a1�1260�� ! �0��, �0 ! ����, for instance, one can
combine the four pions in eight possible ways. Angular
distributions, a clean signature of specific modes, tend to
be smeared out by the Bose-symmetrization. This could be
minimized using flavor tagging, since a large fraction of
the D0 comes from the decay D�� ! D0� �D0���. In our
case that would reduce the sample size by a factor of 5.
Finally, as the number of final state particles increases the
more important the final state interactions tend to be. The
FSI may play a significant role in the D0 ! ��������

decay. Unfortunately this is a very difficult problem to deal
with, even with a phenomenological approach.

The strategy adopted in this analysis is to start with a set
of amplitudes corresponding to modes that are expected to
be dominant. Once a stable solution is achieved, modes
with marginal contributions are replaced by other ones,
until a final set is reached.

We built a baseline mode guided by the ���� projec-
tions, by MC simulation of the different channels and by
our own experience. The ���� mass projections from
data are shown in Fig. 2. The plot in Fig. 2(a) has four
entries per event, corresponding to the four different
���� combinations one could form in each event. We
adopt the particle labeling D0 ! ��1 �

�
2 �

�
3 �

�
4 , so the

identical particles are �1=�3 and �2=�4. In our sample
we do not distinguish between D0 and �D0, and the like

TABLE II. Comparison with other experiments.

Experiment ��D0 ! ���������=��D0 ! K�������� Events

FOCUS (this result) 0:0914� 0:0018� 0:0022 6360� 115
CLEO-c [20] 0:097� 0:002� 0:003 7331� 130
BES [21] 0:079� 0:018� 0:005 162� 20
E687 [22] 0:095� 0:007� 0:002 814� 26
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charge pions are randomized to avoid any ordering with
respect to their momenta. Consequently, all four pions have
the same momentum distribution, making the four ����

mass projections indistinguishable.
One can form two combinations of ���� pairs,

��1 �
�
2 /��3 �

�
4 or ��1 �

�
4 /��2 �

�
3 . One can plot the highest

and lowest ���� invariant mass for each pair combina-
tion. These are shown in Fig. 2(b) and 2(c), respectively. In
these plots there are two entries per event.

The ��770�0 is clearly the dominant ���� resonance,
although other resonances, like the �, f0�980� and
f2�1270� may also be present, even without leaving a clear
signature in the���� mass projection. The ��770�0 signal
could originate from the decay of the axial-vector meson
a1�1260�, from the decay of the type D0 ! �0�0, D0 !
�0R, or even from D0 ! �0����. Figure 2(d) shows the
���� projection of Monte Carlo (MC) simulations of the
decay D0 ! a1�1260����, with the a1 decaying to �0��

(S- and D-wave) and to ���.
Our baseline model, therefore, includes contributions of

three types. The first type is theD0 ! a1�1260���� chain.
For the a1�1260� resonant substructure, we consider three
channels: a�1 ! ��770�0��, the �0�� being in a domi-
nant S-wave state with a small D-wave component, plus
a�1 ! ���. The second type of contribution is the D0 !
�0�0 decay, in three possible helicity states. Finally, we

consider decays of the type D0 ! R����, with R � �,
�0, f0�980� and f2�1270�.

B. Formalism

The formalism used in this amplitude analysis is a
straightforward extension to four-body decays of the usual
Dalitz plot fit technique. The D0 ! �������� signal
amplitude is represented by a coherent sum of individual
amplitudes, each corresponding to a possible intermediate
state and weighted by constant complex coefficients ck,
A �

P
ckAk. The background amplitude is represented

by an incoherent sum of amplitudes corresponding to the
different types of background events.

A likelihood function is built from the signal and back-
ground amplitudes, incorporating detector resolution ef-
fects and acceptance correction. The optimum set of
constants ck, the only unknowns, is obtained by an un-
binned maximum likelihood fit. The background amplitude
is kept fixed during the fit procedure.

1. Phase space

The kinematics of the D0 ! �������� decay is un-
ambiguously determined by 5 degrees of freedom. We
choose a set of five two-body invariant masses squared—
the four different ���� combinations, s12, s14, s23, s34,
plus s13 —to define an event in the five-dimensional phase
space. Any kinematic variable, like acoplanarity and he-
licity angles or three-body masses, can be easily expressed
in terms of this set of invariants. Unlike the case of three-
body decays, the phase space density is no longer constant.

2. Signal amplitudes

The amplitudes for the intermediate states, Ai, are phe-
nomenological objects. Each signal amplitude is built as a
product of relativistic Breit-Wigner functions (BW), an
overall spin amplitude, M, accounting for angular mo-
mentum conservation at each decay vertex, and form fac-
tors, Fl (l is the orbital angular momentum of the decay
vertex), accounting for the finite hadron size. This is the
standard structure for resonant amplitudes (see note on
Dalitz plot formalism in Ref. [19]). The amplitude for
the decay chain D0 ! a1�1260����, a1�1260�� !
�0�� (S-wave), �0 ! ����, is

 A � FD1 	 BWa1 	 Fa1
1 	 BW� 	 F�1 	M: (3)

The amplitude for the decay chain D0 ! �0
1�

0
2, �0

1 !
����, �0

2 ! ���� is

 A � FDl 	 BW�1 	 F�1
1 	 BW�2 	 F�2

1 	M; (4)

and for the chain D0 ! f2�1270�����, f2�1270� !
���� the amplitude is

 A � FD2 	 BWf2 	 Ff2
2 	M: (5)
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FIG. 2. Invariant mass distribution for ����. (a) All four
���� combinations; (b) the ���� combinations with highest
mass; (c) the ���� combinations with lowest mass; (d) MC
simulation of the ���� mass distribution for D0 !
a1�1260����: the solid line corresponds to the a�1 !
��770�0�� S-wave, the dashed line is the a�1 ! ��770�0��

D-wave, and the dotted line is a�1 ! ���.
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All signal amplitudes are Bose-symmetrized due to the
existence of two pairs of identical particles in the final
state.

We use the Blatt-Weisskopf damping factors [24] as
form factors for vertices involving spin-1 and spin-2 reso-
nances. These form factors have one free parameter, rR,
which is related to the resonance size. All form factors are
slowly varying functions of energy. As a systematic check
we varied the value of rR. The fit result is not very sensitive
to the value of this parameter in the range 1< rR <
5 GeV�1. The form factor parameter is fixed at rR �
3:0 GeV�1.

For the spin amplitudes we use the Lorentz invariant
amplitudes for the decay sequences D0 ! a�1 �

� and D!
R���� (R being a vector or tensor resonance). These
Lorentz invariant amplitudes are built using the relativistic
tensor formalism [25,26] which combines particle 4-
momenta with polarization vectors in a rotationally invari-
ant way. In vertices involving only the strong interactions,
parity conservation imposes an additional constraint. For
the decayD0 ! �0�0 the spin amplitudes are written using
the helicity formalism. Explicit formulae for the angular
distributions M are presented in the Appendix.

The relativistic Breit-Wigner representing the f2�1270�
and � resonances has an energy dependent width, with the
approximation ����s� � �tot�s�,

 BW �
1

s� s0 � i
�����
s0
p

�tot�s�
; (6)

where

 �tot�s� � �0

�����
s0

s

r �
p�

p�0

�
2l�1 F2

l �p
��

F2
l �p

�
0�
: (7)

In the above equations s is the ���� mass squared, p�

is the breakup momentum of the resonance, s0 the reso-
nance nominal mass squared, and p�0 � p��s0�.

The �0 line shape is better described when the interfer-
ence with the !�782� is included. In spite of the tiny
branching fraction of the !�782� ! ����, the effect of
the �-! interference is remarkable and clearly distorts the
pure �0 line shape, as one can see by comparing the ����

with the �0�� mass distributions from [27]. In this analy-
sis we use the line shape given by the Crystal Barrel
Collaboration [28].

For the f0�980� we used the Flatté formula [29] of a
coupled channel Breit-Wigner function. The f0�980� pa-
rameters—g� � 0:20� 0:04, and gK � 0:50� 0:20 and
m0 � �0:957� 0:008� GeV=c2—are obtained by a fit to
the FOCUS D�s ! ������ Dalitz plot, where the
f0�980��� is the dominant component.

The f2�1270� Breit-Wigner parameters are fixed at the
PDG values [19], whereas for the � we used the E791
parameters [1]. It is well known that the � pole cannot be
obtained from a simple Breit-Wigner [30]. Nevertheless,
good fits have been obtained by different experiments, in

different channels, using Breit-Wigners with similar pa-
rameters. There is no consensus on the correct way to
parameterize this low mass, broad scalar state. The focus
here, however, is not on the � properties, but on the
a1�1260� line shape, which depends on its resonant sub-
structure. For this purpose it suffices to use the Breit-
Wigner formula as an effective representation of a scalar
component of the a1�1260� resonant substructure. In
Sec. VI D we discuss the sensitivity of the fit results to
the values of the � parameters.

3. The a1�1260� line shape

One of the main goals of this analysis is to determine the
a1�1260� line shape and its resonant substructure. These
are correlated: we need to know the resonant substructure
in order to determine the line shape because the resonant
substructure defines how the a1�1260� width, �a1

tot�s� de-
pends on the ������ mass squared s. Given the func-
tional form of �a1

tot�s�, we represent the a1 line shape by the
same Breit-Wigner formula of Eq. (6). The total width of
the a1�1260� is given by

 �a1
tot�s� � �a1

2�0��
�s� � �a1

2�����s� � g
2
K�K�a1

K�K�s�: (8)

We assume that �a1

2�0��
�s� � �a1

2�����s�. The a1 can also
decay to KK� via f0�980�� or K��892�K. The opening of
these channels introduces a cusplike effect in the a1 width.
Since no evidence of the mode f0�980�� has been reported
so far, we assume the KK� partial width is entirely due to
K��892�K. The value of the coupling constant g2

K�K is
taken from the analysis of the decay �! �0�0��	� by
CLEO [31]. The coupling constant g2

K�K was also mea-
sured by the Belle Collaboration [32], which found a value
three to 5 times larger than that measured by CLEO. The
uncertainty on the value of g2

K�K is a source of systematic
uncertainty.

The partial width �a1

2�����s� is obtained by integrating
the ������ Dalitz plot,

 �a1

2�����s� /
1

s3=2

Z
ds1ds2jAa1

�s1; s2�j
2; (9)

with s1, s2 being the invariant mass squared of the two
possible ���� combinations and

 A a1
�s1; s2� �

X3

i�1

ciAi�s1; s2�; (10)

where ci are complex coefficients and Ai�s1; s2� the ampli-
tudes for each of the a1 decay modes. We fix the partial
width by demanding that �a1

2�����s � sa1
0 � � �a1

0 , with sa1
0

and �a1
0 being real input parameters to be determined.

In practice, we used an iterative procedure: assuming
initial values for sa1

0 and �a1
0 , and for the constants ci, the

total width �a1
tot�s� is computed. Having computed �a1

tot�s�,
we perform the five-dimensional fit, which returns new
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values for the constants ci; the function �a1

2�����s� is then
recomputed using the same values of sa1

0 and �a1
0 and the

new values of the constants ci. The process converges after
a few iterations. The whole procedure is repeated many
times, scanning over the values of sa1

and �a1
0 , until we find

the combination that optimizes the fit result.

4. Background

The background composition was determined by inspec-
tion of the data on the side band to the right of theD0 signal
in the �������� mass spectrum. We consider two types
of background events: random combinations of a ��770�0

and a ���� pair and random combinations of
��������. We estimate a fraction of 80% for random
combinations of �������� and 20% for ��770�0 plus a
���� pair. Random combinations of two �0 might be also
present, although with a small contribution. The back-
ground fractions, as well as its composition, is a source
of systematic uncertainty.

We assume the random �������� combinations to
be uniformly distributed in phase space, whereas for the
other background we assume a Breit-Wigner with no form
factors and no angular distribution. The overall back-
ground distribution is a weighted, incoherent sum of the
two components described above. The relative background
fractions, bk, are fixed in the fit.

5. Detector resolution and acceptance correction

The finite momentum resolution causes a smearing of
the phase space boundary. It is easier to understand this
effect if we consider the case of a three-body decay and the
Dalitz plot. In a sample where the three-body masses have
only one well defined value, the Dalitz plot boundary is
also well defined and unique. But in a sample where we
have a distribution of three-body masses, G�M�, the Dalitz
plot boundary is no longer well defined but, rather, it is a
superposition of boundaries, each one defined by its cor-
responding value of the three-body mass. Dividing the
three-body mass distribution into fine bins, one can think
of the observed s12 	 s23 distribution as a superposition of
Dalitz plots, each one weighted by G�Mi�. The same
reasoning applies to four-body decays. We incorporate
the effect of the momentum resolution, both in the signal
and background probability distribution functions (PDF),
by weighting each event by the 4� mass distribution. With
this approach, the signal and background PDF depend on
the five invariants and on the 4� mass as well.

The acceptance correction is also applied on an event-
by-event basis. The acceptance is a function of the five
invariants. In the case of the amplitude analysis, the abso-
lute value of the acceptance function is irrelevant, since it
implies an overall constant factor multiplying the likeli-
hood. All one really needs to know is the acceptance at a
given phase space cell relative to its neighbor cells. We use
a five-dimensional matrix for the acceptance correction

rather than a continuous function. We used the full
FOCUS Monte Carlo simulation (ROGUE) to generate a
very large sample of D0 ! �������� events with a
constant matrix element. We applied the same selection
criteria to this sample as those used for real data. A mini-
MC simulation of the D0 ! �������� was used to
generate the phase space distribution. Each of the five
axes were divided into bins. Two five-dimensional arrays
were filled, one with the events of the full simulation that
passed all cuts and the other with the phase space events.
The acceptance matrix was formed by dividing the number
of ROGUE events in each cell by the number of phase
space events in that cell. The acceptance is nearly uniform
across the phase space, with a 10–15% decrease close to
the edges.

6. Normalization

The maximum likelihood fit technique requires the like-
lihood function to be normalized. This means one normal-
ization constant for the signal and another for the
background probability distribution functions. The normal-
ization constant for the background distribution needs to be
calculated just once, since the background amplitudes and
the relative fractions are fixed during the fit. The normal-
ization constant for the signal, however, must be computed
at each step of the minimization procedure, since it in-
volves the fit parameters.

Although it is not necessary, the amplitudes for each
intermediate state are normalized to unity. This is intended
to give the magnitudes ck a direct physical meaning: the
decay fraction of each mode is directly proportional to
jckj

2.
The normalization is a crucial step in amplitude analy-

sis. The evaluation of the normalization constants requires
a number of phase space integrals. Fortunately this inte-
gration can be performed just once, since all input parame-
ters in the amplitudes—mass and width of resonances,
form factors parameter—are fixed during the minimiza-
tion process.

We define G�m4�� and b�m4�� as functions representing
the 4� mass signal and background distributions, respec-
tively. The function G�m4�� is a sum of two Gaussians,
whereas b�m4�� is a sum of two exponentials. BothG�m4��
and b�m4�� were obtained by the fit to the 4� mass
spectrum shown in Fig. 1. If we define 
 as a point in
phase space (d
 � ds12ds14ds23ds34ds13), ��
� as the
phase space density, and "�
� as the efficiency, and
�Ak�
�, �Bj�
� the un-normalized amplitudes, the normal-
ization integrals are

 NS
k �

Z
dm4�G�m4��

Z
d
��
�j �Ak�
�j

2 (11)

and
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 NB
j �

Z
dm4�b�m4��

Z
d
��
� �Bj�
�: (12)

The overall signal and background normalization inte-
grals are

 NS �
Z
dm4�G�m4��

Z
d
��
�"�
�

��������X ckAk�
�
��������2

(13)

and

 NB �
Z
dm4�b�m4��

Z
d
��
�"�
�

X
bjBj�
�; (14)

with Ak�
� � �Ak�
�=N
S
k and Bj�
� � �Bj�
�=N

B
j .

We performed the phase space integration using the
Monte Carlo. The m4� interval is divided into bins. For
each m4� bin a very large sample of MC events, generated
with a constant matrix element, is used to compute average
value of the integrands. These average values are then
multiplied by the phase space volume and weighted by
G�m4�� and b�m4��.

7. The likelihood function

The overall signal and background amplitudes are cor-
rected on an event-by-event basis for the acceptance, which
is nearly constant across the phase space, and for the finite
detector resolution, taken into account by multiplying the
overall signal distribution by a Gaussian factor, G�m4��,
and the background distribution by an exponential func-
tion, b�m4��. The normalized signal probability distribu-
tion is, thus,

 SPDF�
;m4�� �
1

NS
G�m4��

��������X ckAk�
�
��������2
; (15)

and

 PS�
;m4�� � "�
���
�SPDF�
;m4��: (16)

The normalized background probability distribution is

 BPDF�
;m4�� �
1

NB
b�m4��

X
bkBk�
�; (17)

and

 PB�
;m4�� � "�
���
�BPDF�
;m4��: (18)

An unbinned maximum likelihood fit was performed,
minimizing the quantity w 
 �2 log�L�. The likelihood
function, L, is

 L �
Y

events

�PS�

i;mi

4�� � PB�

i;mi

4���

�
Y

events

�"�
i���
i��SPDF�

i;mi

4�� � BPDF�

i;mi

4����:

(19)

When we take the logarithm of the likelihood we have
 

logL �
X

events

log�"�
i���
i�� �
X

events

log�SPDF�

i;mi

4��

� BPDF�
i;mi
4���: (20)

In the fit parameter space the term
P

log�"�
i���
i�� is
a constant and does not affect the position of the minimum.
In practice, thus, we minimize the quantity

 

w � �2
� X

events

log
�

1

NS
G�m4��

��������X ckAk�
i�

��������2

�
1

NB
b�m4��

X
bkBk�


i�

��
: (21)

The acceptance correction and the phase space density
enter only in the overall normalization constants NS and
NB.

Decay fractions are obtained from the coefficients ck,
determined by the fit, and after integrating the overall
signal amplitude over the phase space at m4� � mD0 ,

 fk �

R
d
jckAk�
�j2R
d
j

P
j
cjAj�
�j

2 �
jckj2R

d
j
P
j
cjAj�
�j

2 ; (22)

since the individual amplitudes Ak�
� are normalized to
unity. Errors on the fractions include errors on both mag-
nitudes and phases, and are computed using the full co-
variance matrix.

VI. RESULTS FROM AMPLITUDE ANALYSIS

The technique described in Sec. V is applied to the
events in the hatched area of Fig. 1. The decay D0 !
a�1 �

�, a�1 ! �0�� (S-wave) is taken as the reference
mode, fixing the phase convention and the relative magni-
tudes of the other contributions. The results of the best fit to
the data are summarized in Table III. The systematic errors
are discussed in Sec. VI E.

In Fig. 3 the �� mass projections from data (diamonds
with error bars) is plotted with the fit result overlaid (solid
histograms). The fit projections are made from a large MC
simulated sample, including the signal and background
PDF’s, defined in Eq. (15) and (17), as well as the recon-
struction efficiency and detector resolution. In Fig. 3(a) the
���� mass is shown. Events in Fig. 3(b) and 3(c) are the
���� combinations with highest and lowest mass, respec-
tively. In Fig. 3(d) we show the ����=���� invariant
mass.
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The ������ mass spectrum is shown in Fig. 4. This
plot has four entries per event. The diamonds with error
bars are the data distribution, whereas the solid histogram
is the fit projection. Note that this distribution does not
reflect the pure a1�1260� line shape, for, in addition to the
Bose-symmetrization, there are contributions from the
other modes.

A further comparison between the fit result and the data
can be made with the pion momentum distribution, com-
puted in the D rest frame. Recall that we do not distinguish
between D0 and �D0, and that there is no particle ordering
according to its momentum. This means that all pions must
have the same momentum distribution and that we can add
them into a single plot. The pion momentum distribution is
shown in Fig. 5, where the diamonds represent the data
points, and the solid histogram is a MC simulation.

We can also compute the acoplanarity angle. In the D!
RR decay this is the angle, measured in the D rest frame,
between the planes defined by the decay particles of each
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FIG. 3. Comparison between data and the result of the best fit.
In (a) all four ���� combinations are added. Entries from plot
(a) are split into combinations with highest and lowest ����

mass: in (b) we show the ���� combinations with highest
mass, whereas in (c) we show the ���� combinations with
lowest mass; finally, in (d) we show the ����=���� mass
distribution. In all plots the solid histogram is a projection of the
fit.

TABLE III. Results from the best fit. The first error is statistical, and the second one is
systematic.

Mode Magnitude Phase (degrees) Fraction (%)

a�1 �
�, a1 ! �0�� (S-wave) 1. (fixed) 0 (fixed) 43:3� 2:5� 1:9

a�1 �
�, a1 ! �0�� (D-wave) 0:241� 0:033� 0:024 82� 5� 4 2:5� 0:5� 0:4

a�1 �
�, a1 ! ��� 0:439� 0:026� 0:021 193� 4� 4 8:3� 0:7� 0:6

a�1 �
� (all) . . . . . . 60:0� 3:0� 2:4

�0�0 (parallel) 0:157� 0:027� 0:020 120� 7� 8 1:1� 0:3� 0:3
�0�0 (perpendicular) 0:384� 0:020� 0:015 163� 3� 3 6:4� 0:6� 0:5
�0�0 (longitudinal) 0:624� 0:023� 0:015 357� 3� 3 16:8� 1:0� 0:8
�0�0 (all) . . . . . . 24:5� 1:3� 1:0
f0�980����� 0:233� 0:019� 0:015 261� 7� 4 2:4� 0:5� 0:4
f2�1270����� 0:338� 0:021� 0:016 317� 4� 4 4:9� 0:6� 0:5
����� 0:432� 0:027� 0:022 254� 4� 5 8:2� 0:9� 0:7
R���� (all) . . . . . . 20:0� 1:2� 1:0
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of the resonances. Note that in the D0 ! ��������

decay the �0�0 mode accounts for only one fourth of the
decay rate, so the distribution of the acoplanarity angle no

longer carries the information on the polarization state of
the two vector mesons. The distribution cosine of the
acoplanarity angle is shown in Fig. 6. Once more, the
diamonds represent the data points, and the solid histogram
is a projection of the fit.

A. Goodness-of-fit

The ���� and the ������ mass spectra, as well as
the pion momentum and the cosine of the acoplanarity
angle distribution, are reasonably well represented by our
model. These are, however, inclusive distributions, indicat-
ing that the model represents the general features of the
data. Any quantitative statements about the fit quality
should be made by inspecting the five-dimensional phase
space.

The goodness-of-fit is assessed using a �2-like test. The
phase space is divided in equally-sized, five-dimensional
cells. For each of these, the expected number of events, nfit,
is obtained by the MC simulation described above, after
scaling the MC sample to the number of events in the data
sample. For each cell with a minimum expected occupancy
of 5 events, a �2 is computed comparing the predicted
population to the observed number of events, �nobs �
nfit�=�, where � �

��������
nobs
p

. The total �2 is formed by sum-
ming over all cells with minimum occupancy. The number
of degrees of freedom is the number of cells with minimum
occupancy minus the number of free parameters in the fit.
The baseline model has 9 amplitudes, with 16 free parame-
ters. There are 166 bins with at least the minimum occu-
pancy, so the number of degrees of freedom is 150. These
bins include 97% of the data. The total �2 is 348.0, which
corresponds to a confidence level (C.L.) of 10�17. We
conclude from the �2 test that the baseline model does
not provide an accurate description of the data in the five-
dimensional phase space.

We have looked at the distribution of the �2 throughout
the phase space. That might reveal the need of a missing
resonant amplitude, or problems with the representation of
the existing amplitudes. We found that there are 33 bins
with �2 > 6, containing approximately 15% of the data
events. The bins that are responsible for the poor confi-
dence level of the fit are evenly distributed throughout the
phase space, instead of being concentrated in specific
regions. In general, these 33 bins are surrounded by bins
having a good �2.

Addition of further amplitudes of the type D! RR do
not improve the fit quality. The inclusion of an uniform
nonresonant term gives rise to large interference with the
����� mode without improving the likelihood. A fit
using an alternative model, in which the D! �����

mode is replaced by a uniform nonresonant amplitude, is
worse than our best fit by more than 200 units of w �
�2 logL. No improvement is obtained when other ampli-
tudes of the typeD! R���� are added. The contribution
from D0 ! �0���� is negligible. This is also the case
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for amplitudes with higher mass states, like the
��1450�0���� and the f0�1370�����.

It is very unlikely that the poor C.L. is caused by prob-
lems with the representation of the signal amplitudes. The
dominant resonance is the ��770�0, which has a very well
determined line shape. As we will discuss on Sec. VI E, the
uncertainty in the line shape of the S-wave components
does not have a large impact on the fit result. The other
ingredients of the signal amplitudes are the standard angu-
lar distributions and the well known, widely used Blatt-
Weisskopf form factors, depending on one single parame-
ter whose value does not significantly affect the fit result.

The isobar model is a very standard tool, and has been
successfully used for several decades. Almost all Dalitz
plot analyses of heavy flavor decays were performed by
representing the signal distribution as a coherent sum of
resonant amplitudes with constant coefficients. The isobar
model has also been successful in describing four-body
decays in the past [33,34] (although no C.L. was quoted in
these analyses) and recently [35,36], but in all cases the
data samples have limited statistics. This analysis is the
first attempt to use the isobar model for an amplitude
analysis of a four-body decay with moderately high statis-
tics. The underlying picture of the isobar model may be too
simplistic, signaling other types of effects should be taken
into account.

B. General features of the best solution

The dominant contribution to the D0 ! ��������

decay comes from the D0 ! a1�1260���� mode, ac-
counting for 60% of the decay rate. The second most
dominant contribution is the D0 ! ��770�0��770�0

mode, with a decay fraction of 25%. Modes of the type
D! R���� correspond to 20% of the decay rate.

The large value of the D0 ! a1�1260���� decay frac-
tion supports the picture of an external W-radiation ampli-
tude, with the virtual W coupling to the a1�1260�, as the
dominant mechanism for the �������� final state. The
same dominance has also been observed in other four-body
decays, such as D0 ! K������� and D� !
�K0������ [33,34]. The same picture can be drawn in

the case of three-body decays with the W coupling to the
��770��, such as D0 ! K����0 [37] or D� ! �K0���0

[38], where the contribution from D! K� exceeds 50%.
This pattern is similar to the well known vector-dominance
in electromagnetic interactions. It can be understood as a
manifestation of the V-A nature of the weak interaction.

The relatively large contribution (25%) of the D!
�0�0 (D! V0

1V
0
2 ) decay has also been seen in other final

states, such as D0 ! K�������, where the mode D0 !
�K�0�0 accounts for 17% of the decay rate, according to

[33] or over 40%, according to Ref. [34]. In the case of the
final state D0 ! K�K����� [36], the contribution of the
modes D0 ! �0
 and D0 ! �K�0K�0 amounts to more
than 30%. In all cases the dominant D! V0

1V
0
2 amplitude

is the internal W-radiation, which is expected to be sup-
pressed with respect to the externalW-radiation amplitude.

The remainder of the decay rate is due to three-body
nonresonant modes D! R����. Like the D! �0�0

decay, the internal W-radiation should be the dominant
amplitude. For any possible meson R there are several
ways to form a R���� state with J � 0, combining the
orbital angular momentum between the two pions from the
nonresonant ���� system, the orbital angular momentum
between this system and the resonance R, and the spin of
the resonance. Consequently, for any possible resonance R
we can assign different spin amplitudes. We tried all pos-
sible assignments for the ��770�0���� and for the
��1450�0���� spin amplitudes, but none yielded a sig-
nificant contribution. It is interesting to note that the only
D! R���� modes with a significant contribution are
�����, f0�980����� and f2�1270�����, with the
nonresonant ���� pair being in a pseudoscalar state.
The ���� pair and the resonance must then be in a state
of even relative orbital angular momentum, and the result-
ing spin amplitudes coincide with the ones from three-body
D decays [19].

C. a1�1260� results

As we mentioned before, the study of the a1�1260� is
one of the main purposes of this analysis. The a1 line shape
is connected to the resonant substructure through Eq. (9).
The data seem to require, in addition to the dominant a�1 !
��770�0�� amplitude, an S-wave component a�1 ! ���,
as in the case of CLEO [31] and E852 [39]. A fit without
the ��� mode increases the quantity w � �2 logL by
more than 200. We tried other modes, such as the a�1 !
f0�980���, a�1 ! ��1450�0�� and a�1 ! f0�1370���,
but their contribution is negligible. We have also made a
fit with the a�1 ! f0�980��� and a�1 ! f2�1270��� am-
plitudes replacing the f0�980����� and f2�1270�����.
This fit is worse by more than 100 units of w � �2 logL.

We found that the three channels for the a1 resonant
substructure are necessary and sufficient for a description
of the data. Our model for the a1 substructure is the same as
that of E852, but it is in contrast with the CLEO analysis of
�� ! 	��

��0�0 [31]. The CLEO fit to the ���0�0 line
shape required seven different contributions. However, the
three analyses agree on the general picture of the a1 sub-
structure, according to which the dominant contribution
comes from the S-wave ��770�0�, (over 60% of the a1

decay rate), followed by the �� (� 15%) and with a small
D-wave ��770�0� component.

From the results of the a1 resonant substructure we can
measure the ratio between the D- and S-wave �0�� am-
plitudes. In the flux-tube-breaking model [40] this ratio is
given by

 

A�a1 ! ����D�
A�a1 ! ����S�

�
�D������
32
p

S
; (23)
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where D and S are the D- and S-wave amplitudes. Using
this definition we measure

 

A�a1 ! ����D�
A�a1 ! ����S�

� �0:043� 0:009� 0:005; (24)

where the statistical uncertainty is obtained from the full
covariance matrix.

The a1�1260� line shape was determined by the iterative
procedure described above. We scanned over the values of

ma1
0 �

������
sa1

0

q
and �a1

0 in order to find the combination that
optimizes the fit result. The resonant substructure remained
stable during this scanning procedure; that is, the values of
ci varied less than 10%. We found that there is some
correlation between sa1

0 , �a1
0 and the coefficients ci. Fits

of nearly equivalent quality can be obtained using combi-
nations of these parameters along the diagonal of a rect-
angle, in the ma1

0 	 �a1
0 plane, with sides 1230<

ma1
0 < 1270 MeV=c2 and 520< �a1

0 < 680 MeV=c2. The
optimum values are ma1

0 � 1240 MeV=c2 and �a1
0 �

560 MeV=c2. Figure 7 shows the variation of the quantity
�2 logL� 2 logLmax as a function of �a1

0 , for ma1
0 fixed at

1240 MeV=c2.
The total width �a1

tot�s� [Eq. (8)] is shown in Fig. 8, as a
function of the ������ mass squared. The solid line is
the total width, whereas the dashed line represents the
contribution from the K�K channel. The opening of this
channel introduces a cusplike effect on the total width.

Our values of the a1 parameters differ significantly from
CLEO result: ma1

0 � �1331� 10� MeV=c2 and �a1
0 �

�814� 38� MeV=c2. The CLEO values, however, depend
strongly on their form factor parameter r. When the value
of this parameter is set to r � 1:2 GeV�1 in the CLEO
analysis, their values of ma1

0 and �a1
0 are in very good

agreement with the result of this analysis. Our result is in
good agreement with the model of Kühn and Santamaria
[41] (ma1

0 � �1262� 11� MeV=c2 and �a1
0 � �621�

66� MeV=c2) and a bit higher than the values from Isgur
et al. (ma1

0 � �1210� 7� MeV=c2 and �a1
0 � �457�

23� MeV=c2) [40]. Both models consider only the ��
mode for the a1 resonant substructure.

D. D0 ! �0�0 results

The amplitude for the D! �0�0 decay is written in the
helicity formalism. The most general amplitude D!
V1��1�V2��2� is a sum of three independent components,
corresponding to the linear polarization states of the vector
mesons. The D0 is an initial state with J � 0, so the vector
mesons helicities �1 and �2 must be equal, �1 � �2 �
� � �1, 0,�1. The three independent helicity amplitudes,
corresponding to each of the possible helicity states are
H�, H0, and H�. Alternatively, one can decompose the
D! V1V2 decay amplitude in the so-called transversity
basis [42], with amplitudes given by A0 � H0, Ak �
�H� �H��=

���
2
p

and A? � �H� �H��=
���
2
p

. This basis
represents states in which the vector mesons are longitudi-
nally polarized (A0), or transversely polarized �Ak; A?�.
The transversity basis states are parity eigenstates.
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In the D rest frame the two vector mesons are back-to-
back. After a boost along the line-of-flight to the V1 rest
frame, we define the helicity angle �1 as the angle between
the �� and the direction of the boost, measured counter-
clockwise. The helicity angle �2 is defined in a similar way.
With these definitions and the acoplanarity angle, �, de-
fined as the angle between the V1, V2 decay planes mea-
sured in the D frame, one can write the D! V1V2 decay
amplitude as
 

A�D! ��� / A0 cos�1 cos�2 �
Ak���

2
p sin�1 sin�2 cos�

� i
A?���

2
p sin�1 sin�2 sin�: (25)

In the above equation the amplitudes A0, Ak, and A? are
of the form Ai � aieiif�m2

���, where ai and i are real
constants and f�m2

��� has all the energy dependent terms:
Breit-Wigner functions, form factors, and the energy de-
pendent part of the angular distribution.

The longitudinal polarization is defined as the ratio of
the longitudinal to the total decay rate,

 PL �
jA0j

2

jA0j
2 � jAkj

2 � jA?j
2 : (26)

Using the values obtained by the fit (Table III) we
measured PL � �71� 4� 2�%.

Our value is in agreement with the BABAR result from
B0 ! �0�0 [12], PL � �87� 13� 4�%, but is somewhat
different from the polarization measured in B0 ! ����

(PL � �99� 3� 4�%) [10] and in B� ! ���0 (PL �
�95� 11� 2�% [9] and PL � �90:5� 4:2� 2:5�%) [11].

The polarization measured in B decays is in agreement
with theoretical expectations [43], which are based on the
assumption that the transition amplitude for the B! ��
can be written as a product of two independent hadronic
currents. The factorization hypothesis may be a good
approximation for B meson decays, due to the large value
of its mass, but fails to describe hadronic decays of D
mesons. That could explain the observed difference in
the values of the longitudinal polarization fraction from
D and B decays.

E. Systematic uncertainties

The representation of the structures present in
�������� is a major source of systematic uncertainty.
The problem starts with the choice of a set of amplitudes to
describe the data. Furthermore, our model depends on
some input parameters, which are fixed during the fit: the
parameter rR for the form factors; the a1 parameters sa1

0 ,
�a1

0 and gK�K; the relative amount of the backgrounds. In
addition, there are the parameters defining the � and the
f0�980� line shape: m�

0 and ��0 , and g�, gK, and mf0
0 . We

should also mention that there is some freedom in the
choice of the angular distributions.

We investigated the effect of the uncertainty on the input
parameters of our model on the fractions and phases for the
various intermediate channels. For this purpose, the data
was fit with variations of our baseline model. We varied the
value of rR from 1 to 5 GeV�1. We have also fit the data
using different sets of a1 parameters, sa1

0 , �a1
0 and gK�K. For

the � and f0�980� line shapes we used the BES parame-
terization [44,45].

In addition, we varied the background parameterization:
the relative amount of background, the background com-
position, adding a possible contribution from uncorrelated
�0�0 events, and the relative fractions of the backgrounds,
changing the fraction of �0���� from 0 to 50%.

A very small change of the values of the fit parameters,
compared to their central values, is observed when we vary
the rR parameter, the background parameterization and the
f0�980� line shape. The systematic errors are largely domi-
nated by the uncertainty in the a1 parameters and on the �
line shape, in this order. The total systematic errors are
taken as the root mean square of fit variations. These are
propagated to fractions, the longitudinal polarization mea-
surement, and the D=S ratio. The systematic errors are
quoted in Table III.

VII. CONCLUSIONS

In this paper we presented a new measurement of the
relative branching ratio ��D0 ! ���������=��D0 !
K�������� � 0:0914� 0:0018� 0:0022, based on a
very clean sample of 6360� 115 events. Our value is
compatible with the recent CLEO-c result [20], which
has a sample of comparable size, but with a higher back-
ground level.

A full, coherent amplitude analysis of the D0 !
�������� decay was made for the first time. The isobar
model with nine resonant amplitudes provides a descrip-
tion of the general features of the data. In our model there
are contributions of three types. The dominant contribution
comes from the decay D0 ! a1�1260����, accounting
for 60% of the total decay rate. This is followed the
decay D0 ! ��770�0��770�0, whose relative fraction
amounts to 25%, and by the three-body nonresonant de-
cays D0 ! �����, D0 ! f0�980����� and D0 !
f2�1270�����, with a combined fraction of 20%.

TheD0 ! �������� decay is a very suitable tool for
investigation of the a1�1260�meson. A good description of
this state is achieved assuming a simple resonant substruc-
ture, with only three contributions: a dominant a�1 !
��770�0�� S-wave, a small a�1 ! ��770�0�� D-wave,
and the a�1 ! ���. In the framework of the flux-tube-
breaking model, we measure the a�1 ! ��770�0�� D=S
ratio to be R � �0:043� 0:009� 0:005.

The line shape of the a1�1260� is also an output of the
amplitude analysis. The best description of our data is
achieved with the a1�1260� Breit-Wigner parameters, ma1

0
and �a1

0 , in the range 1230<ma1
0 < 1270 MeV=c2 and
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520< �a1
0 < 680 MeV=c2, with optimum values at ma1

0 �
1240 MeV=c2 and �a1

0 � 560 MeV=c2.
The D0 ! �������� decay has an important �0�0

component. The helicity formalism is used to describe the
angular distribution of the four pions from this mode.
Using the transversity basis states and a full amplitude
analysis, we measure the ratio of the longitudinal polariza-
tion to the totalD! �0�0 rate to be PL � �71� 4� 2�%.

The fit quality, from an inspection of the five-
dimensional phase space, is poor and it is not improved
by changing the representation of individual signal ampli-
tudes or by adding other amplitudes to the baseline model.
We conclude that in the case of D0 ! �������� the
failure of the isobar model in providing an accurate de-
scription of our data suggests that other type of effects
should be taken into account. Possible candidates are the
Bose-Einstein correlations or a nonuniform nonresonant
amplitude. The most crucial missing ingredient may be the
energy dependent final state interactions. Unfortunately
this is a very difficult problem, even for three-body decays.
To our knowledge, there are no calculations of the effects
of FSI in four-body decays. This problem, however, must
be addressed in order to explore the full potential of the
hadronic decays of heavy flavor and the amplitude analysis
technique.
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APPENDIX A: ANGULAR DISTRIBUTIONS

The angular distributions of the final state particles
result from angular momentum conservation throughout
the whole decay chain. These distributions depend on both
the spin of the intermediate resonances and on the orbital
angular momentum at each vertex. In the case of sequential
decays, like the D! a�1 �

�, a�1 ! �0��, �0 ! ����

chain, parity conservation is also a constraint on the a1

decay and all its subsequent decay products.
Amplitudes describing angular distributions, hereafter

called spin amplitudes for short, are, in general defined
using the relativistic tensor formalism [25,26]. This for-
malism explores the connection between the only available
observables—the momenta of the final state particles—
and the spin/orbital angular momentum dynamics.

Polarization vectors, representing the spin/orbital angular
momentum involved at each vertex, as well as all relevant
4-momenta, are written in terms of these final state mo-
menta. Covariance, invariance under rotations and parity
conservation, whenever applicable, restricts the many pos-
sible combinations between 4-momenta and polarization
vectors.

The relativistic tensor formalism was used in this analy-
sis to describe all intermediate channels, except for the
D0 ! �0�0, for which we used the helicity formalism.

1. D! a1�

In our model for the a1 resonant substructure there are
three amplitudes: a�1 ! �0��, with the �0 and the �� in
relative S- and D-wave; and the a�1 ! ���. We denote
the a1 and �0 polarization 4-vectors with helicity � by
"���� and e����, respectively.

We form Lorentz scalars at each step of the decay
sequence by contracting these polarization vectors with
the appropriate 4-momenta. In a step where the resonance
appears as a decay product, the complex conjugate of its
polarization 4-vector is used. If the a1 is formed by parti-
cles 1, 2 and 3, then the amplitude for the D0 ! a�1 �

�
4 is

 ha1�4jAjDi / "�����p
�
4 : (A1)

The amplitude for the a�1 ! �0�� (�0�� in S-wave)
decay is

 h��jAja1i / "	���e�	��0�; (A2)

and (�0�� in D-wave)

 h��jAja1i / "	���Q	e����0�p�a1
; (A3)

with Q � p� � p3, p�, p� � p1 � p2, and pa1
� p1 �

p2 � p3

The amplitude for the �0 decay is

 h��jAj�i / e���0�q�; (A4)

with q � p1 � p2. Finally, the amplitude for the a�1 !
��� is

 h��jAja1i / "	���Q	: (A5)

We then combine the amplitudes for each step and must
sum over the a1 and �0 polarizations, since none of these
states is observed directly. The sum over polarizations is
simplified by using the completeness relation [26]

 

X
�

� "�����"	��� � �g�	 � p�p	=p
2: (A6)

After summing over the unobserved polarizations, the
spin amplitude for D0 ! a�1 �

�
4 , a�1 ! �0�� S-wave,

�0 ! ���� is

 M � p�4

�
�g�	 �

pa1
� p

a1
	

p2
a1

��
g	� �

p	�p��
p2
�

�
q�: (A7)
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For the a�1 ! �0�� D-wave the spin amplitude reads

 M � p�4

�
�g�	 �

pa1
� p

a1
	

p2
a1

�
Q	p

�
a1

�
�g�� �

p��p
�
�

p2
�

�
q�:

(A8)

Finally, the spin amplitude for the a�1 ! ��� is

 M � p�4

�
�g�	 �

pa1
� p

a1
	

p2
a1

�
Q	: (A9)

2. D! �0�0

The spin amplitudes for theD! �0�0 decay are written
in the helicity formalism. This decay is of the type P!
V1��1�V2��2�, where �1, �2 are the vector meson helicities.
Given that the initial state has J � M � 0, the constraint
j�1 � �2j  M implies that �1 � �2 � �. The only al-
lowed values for the vector meson helicity are � � �1,
0, and �1. The helicity-basis states jJM; �i are j00;�1i,
j00; 0i, and j00;�1i.

For each helicity state there is one independent ampli-
tude. These amplitudes are functions of the helicity angles,
defined in each resonance rest frame, and of the angle
formed by the vector mesons decay planes (acoplanarity
angle), measured in the D rest frame. We define the z axis
along the line of flight of the vector mesons in the D rest
frame. With the notation �0

1 ! ��1 �
�
2 and �0

2 ! ��3 �
�
4 ,

the helicity angles �1 and �2 are defined as the angle
between �1 and the z axis, in the �0

1 rest frame, and the
angle between �3 and the z axis, in the �0

2 rest frame.
Now with all momenta measured in the D frame, the

orientations of the decay planes are n̂1 � ~p���2 � 	 ~p���1 �
and n̂2 � ~p���4 � 	 ~p���3 �. The acoplanarity angle is � �
n̂1 � n̂2.

With the above definitions of �1, �2, and �, the general
form of the helicity amplitudes is

 A� � ei��d1
�;0��1�d1

�;0��2�: (A10)

With the appropriate d functions we have

 A�1 �
1
2e
�i� sin�1 sin�2; (A11)

 A0 � cos�1 cos�2; (A12)

 A�1 �
1
2e
i� sin�1 sin�2: (A13)

The helicity-basis states are not parity eigenstates. One
can construct a new basis with definite parity,

 jfki �
j00; 1i � j00;�1i���

2
p ; (A14)

 jf?i �
j00; 1i � j00;�1i���

2
p ; (A15)

 jfLi � j00; 0i: (A16)

This is known as the transversity basis [42]. The corre-
sponding amplitudes are

 Ak �
A�1 � A�1���

2
p �

1���
2
p cos� sin�1 sin�2; (A17)

 A? �
A�1 � A�1���

2
p �

i���
2
p sin� sin�1 sin�2; (A18)

 AL � A0 � cos�1 cos�2: (A19)

The above amplitudes are expressed in terms of non-
covariant quantities, defined in different reference frames.
Covariance is recovered by multiplying the helicity ampli-
tudes by an energy dependent term, which accounts for the
boosts from each resonance frame to the D frame. Each of
the above amplitudes is then multiplied by

 A� ! A� 	

���������������
��s�

���
s
p

p��s�

s
; (A20)

where s is the two-pion invariant mass squared, p��s� is the
breakup momentum and ��s� is

 ��s� � �0

�����
s0
p ���
s
p

�
p��s�
p��s0�

�
3 1� �rRp

��s0��
2

1� �rRp
��s��2

: (A21)

These are the formulae used for the D! �0�0 spin
amplitudes.
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