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We investigate the graviton propagator in the type IIB supergravity background which is dual to
4 dimensional noncommutative gauge theory. We assume that the boundary is located not at the infinity
but at the noncommutative scale where the string frame metric exhibits the maximum. We argue that the
Neumann boundary condition is the appropriate boundary condition to be adopted at the boundary. We
find that the graviton propagator behaves just as that of the 4 dimensional massless graviton. On the other
hand, the nonanalytic behaviors of the other Kaluza-Klein modes are not significantly affected by the
Neumann boundary condition.
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I. INTRODUCTION

One of the important questions in string theory is to
identify the fundamental building blocks of spacetime.
Although the traditional geometric picture is suited for
the closed string sector, closed/open string duality suggests
that a microscopic description of spacetime may be con-
structed in terms of branes. It is certainly conceivable that a
macroscopic spacetime emerges out of a certain brane
system. We hope that such a question can be addressed
in matrix model formulations of string theory [1,2].

As a concrete example, we investigate the 4 dimensional
noncommutative spacetime which can be regarded as a
classical solution of the IIB matrix model. By expanding
the IIB matrix model around such a noncommutative back-
ground, 4 dimensional noncommutative gauge theory with
maximum supersymmetry (SUSY) is obtained [3–5].

The gauge invariant observables in noncommutative
gauge theory are the Wilson lines [6–8]. We are most
interested in the Bogomol’nyi-Prasad-Sommerfield (BPS)
operators since they couple to the supergravity degrees of
freedom [9,10]. In ordinary gauge theory, the correlation
functions of these operators in the real space decay in
accordance with their canonical dimensions. The charac-
teristic feature of noncommutative gauge theory is the UV-
IR mixing effect which takes place in the nonplanar con-
tributions [11]. In noncommutative gauge theory, the cor-
relators consist of the planar and nonplanar contributions
even in the large N limit. It has been found that such an
effect takes place in the two point correlators [12,13].

It is natural to expect that these features of the correla-
tion functions can be described holographically in terms of
supergravity [14,15]. The role of Wilson lines in holo-
graphic duality was pointed out in [16], and the evidence
for this have been developed in [17–19]. In string theory,
the short distance regime in the open string sector is
mapped to the long distance regime in the closed string

sector. That is why the local operator in gauge theory is
assumed to be located at the boundary of AdS5 where the
metric diverges in AdS/CFT correspondence [20–22]. In
the case of noncommutative gauge theory, the noncommu-
tative scale sets the minimum length scale. In fact the string
frame metric of the supergravity background exhibits the
maximum at the noncommutativity scale. It is consistent
with the fact that it is not possible to construct more
localized states than the noncommutative scale. From these
considerations, there has been a proposal to locate the
Wilson line operators at the maximum of the string frame
metric [23,24].

In this paper, we further investigate this proposal. We
argue that it is natural to adopt the Neumann boundary
condition for the propagators in this proposal. With such a
prescription, we find that the graviton propagator exhibits
the 1=p2 type pole signaling the existence of 4 dimensional
massless gravitons just like in the Randall-Sundrum model
[25]. After the introduction, we briefly recall the Wilson
loop correlators in noncommutative gauge theory in
Sec. II. In Sec. III, we investigate the propagators of
graviton and Kaluza-Klein modes in our prescription. We
conclude in Sec. IV with discussions. In the appendix, the
propagators of the Kaluza-Klein modes are examined in
detail.

II. WILSON LINE CORRELATORS IN
NONCOMMUTATIVE GAUGE THEORY

In this section, we briefly recall the correlators of the
Wilson lines in noncommutative gauge theory. We may
compactify the noncommutative spacetime R4 into the 4
dimensional fuzzy homogeneous spaces G=H in order to
regularize the correlators. Noncommutative gauge theories
on the compact homogeneous spaces G=H are derived
from matrix models [26,27]. They are described by N �
N Hermitian matrices A� where the matrix size N is finite.
Quantum corrections in gauge theories on these spaces are
investigated in [28–32]. Supersymmetry plays a crucial
role to consider the open/closed string duality since the
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quantum corrections in the both theories are suppressed
due to supersymmetry.G=H spaces restore supersymmetry
locally since these spaces approach the noncommutative
flat space in the large N limit. Thus, we focus on compact
fuzzy G=H spaces in this section and their supergravity
dual descriptions in the next section. We analyze the
supergravity background which is proposed as a dual de-
scription of noncommutative Yang-Mills.1

The important observables are the correlators of the
open Wilson lines in noncommutative gauge theory. On
G=H, we construct a generalization of a simple straight
Wilson line by the polynomial of the matrices A� as
trYk�A� where Y denotes a spherical harmonics on G=H.
k denotes the quantum numbers of a spherical harmonics
which corresponds to a momentum of the Wilson line. The
compact fuzzy G=H spaces provide gauge invariant regu-
larizations for the noncommutative gauge theories. The
bosonic part of the graviton vertex operator is written as

 StrYk�A�; A���A�; A��h��; (2.1)

which shows us the coupling between the open Wilson
lines and graviton modes h��. � and � run over the
directions which are tangent to the space G. For ex-
ample, on CP�2� � SU�3�=U�2�, �; � � 0; 1; � � � ; 7 since
SU�3� has 8 generators. On S2 � S2 � SU�2�=U�1� �
SU�2�=U�1�, �; � � 0; 1; � � � ; 5 since each SU�2� has 3
generators.

The symmetric trace of the operators on a compact space
is defined as

 StrAkO1O2 �
1

k

Xk
k1�0

Ak1O1A
k	k1O2: (2.2)

The operators with this ordering naturally appear in the
construction of the BPS operators [9]. The two point
functions of the graviton type vertex operators are inves-
tigated in [12]. The leading nonanalytic behavior, which
comes from the ultraviolet contribution, is found as

 hStrYk�A; A��A; A�StrYyk �A
y; Ay��Ay; Ay�i 


1

k2 ; (2.3)

where we suppressed the Lorentz indices and fermionic
terms. We have further shown that this behavior is univer-
sal with respect to the choice of G=H.

We can also estimate the infrared contributions to the
correlators. For the operator of dimension � � 4, includ-
ing the graviton mode, we obtain the nonanalytic behavior
as

 hStrYk�A; A��A; A�StrYyk �A
y; Ay��Ay; Ay�iIR 
 k

4 logk:

(2.4)

This is identical to those of conformal field theory. Other
gauge invariant operators with � � 4 are, for example,

 trYkZ4; (2.5)

where Z is a complex field such as Z � Aa � iAa�1. a runs
over the directions transverse toG. On CP�2�, a � 8; 9 and
on S2 � S2, a � 6, 7, 8, 9. These operators correspond to
the Kaluza-Klein modes and are part of the supergravity
modes. Although they are no longer BPS operators off-
shell, their renormalization effects are finite as long as they
carry finite momenta [13]. These operators (2.5) do not
exhibit a nonanalytic behavior which is peculiar to non-
commutative gauge theory, since the trace in these opera-
tors is not the symmetric ordered one but the ordinary one.2

Other operators with � � 4, such as

 trYk�A; A�Z2; (2.6)

also have no nonanalytic ultraviolet contributions specific
to noncommutative gauge theory. We need more than two
sets of commutators of A in order to have the nontrivial
effect from the symmetric trace. Thus, we conclude that, in
the gauge invariant � � 4 operators, only the graviton type
operators have the nonanalytic behavior of 1=k2.

We have also estimated the infrared contributions for the
operators which have higher dimensions �> 4. The
Kaluza-Klein modes receive the following infrared contri-
bution

 htrYkZ�trYyk �Z
��yiIR 
 k2�	4 logk: (2.7)

An interesting behavior is seen in the operators which do
not belong to the supergravity multiplet. For example, the
operators with dimension � receive the infrared contribu-
tion such as

 hStrYk��A; A���=2StrYyk ��A
y; Ay���=2iIR 
 k2�	4 logk;

(2.8)

while they seem to receive the ultraviolet contribution as
follows

 hStrYk��A; A���=2StrYyk ��A
y; Ay���=2iUV 


1

k�	2
: (2.9)

This behavior might lead to some confinement mecha-
nisms for these modes.

III. DUAL DESCRIPTION IN SUPERGRAVITY

In this section, we investigate the graviton propagators
and Kaluza-Klein modes in a dual supergravity. The su-

1Supergravity dual descriptions of fuzzy G=H coset spaces are
investigated in [33]. One can check that a gravity background
which is dual to the noncommutative flat space is obtained from
such descriptions in the large N limit.

2The symmetric trace is found to be essential to obtain the
nonanalytic ultraviolet contributions in the two point functions
[12].
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pergravity solution which is dual to the d � 4 euclidean
noncommutative Yang-Mills theory is associated with
nonvanishing Neveu-Schwarz-Neveu-Schwarz B fields
[14,15]. In the low energy limit, the metric is written as

 

1

�0
ds2 � R2

�
r2

1� a4r4 d~x
2 �

1

r2 dr
2 � d�2

5

�
; (3.1)

where ~x � �x0; x1; x2; x3� are the coordinates in the 4 di-
mensions parallel to the brane. The parameter R is related
with the rank of the gauge groupN and string coupling g as
R4 � 4�Ng. a depends on the NS-NS B field as

 B01 � B23 � �0R2 a2r4

1� a4r4 : (3.2)

The Eqs. (3.1) are related to

 ds2 �

�
R
r

�
2
�

d~x2

1� �Rr�
4 � dr

2 � r2d�2
5

�
; (3.3)

and

 e� �
g�Rr�

4

1� �Rr�
4 ; B01 � B23 �

1

1� �Rr�
4 ;

C01 � C23 �
i
g

1

1� �Rr�
4 ; C �

i
g

�
r
R

�
4
;

F0123r �
4iR4

g
1

�1� �Rr�
4�2

1

r5
;

(3.4)

by the coordinate redefinitions (in �0 � 1 unit) by

 r!
1

aR
r; x!

a
R
x: (3.5)

C denotes the R-R fields and F denotes RR 5-form field
strength.

The ordinary AdS space is obtained by taking the com-
mutative limit R! 1. Then, the parameter R becomes the
radius of the AdS space. Since this background is consid-
ered to describe the strong coupling region of noncommu-
tative Yang-Mills, it is very useful to investigate various
physics with noncommutative properties. For example, in
[34], Gregory-Laflamme instability [35,36] for a D0-D2
bound state in the black hole formation process is dis-
cussed by investigating the thermodynamics in the decou-
pling limit of a near-extremal D0-D2 system. The relation
between this instability and noncommutativity (matrix
model) is discussed in [37] where a fuzzy horizon emerges
through a gravitational collapse, which is a strong coupling
phenomenon.

Anyway, to investigate the noncommutativity in string
theory more deeply, it is essential to clarify the exact
correspondence between the bulk theory and boundary
theory. The guiding principle to connect these theories
could be inferred from the ordinary AdS/CFT correspon-
dence. There the correlators in the boundary theory (CFT)
are essentially given by the boundary to boundary propa-

gators in the bulk theory [21,22]. With respect to the IR
contributions, they should be smoothly connected with
each other. Another guiding principle, which we adopt in
this paper, is to reproduce the behavior of the UVorigin in
noncommutative gauge theory, i.e., the behavior (2.3)
which is obtained in [12]. This behavior need not to be
smoothly connected to that of commutative gauge theory
since this is a specific effect in noncommutative gauge
theory.

Our strategy is as follows: We aim to find the prescrip-
tion which

(i) is smoothly connected with that in the ordinary AdS/
CFT correspondence with respect to the infrared
contributions and

(ii) reproduces the ultraviolet contributions which is
specific to noncommutative gauge theory due to
UV/IR mixing effect.

The ambiguity of the prescription is where and how we
should impose the boundary condition for the Green func-
tions, which is closely related with the question where the
gauge theory is located in this background. The coordinate
r in AdS space corresponds to a length scale in the dual
gauge theory. Since we consider the noncommutative
gauge theory, the minimum length scale is the noncommu-
tative scale. Thus, we do not need to impose the boundary
condition at r � 1, rather, a natural idea is that we impose
the boundary condition at the characteristic scale in the
background (3.3), that is, r � R. In order to observe why
r � R is the characteristic scale in this background, we
introduce the coordinate system which is conformally flat
in the five dimensional subspace ( ~x; �),

 ds2 � A����d~x2 � d�2� � R2d�2
5; � �

Z r

R
dr

���������������
1�

R4

r4

s
;

(3.6)

where

 A��� 

R2

�2 ; �! �1: (3.7)

We find that A��� has the maximum at � � 0 (r � R)
[13,23].

A. Solutions

Let us recall [38], which is relevant to the solutions of a
scalar mode in this background. Equation of motion for a
scalar (and graviton) field ’ becomes under the back-
ground (3.3) and (3.4) as

 

1���
g
p @�

���
g
p
g��e	2�@�’ � 0: (3.8)

It is explicitly written as

 

�
5

r
@r � @2

r 	 R4k2

�
1

r4 �
1

R4

�
�
L̂2

r2

�
’� ~k; r� � 0; (3.9)
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where

 k � j ~kj �
��������������������������������������
k2

0 � k
2
1 � k

2
2 � k

2
3

q
; (3.10)

which denotes the momentum along the brane and L̂2 is the
Laplacian on S5. The eigenvalue of Laplacian L̂2 is	l�l�
4� where l � 0; 1; 2; � � � . Then, for the lth partial wave on
S5, we obtain

 

�
5

r
@r � @

2
r 	 R

4k2

�
1

r4 �
1

R4

�
	
l�l� 4�

r2

�
’�l�� ~k; r� � 0:

(3.11)

The S wave on S5 with l � 0 corresponds to massless
gravitons. By changing the valuables as

 r � Re	z; ’�l�� ~k; r� � e2z �l�� ~k; z�; (3.12)

the differential equation becomes

 �@2
z � 2�kR�2 cosh2z	 �l� 2�2� �l�� ~k; z� � 0: (3.13)

Thus, the Mathieu’s modified differential equation is ob-
tained. In ordinary AdS/CFT, l is related to the dimension
of the operator � in the dual gauge theory as � � l� 4.

Two independent solutions of this Eq. (3.13) are known
as

 

1

r2
H�1���; z�;

1

r2 H
�2���;	z�; (3.14)

where H�i� denote the Mathieu functions. The Floquet
exponent � is written in terms of the combination � �
kR
2 . It is related with l as � � l� 2 in the small momentum
limit. The explicit expressions for � with l � 0, 1, 2 are
written as

 � � 2	
i
3

���
5
p
�4 �

7i

108
���
5
p �8 � � � � ;

� � 3	
1

6
�4 �

133

4320
�8 � � � � ;

� � 4	
1

15
�4 	

137

27000
�8 � � � � :

(3.15)

B. Graviton modes

The S wave is described by the corresponding Floquet
exponent as

 � � 2	
i
���
5
p

3

�
kR
2

�
4
�

7i

108
���
5
p

�
kR
2

�
8
� � � � : (3.16)

This mode corresponds to massless gravitons. According
to ordinary AdS/CFT, the Green function in the bulk plays
an important role to investigate the correspondence be-
tween the bulk theory and boundary gauge theory. The
Green function which is not divergent anywhere in the
entire region 0< r<1 is known as [39]

 

G�r; r0; k� �
�
4i
C
A

1

r2 H
�2���;	z�

1

r02
H�1���; z0�; r > r0;

G�r; r0; k� �
�
4i
C
A

1

r02
H�2���;	z0�

1

r2 H
�1���; z�; r0 > r;

(3.17)

where the normalization values A and C are determined by
the asymptotic behaviors z! 	1 and z! 1 of the so-
lution 1

r2 H�1���; z� [38]. For the S wave, they are

 C � ei�� 	 e	i��;

A � �	
1

�
�
��	�=2�

���=2�
	

���=2�

��	�=2�
:

(3.18)

A meromorphic function ��z� is defined as
 

��z� �
�2z

��z� r� 1���z	 r� 1�
v�z�;

v�z� �
X1
n�0

�	1�n�4nA�n�z ; A�0�z � 1;

A�q�z �
X1
p1�0

X1
p2�2

� � �
X1
pq�2

az�p1
az�p1�p2

� � � az�p1�����pq ;

az �
1

�z� r� 1��z� r� 2��z	 r� 1��z	 r� 2�
;

(3.19)

where r � �l� 2�=2. This Green function behaves as
k4 logk for small k and does not exhibit the 1=k2 behavior
which is found in dual noncommutative gauge theory due
to UV/IR mixing effect. Even if we estimate the boundary
contribution, we cannot reproduce such a behavior. Thus,
we propose a new prescription which is different from the
proposal by Maldacena and Russo [15].

First of all, we consider the region

 0< r; r0 <R: (3.20)

In this region, the solution 1
r2 H�1���; z� is regular. Thus, we

can generalize the form of Green function as
 

G�r; r0; k� �
�
4i
C
A

�
x

r2 H
�1���; z� �

1

r2 H
�2���;	z�

�

�
1

r02
H�1���; z0�; r > r0;

G�r; r0; k� �
�
4i
C
A

�
x

r02
H�1���; z0� �

1

r02
H�2���;	z0�

�

�
1

r2 H
�1���; z�; r0 > r; (3.21)

where x is a constant to be determined by imposing
a boundary condition. Although the term

1
r2r02

H�1���; z�H�1���; z0� diverges as z! 	1 (r! 1), we
allow the existence of this term since we consider the
Green function in the finite r region.
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Next, we impose the boundary condition at r � R and
r0 ! 0 as

 @rG�r; r
0; k�jr�R � 0; G�r; r0; k�jr0!0 � 0: (3.22)

The Eq. (3.8) is consistent with either Neumann or
Dirichlet boundary condition at r � R if we assume that
it comes from the following action.

 

Z
d10x

���
g
p
g��e	2�@�’@�’: (3.23)

We need to adopt the Neumann boundary condition since
the Dirichlet boundary condition gives the vanishing
boundary to boundary propagator. This boundary condition
is smoothly connected with the ordinary AdS/CFT pre-
scription [21,22] in the commutative limit as it will be
shown later.

In what follows, we estimate the nonanalytic behavior of
the Green function which determines the long distance
behavior of the propagators under the Neumann boundary
condition. H�i� are related with Floquet solutions J��; z� as

 H�1���; z� �
J�	�; z� 	 e	i��J��; z�

i sin��
;

H�2���; z� �
J�	�; z� 	 ei��J��; z�

	i sin��
;

(3.24)

and J��; z� is expanded in terms of Bessel functions as

 J��; z� �
X1

n�	1

��n� 1
2��

���=2�
Jn�

���
q
p
e	z�Jn���

���
q
p
ez�:

(3.25)

The explicit form of J��; z� is calculated as

 

J
�
�; z�

i�
2

�

	

��
R
r

�
2
�

1

�0

�
r
R

�
2
�

1

2

�
kR
2

�
2
	

��
R
r

�
4
�

1

�0

�
r
R

�
4
	 1	 i

���
5
p �

1

6

�
kR
2

�
4
�O�k5�;

J
�
	�; z�

i�
2

�
�
��	�=2�

���=2�
J
�
�;	z	

i�
2

�


	

��
R
r

�
2
� �0

�
r
R

�
2
�

1

2

�
kR
2

�
2
	

��
R
r

�
4
� �0

�
r
R

�
4
	 1� i

���
5
p �

1

6

�
kR
2

�
4
�O�k5�;

(3.26)

where �0 is the leading order of the expansion of � with respect to � � kR
2 as

 �0 
	
2� i

���
5
p

3
�O���: (3.27)

H�1���; z� and H�2���; z� can be expanded as follows using the relation (3.24)

 H�1�
�
�; z�

i�
2

�
�

2

C

�
J
�
	�; z�

i�
2

�
	 e	i��J

�
�; z�

i�
2

��

	

A0

C0

�
kr
2

�
2
�
1�

1

3

�
kr
2

�
2
	

�
kR2

2r

�
2
�
�O�k5�;

H�2�
�
�;	z	

i�
2

�
� 	

2

C

�
J
�
	�; z�

i�
2

�
	 ei��J

�
�; z�

i�
2

��


A0

C0

�
kR2

2r

�
2
�
1�

1

3

�
kR2

2r

�
2
	

�
kr
2

�
2
�
�O�k5�;

(3.28)

where C0 and A0 are the leading order in the expansion of
C and A with respect to the momentum k
 

C � C0 �O�k5� 

2�

���
5
p

3

�
kR
2

�
4
�O�k5�;

A0 
	
2
���
5
p
i

3
�O�k�:

(3.29)

Note that there are no terms containing logk up to this
order. Such terms emerge in the next leading order. Thus,
the boundary condition [(3.22)] determines x as

 x

	6

k2R2 �O�1�: (3.30)

In this way we find that the Green function for the small
momentum behaves as

 G�r; r0; k� �
�
4i
C
A

�
x

r2 H
�1���; z� �

1

r2 H
�2���;	z�

�

�
1

r02
H�1���; z0�jr�R;r0�R 


3

2k2R6
�O�1�:

(3.31)

We have obtained the nonanalytic behavior of 1=k2. Such a
contribution comes from the term

 

1

r2r02
H�1��r�H�1��r0�; (3.32)

which is dominant in r
 R region. Thus, we interpret that
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this term represents the ultraviolet contribution, which has
been found in the Wilson line correlators (2.3) in the dual
noncommutative gauge theory. Note that the leading term
ofH�1��r� isO�r2� so the corresponding classical solution is
O�1� to the leading order. The leading contribution van-
ishes when we impose the Neumann boundary condition
since we take the derivative with respect to r. It is the
reason why we obtain the 1=k2 type propagator in the end.
This effect is specific to the graviton type propagator and
does not take place in other Kaluza-Klein modes. The
infrared contribution k4 logk, which is considered to
come from small r region, is the same with that of the
ordinary AdS space. We will discuss the infrared behavior
in a commutative limit later.

C. Kaluza-Klein modes

We will analyze the Green functions for the higher
partial wave modes. First, let us consider the Floquet
exponent � as

 � � 3	 1
6�

4 �O��8�; (3.33)

which corresponds to the first excited partial wave mode.
The Green function is written as

 

G�r; r0; k� �
�
4i
C
A

�
x

r2 H
�1���; z� �

1

r2 H
�2���;	z�

�

�
1

r02
H�1���; z0�; r > r0;

G�r; r0; k� �
�
4i
C
A

�
x

r02
H�1���; z0� �

1

r02
H�2���;	z0�

�

�
1

r2 H
�1���; z�; r0 > r:

(3.34)

We impose the Neumann boundary condition (3.22) to this
Green function. x is determined by the boundary condition
as

 x
	1: (3.35)

The leading nonanalytic contribution of Green function is
obtained as

 

G�r; r0; k�jr�R;r0�R �
�
4i
C
A

�
	

1

r2 H
�1���; z�

�
1

r2 H
�2���;	z�

�

�
1

r02
H�1���; z0�jr�R;r0�R



1

54R4 �
7k6R2

1536
log
kR
2
: (3.36)

A detailed calculation is given in the appendix. k6 logk
comes from the both terms in the propagator. This result

implies that the leading nonanalytic behavior is due to both
ultraviolet and infrared contributions. In the dual noncom-
mutative gauge theory, Wilson line correlators with dimen-
sion � � 5 operator behaves as k6 logk, which is seen in
(2.7).

Similarly, the Floquet exponent for the second level
partial wave is given by

 � � 4	
1

15
�4 �O��8�: (3.37)

By imposing the Neumann boundary condition, we obtain

 x
	1: (3.38)

The leading nonanalytic contribution of the Green function
is obtained as

 

G�r; r0; k�jr�R;r0�R �
�
4i
C
A

�
x

r2 H
�1���; z� �

1

r2 H
�2���;	z�

�

�
1

r02
H�1���; z0�jr�R;r0�R


	
1

8R4 � k
8R4 log

kR
2
�constant�:

(3.39)

A detailed calculation can also be found in the appendix.
This behavior comes from both ultraviolet and infrared
contributions. The corresponding operator � � 6 in the
dual gauge theory behaves k8 logk, which is seen in (2.7).

D. Commutative limit

We will consider a commutative limit for the Green
function. The background approaches to AdS5 � S5 in
the limit R! 1 in (3.3). As the position of the boundary
R goes to infinity, our prescription smoothly goes over to
that for the ordinary AdS/CFT as shown below.

In the finite r region, the two independent solutions
satisfy

 

1

r2
H�2���;	z� 


1

r2 H
�1���; z�: (3.40)

For the propagator dual to a � � 4 operator, such as the
graviton propagator, the coefficient x has been determined
by the Neumann boundary condition as

 x
	
6

k2R2 �O�1�: (3.41)

For this operator, in the momentum region,

 1�
1

k2R2 �

�
R
r

�
4
; (3.42)

we find

YOSHIHISA KITAZAWA AND SATOSHI NAGAOKA PHYSICAL REVIEW D 75, 046007 (2007)

046007-6



 

1

r2
H�2���;	z� 


x

r2 H
�1���; z�: (3.43)

Thus, the dominant part of the Green function which is
well-defined in the bulk is written as

 G�r; r0; k� �
�
4i
C
A

1

r2r02
H�2���;	z�H�1���; z0�; r > r0;

G�r; r0; k� �
�
4i
C
A

1

r2r02
H�2���;	z0�H�1���; z�; r0 > r:

(3.44)

One can confirm that the nonanalytic behavior of this
Green function becomes k4 logk, which is consistent with
that in conformal field theory. For �> 4, we can also
consider the commutative limit and obtain the identical
behavior with that of conformal field theory by a similar
discussion.

IV. CONCLUSION

We have investigated the Green function of the graviton
mode in the type IIB supergravity background which is
dual to noncommutative gauge theory. We have shown that
the leading nonanalytic term which comes from the ultra-
violet contribution behaves as 1=k2 by imposing the
Neumann boundary condition on the Green function.
This contribution comes from the UV region which may
be identified with a characteristic effect seen in noncom-
mutative gauge theory. This behavior is also seen in the
graviton type Wilson line correlators in the dual noncom-
mutative gauge theory. Thus, we have confirmed the ex-
istence of massless graviton on the noncommutative space
from the viewpoint of a dual supergravity picture. In our
analysis, we have required the following two conditions to
fix our prescription;, namely, (i) it is smoothly connected
with that in the ordinary AdS/CFT correspondence with
respect to infrared contribution and (ii) reproduces the
ultraviolet behavior which is seen in noncommutative
gauge theory due to UV/IR mixing effect. The condition
(i) has determined the normalization factor C=A and con-
dition (ii) has determined x, which is the relative coeffi-
cient of two independent solutions. In this way, we have
determined the complete Green function. We have also
investigated Green functions of the operators with dimen-

sion � � 5, 6 with the Neumann boundary condition, and
confirmed that there is no contribution which is specific to
noncommutative gauge theory. This is consistent with the
dual noncommutative gauge theory since � � 5, 6 opera-
tors which are included in the supergravity modes exhibit
k2�	4 logk dependence from the infrared contribution,
which is identical with commutative gauge theory.

The adoption of the Neumann boundary condition on the
propagator at r � R is forced on us since the Dirichlet
boundary condition leads to the vanishing boundary to
boundary propagators. The remarkable outcome of our
prescription is the existence of 4 dimensional gravity
which is consistent with the Newton’s law a la Randall-
Sundrum.
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APPENDIX: GREEN FUNCTION OF � � 5, 6
MODES

The first order partial wave is described by the Floquet
exponent � as

 � � 3	 1
6�

4 �O��8�: (A1)

For this mode, C and A are expanded by � � kR
2 as

 

C � ei�� 	 e	i�� 

�i
3
�4 �O��12�;

A � �	
1

�
�
��	�=2�

���=2�
	

���=2�

��	�=2�


 	
1

�2

�
1�

1

3
�4 log�

�
�1�O��2��: (A2)

Since we focus on the leading nonanalytic contribution, we
collect not only the terms in the leading order of k but also
those in the leading order of logk, even if they are not in the
leading order with respect to k. Then, J��; z�, J�	�; z�,
H�1���; z�, and H�2���;	z� are calculated as

 

J
�
�; z�

i�
2

�



i
12

kr3

R2

�
1�

1

6
�4 log�

��
1�

1

4

�
kr
2

�
2
� 4

�
kR2

2r

�
2
� � � �

�
;

J
�
	�; z�

i�
2

�


i
6

�
kR2

2r

�
3
�
1�

1

6
�4 log�

�
�1�O�k2�

�
;

(A3)

and
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H�1�
�
�; z�

i�
2

�
�

2

C

�
J
�
	�; z�

i�
2

�
	 e	i��J

�
�; z�

i�
2

��



i
6C0

kr3

R2

�
1�

1

6
�4 log�

�

�

�
1�

1

4

�
kr
2

�
2
� 4

�
kR2

2r

�
2
� � � �

�
�

2i
36C0

�
kR2

2r

�
3
�4 log�;

H�2�
�
�;	z	

i�
2

�
� 	

2

C

�
J
�
	�;	z	

i�
2

�
	 ei��J

�
�;	z	

i�
2

��

	

i
6C0

kR4

r3

�
1�

1

6
�4 log�

�

�

�
1�

1

4

�
kR2

2r

�
2
� 4

�
kr
2

�
2
� � � �

�
	

2i
36C0

�
kr
2

�
3
�4 log�:

(A4)

We determine x
	1 from the boundary condition (3.22). In this way, the Green function is obtained as

 G�r; r0; k�jr�R;r0�R �
�
4i
C
A

�
x

r2 H
�1���; z� �

1

r2 H
�2���;	z�

�
1

r02
H�1���; z0�jr�R;r0�R 


1

54R4 �
7k6R2

1536
log
kR
2
: (A5)

The second order partial wave is described by the Floquet exponent as

 � � 4	
1

15
�4 �O��8�: (A6)

J��; z�, J�	�; z�, H�1���; z�, and H�2���;	z� are calculated as

 J
�
�; z�

i�
2

�

	

1

5

�
r
R

�
4
�
1�

1

15
�4 log�

�
�1�O�k4�

�
; J

�
	�; z�

i�
2

�



1

24

�
kR2

2r

�
4
�
1�

1

15
�4 log�

�
�1�O�k2�

�
;

(A7)

and
 

H�1�
�
�; z�

i�
2

�
�

2

C

�
J
�
	�; z�

i�
2

�
	 e	i��J

�
�; z�

i�
2

��



2

5C

�
r
R

�
4
�
1�

1

15
�4 log�

��
1	

2

15
�2 �O�k4�

�
;

H�2�
�
�;	z	

i�
2

�
� 	

2

C

�
J
�
	�;	z	

i�
2

�
	 ei��J

�
�;	z	

i�
2

��

	

2

5C

�
R
r

�
4
�

1�
1

15
�4 log�

��
1	

2

15
�2 �O�k4�

�
:

(A8)

The normalization factors A and C are read off from the asymptotic behavior of the Mathieu functions. In the � � 4 case,
we need to determine the next leading order of the expansion of �, which cancels the contribution of next leading order of �
in (A8).

 A

�
�	

1

�

��
1	

4

15
�2

�
�

�
��	�=2�

���=2�
	

���=2�

��	�=2�

��
1	

4

15
�2

�

	

24

5�4

�
1�

2

15
�4 log�

��
1	

4

15
�2

�
C

� �ei�� 	 e	i��� 
 	
2�i
15

�4 (A9)

We determine x
	1 from the boundary condition (3.22). Thus, the Green function is obtained as

 G�r; r0; k�jr�R;r0�R �
�
4i
C
A

�
x

r2 H
�1���; z� �

1

r2 H
�2���;	z�

�
1

r02
H�1���; z0�jr�R;r0�R 
	

1

8R4 � k
8R4 log

kR
2
�constant�:

(A10)
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