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We investigate the worldvolume theory that describes N coincident M2-branes ending on an M5-brane.
We argue that the fields that describe the transverse spacetime coordinates take values in a nonassociative
algebra. We postulate a set of supersymmetry transformations and find that they close into a novel gauge
symmetry. We propose a three-dimensional N � 2 supersymmetric action to describe the truncation of the
full theory to the scalar and spinor fields, and show how a Basu-Harvey fuzzy funnel arises as the
Bogomol’nyi-Prasad-Sommerfield solution to this theory.
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I. INTRODUCTION

In [1] Basu and Harvey considered the Bogomol’nyi-
Prasad-Sommerfield (BPS) state of N coincident M2-
branes ending on an M5-brane,

 

M5: 0 1 3 4 5 6
M2: 0 1 2

(1)

On the M5-brane worldvolume, this configuration appears
as a self-dual string soliton [2]. Basu and Harvey, however,
examined this configuration from the M2-brane point of
view. They exploited an analogy with the type IIB string
configuration built from N coincident D1-branes ending on
a D3-brane. In that case, the end point of the D1-branes
appears as a BPS monopole on the D3-brane worldvolume.
On the D1-brane worldvolume, the configuration gives rise
to a ‘‘fuzzy-funnel’’ soliton [3], a fuzzy 2-sphere whose
radius grows without bound as the D3-brane is reached.
These two descriptions of the same physical state provide a
stringy realization of the Nahm construction [4–6]. This
leads one to hope that the M2-brane theory might provide a
generalized Nahm construction for self-dual string
solitons.

Basu and Harvey proposed that the M2-brane worldvo-
lume admits a fuzzy-funnel solution that satisfies a gener-
alized Nahm equation,

 

dXa

d�x2�
�
K
4!
�abcd�G;Xb; Xc; Xd� � 0; (2)

where K � M3=8�
�������
2N
p

[1,7] is a constant, a; b; c � 3, 4,
5, 6,

 �A;B;C;D� � ABCD� BACD� ACBD� ACDB� . . .

(3)

and G is a fixed matrix such that G2 � 1. The solution
describes a fuzzy 3-sphere [8] whose radius grows without
bound as one approaches the M5-brane. The setup has
since been studied from a variety of viewpoints [7,9,10].

Unfortunately, it is not known how to derive the Basu-
Harvey equation from first principles. In [1] a bosonic
theory was constructed, essentially by reversing the
Bogmoln’yi procedure of writing the action as a perfect
square plus boundary terms. One would like to understand
the origin of this theory considering only the geometric and
supersymmetric features of M2-branes. This has not yet
been done.

One difficulty stems from the fact that M theory is the
strong-coupling limit of type IIA string theory and hence
M2-branes are the strong-coupling limit of D2-branes. This
implies that the worldvolume theory for N M2-branes is
the infrared fixed point of a maximally supersymmetric
three-dimensional U�N� super-Yang-Mills theory.

There is no known Lagrangian description of this sys-
tem. The only interacting Lagrangian in three dimensions
with 16 supersymmetries is maximally supersymmetric
Yang-Mills, which contains one vector plus seven scalars
with an SO�7� symmetry. Simple counting suggests that
the M2-brane theory should contain eight scalar fields and
an SO�8� symmetry. In the Abelian case, corresponding to
a single M2-brane, such a theory can be obtained directly
from the D2-brane worldvolume theory by dualizing the
vector field into a scalar. In the non-Abelian case, however,
there is no straightforward way to do this.

There are other peculiar features of the multi-M2-brane
system that are difficult to reconcile with quantum field
theory based on a Lagrangian. For example, the near
horizon limit of N M2-branes is dual to a three-
dimensional conformal field theory with N3=2 degrees of
freedom. Also, the lack of a free parameter in M theory
implies that there is no free parameter in the M2-brane
worldvolume theory. This suggests that there is no weakly
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coupled limit that might be described by perturbative
quantization of a classical Lagrangian.

Despite these difficulties, it is still of interest to try to
construct a classical theory that can capture at least some of
the features of multiple M2-branes. One might be able to
identify the field content and supersymmetry transforma-
tions, and give a geometrical interpretation to the fields. A
recent attempt was made in [11] (see also [12]), where the
scalar fields were taken to be U�N� valued, transforming
under a standard gauge symmetry. The gauge field kinetic
term was taken to be of Chern-Simons type, so the vector
field did not introduce any propagating degrees of freedom.
Under these assumptions, no theory was found with 16
supersymmetries.

In this paper we present an alternative approach to the
multi-M2-brane system. We propose a classical
Lagrangian for the scalar-spinor sector of the theory. Our
Lagrangian is supersymmetric and scale invariant with
manifest SU�4� �U�1� 2 SO�8� symmetry. We recover
the Basu-Harvey equation at the cost of introducing a
nonassociative algebra for the eight coordinates, or more
correctly, an algebra for which the Jacobi identity is not
satisfied. (A slightly different role for nonassociative alge-
bras in the Basu-Harvey equation was discussed in [7].) We
will see, as a consequence of our assumptions, that the full
M2-brane theory must contain a rather curious gauge
symmetry, one that we will not study in detail in this paper.

The rest of this paper is organized as follows. In the next
section we describe the supersymmetry transformations of
multiple D2- and M2-branes, and argue that the M2-brane
coordinates are naturally elements of a nonassociative
algebra. In Sec. III we compute the closure of the super-
symmetry transformations and find evidence for a novel
gauge symmetry associated with the M2-branes. In Sec. IV
we propose a Lagrangian with four supersymmetries that
might model some features of the complete multiple M2-
brane theory. In Sec. V we find a BPS solution and show
how the Basu-Harvey equation arises in a simple example.
In the final section we state our conclusions and present
directions for future work.

II. SUPERSYMMETRY TRANSFORMATIONS

We start by considering the supersymmetry transforma-
tions of N coincident D2-branes, written so the spacetime
symmetries are manifest:

 �Xi � i ���i�; �A� � i �����10�;

�� � @�Xi���i��
1

2
F������10��

i
2
�Xi; Xj��ij�10�:

(4)

Here �; � � 0, 1, 2 label the worldvolume coordinates,
and i; j � 3; . . . ; 9 label the transverse dimensions of the
D2-branes. There is an SO�1; 2� symmetry of the worldvo-
lume, as well as a manifest SO�7� symmetry of the trans-

verse R7 that acts on the scalars and on the � matrices.
Notice the explicit appearance of �10. This matrix ensures
that the unbroken supersymmetries satisfy

 �012� � �; (5)

while the broken supersymmetries satisfy

 �012� � ��: (6)

All the fermions are Goldstinos, and obey the correspond-
ing parity condition,

 �012� � ��: (7)

We now attempt to generalize these transformations to
the case of multiple M2-branes. The presence of the ex-
plicit �10 forbids a straightforward lift to 11 dimensions.
Therefore we simply assume that there is some extension of
the D2-brane transformations such that, if all the vector
fields are set to zero, the D2-brane transformations lift in
such a way that the SO�7� symmetry is trivially extended to
SO�8�. Our transformations capture the fact that the M2-
brane theory almost certainly contains eight scalar fields,
corresponding to the eight transverse dimensions. Since we
have ignored all gauge fields, we cannot expect the corre-
sponding Lagrangian to be invariant under the supersym-
metry transformations, nor can we expect the
transformations to close, and indeed, as we shall see,
they do not.

Thus in what follows we put aside all vector fields and
study the scalar-spinor supersymmetry transformations of
the multi-M2-brane theory. We propose lowest-order su-
persymmetry transformations of the following form:

 �XI � i ���I�;

�� � @�XI���I�� i��XI; XJ; XK��IJK�;
(8)

where I; J; K � 3; 4; 5; . . . ; 10. In these expressions, � is a
dimensionless constant and �XI; XJ; XK� is antisymmetric
and linear in each of the fields. These transformations
imply that �XI;�� have dimension �12 ; 1�, as required for
conformal invariance. We note that there could be other
cubic terms that are not totally antisymmetric in I, J,K and
that vanish in the D2-brane limit, or that correspond to
higher-order terms in the Dirac-Born-Infeld effective the-
ory of the D2-branes. We do not consider these possibilities
here. Instead, we just stipulate the presence of a �IJK term,
and we focus on it alone.

There is a second argument for such a �IJK term in the
supersymmetry transformations. The preserved supersym-
metries of N M2-branes in the presence of an M5-brane
satisfy �2� � �3456�, or equivalently,

 �abc� � �abcd�2�d�; (9)

where a, b, c, d � 3, 4, 5, 6. From this, one obtains the BPS
equation
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dXa

d�x2�
� i��abcd�Xb; Xc; Xd�: (10)

The solutions to this equation behave as Xa 	 1=
�����
x2
p

as
Xa ! 1. Turning this around, we see that x2 	 1=R2 at
small R, where R2 � �X3�2 � �X4�2 � �X5�2 � �X6�2. This
is the correct divergence to reproduce the profile of the
self-dual string soliton on the M5-brane [2]. The cubic
term and the appearance of the �IJK are crucial to obtaining
a Bogomoln’yi equation with the correct features.

The scalar fields are valued in an algebra A.
Translational invariance requires the algebra to have a
center, an element I that commutes with everything,

 XI ! XI � xII: (11)

One’s first impulse is to take the XI to be valued in the Lie
algebra u�N�, as in the D2-brane theory. The �XI; XJ; XK�
would then be given by a double commutator,

 �XI; XJ; XK� �
1

3!
�XI; XJ�; XK� 
 cyclic; (12)

which vanishes because of the Jacobi identity. Therefore in

what follows we take the XI to be valued in a nonassocia-
tive algebra A, with a product �: A�A!A. We
require the algebra to have a one-dimensional center gen-
erated by I, and define the associator

 hXI; XJ; XKi � �XI � XJ� � XK � XI � �XJ � XK�: (13)

We then define

 �XI; XJ; XK� �
1

2 � 3!
hX�I; XJ; XK�i; (14)

which is linear and fully antisymmetric, as required. With
this construction, we have defined the supersymmetry
transformations (8) for the scalar-spinor sector of the
M2-brane theory.

III. CLOSURE

In the previous section, we argued that the M2-brane
supersymmetry transformations cannot be expected to
close because we had set all gauge fields to zero. Indeed,
commuting the transformations (8), we find

 

��1; �2�XI � 2i ��1���2@�XI � 6� ��1�JK�2�XI; XJ; XK�;

��1; �2�� � 2i ��1���2@��� i ��1���2��
�
��@���

9i�
4

�IJ�XI; XJ;��
�

�
i
4

��1�KL�2�KL
�
��@��� 3i��IJ�XI; XJ;��

�
�

9�
8

��1�IJ�2�XI; XJ;��

� 6� ��1�IK�2�JK�XI; XJ;�� �
3�

8 � 4!
��1���KLMN�2���I�KLMN�J�XI; XJ;��: (15)

The first term on the right-hand side of each variation is a
translation, generated by the vector ��1���2. The second
term on the right-hand side of ��1; �2�� is generated by the
same vector, but it is not a translation. Therefore it seems
plausible to remove it by assuming that the spinor equation
of motion is

 ��@���
9i�
4

�IJ�XI; XJ;�� � 0: (16)

With this assumption, the supersymmetries close on world-
sheet translations and the following set of bosonic trans-
formations:

 

�XI � 6i�vJK�X
I; XJ; XK�;

�� �
3i�
16

vKL�KL�IJ�XI; XJ;�� �
9i�
8
vIJ�X

I; XJ;��

� 6i�vIK�JK�XI; XJ;��

�
3i�

8 � 4!
v�KLMN���I�KLMN�J�XI; XJ;��; (17)

where

 vIJ � �i ��1�IJ�2 and v�KLMN � �i ��1���KLMN�2:

(18)

These transformations are very mysterious. In the analo-
gous calculation for multiple D2-branes, the supersymme-
try algebra closes on translations and local gauge
transformations. Therefore one is tempted to associate
these terms with some type of generalized gauge trans-
formations on the M2-branes. However, it is difficult to
understand how such a transformation can arise in the
strong-coupling limit of the D2-brane theory. The situation
might be clarified by including appropriate gauge fields,
but without additional fermions, the gauge fields cannot
contain any propagating degrees of freedom.

One can speculate that the nonclosure of the multi-M2-
brane algebra might, in fact, be related to the presence of
the M5-brane. To see why, let us introduce the following
closed 5-form:

 !mnpqr � �
i

5!
��1�mnpqr�2 (19)

in 11 dimensions, where m; n; . . . � 0; . . . ; 10. Because
�012�1;2 � �1;2, the nonvanishing components of ! are
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precisely the forms generated by the closure (17) and (18):

 !���IJ � ����vIJ; !�KLMN � v�KLMN: (20)

Furthermore, !mnpqr is the calibrating form associated
with an M5-brane that lies in the xm; . . . ; xr plane. This
suggests that the multiple M2-branes might somehow be
acting as a source for the M5-brane.

In what follows, we construct a toy Lagrangian for the
M2-brane system that is invariant under four of the 16
supersymmetries. We start by adopting a spinor notation
that is better suited to three dimensions. We also use a
notation in which only an SU�4� �U�1� symmetry of the
transverse SO�8� is manifest. With these conventions, we
define the fields to transform as follows,

 XI ! ZA � Z �A 2 4�1� � �4��1�;

�!  A �  �A 2 4��1� � �4�1�;

�! " � " � "AB 2 1��2� � �1�2� � 6�0�:

(21)

In this notation, the transformations (8) take the form

 �ZA � i �" A � i �"AB �B;

� A � 2��@�ZA"� 2��"AB@�Z �B

� i�1�
ABCD�Z �B; Z �C; Z �D�"



� 3i�2�ZA; Z �B; Z �C�"
BC � 3i�3�ZA; ZB; Z �B�";

(22)

where the dimensionless parameters �1, �2, and �3 are all
nonzero and proportional to �.

Let us restrict our attention to the supersymmetries
generated by ", i.e. we consider the N � 2 subalgebra
defined by "AB � 0,

 �ZA � i �" A;

� A � ��@�Z
A"� i�1�

ABCD�Z �B; Z �C; Z �D�"


� 3i�3�ZA; ZB; Z �B�":

(23)

This corresponds to imposing

 �5678� � �56910� � �� (24)

on the full 11-dimensional spinor �. Geometrically this
projection arises from additional M-branes along the
01234810 and 0123589 planes (as well as other possible
M5-branes that can be introduced without breaking addi-
tional supersymmetries). This situation corresponds to the
SU�3� Kahler calibration case studied in [9].

Computing the closure of this subalgebra, we find
 

��1;�2�ZA� 2v�@�ZA� i�3u�ZA;ZB;Z �B�;

��1;�2� A� 2v�@� A�
i�3

2
w����ZA;ZB; �B�

�
i�3

2
�u�v������ 

A;ZB;Z �B���Z
A; B;Z �B��

�
1

2
�u�v�����2��@� A

�3i�1�
ABCD�Z �B;Z �C; �D��; (25)

where
 

v� � i �"2�
�"1 � i �"1�

�"2; u � i �"2"1 � i �"1"2;

w� � i �"2�
�"1 � i �"


1�

�"2: (26)

The last term in (25) is the equation of motion; it vanishes
on shell. The terms proportional to �3, however, prohibit
closure of the algebra even when restricted to the above
supersymmetries.

The transformations generated by " are very similar to
those found in three-dimensional N � 2 superspace. The
only exceptions are the �3 terms, which contain both
holomorphic and antiholomorphic fields. In particular, let
us consider the three-dimensional N � 2 chiral superfield
ZA, with

 

�DZA � 0; (27)

which can be expanded as

 Z A � ZA�y� � �	 A�y� � �		FA�y� (28)

where y� � x� � i �	��	. We take a real basis for the
three-dimensional Clifford algebra; the spinors " and 	
are complex with �	 � 	T�0. In terms of components, we
find

 �ZA � i �" A; �FA � � �"��@� A;

� A � 2��@�Z
A"� 2iFA":

(29)

Comparing (29) with (23), we see that the transformations
coincide when �ZA; ZB; Z �B� � 0 and

 FA � �1�
ABCD�Z �B; Z �C; Z �D�: (30)

Moreover, the algebra (25) closes provided �ZA; ZB; Z �B�,
�ZA; ZB;  �B�, and � A; ZB; Z �B� � �Z

A;  B; Z �B� are all zero.
These conditions all arise from the single superspace con-
straint

 �ZA;ZB;Z �B� � 0: (31)

Therefore the conjectured M2-brane superalgebra can be
truncated to a consistentN � 2 superalgebra with SU�4� �
U�1� R symmetry when the superspace constraint (31) is
satisfied.

In closing this section, we observe that the constraint
(31) is reminiscent of the Gauss law constraint in ordinary

JONATHAN BAGGER AND NEIL LAMBERT PHYSICAL REVIEW D 75, 045020 (2007)

045020-4



gauge theory. For example, if we consider the purely
scalar-spinor sector of N � 4 super-Yang-Mills, we can
expect to see at most N � 1 supersymmetry and an
SU�3� �U�1� part of the SO�6� R symmetry.
Furthermore, since the scalars and spinors act as sources
for the gauge field, we find constraints that come from
imposing that these sources vanish. Therefore we conjec-
ture that the constraint (31) has a similar interpretation,
ensuring that the scalars and spinors do not provide a
source for the mysterious gauge fields that we have set to
zero.

VI. SUPERSPACE LAGRANGIAN

In the previous section, we considered M2-brane dy-
namics when all gauge fields are set to zero, only the
R-charge 
2 supersymmetries are realized, and the
SO�8� R symmetry is broken to SU�4� �U�1�. In this
section we construct an N � 2 superspace Lagrangian
that reproduces many of the features discussed above.

As before, we assume there are eight scalar fields, which
we write as four complex scalars ZA, A � 1, 2, 3, 4. We
require that the ZA take values in a nonassociative algebra
A with center I. To write the action, we assume that the
algebra is equipped with a trace form, a bilinear operation
Tr: A�A! C that satisfies

 Tr �A;B� � Tr�B;A�; (32)

with the invariance condition

 Tr �A � B;C� � Tr�A;B � C�: (33)

This latter condition turns out to be important because it
allows us to evaluate derivatives of the Lagrangian with
respect to elements of A.

We also need to define how complex conjugation acts on
the algebra. Therefore we suppose that there is an involu-
tion #: A!A such that #2 � 1 and

 Tr �A; A#� � 0 (34)

for all A 2A, with equality if and only if A � 0. We then
define complex conjugation in the algebra to be given by #,
i.e. if Z1 � X3 � iX7 then Z�1 � �X

3�# � i�X7�#.
With these definitions, the N � 2 supersymmetric

Lagrangian takes the following form,

 L �
1

2

Z
d4	Tr�ZA;Z �A� �

Z
d2	W�ZA�

�
Z
d2	 �W�Z �A�; (35)

where W is a holomorphic function on the algebra. We
observe that, even though the nonassociativity complicates
matters such as Taylor expansions, supersymmetry still
holds because �"Q� �"Q is a differential operator, even
in this more general setting. The field FA is auxiliary; its
equation of motion is

 F �A � �2@AW: (36)

As noted in [11], the most natural form for the super-
potential is

 W 	 �ABCD Tr�ZAZBZCZD�: (37)

In three dimensions, a quartic superpotential leads to a
cubic term in the supersymmetry transformations and an
action that is classically scale invariant.

If the ZA were Lie-algebra valued, the superpotential W
would vanish. For our algebra, however, the superpotential
does not vanish. In particular, we take

 W � �
�1

8
�ABCD Tr�ZA; �ZB;ZC;ZD��: (38)

Using (32) and (33), we compute @W=@ZA and find

 

@W

@ZA
� �

�1

2
�ABCD�Z

B;ZC;ZD�: (39)

Combining this with (29), we obtain the superalgebra (23),
after imposing the constraint (31).

It was noted in [11] that the coefficient of the super-
potential is arbitrary from the point of view of N � 2
supersymmetry, but that it might be fixed once the full
supersymmetry is realized. This is also reminiscent of four-
dimensional super-Yang-Mills where the coefficient of the
superpotential is fixed by the full N � 4 supersymmetry.
Certainly the multiple M2-brane theory is not expected to
have any free parameters.

It is useful to compare our construction to the case of
SU�N� gauge theory. Since the scalar fields are spacetime
coordinates, they are represented by Hermitian matrices.
The reality condition is preserved by the commutator but
not by the matrix product. More formally, one can say that,
starting from an associative N � N matrix algebra, one
constructs the Lie algebra of Hermitian matrices that is
closed under the antisymmetric product: i� ; �: A�A!
A.

In our case, we start with a nonassociative algebra. Since
the coordinates are physical, it seems natural to impose a
generalized Hermitian condition

 �XI�# � XI: (40)

In general, this condition is not preserved by the algebra
product. However, all we really need is that the triple
product be Hermitian,

 �i�XI; XJ; XK��# � i�XI; XJ; XK�: (41)

Thus, rather than require a Lie algebra with an antisym-
metric bilinear product, we demand a new algebraic struc-
ture with an antisymmetric trilinear map
i� ; ; �: A�A�A!A that preserves the
Hermitian condition. We refer to such a structure as a
three-algebra.

Finally, let us consider the global symmetries of this
Lagrangian. In the familiar case of U�N� gauge theory,
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where # � y, the Lagrangian is invariant under ZA !
gZAg�1, provided that g�1 � gy, i.e. for g 2 U�N�. For
a nonassociative algebra it is not clear that there is an
associated group of which g is an element. Furthermore,
the expression gZAg�1 is ambiguous. Nevertheless, for the
purposes of field theory, it is often sufficient to consider
transformations g � 1� h, where h is an infinitesimal
element of the algebra. Thus we can look for symmetries
of the form �ZA � h � ZA � ZA � h, where h# � �h to
preserve the condition �ZA�# � ZA. One readily sees that
this is always a symmetry of the kinetic term but that a
priori it is not a symmetry of the superpotential. Thus, in
general, there is no global symmetry associated with the
algebra that might be considered as a remnant of a standard
gauge symmetry.

To summarize, we have constructed a Lagrangian with
three-dimensional N � 2 supersymmetry (i.e. four super-
charges) and an SU�4� �U�1� R symmetry. The super-
symmetry transformations coincide with our conjectured
M2-brane transformations (25) when the constraint (31) is
satisfied. Ideally we would have liked a system with N � 8
supersymmetry and SO�8� R symmetry, but at least
SU�4� �U�1� is a maximal supergroup of SO�8�. It is
conceivable that our Lagrangian admits additional super-
symmetries that are not manifest in the superspace formal-
ism, but we have been unable to find them.

V. BPS FUNNELS

The supersymmetric Lagrangian (35) gives rise to the
following BPS condition for its bosonic solutions,

 0 � 2��@�Z �A"
 � 4i@AW": (42)

Writing " � ei
�2", where ei
 is a phase, we see that half
the supersymmetries are preserved whenever

 

dZ �A

d�x2�
� i�1e

i
�ABCD�Z
B; ZC; ZD� � 0: (43)

This is the BPS equation (10).
The energy density of a BPS configuration extended

along the x1 direction is
 

E �
1

2

Z
dx2 Tr@2�ZA; @2Z �A� � 4 Tr�@AW; @ �A

�W�

�
1

2

Z
dx2 Tr�@2Z

A � 2ie�i
@ �A
�W; @2Z �A � 2iei
@AW�

� 2@2�e
�i
W � ei
 �W�

� �2 Im�e�i
W�jx
2�1
x2��1

(44)

where we have imposed the BPS equation. We can rescale
ZA ! ��1=2ZA so that � only appears as an overall factor
in the Lagrangian. Therefore the energy is proportional to
��1 and we can fix � by comparing the energy of a BPS
fuzzy funnel with what is expected from the self-dual
string (as was done in [1]).

Finally, we provide an example of a suitable nonasso-
ciative algebra to make a more explicit connection with the
BPS equation of [1]. We consider N � N matrices with a
modified multiplication rule. The trace form condition is
quite restrictive; the simplest possibility that we found is

 A � B � QABQ; (45)

where Q is some fixed, invertible matrix, and the usual
matrix product is understood on the right-hand side. A
suitable trace form is

 Tr �A;B� � tr�Q�1AQ�1B�; (46)

where tr denotes the usual matrix trace. The generalized
Hermitian conjugate is A# � QAy�Q�1�y, where y is the
ordinary Hermitian conjugate. The associator in this alge-
bra is

 hA;B;Ci � Q2ABQCQ�QAQBCQ2: (47)

To make contact with [1], which contains a Hermitian
matrix G such that G2 � 1, we take

 Q �
1� iG���

2
p (48)

so that Q2 � iG, Qy � Q�1, and Q# � Q.
The components of ZA that commute with G associate

with each other. Therefore we restrict to the subalgebra
with fG; ZAg � 0. It follows that

 QZAQ � ZA and Z#
A � ZyA: (49)

To construct the three-algebra, we take the vector space V
spanned byQ and all Hermitian matrices that anticommute
with G. The matrix Q can be identified as the translation
element since

 �Q;A;B� � 0; (50)

for all A;B 2 V . It is not hard to show that
�i�ZA; ZB; ZC��# � i�ZA; ZB; ZC� for all A;B;C 2 V .

With these definitions, the superspace action can be
written as

 L �
1

2

Z
d4	 tr�ZAZyA�

�
�
8
�ABCD

Z
d2	 tr�GZAZBZCZD� � H:c: (51)

The BPS equation is

 

dZ �A

d�x2�
�
�1

4!
ei
�ABCD�G; Z

B; ZC; ZD� � 0: (52)

This is nothing but the Basu-Harvey equation (2), provided
that we take �1 � M3=8�

�������
2N
p

[1,7]. In fact, it is slightly
generalized since the ZA need not be real. If we choose our
solution so that ZB � Z �B, we also satisfy the constraint
�ZA; ZB; Z �B� � 0.
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We note that the Lagrangian (51) has a global symmetry.
In particular, ZA ! gZAg�1 (with the usual matrix prod-
uct) is a symmetry provided g 2 U�N� and �g;G� � 0.
However it is not clear to us that there is any significance to
this symmetry because this algebra was chosen primarily
for illustrative purposes.

VI. COMMENTS

In this paper we studied the structure of the worldvolume
supersymmetry algebra of multiple M2-branes. We argued
that it is natural for the embedding coordinates to take
values in a nonassociative algebra. We showed that the
supersymmetry transformations close into a novel gauge
symmetry. We also presented a three-dimensional model
Lagrangian for this system, with reduced supersymmetry,
containing only scalar and spinor modes. The Basu-Harvey
equation arises as the BPS condition for this system.

A notable feature of N M2-branes, as opposed to mul-
tiple M5-branes, is that the number of degrees of freedom
should scale as N3=2. Since this is less than N2, one might
hope to embed the algebra of the M2-brane coordinates
into a matrix representation. The algebra constructed
above is a twisted form of the algebra of N � N matrices,
based on some preferred matrix Q, and as such seems to be
fairly artificial. However, our setup allows us to truncate
our matrices to obtain a system with N3=2 degrees of free-
dom. Let us take N � n2 and consider the N � N matrices
of the form

 X �
Xn�1

k�0

Xk ��k; (53)

where � is an n� n matrix such that �n � 1. These
matrices form a vector subspace of all N � N matrices

under the usual rule of addition and scalar multiplication.
Thus X consists of n, n� n matrices and hence has n3 �

N3=2 degrees of freedom. These matrices form an associa-
tive algebra under matrix multiplication. However, we can
also use the multiplication rule (45), with Q � �q � 1 for
some q 2 Z, to obtain a nonassociative algebra with N3=2

degrees of freedom. In particular, if n is divisible by 4 then
we reproduce the Basu-Harvey equation by taking q �
n=4 and identifying G � �n=2 � 1.

This paper has been rather speculative in nature; there
are many outstanding issues that still need to be addressed.
Perhaps the most pressing is to further understand the local
symmetries implied by the full supersymmetry algebra.
Also, our choice of nonassociative algebra was rather ad
hoc; its main purpose was to illustrate how things could
work in principle. It would be of interest to find a better
motivated algebra to describe multiple M2-branes. In ad-
dition, it would be useful to make contact with the work of
[13], which includes additional nonpropagating fields on
the brane worldvolume, and also to extend our results to
obtain a manifestly U-duality invariant action. Last but not
least, we hope and expect that the study of supersymmetric
theories and their solitons based on nonassociative algebras
will prove to be fruitful in its own right.
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