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I show that an application of renormalization group arguments may lead to significant corrections to the
vacuum decay rate for phase transitions in flat and curved space-time. It can also give some information
regarding its dependence on the parameters of the theory, including the cosmological constant in the case
of decay in curved space-time.
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I. INTRODUCTION

The calculation of the false vacuum decay rate in a first-
order phase transition in quantum field theory is based on
methods developed in [1]. One proceeds by finding a
bounce solution to the classical Euclidean field equations.
Then the bubble nucleation rate per unit volume, �, can be
written in the form

 � � Ae�B; (1)

where B is the Euclidean action of the bounce, and A is an
expression involving functional determinants calculated in
the background of the bounce, which is usually considered
to be of order 1 times a dimensionful parameter of the
theory. However, this procedure is not valid in the cases
where quantum effects become important. For example,
there are cases where even the metastability of the false
vacuum is induced by quantum or high temperature effects.
One then uses the effective potential in order to calculate
the bounce solution. The use of the running effective
couplings and renormalization effects in B leads to signifi-
cant corrections [2,3], as does the numerical calculation of
A in various cases [4–6] using a method described in [7].
An analytical method that was developed for the treatment
of radiative corrections [8] leads to significant contribu-
tions to (1) in a consistent manner [8,9]. The method
described in [8] is interesting because it provides a pertur-
bative calculation of corrections to quantities that are non-
perturbative in nature. However, this method applies to
vacuum decay at zero temperature, in flat space-time,
in theories that are not plagued by infrared divergencies
[4,8–10].

The situation is less clear if one wishes to include
gravitational effects [11]. Many formal results regarding
the symmetry of the bounce and the existence of a negative
eigenvalue of the functional determinants in A, that exist
for flat space, have only recently been addressed in curved
space-time [12–14] and there are many new features [15–
18] due mainly to the finiteness of the compactified de
Sitter space.

A better knowledge of the decay rate (1) in flat and
curved space-time is therefore important, in view of the
numerous cosmological applications (see, for example,
[19] and references therein).

Here I show that the application of renormalization
group arguments to (1) may lead to important corrections
to the prefactor A, that is corrections larger than order one,
and also to some clues regarding the dependence of the
bubble nucleation rate on the parameters of the theory
(masses, coupling constants). In the case of vacuum decay
with gravity these parameters include the vacuum energy
or cosmological constant, and this dependence may be
significant for cosmological applications [19].

In Sec. II, I will apply the standard renormalization
group arguments to the calculation of the decay rate, �,
in flat space-time. Similar arguments have been applied for
the calculation of corrections to the effective potential and
the bounce action, B [2,20–24]; they have not however
been applied to the prefactor, A. I show that, depending on
the parameters of the theory, these effects may become
important. In Sec. III, I will apply these arguments in the
case of vacuum decay in curved space-time, including the
renormalization group dependence of the vacuum energy
or cosmological constant [20–22]. I conclude with some
comments in Sec. IV.

II. RENORMALIZATION GROUP FOR VACUUM
DECAY IN FLAT SPACE-TIME

I consider a theory with a single scalar field� with mass
m and coupling �, with an effective potential U��� that has
a relative minimum at � � �f and an absolute minimum
at � � �t. In order for this to happen usually there are
additional fields, with additional couplings and masses,
that I will not denote explicitly. The Euclidean action

 S �
Z
d4x

�
1

2
�@��2 �U���

�
(2)

is minimized at the solution of

 �� �
@U
@�

(3)
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with appropriate boundary conditions, which gives the
bounce solution �b�x�. The effective potential satisfies
the renormalization group (RG) equation, for a renormal-
ization scale �,

 DU � 4�U (4)

 D � �
@
@�
� ��

@
@�
� �mm

@
@m

(5)

with ��, �m, � the modified RG functions [22], with
solution

 U � �4�t�U��; ��t�; m�t�; ��t��; (6)

where ��t� � �et,

 ��t� � e�
R
t

0
��t0�dt0 (7)

and ��t�, m�t� the running coupling and mass.
Using the scaling properties of the bounce equations (3)

and (6) we see that the relative equation for the bounce is

 �b � �b��
2�t�x; ��t�; m�t�; ��t��: (8)

Then the bounce action becomes

 S � ��4�t�S���t�; m�t�; ��t�� (9)

and satisfies

 D S � �4�S: (10)

We write a general expression for the false vacuum decay
rate:

 � � m4A��;m;��e�S��;m;��; (11)

where A is a dimensionless function that comes from the
functional determinants involved in the calculation of the
vacuum decay rate and S is the bounce action with the
false vacuum contribution subtracted [1]. Then imposing
D� � 0 gives

 DA � �4��S� �m�A: (12)

This is the equation that expresses the renormalization
group invariance of the physical quantity �, with solution

 A � A���t�; m�t�; ��t��e4
R
t

0
��S��m�dt0 : (13)

We see that the prefactor A has a dependence on the
parameters of the theory that may be larger than order
one, depending on �, �m, S. For the simple case of a
��4 theory (for negative �), where �m � �, �� �2, S�
1=�, it is easy to see that the correction is smaller than
order one (turns out to be of order �), hence insignificant
for the calculation of the decay rate. However, for other
theories where S scales differently with � this gives cor-
rections that are exponentially large, although smaller than
the exponential of the bounce action. This is the case, for
example, for theories with radiative symmetry breaking

where �� g2, S� 1=g4, with g the gauge coupling and
the corrections turn out to be of order 1=g2, that is larger
than order one, although smaller than the bounce action.
This is expected from the results in [8,9], although one
does not expect the contributions from the renormalization
group to provide the complete higher order corrections that
were calculated there.

This is, however, a general argument that applies to any
model, and it can give some information concerning the
higher order corrections and their dependence on the pa-
rameters involved. In the case of vacuum decay in curved
space-time, treated in the next section, it is more useful,
since higher order calculations may involve quantum grav-
ity effects that cannot be seen in perturbation theory.

III. RENORMALIZATION GROUP FOR VACUUM
DECAY IN CURVED SPACE-TIME

Unlike vacuum decay in flat space-time, in the case of
tunneling in de Sitter space-time the exponent B in (1) is
the difference of two finite actions: the bounce action and
the finite Euclidean action of de Sitter space-time that
depends solely on the cosmological constant. The different
renormalization group behavior of these two gives addi-
tional contributions to the previous estimates that also
depend on the cosmological constant.

For definiteness I will consider a potential term (with
coupling constant � and mass parameter m) that is every-
where positive and has two minima, a relative minimum at
�f with U��f� � �, and an absolute minimum at �t. I
will also consider the thin wall approximation [1] where
the difference " between the two minima satisfies

 �"� m4: (14)

Then the flat space bounce solution has radius

 Rb �
m3

�"
: (15)

The curved space-time formalism of [11] calculates the
gravitational contributions to the decay rate for this case,
which corresponds to tunneling from a de Sitter space with
cosmological constant � to a de Sitter space with a slightly
smaller cosmological constant �� ".

In order to apply the dilute instanton gas arguments of
[1,7], however, we need to work in the approximation
where the bounce radius is much smaller than the radius
of the compactified de Sitter space

 RdS �

�
3M2

P

8��

�
1=2
: (16)

For Rb � RdS the gravitational corrections to the flat space
results are of higher order. It is this approximation (to-
gether with the thin wall approximation mentioned before)
that I will use here in order to apply the arguments of the
previous section. In this case we can use the renormaliza-
tion group coefficients for flat space as a first approxima-
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tion. Higher (gravitational) corrections to these terms will
be suppressed by powers of Rb=RdS.

The arguments of the previous section can be extended
to the case of false vacuum decay in curved space-time if
we include the running of the vacuum energy in the effec-
tive potential [21,22]. In order to describe tunneling in
curved space-time [11], one considers an O�4�-invariant
metric

 ds2 � d�2 � 	���2�d��2: (17)

The Euclidean equations of motion are

 �00 �
3	0

	
�0 �

@U
@�

(18)

 	02 � 1�
8�G

3
	2

�
1

2
�02 �U

�
; (19)

where the prime is d=d�, and the Euclidean action is

 S � 4�2
Z
d�
�
	3U �

3	
8�G

�
: (20)

We write the effective potential as U � U0 ��, where U0

is the part that vanishes at�f, the relative minimum, and �
is the cosmological constant term, with d�=dt � ��. As
was mentioned before, I will consider the flat space value
for �� [21,22], which is of order m4, and neglect the
gravitational corrections to �� which are expected to be
of order Rb=RdS.

The exponent B for the tunneling rate is B � Sb � Sf
with Sb the bounce action and Sf the false vacuum action

 Sf � �
8�M4

P

3�
: (21)

In order to exploit the scaling properties of the bounce
solution, we write the solution of the renormalization
group equation for U as

 U � �4�t�U��; ��t�; m�t�; ��t�; ���t��; (22)

where �� � ��4�. Then the solutions �b, 	b, of (18) and
(19) scale as

 �b � �b��
2�t��; ��t�; m�t�; ��t�; ���t�� (23)

 	b �
1

�2�t�
	b��

2�t��; ��t�; m�t�; ��t�; ���t�� (24)

and the bounce action similarly to the previous case

 Sb � ��t��4S���t�; m�t�; ��t�; ���t�� (25)

 D Sb � �4�Sb� ���; (26)

where D includes the running of ��. For the false vacuum
action we write

 

d
dt
Sf � �

8�M4
P

3 ��

�
4�� 4��

1

�4�

d�

dt

�
(27)

to get

 DB � �4�BCdL� ��� �
8�M4

P

3�

�
��

�
� 4��4

�
; (28)

where BCdL� ��� is the exponent for decay in curved space-
time [11], more precisely the one derived in [25] for
arbitrary values of the cosmological constant, with the
modified running for �. Using similar arguments as in
the previous section we get for the prefactor
 

A � A�t� exp
�
4
Z
��BCdL� ��� � �m�dt

0

�
Z 8�M4

P

3�

�
��

�
� 4��4

�
dt0
�
: (29)

We see again that this gives a correction to the prefactor
which may be smaller than the exponential but also, de-
pending on the specifics of the model, may be larger than
order one, like in the flat case, hence important for the
calculation of the decay rate. Again, this contribution has a
nontrivial dependence on the parameters of the theory,
including the cosmological constant.

In summary our approximations are Rb � RdS together
with the thin wall approximation (14). They hold for a
large range of the parameters of the model, provided that
the cosmological constant term (and the mass parameters
of the theory) are not of Planck scale value. That is, we are
not calculating quantum gravitational contributions, some
of which may be estimated by extending this method with
the renormalization group in curved space-time [26–29]. It
is interesting, however, that a nontrivial dependence of the
prefactor on the cosmological constant term arises even at
this scale.

IV. COMMENTS

We see that an application of the usual renormalization
group arguments can give some contributions to the calcu-
lation of the false vacuum decay rate, especially in theories
where the quantum or gravitational effects are important.
In the case of tunneling in curved space-time, this may give
some insight to the dependence of the tunneling rate on the
parameters of the theory, such as the cosmological con-
stant. One would like to have a more detailed description of
tunneling between different vacua and show that the most
probable is the one with the observed values of the physical
parameters and the cosmological constant. The complete
description may involve contributions from quantum grav-
ity effects that are not treatable perturbatively. The infor-
mation that can be obtained from the renormalization
group, as described in this work or otherwise, is therefore
important.
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I should also note that the renormalization group argu-
ments that I used here are the usual ones of quantum field
theory in flat space-time, together with the running of the
vacuum energy, interpreted as a cosmological constant.
They correspond, therefore, to the limit of weak gravity,
or equivalently, to the cases where the radius of the bounce
solution is much smaller than the radius of the compacti-
fied de Sitter space, which is, anyway, the situation where
the arguments of [1,7] can be straightforwardly applied.
Some ways to improve the present results may involve the

use of multiscale renormalization group arguments [30,31]
and the use of renormalization group in curved space-time
[26–29].
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