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Reformulating the instantons in a complex plane for tunneling or transmitting states, we calculate the
pair-production rate of charged fermions in a spatially localized electric field, illustrated by the Sauter
electric field E0sech2�z=L�, and in a temporally localized electric field such as E0sech2�t=T�. The
integration of the quadratic part of WKB instanton actions over the frequency and transverse momentum
leads to the pair-production rate obtained by the worldline-instanton method, including the prefactor, of
Phys. Rev. D 72, 105004 (2005) and 73, 065028 (2006). It is further shown that the WKB instanton action
plus the next-to-leading-order contribution in spinor QED equals the WKB instanton action in scalar
QED, thus justifying why the WKB instanton in scalar QED can work for the pair production of fermions.
Finally we obtain the pair-production rate in a spatially localized electric field together with a constant
magnetic field in the same direction.
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I. INTRODUCTION

The physics of strong electromagnetic fields, in particu-
lar, vacuum polarization and pair production, has been
studied by Sauter [1], Heisenberg, Euler [2], and
Weisskopf [3] even before the advent of quantum electro-
dynamics (QED). Using the proper-time path integral,
Schwinger obtained the one-loop QED effective action in
a constant electromagnetic field [4]. The imaginary part of
the effective action under the influence of electric fields
leads to the decay rate of the vacuum and thereby the pair-
production rate of charged particles. (For a recent review
and references on QED and pair production, see Ref. [5].)
One approach to pair production is tunneling of virtual
pairs from the Dirac sea [6–13], in which instantons de-
termine the tunneling probability and thereby the pair-
production rate. Another approach is the recent worldline
method [14–22].

On the other hand, physics of strong fields in laboratory
has recently attracted much attention due to the rapid
development of laser technology. In the near future the x-
ray free electron lasers from Linac Coherent Light Source
at SLAC [23] and TESLA at DESY [24] are expected to
produce at the focus an electric field near the critical
strength Ec � m2c3=e@�1:3� 1018 V=m� for electron-
position pair production. Also ultrahigh intense lasers
have been developed using a technique of amplifying
pulses of picosecond and few femtosecond time scales
(for a review and references, see Ref. [25]). The focal
region of colliding lasers may correspond to a strong

QED regime, in which not only vacuum polarization but
also pair production can be tested [26] (see also Ref. [27]
for other QED related physics). The localized beam in
space and time does necessarily imply inhomogeneous
electromagnetic fields. Thus pair production of charged
particles by inhomogeneous electric fields is not only a
theoretical issue but also an experimental concern.

In previous papers [12,13], we formulated the pair-
production rate of charged particles in inhomogeneous
electric electric fields in terms of the instantons for tunnel-
ing states in the space-dependent (Coulomb) gauge, and
worked out explicitly the rate for the Sauter electric field
[28] in the WKB approximation. Recently, using the
worldline path integral, Dunne and Schubert [15] obtained
worldline instantons in a gauge-independent way, and
Dunne, Wang, Gies, and Schubert [16] further found the
prefactor to the worldline instantons to calculate the pair-
production rate by inhomogeneous fields.

In this paper, using the phase-integral method [29,30],
we further elaborate the instanton method of Refs. [12,13]
by defining the instanton action in a gauge-independent
way as a contour integral in the complex space or time
plane. The divergence problem at turning points in the
WKB method can be naturally avoided by the contour
integral excluding the branch cut connecting two complex
roots corresponding to turning points. We use the new
instanton method to calculate the leading-order (LO) and
next-to-leading-order (NLO) WKB instanton actions both
in a spatially localized electric field E0sech2�z=L� and in a
temporally localized electric field E0sech2�t=T� of Sauter
type [28], and then obtain the pair-production rate for
charged fermions. We then compare the pair-production
rate with that obtained by the worldline-instanton method
[15,16] and with the exact result by Nikishov [31].
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We show that for the Sauter electric field [28], the
minimum value of our WKB instanton action S�0�k?

�!� �

2S�0�k?
�!�, as a function of the transverse momentum k?

and the frequency !, is the same as that of the single-
worldline-instanton action of Ref. [15], and that the
Gaussian approximation for the integrals over ! and k?
in our approach using S�0�k?

�!� gives the same pair-
production rate, including the prefactor [16], as the
worldline-instanton method. We further calculate the
NLO WKB actions S�2�sp;k?�!� in spinor QED and show
that the sum of the WKB and NLO instanton actions in
spinor QED is equal to the WKB instanton action in scalar
QED. Finally we study pair production in the Sauter elec-
tric field together with a constant magnetic field in the
same direction.

The organization of this paper is as follows. In Sec. II,
we reformulate the instanton method in a gauge-
independent way in the complex plane of space or time.
We also show that the terms in the WKB approximation for
a constant electric field vanish beyond the leading order,
and the WKB approximation thus reproduces the well-
known exact one-loop result from the point of view of
the instanton method. In Sec. III, we calculate within the
leading-order WKB approximation the instanton actions in
scalar QED for a localized electric field of spatial or
temporal Sauter-type and obtain the pair-production rate
for both cases. We find that the WKB instanton action in
scalar QED gives a pair-production rate closer to the exact
result for spinor QED up to higher order in an adiabaticity
parameter. In Sec. IV, we calculate the WKB and NLO
instanton actions in spinor QED and find that the instanton
action up through the NLO contribution for each frequency
and transverse momentum equals the WKB instanton ac-
tion in scalar QED, thus justifying the reason why the
WKB instanton action in scalar QED gives a good result.
In Sec. V, we find the WKB instanton action in the Sauter
electric field together with a constant magnetic field in the
same direction.

II. GAUGE INDEPENDENCE OF INSTANTON
ACTIONS

The worldline-instanton method is based on Feynman’s
worldline path integral [32], manifestly a gauge invariant
formalism, and calculates the instanton action from a
closed instanton trajectory [15–22]. Affleck, Alvarez,
and Manton found the instanton action in a constant elec-
tric field from the closed instanton trajectory [33]. In this
paper we show how the instanton method of Refs. [12,13]
can be reformulated by the same contour integral for two
different gauges. For the sake of simplicity we first focus
on the constant electric field, which can be treated exactly,
and then extend to inhomogeneous fields in the next sec-
tion. The electric field can be written in terms of two
simple alternative gauges: the space-dependent

(Coulomb) gauge and the time-dependent gauge. We shall
first work on scalar QED, described by the Klein-Gordon
equation, and then discuss spinor QED, described by the
Dirac equation, in Sec. IV. The Klein-Gordon equation for
charged particles with charge q (q > 0) and mass m takes
the form [in units with @ � c � 1 and with metric signa-
ture ��;�;�;��]

 �����@� � iqA���@� � iqA�� �m2�� � 0: (1)

In the space-dependent gauge, the Klein-Gordon equa-
tion, after being decomposed into Fourier modes, becomes
a tunneling problem, the so-called sub-barrier penetration.
The essence of the instanton method is that the tunneling
states of this equation lead to the vacuum decay and pair
production of charged particles. On the other hand, in the
time-dependent gauge, the mode-decomposed equation
resembles a one-dimensional scattering problem over a
potential barrier, the so-called superbarrier transmission.
The positive-frequency modes define the vacuum state at
past infinity, and the negative-frequency modes at future
infinity lead to the number of created pairs [34,35]. Fröman
and Fröman [29] showed that the probability amplitudes of
both the tunneling and the transmitted states could be
found in terms of a contour integral in the complex plane
of space or time. This contour integral yields the same
WKB instanton action in both gauges for a constant elec-
tric field.

A. Constant E-field in the space-dependent gauge

In the space-dependent (Coulomb) gauge, a constant
electric field along the z-direction has the potential A� �
��Ez; 0; 0; 0�. The mode-decomposed Klein-Gordon equa-
tion in (1) now takes the form

 ��@2
z �Q�z���!k?�z� � 0; (2)

where

 Q�z� � m2 � k2
? � �!� qEz�

2: (3)

Each mode equation now describes the tunneling problem
under the upside-down harmonic potential barrier and has
two real turning points

 z	 � �
!
qE
	

�������������������
m2 � k2

?

�qE�2

s
: (4)

The exact wave function is given by the complex parabolic
cylindrical function E�Sk?=�;

������������
2=qE

p
�qzE�!�� in terms

of the instanton action Sk? � ��m2 � k2
?�=�2qE� [12].

Using the phase-integral formula [29,30], the wave func-
tion can be written in one asymptotic region z
 z� as

 �!k?�z� � A�ei�=4’!k?�z�� � B�e
i�=4’!k?�z��

�; (5)

where

 A � �e2Sk � 1�1=2; B � eSk ; (6)
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and ’!k?�z� has unit incoming flux (with the group veloc-
ity away from the barrier on the back side). Here the
leading-order WKB instanton action is given by

 S�0�k?
�
Z z�

z�

����������
Q�z�

p
dz �

��m2 � k2
?�

2qE
; (7)

which is the exact action for the constant E-field, that is,
Sk? � S�0�k?

. In the other asymptotic region z� z�, the
tunneling wave function is given by

 �!k?�z� � �e
��i�=4�’!k?�z��

�: (8)

Now the action can also be defined in the complex z
plane by the contour integral [29,30]

 S k? � 2Sk? � �i
I

�K

q�z�dz; (9)

where the integral is along the contour in Fig. 1. Here,

 q�z� �
��������������
�Q�z�

p X1
n�0

Y2n�z�; (10)

and the first two Y2n are [29,30]

 Y0�z� � 1; Y2�z� � �
1

32Q3

�
5
�
dQ
dz

�
2
� 4Q

d2Q

dz2

�
:

(11)

Note that the complex function
���������
�Q
p

has a branch cut
along the real line segment connecting two roots z	 and is
single-valued outside the closed loop of Fig. 1 [36]. From
the Laurent expansion for large z,

 

���������
�Q

p
� qE

�
z�

z� � z�
2

�
�z� � z��

2

8z
�   

�
; (12)

we find the residue qE�z� � z��2=8 at the simple pole at
z � 1 [37]. Hence the contour integral in the exterior
region of the closed loop in Fig. 1 leads to the leading-
order WKB instanton action

 S �0�k?
� 2�i

�
�iqE

�z� � z��
2

8

�
�
��m2 � k2

?�

qE
: (13)

The WKB instanton action agrees with Eq. (13) of
Ref. [12] and Eq. (21) of Ref. [13], and also with
Eq. (27) of Ref. [15] for the action of the worldline
instanton.

B. Constant E-field in the time-dependent gauge

In the time-dependent gauge, the potential is given by
A� � �0; 0; 0;�Et�. The mode-decomposed Klein-Gordon
equation of (1) takes the form

 ��@2
t �Qt�t���!k�t� � 0; (14)

where

 Qt�t� � ��m2 � k2
? � �kz � qEt�

2�: (15)

The problem now becomes the superbarrier transmission
over the upside-down harmonic potential. The vacuum
state is defined in terms of the positive-frequency (adia-
batic) solution at past infinity (t � �1). Particle produc-
tion is ascribed to the negative-frequency (adiabatic)
solution at future infinity (t � 1).

The function
����������
�Qt
p

now has a branch cut along a line
segment parallel to the imaginary axis in the complex t
plane, which connects two complex roots

 t	 �
kz
qE
	 i

�������������������
m2 � k2

?

�qE�2

s
: (16)

Then the transmission probability is determined by the
contour integral [29]

 S k? � 2Sk? � i
I

�K

���������������
�Qt�t�

q
dt; (17)

along the contour in Fig. 2. As
����������
�Qt
p

has a simple pole at
t � 1,

 

����������
�Qt

p
� qE

�
t�

t� � t�
2

�
�t� � t��

2

8t
�   

�
; (18)

and the residue is qE�t� � t��2=8, we obtain the WKB
action

 S k? � 2�i
�
iqE
�t� � t��2

8

�
�
��m2 � k2

?�

qE
: (19)

Though the Klein-Gordon equation in the time-
dependent gauge potential for the constant E-field is
equivalent to the scattering problem over a potential bar-
rier, the transmission probability is determined by the
action now defined in the complex time plane. This holds

 

real axis

FIG. 1. The contour integral in the complex plane z excluding
a branch cut connecting two real roots z	.

 

imaginary axis

FIG. 2. The contour integral in the complex plane t excluding a
branch cut connecting two complex roots z	.
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true for general time-dependent electric fields. In this
sense, the action defined by the contour integral (9) or
(17) in the complex plane of space or time is the same
for both gauge potentials.

C. S�2� � 0 for constant E-field

In the space-dependent gauge, the next-to-leading-order
(NLO) WKB contribution to the instanton action takes the
form

 S �2�k?
� i

I
�K

��������������
�Q�z�

p 1

32Q3

�
5
�
dQ
dz

�
2
� 4Q

d2Q

dz2

�
dz

(20)

for the same contour in Fig. 1. The simple roots z	 of Q�z�
cannot give simple poles, as they are excluded by the
contour. Further the integrand does not have a simple
pole at infinity, since it has the expansion of the form

 

1

32Q3

�
5
�
dQ
dz

�
2
� 4Q

d2Q

dz2

�
�
X1
n�4

an
zn
: (21)

Therefore, the contour integral (20) vanishes, and S�2�k?
� 0

for the constant E-field. As all higher order actions vanish
by the same argument, the WKB instanton actions agree
with the result from the exact solution of the Klein-Gordon
equation. Also the same argument holds for the time-
dependent gauge. The integral over all the transverse mo-
mentum recovers the well-known pair-production rate in a
constant electric field [4].

III. LOCALIZED ELECTRIC FIELDS

Consider a static plane-symmetric but z-dependent elec-
tric field E�z� in the z-direction of maximum value E0 and
of effective length L defined so that

 E0L �
1

2

Z 1
�1

E�z�dz: (22)

It may be characterized by the parameter

 � �
m

qE0L
: (23)

Similarly, a homogeneous time-dependent electric field
E�t� in the z-direction of maximum value E0 and of effec-
tive time T defined so that

 E0T �
1

2

Z 1
�1

E�t�dt (24)

may be characterized by the parameter

 �t �
m

qE0T
: (25)

Pair production is energetically allowed for � < 1 and
for any �t, though it is strongly suppressed for �t � 1. Pair
production by localized electric fields significantly differs

from that by the constant electric field due to a size effect
[38]. The finite size effect on pair production was also
shown in many inhomogeneous electric fields
[12,13,15,16].

We shall also define another parameter,

 � �
qE0

�m2 ; (26)

which (for � < 1 or �t < 1) is small when the pair-
production rate is small. A third useful parameter is the
following combination of the previous two:

 b �
���������������

1� �2
p or bt �

���������������
1� �2

t

p : (27)

When the WKB approximation is good, then b
 1 or
bt 
 1, so b or bt serves as an adiabaticity parameter.

In this section we consider the spatially localized elec-
tric field E�z� � E0sech2�z=L� in the z-direction given by
the Sauter potential [28]

 A0�z� � �E0L tanh
�
z
L

�
: (28)

From now on E�z� � E0sech2�z=L� will be called the
Sauter electric field [28]. Pairs are produced only when
qE0L�m � ! � ��qE0L�m�. This electric field
varies slowly over the effective length L. The other field
is a uniform but temporally localized electric field E�t� �
E0sech2�t=T�, effectively lasting over the period T.

A. Sauter electric field

In the first case of the Sauter potential A0�z� �
�E0L tanh�z=L� [28], we change the variable � �
L tanh�z=L� to write the leading-order WKB action as

 S �0�k?
� 2Sk? � �i

I
�K

���������������
�Q���

p
1� �2

L2

d�; (29)

where

 Q��� � m2 � k2
? � �!� qE0��2: (30)

As j�j � L, we expand the integrand as a Laurent series

 

���������������
�Q���

p
1� �2

L2

� qE0

X1
n�0

X1
l�0

Cl
L2n �

2n�1�l; (31)

where we also expand the square root for large � as

 f�0���� �

����������������������
�

Q���

�qE0��
2

s
�
X1
l�0

Cl
�l
: (32)

The integrand of (29) has simple poles at large � for l �
2n� 2 ( � 2), and the sum of residues is

 

X
residue

� �qE0L
2
X1
n�1

C2n

L2n : (33)
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Noting that

 f�0��L� � f�0���L� � 2
X1
n�0

C2n

L2n ; (34)

we finally obtain the leading-order WKB action

 S �0�k?
� �qE0L

2�2� f�0��L� � f�0���L��: (35)

Therefore, the leading-order WKB action in scalar QED
can be written as

 S �0�k?
�
Z
2
�2�

�����������������������������������������������
�1���2 � �2�1� 	2�

q
�

�����������������������������������������������
�1���2 � �2�1� 	2�

q
�; (36)

in terms of the dimensionless scaled variables

 � �
!
qEL

; 	 �
k?
m
; (37)

and the dimensionless parameters

 Z � 2�qE0L2 �
2

��2 ; � �
m

qE0L
; � �

qE0

�m2 :

(38)

We shall first compare the scalar QED instanton actions
with other results. As S�0�k?

is an even function of � and 	,
we may expand the action (36) as a power series in � and
	,

 S �0�k?
� S�0�

f0g � S�0�
f2g � S�0�

f4g �
X1
n�3

S�0�
f2ng; (39)

where the first few S�0�
f2ng are

 

S�0�
f0g � Z�1�

��������������
1� �2

p
�;

S�0�
f2g �

�2

��1� �2�3=2
�

	2

��1� �2�1=2
;

S�0�
f4g �

1

4��1� �2�7=2
��4� �2��4

� 2�1� �2��2� �2��2	2 � �2�1� �2�2	4�: (40)

In the special case of ! � 0 and k? � 0, we obtain the
action

 S �0�
f0g �

1

�
2

1�
��������������
1� �2
p � Z�1�

��������������
1� �2

p
�

�
2��������������

1� �2
p

� 1� �2

1

b
>

1

b
� 1; (41)

agreeing with the action of the worldline instanton (62) of
Ref. [15]. This is also true for spinor QED as will be shown
in Sec. IV.

Weighting the Gaussian integral of e��S
�0�
f0g
�S�0�

f2g
� over !

and k? by a power series expansion of e�
P

n�2
S�0�
f2ng through

8th order in ! and k?, we obtain a WKB approximation
for the pair-production rate of charged particles per unit
time and unit cross-sectional area,
 

N �0� �
2

�2��3
Z
d!

Z
d2k?e�S

�0�
k

�
�qE0�

5=2L

4�3m
�1� �2�5=4e�Z�1�

���������
1��2
p

�

�

�
1�

5

16
�4� 3�2�b�

105

512
�4� �2�2b2

�
315

8192
�320� 432�2 � 124�4 � �6�b3

�
: (42)

Here and hereafter we insert a factor of 2, for two charged
scalar fields, to compare with the results of spinor QED
with two spins for each spin-1=2 fermion state. Thus all
single-scalar QED results would be half of those listed
here.

The contribution up to the quadratic terms of the WKB
instanton action, the factor in front of the square bracket,
agrees with Eq. (4.7) of Ref. [16] from the worldline-
instanton approximation. The 2nd, 3rd, and 4th terms in
the square bracket are the contributions from the 4th, 6th,
and 8th order terms of the WKB instanton action, though
these terms in the action are intertwined in the pair-
production rate because of the exponentiation of the action.

It is interesting to compare this leading-order WKB
result in scalar QED with the exact result in spinor QED
[31], given in terms of Z and � by the double integral in
Eq. (62) of Ref. [13]. For b
 1, so that one may drop
terms that are exponentially smaller than the dominant

terms by factors like e�S
�0�
f0g < e�1=b, the leading approxi-

mation to the double integral, given by Eq. (64) of
Ref. [13], agrees with the leading term of Eq. (42), the
coefficient in front of the square bracket. We have checked
that taking additional dominant terms of the double inte-
gral (suppressed not exponentially but only by powers of�
and 	) indeed gives precisely the same total result as the
extreme right hand side of Eq. (42). Indeed, one can show
that the entire leading-order WKB approximation for sca-
lar QED pair production in the Sauter potential, given by
the first right hand side of Eq. (42), immediately after the�
sign, is equal to the total power series of all dominant terms
of the exact result for spinor QED when one drops only
terms that are exponentially suppressed.

B. Temporally localized field

In the second case of the temporally localized electric
field, we change the variable 
 � T tanh�t=T� to write the
WKB actions as

 S �0�k?
� 2Sk? � i

I
�K

����������������
�Qt�
�

p
1� 
2

T2

d
; (43)

where
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 Qt�
� � ��m2 � k2
? � �kz � qE0
�2�: (44)

Here and hereafter the subscript t denotes any quantity in
the time-dependent gauge. The integral (43) can be ob-
tained from Eq. (29) for the spatially localized electric field
by replacing L by T and Q from Eq. (3) by Qt from
Eq. (15). In terms of the scaled variables

 �t �
kz

qE0T
; 	 �

k?
m
; (45)

and parameters

 Zt � 2�qE0T2 �
2

��2
t
; �t �

m
qE0T

; � �
qE0

�m2 ;

(46)

we have

 S �0�k?
�
Zt
2
�
�������������������������������������������������
�1��t�

2 � �2
t �1� 	

2�
q

�
�������������������������������������������������
�1��t�

2 � �2
t �1� 	

2�
q

� 2�: (47)

In the special case of kz � 0 and k? � 0, the action is

 S �0�
f0g �

1

�
2

1�
��������������
1� �2

t

p � Zt�
��������������
1� �2

t

q
� 1�

�
2��������������

1� �2
t

p
� 1� �2

t

1

bt
<

1

bt
; (48)

which agrees with Eq. (38) of Ref. [15].
As in the case of the Sauter electric field, we expand the

instanton action in power of �t and 	 as

 S �0�k?
� S�0�

f0g � S�0�
f2g � S�0�

f4g �
X1
n�3

S�0�
f2ng; (49)

where
 

S�0�
f0g � Zt�

��������������
1� �2

t

q
� 1�;

S�0�
f2g �

�2
t

��1� �2
t �

3=2
�

	2

��1� �2
t �

1=2
;

S�0�
f4g �

1

4��1� �2
t �

7=2
��4� �2

t ��
4
t

� 2�1� �2
t ��2� �

2
t ��

2
t 	

2 � �2
t �1� �

2
t �

2	4�: (50)

The pair-production density (per unit spatial volume) from
the WKB actions up through quartic terms is given by
 

N �0� �
�q0E�

5=2T

4�3m
�1� �2

t �
5=4e�Zt�

���������
1��2

t

p
�1�

�

�
1�

5

16
�4� 3�2

t �bt

�
: (51)

where bt is the adiabaticity parameter in Eq. (27). The pair-
production density up to the quadratic terms, the factor in
front of the square bracket, agrees with Eq. (3.40) of

Ref. [16]. We note that Eq. (51) for the temporal Sauter-
type electric field [28] can be obtained by analytically
continuing �2 to ��2

t in Eq. (42) for the Sauter electric
field.

IV. SPINOR QED

The eigen-component of the Dirac equation for spin-1=2
fermions with charge q (q > 0) and mass m [in units with
@ � c � 1 and with metric signature ��;�;�;��] takes
the form [31,39]

 �����@� � iqA���@� � iqA�� �m
2 � 2i�qE��� � 0:

(52)

The Dirac equation (� � 1=2) is the relativistic field equa-
tion for spinor QED, whereas in scalar QED the charged
spinless bosons are described by the Klein-Gordon equa-
tion (� � 0), the single component equation in (52) with-
out the imaginary term.

A comment on the complex instanton actions in spinor
QED is in order. Each eigen-component of the Dirac
equation in Eq. (52) satisfies the Klein-Gordon equation
with a complex potential and thus leads to complex in-
stanton actions. For fermions, if we impose the boundary
condition from causality that a particle moves with a group
velocity away from the barrier on the back side, the ex-
pected number of pairs produced per mode is then given by
one minus the reflection probability [13,31],

 N �k?� � 1�

��������AB
��������2
� e��Sk�S�k� � e��Sk?

�S�k?
�=2:

(53)

As the imaginary part of an instanton action does not
contribute to the pair-production rate, from now on we
shall refer to only real part of the instanton action unless
stated otherwise. For a constant electric field, the WKB
action in spinor QED is

 S �0�sp;k?
�
��m2 � k2

?�

qE
� i�; (54)

so the real part agrees with Eq. (13) of Ref. [12] and
Eq. (21) of Ref. [13], and also with Eq. (27) of Ref. [15]
for the action of the worldline instanton.

For the Sauter potential A0�z� � �E0L tanh�z=L� [28],
we change variables to � � L tanh�z=L� to write the
leading-order WKB instanton action as

 S �0�sp;k?
� 2Sk? � �i

I
�K

������������������
�Qsp���

q
1� �2

L2

d�; (55)

where

 Qsp��� � m2 � k2
? � �!� qE0��

2 � iqE0

�
1�

�2

L2

�
:

(56)
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As the contour integral (55) does not depend on whether
Qsp�z� is real or complex, we can repeat the same proce-
dure as in scalar QED in Sec. III A. We thus obtain the
leading-order WKB complex action in spinor QED

 S �0�sp;k?
� S�0�sc;k?

� Z�
����������������������
1� i���2

p
� 1�; (57)

where S�0�sc;k?
is the WKB action (36) in scalar QED. The

real part of the spinor action, which determines the pair-
production rate

 <e�S�0�sp;k?
� � S�0�sc;k?

�
Z
2
�
����������������������
1� i���2

p
�

����������������������
1� i���2

p
� 2�

(58)

is larger than the scalar QED action by �2��2=4 up to
order O��3�6�. We may write the NLO WKB contribution
to the action as

 S �2�sp;k?
� �i

I
�K

f�2����

1� �2

L2

d�; (59)

where

 f�2���� � �

������������
�Qsp

p
32Q3

sp

�
5
�dQsp

dz

�
2
� 4Qsp

d2Qsp

dz2

�
: (60)

The NLO action is given by

 S �2�sp;k?
� �

�2��2

4
����������������������
1� i���2
p ; (61)

so the real part cancels out the excess in the leading-order
real spinor action, at least up to order of O��3�6�.
Therefore the spinor instanton action up through the
NLO contribution approximately equals the scalar action,

 <e�S�0�sp;k?
� S�2�sp;k?

� � S�0�sc;k?
; (62)

to the same order. This explains the reason why the
leading-order WKB action in scalar QED gives the pair-
production rate closer to the exact result in spinor QED as
explained in Sec. III.

Similarly, for the temporally localized electric field, we
obtain the WKB real action in spinor QED as

 S �0�sp;k?
� S�0�sc;k?

�
Zt
2
�2�

����������������������
1� i���2

p
�

����������������������
1� i���2

p
�:

(63)

The WKB and NLO actions in spinor QED for the tempo-
ral electric field also leads to the WKB action in scalar
QED as given by Eq. (62).

V. LOCALIZED ELECTRIC FIELD AND
CONSTANT MAGNETIC FIELD

Finally we study the effect of a constant magnetic field
B, in the same direction as the electric field, on the pro-
duction of charged fermion pairs in the Sauter electric field
[28] with �
 1 and ��
 1. Note that the instantons exist
when the Landau levels are limited to
 

qB�2jmax � 1� � minf�!� qE0L�2

�m2; �!� qE0L�2 �m2g: (64)

In terms of the potential energy difference

 V � qA0��1� � qA0��1� � 2qE0L; (65)

the highest Landau level is

 jmax �
1

2qB

��
V
2
� j!j

�
2
�m2

�
�

1

2
: (66)

The pair-production rate per unit area and unit time for
spinor QED is now

 N �
�qB�

�2��2
Z �V=2��m

���V=2��m�
d!

Xjmax

j�0

X
�	�	1=2

e�S�	j ; (67)

where �qB�=�2�� is the number of Landau levels and
another factor 1=�2�� is from the ! integration. Here the
instanton actions are determined by

 S �	j �
X1
n�0

S�2n��	j
; (68)

where the dominant contribution comes from the WKB
instantons with action

 S �0��	j � �i
I

�K

dz
���������������������������������������������������������������������������������������������������������
!� qE0L tanh�Z=L��2 �m2 � qb�2j� 1� 2�	�

q

�
Z
2
�2�

�����������������������������������������������
�1���2 � �2�1� ~	2�

q
�

�����������������������������������������������
�1���2 � �2�1� ~	2�

q
�; (69)

where �	 � 	1=2 and

 ~	 2 �
qB�2j� 1� 2�	�

m2 : (70)

Expanding the WKB instanton action up to �2 and ~	2,
summing over j and �	, and integrating over !, we obtain

the pair-production rate per unit area and unit time
 

N �0� �
qBL�qE0�

3=2

4�2m
�1� �2�3=4

� e�Z�1�
���������
1��2
p

� coth
�

�B

E0�1� �
2�1=2

�
: (71)
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When B � 0, we recover the pair-production rate of
Eq. (42), as expected.

VI. CONCLUSION

In this paper we have further elaborated the previous
instanton method [12,13] by reformulating the instanton
action as a contour integral in the complex plane of space
or time. For a general electric field with the gauge potential
A0�z� � �E0f�z� or A3�t� � �E0f�t�, � � f�z� or f�t�
being an analytical function, we may express the instanton
action as
 

S�0� � �i
I

�K

�����������������������������������������������������������������������������������
�!� qE0��

2 � �m2 � k2
?� � iqE0

�
df
dz

�s

�
d�

�df=dz�
; (72)

and a similar formula holds for the time-dependent gauge
potential. As for the Sauter potential, the stratagem is to
find the inverse function z � f�1���, expand the integrand
for large � , and then calculate the contour integral. The
inverse function can be found at least as a power series.
This formulation is gauge independent in the sense that the
same instanton action in the complex plane determines the
transmission probability or the tunneling probability for
fermion pair production either in the time-dependent gauge
for time-dependent electric fields or in the space-dependent
gauge for space-dependent electric fields. Furthermore, the
new formulation allows one to calculate the instanton
action beyond the WKB approximation without encounter-
ing the divergence problem at turning points, since it
excludes the branch cut connecting two turning points.

We first applied the instanton method to a constant
electric field both in the space-dependent gauge and in
the time-dependent gauge. In both gauges the instantons
recovered the well-known exact result for the constant

electric field. It is shown that the contributions beyond
the leading-order WKB approximation vanish for a con-
stant electric field, and thus the leading-order WKB ap-
proximation is exact as expected in the one-loop effective
action.

We then applied the formulation to a spatially or tem-
porally localized electric field of Sauter type [28]. We
showed that our actions agree with the action of the world-
line instantons of Dunne and Schubert [15] in the special
case of zero frequency and transverse momentum for a
spatially localized electric field and of zero three-
momentum for a temporally localized electric field. The
pair-production rates obtained by using our leading-order
WKB approximations that are expanded up to quadratic
terms of frequency and transverse momentum or three-
momentum also agree with those by the worldline-
instanton method, including the prefactor [16].
Furthermore, the exact pair-production rate in spinor
QED by Nikishov [31] is better approximated by the
leading-order WKB instanton action in scalar QED. We
show that the cancellation of the leading-order and the
next-to-leading-order actions in spinor QED yields the
leading-order scalar QED action and resolves this apparent
dilemma. Finally, we calculate the actions and the pair-
production rate in the Sauter electric field in the presence
of a constant magnetic field.
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